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Abstract. Let Mn be a simple triangulation of the sphere S2, drawn uniformly at ran-
dom from all such triangulations with n vertices. Endow Mn with the uniform probabil-
ity measure on its vertices. After rescaling graph distance by (3/(4n))1/4, the resulting
random measured metric space converges in distribution, in the Gromov–Hausdorff–
Prokhorov sense, to the Brownian map. In proving the preceding fact, we introduce a
labelling function for the vertices ofMn. Under this labelling, distances to a distinguished
point are essentially given by vertex labels, with an error given by the winding number of
an associated closed loop in the map. We establish similar results for simple quadrangu-
lations. The appearance of a winding number suggests that a discrete complex-analytic
approach to the study of random triangulations may lead to further discoveries.

Figure 1. The circle packing associated to a uniformly random simple triangulation
of S2 with 105 vertices. Blue shaded circles form a shortest path between two uniformly
random vertices (circles). Created using Ken Stephenson’s CirclePack program; the file
for the above packing is included with the arXiv posting of this manuscript.
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1. Introduction

We begin by heading straight for a statement of our main result.1 A graph is simple if it
has no loops or multiple edges. For integer n ≥ 3, let △◦

n be the set of pairs (M, ξ), where
M is an n-vertex simple triangulation of the sphere S2, and ξ is a corner of M . Also, for
integer n ≥ 4, let □◦

n be the set of pairs (M, ξ) withM an n-vertex simple quadrangulation
of S2 and ξ a corner ofM . Then letM = (Mn, n ≥ 4) be one of the sequences (△◦

n, n ≥ 4)
or (□◦

n, n ≥ 4).

Theorem 1.1. For n ≥ 4, let (Mn, ξn) be a uniformly random element of Mn. Write
V (Mn) for the set of vertices of Mn, let dn : V (Mn) → N be graph distance in Mn

and let µn be the uniform probability measure on V (Mn). Finally, let c = (3/4)1/4 if

M = (△◦
n, n ≥ 4) and let c = (3/8)1/4 ifM = (□◦

n, n ≥ 4). Then, as n→∞,

(V (Mn), cn
−1/4dn, µn)

d→ (S, d, µ),

for the Gromov–Hausdorff–Prokhorov distance, where (S, d, µ) is the Brownian map.

We recall the definition of the Brownian map in Section 1.1, below. Our proof relies
upon the remarkable work of Miermont [29] and, independently, Le Gall [22], which both
established convergence for general (non-simple) random quadrangulations. In particular,
our results do not constitute an independent proof of uniqueness of the limit object. A
discussion of the constants in the above theorem, and their relation with those from [22, 29],
appears in Appendix A.

The part of Theorem 1.1 pertaining to simple triangulations (sometimes called type-III
triangulations; see [3]) answers a question of Le Gall [22] and Le Gall and Beltran [5]. One
general motivation for establishing convergence to the Brownian map is its conjectured
role as a universal limit object for a wide range of random map ensembles. However, the
case of simple triangulations holds additional interest due to the conjectured link between
the Brownian map and the Liouville quantum gravity constructed by Duplantier and
Sheffield [12]; see [16] for further discussion of this connection. Le Gall [20] proved that the
Brownian map is almost surely homeomorphic to the 2-sphere (see also [23, 27]). However,

1Precise definitions of almost all the terminology used in the introduction appear in Sections 2 and 3.
After stating our main result, the remainder of introduction provides motivation and an overview of its
proof, particularly the novel aspects of said proof.
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homeomorphism equivalence is too weak, for example, to deduce conformal information or
to prove dimensional scaling relations. For these, a canonical embedding of the Brownian
map in S2 is needed (or at least would be very useful).

For any simple triangulation M of S2, the Koebe-Andreev-Thurston theorem (see, e.g.,
[34], Chapter 7) provides a canonical circle packing in S2, unique up to conformal auto-
morphism, whose tangency graph is M ; see Figure 1 for an illustration of a random circle
packing. (This uniqueness holds only for simple triangulations; for a uniformly random
(non-simple) triangulation N with n vertices, for example, the number of degrees of free-
dom in a circle packing with tangency graph N is typically linear in n.) The uniqueness
provides hope that the conformal properties of the Brownian map can be accessed by
studying the circle packings associated to large random simple triangulations

We deduce Theorem 1.1 from a result which provides more general sufficient conditions
for a sequence (Mn, n ∈ N) of random planar maps to converge in distribution to the
Brownian map. More precisely, Theorem 4.1 states conditions under which, after suitably
rescaling distances, and endowed with the uniform probability measure on its vertex set,
Mn converges in distribution to the Brownian map for the Gromov–Hausdorff–Prokhorov
distance. The approach of Theorem 4.1 has its genesis in work of Chassaing and Schaeffer
[11], and is based on bijective codings of maps by labelled plane trees. We refer to ensembles
satisfying the conditions of Theorem 4.1 as Chassaing–Schaeffer families.

We hope Theorem 4.1 will be useful in proving convergence for other random map
models, in particular for models falling within the framework of the “master bijection”
of Bernardi and Fusy [6] and of the general bijection for blossoming trees, very recently
established by Albenque and Poulalhon [1]. With this in mind, we have tried to state
rather general conditions, which we summarize in Section 1.2. The proof of Theorem 4.1 is
a fairly straightforward generalization of existing arguments (mostly due to Jean-François
Le Gall), and we defer it to an appendix.

While the conditions under which we establish convergence to the Brownian map are
rather general, verifying that a discrete random map ensemble satisfies these conditions
can be rather involved. In many map ensembles of interest, the primary missing link is a
labelling rule for the vertices of a canonical spanning tree of the map, such that vertex labels
encode distances to a specified root vertex. For the case of random simple triangulations
and quadrangulations, we provide a labelling that does not precisely encode distances, but
we show that the error is insignificant in the limit. Intriguingly, for distances to a specified
root vertex, the error in the label is bounded by the winding number of an associated
closed loop in the map. In Section 1.3, we briefly describe the bijection between simple
triangulations and certain labelled trees, on which our proof of Theorem 1.1 is based,
and further discuss the role of winding numbers. The appearance of a winding number
hints that a discrete complex-analytic perspective may shed further light on the shape of
geodesics in random simple triangulations and eventually in the Brownian map.

One requirement of Theorem 4.1 is the convergence of a suitable spatial branching
process, after renormalization, to the Brownian snake. Such convergence is known in
many settings, but in others lack of symmetry (symmetry between the labels of children of
a single node, in the coding of maps by labelled trees) has posed an obstacle. We introduce
a technique we call partial symmetrization, in which we hold a “representative subtree”
fixed while randomly permuting the children of individuals not within the subtree. This
introduces enough symmetry that we may appeal to known results to establish convergence
to the Brownian snake. On the other hand, fixing a large subtree allows the partially
symmetrized process to be related to the original labelled tree and so to the associated
map. A detailed explanation of the partial symmetrization technique is easier to provide
for a specific bijection, and we defer it to Section 6.
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We believe partial symmetrization may be used to show that the multi-type spatial
branching processes coding random p-angulations (for odd p ≥ 5) converge to the Brownian
snake. Given the work of Miermont [29] and of Le Gall [22], this is the only missing element
in a proof that p-angulations (and perhaps more general random maps with degrees given
by suitable Boltzmann weights) converge to the Brownian map. We expect to return to
this in a subsequent work.

1.1. The Brownian map. Given an interval I ⊂ R or I ⊂ N and a function f : I → R,
for s, t ∈ I with s ≤ t we write f̌(s, t) = infx∈I∩[s,t] f(x) and write f̌(t, s) = infx∈I\(s,t) f(x).

Let e = (e(t), 0 ≤ t ≤ 1) be a standard Brownian excursion and, conditional on e,
let Z = (Z(t), 0 ≤ t ≤ 1) be a centred Gaussian process such that Z(0) = 0 and for
0 ≤ s ≤ t ≤ 1,

Cov(Z(s), Z(t)) = ě(s, t) .

We may and shall assume Z is a.s. continuous; see [18, Section IV] for a more detailed
description of the construction of the pair (e, Z).

Next, define an equivalence relation ∼e as follows. For 0 ≤ x ≤ y ≤ 1 let x ∼e y if
e(x) = e(y) = ě(x, y). It can be verified that almost surely, for all x, y ∈ [0, 1], if x ∼e y
then Z(x) = Z(y), so we may view Z as having domain [0, 1]/ ∼e. Next, for x, y ∈ [0, 1]
let

dZ(x, y) = Z(x) + Z(y)− 2max(Ž(x, y), Ž(y, x)) . (1)

Then let d∗ be the largest pseudo-metric on [0, 1] satisfying that (a) for all s, t ∈ [0, 1],
if s ∼e t then dZ(s, t) = 0, and (b) d∗ ≤ dZ . Let S = [0, 1]/{d∗ = 0}, and let d be the
push-forward of d∗ to S. Finally, let µ be the push-forward of Lebesgue measure on [0, 1]
to S. The (measured) Brownian map is (a random variable with the law of) the triple
(S, d, µ). This name was first used by Marckert and Mokkadem [26], who considered a
notion of convergence for random maps different from that of the present work.

For later use, let ρ ∈ S be the equivalence class of the point 0, and, writing s∗ ∈ [0, 1]
for the point where Z attains its minimum value (this point is almost surely unique), let
u∗ ∈ S be the equivalence class of s∗. Then Corollary 7.3 of [22] states that for U and V
uniformly distributed on [0, 1], independent of Z and of each other,

d∗(U, V )
d
= d∗(U, s∗)

d
= −Ž(0, 1) d

= Z(V )− Ž(0, 1). (2)

1.2. Sufficient conditions for convergence to the Brownian Map. Our argument
leans heavily on the rerooting invariance of the Brownian map ((2), above). Given the
convergence of some discrete ensemble to the Brownian map, if the discrete ensemble pos-
sesses rerooting invariance then this can be transferred to the Brownian map. However, to
date this is the only known technique for establishing rerooting invariance of the Brownian
map (and the key reason why our results depend on those of [22, 29]).

Informally, to prove convergence we need that the random rooted map Mn can in some
sense be described by a suitable pair of random functions Cn : [0, 1] → [0,∞) and Zn :
[0, 1] → R. Often Cn will be the (spatially and temporally rescaled, clockwise) contour
process of some canonical rooted spanning tree (Tn, ξn) of Mn, and for the sake of this
informal description we assume this to be so. To establish convergence we require (versions
of) the following. In what follows let rn ∈ [0, 1] be such that Zn(rn) = min(Zn(x), 0 ≤
x ≤ 1), and write dMn for (suitably rescaled) graph distance on V (Mn).

1. Distances to the minimum given by Zn. There is a vertex un ∈ V (Mn) such
that for all vertices v, if a clockwise contour exploration of Tn visits v at time t
then Zn(t) − Zn(rn) is dMn(v, un) + on(1), where on(1) represents an error that
tends to zero in probability as n→∞.
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2. Distance bound via clockwise geodesics to the minimum. For any pair of
vertices v, v′ ofMn, if a clockwise contour exploration of Tn visits v and v′ at times
t and t′, respectively, then dMn(v, v

′) is bounded from above by

Zn(t) + Zn(t
′)− 2max(Žn(t, t

′), Žn(t
′, t)) + on(1).

3. Coding by the Brownian snake. The pair (Cn, Zn) converges in distribution
to (e, Z), for the topology of uniform convergence on C([0, 1],R)2.

4. Invariance under rerooting. If Un, Vn are independent, uniformly random ver-
tices ofMn, then dMn(Un, Vn) is asymptotically equal in distribution to dMn(un, Vn).

Briefly, given these properties the proof then proceeds as follows. Our argument roughly
follows one used by Le Gall to prove convergence of rescaled random (non-simple) tri-
angulations to the Brownian map, once convergence for quadrangulations is known ([22,
Section 8]). It is useful to reparameterize so that all the metrics and pseudo-metrics under
consideration are functions from [0, 1]2 to [0,∞); this can be accomplished by identifying
the vertices of each metric spaceMn with a subset of [0, 1] and using bilinear interpolation.

First, 1. and 2. together can be used to prove tightness of the sequence of laws of
the functions (dMn , n ∈ N), which implies convergence along subsequences. Thus, let
d : [0, 1]2 → [0,∞) be a subsequential limit of dMn . Our aim is to show that almost surely
d and d∗ (defined in Section 1.1) are equal in law.

Next, 1. says that distances to the point of minimum label are given by Zm, a limiting
analogue of which is also true in the Brownian map. Invariance under rerooting 4. and
(2) then yields that for U, V independent and uniform on [0, 1], d(U, V ) is the limit in

distribution of −Zn(rn), so by 3. we obtain d(U, V )
d
= −min(Z(x), 0 ≤ x ≤ 1) = d∗(U, V ).

Finally, 2. gives a bound on dMn that is a finite-n analogue of dZ (recall (1)). Since d∗

is maximal subject to d∗ ≤ dZ , 3. then yields that d is stochastically dominated by d∗.
In other words, by working in a suitable probability space (i.e. choosing an appropriate
coupling), we may assume d(x, y) ≤ d∗(x, y) for almost every (x, y) ∈ [0, 1]2. The fact that

d(U, V )
d
= d∗(U, V ) then implies d and d∗ are almost everywhere equal, so have the same

law.

1.3. Labels and geodesics, and an overview of the proof. In this section (and
throughout much of the rest of the paper), we restrict our attention to simple triangula-
tions, as the details for simple quadrangulations are nearly identical.

Fix a pair (G, ξ) with G a simple triangulation of S2 and ξ a corner of G. View G as
embedded in R2 so the face containing ξ is the unique unbounded (outer) face. With this
embedding, list the vertices of the face containing ξ in clockwise order as v,A,B, with

v incident to ξ. A 3-orientation of (G, ξ) is an orientation
−→
E of E(G) such that in

−→
E ,

A,B, and v have outdegrees 0, 1, and 2, respectively, and all other vertices have outdegree
three.2 Schnyder [33] showed (G, ξ) admits a 3-orientation if and only if G is simple, and
in this case admits a unique 3-orientation containing no counterclockwise cycles (we say
an oriented cycle is clockwise if ξ is on its left, and otherwise say it is counterclockwise);

this 3-orientation is called minimal. Let
−→
E be the minimal 3-orientation of (G, ξ).

The definitions of the following paragraph are illustrated in Figure 2. A subtree of G
containing the vertex v incident to ξ is oriented if all edges of the subtree are oriented

towards v in
−→
E . It turns out there is a unique oriented subtree T of G on vertices

V (G) \ {A,B} which is minimal in the sense that for all edges uw ∈
−→
E with {u,w} ̸∈

E(T ), if uw attaches to u and w in corners c and c′, respectively, then c precedes c′ in a
clockwise contour exploration of T starting from ξ. We endow this tree T with a labelling

Y : V (T )→ N as follows. For e = uw ∈
−→
E with {u,w} ∈ E(G), the leftmost oriented path

2This is equivalent to, but differs very slightly from, the standard definition.
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from e to A is the unique oriented path (u0, u1, . . . , uk) with the following two properties:
(i) u0 = u, u1 = w; (ii) for 1 ≤ i < k, if {ui, y} ∈ E(G) and this edge attaches to the path

(u0, . . . , uk) on the left, then yui ∈
−→
E . For each vertex u ∈ V (T ) distinct from v, there are

three such paths starting at u (since u has outdegree three in
−→
E ); we let P (u) = PG,ξ(u)

be one of the shortest such paths. Then let Y (u) = |P (u)|, the number of vertices in P (u).

ξ

A BBA

v

(a) A simple triangulation en-
dowed with its unique 3-
orientation with no counter-
clockwise cycles.

ξ

A BBA

v

(b) The minimal oriented tree
is drawn in dashed blue lines.

ξ

A BBA

u

v

(c) The thick green paths are
both leftmost oriented paths
from u to A; the solid path is
P (u), so Y (u) = 3.

Figure 2. Orientations, spanning trees, and leftmost paths in simple triangulations

Surprisingly, (G, ξ) may be recovered from the pair (T, Y ). More strongly, the above
transformation is a bijection mapping planted simple planar triangulations to a certain
set of “validly labelled” planted plane trees. This bijection is essentially due to Poulalhon
and Schaeffer [31], but the connection of vertex labels with the lengths of certain oriented
paths is new.

Since Y (u) is the number of vertices on a certain path from u to A, Y (u) − 1 is an
upper bound on dG(u,A), the graph distance between u and A in G. It turns out that
Y (u)−dG(u,A)−1 is bounded by twice the number of times a shortest path inG from u toA
winds clockwise around the leftmost path PG,ξ(u). More strongly, if P (u) = (u0, u1, . . . , uk)
and Q is a path from ui to uj disjoint from P (u) except at its endpoints, then |Q| ≥ j−i−1,
and |Q| ≤ j − i+1 (i.e. Q is a shortcut from ui to uj) only if Q leaves ui on the right and
rejoins uj on the left. This fact allows Y (u)− dG(u,A)− 1 to be controlled as follows.

Let n = |V (G)|. If Q is a shortcut from ui to uj then the union of Q and ui+1, . . . , uj−1

forms a cycle C with 2(j− i)− 1 or 2(j− i)− 2 vertices. If there are 2k shortcuts between
u and A and Q is the k’th one, then all vertices of C have distance at least k both from
A and from u. It will follow that typically (i.e., for random G), when k and dG(uj , A) are

both large (of order n1/4) then j − i should also be large (of order n1/4), or else G would

contain a cycle of length o(n1/4) separating two macroscopic regions. On the other hand,

a “shortcut” of length of order n1/4 is rather long; we will straightforwardly show that
typically the diameter of G will be O(n1/4), in which case there can be at most a bounded
number of such long shortcuts on any path. A rigorous version of this argument allows us
to show that typically, for all u ∈ V (T ) \ {v} = V (G) \ {v,A,B}, Y (u) − dG(u,A) − 1 is

much smaller than n1/4. In other words, after rescaling, the labels Y with high probability
provide good approximations for distances to the root A. This essentially proves 1. from
Section 1.2.

A modification of the above argument establishes without too much difficulty that for
u,w ∈ V (T ) with u preceding w in lexicographic order, dG(u,w) is bounded by Y (u) +
Y (w)− 2Y̌ (u,w) + 2, where Y̌ (u,w) is the smallest value Y (y) for any vertex y following
u and preceding w in lexicographic order. This will establish (2) from Section 1.2.
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To establish (3) we use “partial symmetrization” as previously discussed. Finally, re-
rooting invariance, (4), will be a straightforward consequence of choosing a random root
corner. Having verified all the conditions of our general convergence result (whose proof
was already sketched), Theorem 1.1 for simple triangulations then follows immediately.
An essentially identical development establishes Theorem 1.1 for simple quadrangulations.

1.4. Outline. We conclude the introduction by fixing some basic notation, in Section 1.5.
In Section 2 we provide definitions related to planar maps and plane trees, many of which
are standard. In Section 3 we introduce the Gromov–Hausdorff distance and mention
some of its basic properties. In Section 4 we formally state our “universality” result,
providing general sufficient conditions for a random map ensemble to converge to the
Brownian map; proofs are deferred to Appendix B. In Section 5 we describe the bijections
for simple triangulations and quadrangulations on which our proof of Theorem 1.1 is
based. In Section 6 we prove convergence of the spatial branching process associated to a
random simple triangulation to the Brownian snake; this is where partial symmetrization
appears. In Section 7 we study the relation of distances with labels; this is where winding
numbers appear. In Section 8, we use the bounds of Section 7 to show that our labelling
provides a sufficiently close approximation of distances in random simple triangulations
that the associated conditions of Theorem 4.1 are satisfied. In Section 9 we establish
rerooting invariance and so complete the proof of Theorem 1.1. Finally, Section 10 proves
Theorem 1.1 for quadrangulations, and Appendix A contains a derivation of the numerical
constants from Theorem 1.1.

1.5. Notation. For the remainder of the paper, all graphs are connected, finite, simple
(i.e. without loops nor multiple edges) and planar. Let G = (V (G), E(G)) be such a graph.
Given a vertex v ∈ V (G) we write degG(v) = |{e ∈ E(G) : v ∈ e}| for the degree of v in
G, and sometimes write deg(v) when G is clear from context. If v ∈ e we say e is incident
to v. We write dG : V (G) × V (G) → N for graph distance on G. Given W ⊂ V (G), we
write G[W ] for the graph with vertices W and edges {{u, v} ∈ E(G) : u, v ∈W}.

An oriented edge of G is an ordered pair uw, where {u,w} ∈ E(G); we call uw an

orientation of {u,w}. An orientation of G is a set
−→
E = {−→e : e ∈ E(G)}, where for each

e ∈ E(G), −→e is an orientation of e. The outdegree of v ∈ V (G) (with respect to
−→
E ) is

deg+(v) = deg+−→
E
(v) = |{w ∈ V (G) : vw ∈ −→E }|.

If S = (s1, . . . , sr) is any sequence of objects, we say that S has length r and write
|S| = r. A path in G is a sequence P = (u0, u1, . . . , uk) of vertices of G with {ui, ui+1} ∈
E(G) for 0 ≤ i < k; we say P is a path from u0 to uk, and note that |P | = k + 1. A path
is simple if all its vertices are distinct. A cycle in G is a path (u0, u1, . . . , uk, uk+1) such
that uk+1 = u0; it is simple if (u0, . . . , uk) is a simple path. If G is a tree (connected and
acyclic) then for u,w ∈ G we write Ju, vK for the unique (shortest) path in G from u to v.
Finally, for a non-negative integer k, write [k] = {0, 1, . . . , k},

2. Planar maps and plane trees

2.1. Planar maps. A planar embedding ofG is a function ϕ : V (G)∪E(G)→ S2 satisfying
the following properties.

(1) The restriction ϕ|V (G) is injective.
(2) For each e = uv ∈ E(G), ϕ(e) is a simple curve with endpoints ϕ(u) and ϕ(v).
(3) For any two edges e, f ∈ E(G), the curves ϕ(e) and ϕ(f) are disjoint except possibly

at their endpoints.

The pair (G,ϕ) is called a planar map. The faces of (G,ϕ) are the connected components
of S2 \

∪
x∈V (G)∪E(G) ϕ(x). Given a face f the vertices and edges incident to f are given

by the set ϕ−1(∂f), where ∂f is the boundary of f .
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Two planar maps are isomorphic if there exists an orientation-preserving homeomor-
phism of S2 that sends one to the other. It is easily verified that planar map isomorphism
is an equivalence relation.

For any planar map (G,ϕ), for each vertex v ∈ V (G) there is a unique cyclic (clockwise)
ordering Ov of the edges incident to v. Furthermore, up to isomorphism, the set of
orderings {Ov : v ∈ V (G)} uniquely determines (G,ϕ). We may therefore specify the
isomorphism equivalence class of (G,ϕ) by providing G and the set of cyclic orderings
associated to (G,ϕ). We will henceforth denote (a representative from the isomorphism
equivalence class of) a planar map simply by G, leaving implicit both ϕ and its associated
cyclic orderings.

For the remainder of Section 2.1, consider a fixed planar map G. A corner of G incident
to v is an ordered pair ξ = (e, e′) where e and e′ are incident to v and e′ follows e in the
clockwise order around v and we also say that e and e′ are incident to ξ.3 We write
v(ξ) = vG(ξ) for the vertex incident to ξ in G. We write C(G) for the set of corners of
G. Finally, if e = {u, v} and e′ = {v, w}, and f is the face on the left when following e
and e′ from u through v to w, then we say ξ = (e, e′) is incident to f and vice-versa. The
degree of f is the number of corners incident to f . The planar map G is a triangulation
or a quadrangulation if all its faces have respectively degree 3 or degree 4.

Given e = {u, v} ∈ E(G), write κℓ(u, v) = κℓG(u, v) (respectively, κr(u, v) = κrG(u, v))
for the corner incident to u and to {u, v} that is on the left (respectively, on the right)
when following e from u to v.

A planted planar map is a pair (G, ξ), where G is a planar map and ξ ∈ C(G). We call
ξ the root corner of (G, ξ), call v(ξ) its root vertex, and call the face of G incident to ξ its
root face. If G′ is a connected subgraph of G containing ξ, then (G′, ξ) is again a planar
map, and we call it a planted submap of (G, ξ).

2.2. Plane trees. A plane tree (resp. planted plane tree) is a planar map G (resp. planted
planar map (G, ξ)) such that G is a tree4. If T = (T, ξ) is a planted plane tree then recalling
that v(ξ) is the root vertex of T, we may speak of parents, children, ancestors, descendants
in the usual way. In particular, for each w ∈ V (T ) \ {v(ξ)} we write p(w) = pT(w) for the
parent of w.

The Ulam–Harris encoding is the injective function U = UT : V (T ) →
∪
i≥0Ni defined

as follows (let N0 = {∅} by convention). First, set U(v(ξ)) = ∅. For every other vertex
w ∈ V (T ), consider the unique path v(ξ) = v0, v1, . . . , vk = w from v(ξ) to w. For 1 ≤ i ≤ k
let ni be such that vi is the ni’th child of vi−1, in cyclic order around vi−1 starting from
κr(vi−1, vi−2) if i ≥ 2 or from ξ if i = 1. Then set U(w) = n1n2 . . . nk ∈ Nk. In other
words, the root receives label ∅ and for each i ≥ 1 the label of any i’th child is obtained
recursively by concatenating the integer i to the label of its parent. It is easily verified that
(the isomorphism class of) T can be recovered from the set of labels {U(v) : v ∈ V (T )}.

The lexicographic ordering ⪯lex=⪯lex,T of V (T ) is the total order of V (T ) induced by
the lexicographic order on {U(v) : v ∈ V (T )}. This ordering induces a lexicographic
ordering of E(T ) (also denoted ⪯lex=⪯lex,T by a slight abuse of notation) by defining
{u, v} ⪯lex,T {u′, v′} if and only if u, v ⪯lex,T u′ or u, v ⪯lex,T v′. These are the orders in
which a clockwise contour exploration of the plane tree T starting from ξ first visits the
vertices and edges of T , respectively. For u ∈ V (T ), list the children of u in lexicographic
order as cT(u, 1), . . . , cT(u, k), where k = kT(u) = degT (u) − 1[u̸=v(ξ)] is the number of
children of u in T .

3We allow that e = e′, which can happen if dG(v) = 1.
4It is relatively common to define a planted plane tree as a pair (T, v) where T is a plane tree and v is a

degree-one vertex of T . Our definition, which is equivalent, can be recovered by deleting the plant vertex
and its incident edge, and rooting at the corner thereby created.
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The contour exploration rT : [2|V (T )|−2]→ V (T ) is inductively defined as follows. Let
rT(0) = v(ξ). Then, for 1 ≤ i ≤ 2|V (T )| − 2, let rT(i) be the lexicographically first child
of rT(i− 1) that is not an element of {rT(0), . . . , rT(i− 1)}, or let rT(i) be the parent of
rT(i− 1) if no such node exists. Note that each vertex v ∈ V (T ) \ {v(ξ)} appears degT (v)
times in the contour exploration, and v(ξ) appears degT (v(ξ)) + 1 times.

The contour exploration induces an ordering of C(T ), as follows. For 0 ≤ i < 2|V (T )|−2,
let eT(i) = {rT(i), rT(i + 1)}. Then let ξT(0) = ξ, and for 1 ≤ i < 2|V (T )| − 2 let
ξT(i) = (eT(i− 1), eT(i)). The contour ordering, denoted ⪯ctr=⪯ctr,T, is the total order of
C(T ) induced by (ξT(i), 0 ≤ i < 2|V (T )|−2). For convenience, also let ξT(2|V (T )|−2) = ξ.
Finally, write ⪯cyc=⪯cyc,T for the cyclic order on C(T ) induced by ⪯ctr,T. It can be verified
that ⪯cyc does not depend on the choice of root corner ξ.

Given u, v ∈ V (T ), we say that v is the successor of u if u ⪯lex v and for all w ∈ V (T ),
if u ⪯lex w ⪯lex v then w = u or w = v. We define successorship for corners in a similar
fashion.

Given a plane tree T = (T, ξ) and a set R ⊂ V (T ) with v(ξ) ∈ R, the reduced tree T(R)
is the unique planted plane tree (T ′, ξ′) such that the following hold: (i) V (T ′) = R; (ii)
for u, v ∈ R, {u, v} ∈ E(T ′) if and only if one of u, v is an ancestor of the other in T andJu, vK ∩ R = {u, v}; and (iii) the order ⪯lex,T′ of R is the restriction of ⪯lex,T to R. Also,
the subtree of T spanned by R, denoted T⟨R⟩, is the subtree of T induced by the union of
the shortest paths between all pairs of vertices in R. Note that T⟨R⟩ naturally inherits a
planted plane tree structure from T.

2.3. The contour process and spatial planted plane trees. A labelled planted plane
tree is a triple T = (T, ξ,D), where (T, ξ) is a planted plane tree and D : E(T )→ R is an
arbitrary function. Given a labelled plane tree, define a function X := XT : V (T ) → R
as follows. First, let X(v(ξ)) = 0. Next, given u ∈ V (T ) with X(u) already defined, for
1 ≤ i ≤ k(T,ξ)(u) let X(c(T,ξ)(u, i)) = X(u) +D({u, c(T,ξ)(u, i)}).

Now define C([0, 1],R) functions CT and ZT by setting

CT(i/(2|V (T )| − 2)) = dT (v(ξ), r(T,ξ)(i)) and ZT(i/(2|V (T )| − 2)) = XT(r(T,ξ)(i)) ,

for i ∈ {0, 1, . . . , 2|V (T )|−2}, and extending each function to [0, 1] by linear interpolation.
We refer to CT as the contour process of T. Note that the definition of CT does not

depend on the function D, so we may in fact view C as a function of the planted plane
tree (T, ξ) and write C(T,ξ) instead of CT.

2.4. Spanning trees in planar maps. Given a planar map G, a spanning tree of G is
a subgraph T of G such that T is a tree with V (T ) = V (G). If (G, ξ) is a planted planar
map and T is a spanning tree of G then we call (T, ξ) a planted spanning tree of (G, ξ).

Finally, given a planted planar map G = (G, ξ) and an orientation
−→
E of E(G), we say

that a planted spanning tree (T, ξ) of G is oriented with respect to
−→
E if in the orientation

of E(T ) obtained from
−→
E by restriction, all edges are oriented towards v(ξ).

3. Distances between metric spaces: Gromov, Hausdorff, and Prokhorov

The Gromov–Hausdorff distance. For proofs of the assertions in this section, and for
further details, we refer the reader to [10, 28]. Let X = (X, d) and X′ = (X ′, d′) be compact
metric spaces. Given C ⊂ X ×X ′, the distortion of C, denoted dis(C), is the quantity

dis(C) = sup{|d(x, y)− d′(x′, y′)| : (x, x′) ∈ C, (y, y′) ∈ C}.

A correspondence between X and X′ is a set C ⊂ X × X ′ such that for every x ∈ X
there is x′ ∈ X ′ such that (x, x′) ∈ C and vice versa. We write C(X,X ′) for the set of
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correspondences between X and X ′. The Gromov–Hausdorff distance dGH(X,X
′) between

metric spaces X = (X, d) and X′ = (X ′, d′) is

dGH(X,X
′) =

1

2
inf{dis(C) : C ∈ C(X,X ′)}.

We list without proof some basic properties of dGH. LetM be the set of isometry classes
of compact metric spaces.

(1) Given metric spaces X = (X, d) and X′ = (X ′, d′), there exists C ∈ C(X,X ′) such
that dGH(X,X

′) = dis(C)/2.
(2) If X1 and X2 are isometric, and X′

1 and X′
2 are isometric, then dGH(X1,X

′
1) =

dGH(X2,X
′
2). In other words, dGH is a class function forM.

(3) The push-forward of dGH to M (which we continue to denote dGH) is a distance
onM, and (M, dGH) is a complete separable metric space.

A k-pointed metric space is a triple (X, d, (x1, . . . , xk)) where (X, d) is a metric space
and xi ∈ X for 1 ≤ i ≤ k. We say k-pointed metric spaces X = (X, d, (x1, . . . , xk))
and X′ = (X ′, d′, (x′1, . . . , x

′
k)) are isometry-equivalent if there exists a bijective isometry

f : X → X ′ such that f(xi) = x′i for 1 ≤ i ≤ k. The k-pointed Gromov–Hausdorff distance
dkGH between X,X′ is given by

dkGH(X,X
′) =

1

2
inf
{
dis(C) : C ∈ C(X,X ′) and (xi, x

′
i) ∈ C, 1 ≤ i ≤ k

}
.

Much as before, if M(k) is the set of isometry-equivalence classes of k-pointed compact
metric spaces, then dkGH is a class function forM(k) so may be viewed as having domain

M(k), and (M(k), dkGH) then forms a complete separable metric space.

The Gromov–Hausdorff–Prokhorov distance. Following [28], a weighted metric space
is a triple (X, d, µ) such that (X, d) is a metric space and µ is a Borel probability measure
on (X, d). Weighted metric spaces (X, d, µ) and (X ′, d′, µ′) are isometry-equivalent if there
exists a measurable bijective isometry ϕ : X → X ′ such that ϕ∗µ = µ′, where ϕ∗µ denotes
the push-forward of µ under ϕ. Write Mw for the set of isometry-equivalence classes of
weighted compact metric spaces.

Given weighted metric spaces X = (X, d, µ) and X′ = (X ′, d′, µ′), a coupling between µ
and µ′ is a Borel measure ν on X×X ′ (for the product metric) with π∗ν = µ and π′∗ν = µ′,
where π : X × X ′ → X and π′ : X × X ′ → X ′ are the projection maps. Let M(µ, µ′)
be the set of couplings between µ and µ′. The Gromov–Hausdorff–Prokhorov distance is
defined by

dGHP(X,X
′) = inf

{
ϵ > 0 : ∃C ∈ C(X,X ′), ∃ν ∈M(µ, µ′), ν(C) ≥ 1− ϵ, dis(C) ≤ 2ϵ

}
.

The push-forward of dGHP toMw, which we again denote dGHP, is a distance onMw, and
(Mw, dGHP) is a complete separable metric space (see [28, Section 6] and [13, Section 2]).

4. Chassaing–Schaeffer families

In this section we describe conditions under which a random map ensemble converges
to the Brownian map. A spatial map-tree pair is a 4-tuple of the form P = (M,T, R,X),
such that

(i) T = (T, ξ) is a planted plane tree,
(ii) M = (M, ζ) is a planted planar map,
(iii) R ⊂ V (M) ∩ V (T ), vM (ζ) = vT (ξ) and vT (ξ) ∈ R, and
(iv) X : R→ R is a labelling function with X(vT (ξ)) = 0.

Note that T need not be a subgraph of M . A marked spatial map-tree pair is a 5-tuple
P = (M,T, R,X, u) such that (M,T, R,X) is a spatial map-tree pair and u ∈ R.
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Given a 4- or 5-tuple P as above, let CP : [0, 1] → Z≥0 and ZP : [0, 1] → R be defined
by setting

CP(x) = dT (vT (ξ), rT(R)(x · (2|R| − 2))) , ZT(x) = X(rT(R)(x · (2|R| − 2)))

for x ∈ {0, 1/(2|R|−2), 2/(2|R|−2), . . . , 1} and extending both functions to [0, 1] by linear
interpolation (recall that T(R) is the reduced tree defined in Section 2.2).

For the remainder of the section, let P = (Pn, n ∈ N) be a sequence of finite sets
of marked spatial map-tree pairs, such that min(|R| : (M,T, R,X, u) ∈ Pn) → ∞ as
n → ∞. Let Pn = (Tn,Mn, Rn, Xn, un) be a uniformly random element of Pn, and write
Tn = (Tn, ξn) and Mn = (Mn, ζn). We say that P is a Chassaing–Schaeffer or CS family if
there exist sequences (an, n ∈ N) and (bn, n ∈ N) such that the following three properties
hold.

1. As n → ∞, (anCPn , bnZPn)
d→ (e, Z) in the topology of uniform convergence on

C([0, 1],R)2, where (e, Z) is as described in Section 1.1.
2. (i) For all ϵ > 0,

lim
n→∞

P

{
bn max

v∈V (Mn)
dMn(v,Rn) > ϵ

}
= 0 .

(ii) Write dProk for the Prokhorov distance between Borel measures on R. For each n,
conditional on Pn, let Un, Vn be independent uniformly random elements of Rn. Then

lim
n→∞

dProk(bndMn(vMn(ζn), un), bndMn(Un, Vn)) = 0 .

3. (i) Let m = m(n) = 2|Rn| − 2. Then for all ϵ > 0,

lim
n→∞

P
{
∃i, j ∈ [m] : dMn(rTn(Rn)(i), rTn(Rn)(j)) ≥

ZPn(i/m) + ZPn(j/m)− 2max
(
ŽPn(i/m, j/m), ŽPn(j/m, i/m)

)
+ ϵb−1

n

}
= 0 .

(ii) For all ϵ > 0,

lim
n→∞

P
{
∃j ∈ [m] : dMn(rTn(Rn)(j), un) ≤ ZPn(j/m)− ŽPn(0, 1)− ϵb−1

n

}
= 0 .

For later use, we note one consequence of 3. Let In ∈ [2|Rn| − 2] be minimal such that
Xn(rTn(Rn)(In)) = Žn(0, 1). Letting i be such that un = rTn(Rn)(i), 3.(ii) implies that

lim
n→∞

P
{
|Xn(rTn(Rn)(i))−Xn(rTn(Rn)(In))| > ϵb−1

n

}
= 0 .

In other words, Xn(rTn(Rn)(i)) is, up to a o(b−1
n ) correction, the smallest displacement in

Rn. Together with 3.(i) and 3.(ii) this yields that, for all ϵ > 0,

P

{
∃j ∈ [2|Rn| − 2] : |dMn(rTn(Rn)(j), un)− (Xn(rTn(Rn)(j))−Xn(rTn(Rn)(In)))| >

ϵ

bn

}
→ 0 , (3)

as n→∞. In other words, for u ∈ Rn, the distance dMn(u, un) is essentially given by the
difference in labels between the associated tree vertices.

Theorem 4.1. If P is a CS family then, writing µn for the uniform probability measure
on Rn,

(V (Mn), bndMn , µn)
d→ (S, d, µ)

for dGHP, where (S, d, µ) is as defined in Section 1.1.
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The proof of Theorem 4.1 appears in Appendix B. We conclude the section by men-
tioning one corollary of the theorem; we are slightly informal to avoid notational excess
and as the argument is straightforward. For n, k ≥ 1, conditional on Pn, let Un,1, . . . , Un,k
be independent with law µn. Proposition 10 of [28] implies that if the convergence in
Theorem 4.1 holds then also

(V (Mn), bndMn , (Un,1, . . . , Un,k))
d→ (S, d, (U1, . . . , Uk)) ,

for dkGH, where conditional on (S, d, µ), U1, . . . , Uk are independent with law µ. By Propo-
sition 8.2 of [21], conditional on (S, d, µ), the points ρ, u∗ ∈ S are independent with law µ;

by 2.(ii) it follows that (V (Mn), bndMn , (vMn(ζn), un))
d→ (S, d, (ρ, u∗)) for d2GH.

5. Bijections for simple triangulations

We start with a summary of the results of the section; to do so some definitions are
needed. For integer k ≥ 1, a plane tree T is a k-blossoming tree if each vertex of degree
greater than one is incident to exactly k vertices of degree one. If T is a k-blossoming
tree (for some k), we write B = B(T ) for the set of degree-one vertices of T . Note that
both k and B are uniquely determined by T . We call B the blossoms of T , and V (T ) \ B
the inner vertices of T . Also, an edge between two inner vertices is called an inner edge,
and an edge between an inner vertex and a blossom is a stem. A corner c is an inner
corner if v(c) ̸∈ B. A planted k-blossoming tree is a planted plane tree (T, ξ) such that T
is a k-blossoming tree. The bijections of Section 5 concern 2-blossoming trees, which we
simply call blossoming trees for the remainder of the section.

Write Tn for the set of planted blossoming trees (T, ξ) with n inner vertices and with
v(ξ) an inner vertex. Fix (T, ξ) ∈ Tn, and note that |E(T )| = |V (T )| − 1 = 3n − 1 so
|C(T )| = 6n − 2 = 3|B(T )| − 2. We say (T, ξ) is balanced if ξ = (e, e′) for distinct stems
e, e′, and for all c′ ∈ C(T ),

3
(
|{k ∈ C(T ) : ξ ⪯cyc k ⪯cyc c

′, v(k) ∈ B}|
)
+ 1 ≥ |{k ∈ C(T ) : ξ ⪯cyc k ⪯cyc c

′}|

(recall the definition of ⪯cyc) from Section 2.2). For n ≥ 1 let T ◦
n ⊂ Tn be the set of

balanced blossoming trees with n inner vertices. Also, write T •
n for the set of triples

(T, ξ, ξ̂) with (T, ξ) ∈ T ◦
n and (T, ξ̂) ∈ Tn.

A valid labelling of a planted plane tree T = (T, ξ′) is a labelling d = (de, e ∈ E(T )) of
the edges of T by elements of {−1, 0, 1} such that for all v ∈ V (T ), writing k = kT(v),
the sequence d{v,cT(v,1)}, . . . , d{v,cT(v,k)} is non-decreasing. Let T vl

n be the set of validly
labelled plane trees with n vertices. We emphasize that a validly labelled plane tree is a
“normal” tree, not a blossoming tree.

Finally, recall that for n ≥ 3,△◦
n is the set of planted triangulations with n inner vertices.

In Section 5.1, below, we associate to each (G, ξ) ∈ △◦
n a canonical set Ĉ(G, ξ) ⊂ C(G)

with |Ĉ(G, ξ)| = 4n− 2, and let △•
n = {(G, c, ĉ) : (G, c) ∈ △◦

n, ĉ ∈ Ĉ(G, c)}.

The following diagram summarizes the bijective relations between Tn, T •
n , T ◦

n ,△•
n+2,

and △◦
n+2 established in [32] and in the current section, primarily in Propositions 5.1, 5.2,

and 5.5. (We may already verify that the projection from T •
n to T ◦

n is (4n− 2)-to-1, since
a blossoming tree with n inner vertices has 4n− 2 inner corners.)

T vl
n

ϕn; Prop.5.5←−−−−−−−−
bij

Tn
ψn; Prop.5.2←−−−−−−−−

2−to−1
T •
n

projection−−−−−−−−→
(4n−2)−to−1

T ◦
n

χ•
n

ybij bij

yχn; Prop.5.1

△•
n+2

projection−−−−−−−−→
(4n−2)−to−1

△◦
n+2

(4)
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After concluding with bijective arguments, in Section 5.4 we explain how to sample uni-
formly random triangulations using conditioned Galton-Watson trees. We end the section
by describing the inverse of the bijection χn : T ◦

n →△◦
n+2, which will be needed later.

5.1. A bijection between triangulations and blossoming trees. We first describe a
bijection of Poulalhon and Schaeffer [31] between balanced blossoming trees and simple,
planted triangulations of the sphere (see Figure 3; the orientations of the arrows in the
figure are explained in Section 5.5). Fix a blossoming tree T . Given a stem {b, u} with
b ∈ B(T ), if bu is followed by two inner edges in a clockwise contour exploration of T
– uv and vw, say – then the local closure of {b, u} consists in removing the blossom b
and its stem, and adding a new edge {u,w} (such that κr(u,w) = ({u,w}, {u, v}) and
κℓ(w, u) = ({w, v}, {w, u})). After performing the local closure, uw always has a triangle
on its right. The edge {u,w} is considered to be an inner edge in subsequent local closures.

The partial closure of a blossoming tree is the planar map obtained by performing all
possible local closures. Equivalently, for each corner c with v(c) ∈ B, let s(c) be the corner
c′ minimizing |{k ∈ C(T ), c ⪯cyc k ≺cyc c

′}| subject to the condition that

3|{k ∈ C(T ) : c ⪯cyc k ⪯cyc c
′, v(k) ∈ B}| < |{k ∈ C(T ), c ⪯cyc k ⪯cyc c

′}|, (5)

if such a corner exists (recall the definition of ⪯cyc) from Section 2.2). The partial closure
operation identifies v(c) with v(s(c)) whenever v(c) ∈ B and s(c) is defined; it follows from
the latter description that the partial closure does not depend on the order in which local
closures take place. Say v(c) is closed if s(c) is defined, and otherwise say v(c) is unclosed.

It can be checked that the partial closure is a simple map and contains precisely one face
f of degree greater than three, and all unclosed blossoms are incident to f . Furthermore,
simple counting arguments show that each inner corner incident to f is adjacent to at least
one unclosed blossom, and that there are precisely two corners, say ξC and ξD, that are
incident to two unclosed blossoms. Note that ξC and ξD are both corners of T (i.e., they
are not created while performing the partial closure). Let C = v(ξC) and D = v(ξD).

Given ξ ∈ C(T ), we say the planted blossoming tree (T, ξ) is balanced if ξ = ξC or
ξ = ξD, and in this case call (T, ξ) a balanced blossoming tree. It follows straightforwardly
from (5) that this definition of balanced agrees with the one given at the start of the
section. We now suppose ξ ∈ {ξC , ξD}. Let SCD (resp. SDC) be the set of non-blossom
vertices v of the distinguished face f of the partial closure such that in the planted tree
(T,C) (resp. (T,D)) we have v ⪯ctr D (resp. v ⪯ctr C). In other words, vertices of SCD
lie after C and before D in a clockwise tour of f , and likewise for SDC .

To finish the construction, remove the remaining blossoms and their stems. Add two
additional vertices A and B within f , then add an edge between A (resp. B) and each
of the vertices of SCD (resp. of SDC). In the resulting map, define a corner c by c =
({C,B}, {C,A}) if v(ξ) = C or c = ({D,A}, {D,B}) if v(ξ) = D. Finally, add an edge
between A and B in such a way that, after its addition, A,B, and v(ξ) lie on the same
face f . The result is a planar map, rooted at ξ, called the closure of T . For later use,
define a function s′ : V (T )→ V (T ) as follows. First, set s′(v) = v for v ∈ V (T ) \ B. For
v ∈ B, let u be the unique neighbour of v and let k be the unique corner incident to v. If
s(k) is defined then let s′(v) = v(s(k)); otherwise, if u ∈ SCD let s′(v) = A and if u ∈ SDC
let s′(v) = B.

Write χ :
∪
n≥1 T ◦

n →
∪
n≥1△◦

n+2 for the function sending a balanced blossoming tree
to its closure, and for n ≥ 1 let χn : T ◦

n →△◦
n+2 be the restriction of χ to T ◦

n .

Proposition 5.1 ([32]). For all n ≥ 1, χn is a bijection between T ◦
n and △◦

n+2.

It bears emphasis that we only consider balanced blossoming trees (T, κ) up to isomor-
phism of planted planar maps. In particular, if (T, ξC) and (T, ξD) are isomorphic then T
only corresponds to one planted triangulation.
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(a) A balanced blossoming tree

D

C

(b) all the local closures have
been performed

D

C

A B

(c) The resulting rooted simple
triangulation, endowed with its
unique minimal 3-orientation

Figure 3. The closure of a balanced tree into a simple triangulation.

Note that if (T, ξ) is a blossoming tree and χ(T, ξ) = (G, c) then it is natural to identify
the inner vertices and inner edges of T with subsets of V (G) and E(G), respectively. More
formally, we may choose representatives from the isomorphism equivalence classes of the
tree and its closure so that V (T )\B(T ) = V (G)\{A,B} and {{u, v} ∈ E(T ) : u, v ̸∈ B} ⊂
E(G). We will adopt this perspective in the remainder of the paper.

Now let let ψn be the map from T •
n to Tn which sends (T, ξ, ξ̂) to (T, ξ̂).

Proposition 5.2. ψn : T •
n → Tn is a two-to-one map.

Proof. Fix (T, ξ̂) ∈ Tn, and let ξ1, ξ2 be the two corners of T for which (T, ξ1) and (T, ξ2)
are balanced blossoming trees. We consider two cases depending on the symmetries of T .

First, if (T, ξ1) and (T, ξ2) are not isomorphic (as planted plane trees) then (T, ξ1, ξ̂)

and (T, ξ2, ξ̂) are distinct elements of T •
n and so |ψ−1

n (T, ξ̂)| = 2.
Next suppose that (T, ξ1) and (T, ξ2) are isomorphic, and fix an automorphism a : T →

T with a(ξ1) = ξ2. Then (T, ξ̂) and (T, a(ξ̂)) are necessarily isomorphic. In this case

(T, ξ1, ξ̂) and (T, ξ2, a(ξ̂)) are distinct elements of T •
n and so again |ψ−1

n (T, ξ̂)| = 2. □

Fix (T, ξ) ∈ T ◦
n . Note that necessarily v(ξ) is an inner vertex and that ξ is adjacent to

two stems. Let (G, c) = χn(T, ξ) ∈ △◦
n+2 and list the vertices of the root face of (G, c)

in clockwise order as (v(c), A,B) (i.e. such that κℓ(v(c), A) = κr(v(c), B) = c). Define
a function χ̂n from the inner corners of T to C(G) as follows. Recall the definition of
s′ : V (T )→ V (T ) from Page 13. Every corner in c = C(T ) may be written as c = κℓ(u, v)

for a unique edge {u, v} of T with u ̸∈ B(T ); let χ̂(c) = κℓ(s′(u), s′(v)), and write Ĉ(G, c) =
{χ̂(c) : c an inner corner of T}. Since T is 2-blossoming it has 4n−2 inner corners, so also

|Ĉ(G, ξ)| = 4n − 2 = 4|V (G)| − 10. Also, having defined Ĉ(G, c), the definition of △•
n+2

from the start of the section is complete. Furthermore, it is clear that the projection from
△•
n+2 to △◦

n+2 sending (G, c, ĉ) to (G, c) is (4n− 2)-to-1.

Now let χ•
n : T •

n →△•
n+2 be defined as follows. For (T, ξ, ξ̂) ∈ T •

n , let (G, c) = χn(T, ξ),

let χ̂n(ξ̂) = ĉ, and set χ•
n(T, ξ, ξ̂) = (G, c, ĉ). For all (G, c, ĉ) ∈ △•

n+2 there is then a unique

triple (T, ξ, ξ̂) ∈ T •
n such that χ(T, ξ) = (G, c) and χ̂(ξ̂) = ĉ. In other words, χ•

n is a
bijection.

5.2. Bijection with labels. We now present an alternative description of the bijection
from Proposition 5.1, based on (5). Given a blossoming tree (T, ξ), write T = (T, ξ)
and define λ := λT : C(T ) → Z as follows. Recall the definition of the contour ordering
(ξT(i), 0 ≤ i ≤ 2|V (T )| − 2) from Section 2.2, and in particular that ξT(0) = ξ. Let
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λT(ξT(0)) = 2 and, for 0 ≤ i < 2|V (T )| − 3, set

λT(ξT(i+ 1)) =


λT(ξT(i))− 1 if v(ξT(i)) ̸∈ B(T ), v(ξT(i+ 1)) ̸∈ B(T ),
λT(ξT(i)) if v(ξT(i)) ̸∈ B(T ), v(ξT(i+ 1)) ∈ B(T ),
λT(ξT(i)) + 1 if v(ξT(i)) ∈ B(T ), v(ξT(i+ 1)) ̸∈ B(T ),

This labelling is depicted in Figure 4(a). Informally, we perform a clockwise contour
exploration of the tree and label the corners as we go. When leaving an inner vertex and
arriving at an inner vertex, decrease the label by one; when leaving an inner vertex and
arriving at a blossom, leave the label unchanged; when the leaving a blossom and arriving
at an inner vertex, increase the label by one.

It is not hard to see that T = (T, ξ) is balanced if and only if ξ is incident to two stems
and λT(c) ≥ 2 for all c ∈ C(T ) (see Figure 4(a)). Assume (T, ξ) is balanced and write
ξ′ for the unique corner in C(T ) \ {ξ} for which (T, ξ′) is also balanced. Given a corner
c ∈ C(T ) with v(c) ∈ B(T ), recall the definition of s(c) from (5). A counting argument
shows that when s(c) is defined, it is equal to the first corner c′ following c in clockwise
order for which λ(T,ξ)(c

′) < λ(T,ξ)(c) (and in fact λ(T,ξ)(s(c)) = λ(T,ξ)(c)−1). Furthermore,
s(c) is defined if and only if either λT(c) > 2 and c ⪯ctr,T ξ

′, or λT(c) > 3 and ξ′ ⪯ctr,T c.
Next, add two vertices, say A and B, within the unique face of the partial closure with

degree greater than three. For each c ∈ C(T ) with v(c) ∈ B(T ) and s(c) undefined, identify
v(c) with A if λT(c) = 2, and with B if λT(c) = 3. At this point, the unique face of degree
greater than three is incident to ξ,A, ξ′ and B in cyclic order. Finally, add a single edge
between A and B. The following fact, whose straightforward proof is omitted, states that
the resulting planar map is χ(T, ξ).

Fact 5.3. The triangulation obtained from a balanced blossoming tree by iterating local
closures and the one obtained by the label procedure coincide. □
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(a) The corner labelling of a bal-
anced blossoming tree
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(b) The labelled partial closure

A B

2

2

3

3

3

3

3

3 3

4

4

4
4

4

5

2
2

2

2

3

3

1
1

1

1

2

2
2

1

3
4

4
3

3

45

2
2

3

2 10

(c) The resulting corner-labelled
simple triangulation

Figure 4. Closing a balanced tree via the corner labelling.

The closure contains corners not present in the blossoming tree, and the new corners
are labelled as follows. For any bud corner c with s(c) defined, closing v(c) may be viewed
as splitting a single corner in two, and the two new corners inherit the label of the corner
that was split. An example is shown in Figure 4(b); the dashed arcs denote corners that
are “split” by the partial closure operation. Let f be the face of χ(T, ξ) incident to ξ.
Give the corner of A (resp. B) incident to f label 0 (resp. 1), and give all other corners
incident to A (resp. B) label 1 (resp. 2). We write λ∗ = λ∗(T,ξ) for this corner labelling of

χ(T, ξ), and note that λ∗ : C(χ(T, ξ)) → Z≥0 since we have assumed (T, ξ) is balanced.
An example of the resulting corner-labelled triangulation is depicted in Figure 4(c).
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5.3. From labels to displacement vectors. We next explain the connection between
blossoming trees and validly labelled plane trees. Fix n ≥ 1, let (T, ξ̂) ∈ Tn and let λ =
λT,ξ̂ : C(T )→ Z be as defined in Section 5.2. We define a function Y = Y(T,ξ̂) : V (T )→ Z
by setting Y (v) = min{λ(c) : c ∈ C(T ), v(c) = v} for all v ∈ V (T ). Next, for each inner

edge e ∈ E(T ), writing e = {v, p(v)}, with v ∈ V (T ) \ {v(ξ̂)}, set De = De(T, ξ̂) =
Y (v)− Y (p(v)). The following easy fact, whose proof is omitted, allows us to recover the
locations of stems from the edge labels.

Fact 5.4. For all e = {v, p(v)} ∈ E(T ), De = |{e′ ⪯lex e : e
′ a stem incident to p(v)}| −

1. □

Now fix v ∈ V (T ), let k = k(T,ξ̂), and for 1 ≤ i ≤ k let ei = {v, c(T,ξ̂)(v, i)}. It follows

from the above fact that for 1 ≤ i ≤ k the number of stems e incident to v with e ⪯lex ei
is Dei + 1. In particular (Dei , 1 ≤ i ≤ k) is a non-decreasing sequence of elements of
{−1, 0, 1}; this is what allows us to connect blossoming trees with validly labelled trees.

For n ≥ 1 define a map ϕn : Tn → T vl
n as follows. Given (T, ξ̂) ∈ Tn, write ξ̂ = (e−, e+).

Let e be the last inner edge incident to v(ξ̂) preceding e− in clockwise order (with e = e−
if e− is an inner edge), and let e′ be the first inner edge incident to v(ξ̂) following e+
in clockwise order (with e = e+ if e+ is an inner edge). Write ξ′ = (e, e′), let T ′ be

the subtree of T induced by the inner vertices, let D = (De(T, ξ̂), e ∈ E(T )), and let

ϕn(T, ξ̂) = (T ′, ξ′, D). The following proposition is an immediate consequence of Fact 5.4.

Proposition 5.5. The map ϕn : Tn → T vl
n is a bijection. Furthermore, given (T ′, ξ′, D) ∈

T vl
n , the inverse ϕ−1

n (T ′, ξ′, D) is obtained as follows. For each corner c = ({u, v}, {v, w})
with degT ′(v) ≥ 2:

(i) if u = p(v) then attach D{v,w} + 1 stems to v(c) in corner c;
(ii) if w = p(v) then attach 1−D{u,v} stems to v(c) in corner c;
(iii) if p(u) = v = p(w) then attach D{v,w} −D{u,v} stems to v(c) in corner c.

Finally, attach two stems to each vertex v with k(T ′,ξ′)(v) = 0. □

The above bijection and definitions are illustrated in Figure 5. In the next section, we
explain how the above functions can be used to sample random simple triangulations with
the aid of conditioned Galton–Watson trees.
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(a) The corner labelling of
a corner-rooted blossom-
ing tree.
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(c) The tree T ′ with values
Y (v) marked on vertices.

Figure 5. The equivalence between blossoming trees and validly vector-
labelled plane trees. The root corner is indicated via a double arrow.
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5.4. Corner-rooted triangulations via conditioned Galton–Watson trees. Let
(Tn, ξn) be uniformly distributed on Tn. We are now able to describe the law of (Tn, ξn)
as a modification of the law of a critical Galton–Watson tree conditioned to have a given
size. (Galton–Watson trees are naturally viewed as planted plane trees; see e.g. Le Gall

[19].) Let G
d
= Geometric(3/4), and let B have law given by

P {B = c} =
(
c+2
2

)
P {G = c}

E
(
G+2
2

) , for c ∈ N. (6)

Fact 5.6. The distribution B is critical, i.e. EB = 1. □
This fact follows from simple computations involving the 3 first moments of a geometric

law; its proof is omitted.

Proposition 5.7. Let (T ′, ξ′) be a Galton–Watson tree with branching factor B condi-
tioned to have n vertices. For each vertex v of T ′, writing Bv for the number of children
of v in T ′, add two stems incident to v, uniformly at random from among the

(
Bv+2

2

)
possibilities. The resulting planted plane tree (T, ξ̂) is uniformly distributed over Tn.
Proof. Fix t ∈ Tn and let t′ = t(V (T )\B(T )) be the tree t with its blossoms removed. List
the vertices of t′ in lexicographic order as v1, . . . , vn and recall that kt′(vi) is the number
of children of vi in t′.

Then (T, ξ̂) is equal to t if and only if (T ′, ξ′) = t′ and for each v ∈ V (T ′), the blossoms
are inserted at the right place. Hence:

P
{
(T, ξ̂) = t

}
∝

n∏
i=1

1(kt′ (vi)+2
2

)P {B = kt′(vi)}

=

n∏
i=1

1(kt′ (vi)+2
2

)(kt′(vi) + 2

2

)
P {G = kt′(vi)}

=
3n−1

42n−1
.

The last equality holds since G is geometric and
∑n

i=1 kt′(vi) = n− 1. Since the last term
does not depend on the shape of t, all blossoming trees with n vertices appear with the
same probability. □
Corollary 5.8. With (T, ξ̂) as in Proposition 5.7, let ξ1, ξ2 ∈ C(T ) be such that (T, ξi)

is balanced for i ∈ {1, 2}. Conditional on (T, ξ̂) choose ξ ∈ {ξ1, ξ2} uniformly at random.

Then (G, c, c′) = χ•(T, ξ, ξ̂) is uniformly distributed in △•
n+2, and so (G, c) is uniformly

distributed in △◦
n+2.

Proof. Conditional on (T, ξ̂) the triple (T, ξ, ξ̂) is a uniformly random element of the pre-

image of (T, ξ̂) under ϕn. By Proposition 5.7 (T, ξ̂) is uniformly distributed in Tn, and the
result is then immediate from (4). □

Proposition 5.5 now allows us to describe the distribution of a uniformly random element
(T ′, ξ′, D) of T vl

n . For each k ≥ 1, let νk be the uniform law over non-decreasing vectors
(d1, . . . , dk) ∈ {−1, 0, 1}k.
Corollary 5.9. Let (T ′, ξ′) be a Galton–Watson tree with branching factor B condi-
tioned to have n vertices. Conditional on (T ′, ξ′), independently for each v ∈ V (T ′) let
(D{v,c(T ′,ξ′)(v,j)}, 1 ≤ j ≤ k(T ′,ξ′)(v)) be a random vector with law νk(T ′,ξ′)(v)

. Finally, let

D = (De, e ∈ E(T ′)). Then (T ′, ξ′, D) is uniformly distributed in T vl
n .

Proof. By Proposition 5.5, (T ′, ξ′) is uniformly distributed in Tn. The result then follows
from Proposition 5.7. □



18 LOUIGI ADDARIO-BERRY AND MARIE ALBENQUE

For later use, we note the following fact. Recall the definition of XT for T a labelled
planted plane tree, from Section 2.3.

Fact 5.10. Fix ξ1, ξ2 ∈ C(T ) with v(ξ1), v(ξ2) inner corners, and let T1 = (T ′, ξ′1, D1) =
ϕn(T, ξ1) and T2 = (T ′, ξ′2, D2) = ϕn(T, ξ2). Then for all v ∈ V (T ′), XT1(v) = Y(T,ξ1)(v)−
2, and

∣∣(Y(T,ξ1)(v)− Y(T,ξ2)(v))−X(T,ξ1)(v(ξ2))
∣∣ ≤ 3.

In other words the labellings XT and YT are related by an additive constant of 2, and
rerooting shifts all labels according to the label of the new root under the old labelling,
up to an additive error of 3. This is a direct consequence of Fact 5.4 and the definitions
of XT and YT; its proof is omitted.

We conclude Section 5 by explaining the inverse of the bijection χn. The description
of the inverse relies the properties of so called 3-orientations for simple triangulations.
We make use of such orientations in Section 7 when studying the relation between vertex
labels and geodesics.

5.5. Orientations and the opening operation. In a planted map endowed with an
orientation, a directed cycle is said to be clockwise if the root corner is situated on its
left and counterclockwise otherwise. An orientation is called minimal if it has no counter-
clockwise cycles. Let (G, ξ) be a planted planar triangulation, and recall from Section 1.3
that that (G, ξ) admits a unique minimal 3-orientation. We next describe how to obtain
this 3-orientation via the bijection described in Proposition 5.1.

Given a balanced 2-blossoming tree T = (T, ξ), orient all stems towards their incident
blossom, and orient all other edges towards v(ξ). In the triangulation χ(T), all edges
except {A,B} inherit an orientation from T ; orient {A,B} from B to A. Then all inner
vertices of T not incident to ξ have outdegree 3 in T and the closure operation does
not change this outdegree. It follows easily that the resulting orientation of χ(T) is a
3-orientation. Furthermore, the “clockwise direction” of the local closures implies that
closure never creates counterclockwise cycles, so the 3-orientation is minimal.

Given a planted planar triangulation G = (G, ξ), the balanced blossoming tree χ−1(G, ξ)

can be recovered as follows. Let
−→
E be the unique minimal 3-orientation of E(G). Let

v = v(ξ) and list the vertices of the face incident to ξ in clockwise order as (v,A,B).
Remove the edge {A,B}, and perform a clockwise contour exploration of G starting from
ξ. Each time we see an edge uv for the first time, if it is oriented in the opposite direction
from the contour process then keep it; otherwise replace it by a stem {u, buv}. This
procedure is depicted in Figure 6.

r

A BBA

(a) A simple triangulation en-
dowed with its 3-orientation.

r

A BBA

(b) Here the root edges have
been removed and the contour
process has started.

r

BA

(c) The blossoming tree ob-
tained after the completion of
the algorithm.

Figure 6. The opening of a simple triangulation into a 2-blossoming tree.
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6. Convergence to the Brownian snake

Fix a probability distribution µ on N, and a sequence ν = (νk, k ≥ 1) with νk = (νik, 1 ≤
i ≤ k) a probability distribution on Rk for k ≥ 1. For n ∈ N, we then write LGW(µ, ν, n)
for the law on labelled planted plane trees T = (T, ξ,D) such that:

• The planted plane tree (T, ξ) has the law of the genealogical tree of a Galton-
Watson process with reproduction law µ, conditioned to have total progeny n.5

• Conditionally on (T, ξ), D : E(T ) → R has the following law. Independently
for each u ∈ V (T ), (D({u, c(T,ξ)(u, 1)}), . . . , D({u, c(T,ξ)(u, k)))}) is distributed
according to νk.

Here is the connection with random simple triangulations. If (Tn, ξn, Dn) is uniformly
distributed in T vl

n , then Corollary 5.9 states that the law of (Tn, ξn, Dn) is LGW(µ, ν, n),
where µ is the law defined in (6) and for k ≥ 1, νk is the uniform law on non-decreasing
vectors in {−1, 0, 1}k.

Recall the definition of the pair (e, Z) from Section 1.1, and the definitions of the
functions CT, XT and ZT from Section 2.3. Note that (Tn, ξn, Dn) does not correspond
to a balanced tree (when planted at ξn) so XT (which equals YT − 2) may take negative
values. However, by Fact 5.10, re-planting so that XT is balanced corresponds to changing
all labels by an additive shift of minv∈V (T )XT(v), up to an additive error of at most 3.
We establish the following convergence.

Proposition 6.1. For n ≥ 1 let Tn = (Tn, ξn, Dn) be uniformly random in T vl
n . Then as

n→∞, (
(3n)−1/2CTn(t), (4n/3)

−1/4ZTn(t)
)
0≤t≤1

d→ (e(t), Z(t))0≤t≤1, (7)

for the topology of uniform convergence on C([0, 1],R)2.

Before proving this theorem, we place it in the context of the existing literature on
invariance principles for spatial branching processes. Fix µ and ν and let (Tn, n ∈ N) be
such that Tn = (Tn, ξn, Dn) has law LGW(µ, ν, n) for n ∈ N. In what follows, given a

measure η on R and p > 0 write |η|p = (
∫
R |x|

pdη)1/p. Aldous ([2], Theorem 2) showed

that if |µ|1 = 1 and σ2µ := |µ|22 − |µ|21 ∈ (0,∞), then(
σµ
2

CTn(t)

n1/2

)
0≤t≤1

d→ e (8)

as n → ∞, for the topology of uniform convergence on C([0, 1],R). Now additionally
suppose that the random variables {νk(i) : k ∈ N, 1 ≤ i ≤ k} are all identically distributed,
that |νk(1)|1 <∞, that νk is centred (i.e.,

∫
R xdν

1
k(x) = 0) for every 1 ≤ i ≤ k, and that

sup
k

P
{
|ν1k | ≥ y

}
= o(y−4) for every k ≥ 1.

Under these conditions, writing σν = σν11 , Janson and Marckert ([17], Theorem 2) prove

that (
σµ
2

CTn(t)

n1/2
,
(σµ/2)

1/2

σν

ZTn(t)

n1/4

)
0≤t≤1

(d)−→
n→∞

(e(t), Z(t))0≤t≤1 . (9)

in the same topology as in Proposition 6.1 (In fact Theorem 2 of [17] is stated with the
additional assumption that for each k, the entries of the vector νk = (νk(i), 1 ≤ i ≤ k)
are independent. However, it is not difficult to see, and was explicitly noted in [17],
that straightforward modifications of the proof allow this additional assumption to be
removed.) Under the same assumptions, the convergence in (9) can also be obtained as a

5To avoid trivial technicalities, we assume µ is such that the support of µ has greatest common divisor
1, so that such conditioning is well-defined for all n sufficiently large.
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special case of [25, Theorem 8]. In the latter article, the marginals of νk are not required
to be identically distributed but they are assumed to be locally centred meaning that for
all 1 ≤ i ≤ k,

∫
R xdν

i
k(x) = 0. In our setting, the law of the labelled planted plane tree is

given by Corollary 5.9. In this case the entries are clearly not identically distributed, and
neither are they locally centred: observe for instance that

∫
R xdν

1
2(x) = −1/6.

In [24], the “locally centred” assumption is replaced by a global centering assumption,
namely that ∑

k≥0

µ({k})
k∑
i=1

∫
R
xdνik(x) = 0,

which is satisfied by our model. However, [24] requires that µ has bounded support, which
is not the case in Corollary 5.9.

We expect that the technique we use to prove Proposition 6.1 can be used to extend the
results of [24] to a broad range of laws LGW(µ, ν, n) for which µ does not have compact
support. However, for the sake of concision we have chosen to focus on the random
labelled planted plane trees that arise from random simple triangulations (the treatment
for random simple quadrangulations differs only microscopically and is omitted).

For the remainder of the section, let µ and ν = (νk, k ≥ 1) be given by Proposition 6.1,
and for n ≥ 1 let Tn = (Tn, ξn, Dn) have law LGW(µ, ν, n). To prove Proposition 6.1, we
establish the following facts.

Lemma 6.2 (Random finite-dimensional distributions). Let (Ui, i ≥ 1) be independent
Uniform[0, 1] random variables, independent of the trees (Tn, n ≥ 1). Then for all j ≥ 1,(

(3n)−1/2CTn(Ui), (4n/3)
−1/4ZTn(Ui)

)
1≤i≤j

d→ (e(Ui), Z(Ui))1≤i≤j ,

for the topology of uniform convergence on C([0, 1],R)2.

Lemma 6.3 (Tightness). The family of laws of the processes ((4n/3)−1/4ZTn , n ≥ 1) is
tight for the space of probability measures on C([0, 1).

Given the two preceding lemmas, Proposition 6.1 follows by standard arguments, which
we only briefly sketch.

Proof of Proposition 6.1. In Appendix A we calculate |µ|1 = 1 and σµ/2 = 3−1/2. By (8)
and Skorohod’s representation theorem, we may thus work in a space in which almost
surely

lim sup
n→∞

sup
0≤t≤1

|(3n)−1/2CTn(t)− e(t)| = 0 .

By Lemma 6.2 and another application of Skorohod’s representation theorem, we may

further assume that for each i ≥ 1, (4n/3)−1/4ZTn(Ui)
a.s.→ Z(Ui) as n→∞, In this space,

for all j ≥ 1 and ϵ > 0 we have

lim sup
n→∞

P

{
max
1≤i≤j

|(4n/3)−1/4ZTn(Ui)− Z(Ui)| ≥ ϵ
}

= 0.

The tightness given by Lemma 6.3 implies that in this space, we almost surely have

lim sup
n→∞

sup
0≤t≤1

|(4n/3)−1/4ZTn(t)− Z(t)| = 0 .

Combined with the a.s. convergence of CTn to e, it follows that in this space we have

(CTn , ZTn)
a.s.→ (e, Z) as n→∞, which implies the claimed convergence in distribution. □

The remainder of the section is thus devoted to proving Lemmas 6.2 and 6.3. The proofs
of both rely on a coupling, defined in Section 6.1, between LGW(µ, ν, n) and LGW(µ, ν̂, n),
where ν̂ is a symmetrized version of ν which is locally centred.
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6.1. Partial symmetrization and locally centred displacements. Fix a labelled
planted plane tree T = (T, ξ,D), and a family of permutations σ = (σv : v ∈ V (T ), kT(v) >
0) with σv a permutation of {1, . . . , kT(v)}. Then define the permuted labelled planted
plane tree Tσ = (T σ, ξσ, Dσ) by permuting the order of the subtrees rooted at the children
of v according to σv, for each v ∈ V (T ), and permuting edge labels accordingly. More
precisely, there is a bijection b = bT,σ between V (T ) and V (T σ) such that in the Ulam-
Harris encoding UT, if v ∈ V (T ) has UT(v) = n1n2 . . . nk then the vertex bT,σ(v) ∈ V (T σ)
satisfies

UTσ(bT,σ(v)) = σ∅(n1)σ
n1(n1n2) . . . σ

n1...nk−1(n1 . . . nk) ,

where for w ∈ V (T ) we abuse notation and write σUT(w) in place of σw (and recall that
UT(v(ξ)) = ∅). Furthermore, for this bijection, for all {u, v} ∈ E(T ) with u = p(v) we
have Dσ({bT,σ(u), bT,σ(v)}) = D({u, v}).

Given R ⊂ V (T ) with v(ξ) ∈ R, the R-symmetrization TR = (TR, ξR, DR) of T is
defined as follows. Let T ⟨R⟩ be the subtree of T spanned by R, and observe that T ⟨R⟩ =
T ⟨V (T ⟨R⟩)⟩. Independently for each vertex v ∈ V (T ), let σv be a uniformly random
permutation of {1, . . . , kT(v)}. Then let σ = (σv : v ∈ V (T ), kT(v) > 0), and define
τ = (τ v : v ∈ V (T ), kT(v) > 0) by

τv =

{
IdkT(v) if v ∈ V (T ⟨R⟩) ,
σv otherwise.

where IdkT(v) denotes the identity permutation on {1, . . . , kT(v)(v)}. Then the set of ver-

tices V (TR) is the image of V (T ) by bT,τ . Also, for all {u, v} ∈ E(T ) with u = p(v),
let

DR({bT,σ(u), bT,σ(v)}) =

{
D({u, v}) if u /∈ V (T ⟨R⟩)
D({u,bT,σ(v)}) otherwise.

Note that in forming TR, displacements from vertices of T ⟨R⟩ to their children are per-
muted, but the order of the children is not. The R-symmetrization is depicted in Figure 7.
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Figure 7. Illustration of the symmetrization procedure: the vertices in R
are represented by bigger blue circles and T ⟨R⟩ by blue fat lines.

In what follows, given v ∈ V (T ) write vR = bT,τ (v) for the image of v in V (TR) and

for e = {u, v} ∈ E(T ), let eR = {uR, vR}. Note that (T, ξ) and (TR, ξR) are isomorphic
as rooted trees but need not be isomorphic as plane trees. However, writing S = {vR, v ∈
V (T ⟨R⟩)}, we do have that T ⟨R⟩ and TR⟨S⟩ are isomorphic as planted plane trees, and
the map sending v to vR is an isomorphism between them.
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Now recall the definition of the contour exploration (rT(i), 0 ≤ i ≤ 2|V (T )| − 2) from
Section 2.2. The following fact states that vertices of T ⟨R⟩ and TR⟨S⟩ are explored at the
same times in the contour explorations of T and of TR, respectively

Fact 6.4. For any set R ⊂ V (T ) with v(ξ) ∈ R, for all v ∈ V (T ⟨R⟩) and all 0 ≤ j ≤
2|V (T )| − 2, we have rT(j) = v if and only if rTR(j) = vR. □

Proof. For v ∈ V (T ⟨R⟩), since τ v = IdkT(v), the list of sizes of the subtrees rooted at the
children of v (listed in lexicographically increasing order of child) are identical to the list
of sizes of the subtrees rooted at the children of vR (again in lexicographic order). Since
v(ξ) ∈ R the result follows. □

6.2. Symmetrization and uniform sampling. We now apply the partial symmetriza-
tion procedure to the study of conditioned spatial Galton–Watson trees. For the remainder
of Section 6, let µ be the law of B where B is as in Corollary 5.9. Also, for k ≥ 1 let νk be
as in Corollary 5.9, and define a new sequence ν̂ = (ν̂k, k ≥ 1) as follows. Fix k ≥ 1 and
let D = (D1, . . . , Dk) be a random vector in Rk with law νk. Then let σ be a uniformly
random permutation of {1, . . . , k}, independent of D, and let ν̂k = (ν̂k(i), 1 ≤ i ≤ k) be
the law of (Dσ(1), . . . , Dσ(k)). Note that since

∑
i

∫
R xdν

i
k(x) = 0, we have

∫
R xdν̂

i
k(x) = 0

for each 1 ≤ i ≤ k; in other words, ν̂ is locally centred.

Claim 6.5. Let T = (T, ξ,D) have law LGW(µ, ν, n). Then for any set I ⊂ {0, 1, . . . , 2n−
2} with 0 ∈ I, writing R = {rT(i), i ∈ I}, (TR, ξR, DR) has law LGW(µ, ν̂, n).

Proof. It follows from the branching property of Galton-Watson processes that (TR, ξR)
and (T, ξ) have the same law. The fact that the label process of (TR, ξR, DR) is driven by
ν̂ then follows directly from the construction of (TR, ξR, DR) and by the definion of ν̂. □
Corollary 6.6. For n ≥ 1 let Tn = (Tn, ξn, Dn) be uniformly random in T vl

n . Fix any
sequence (In, n ≥ 1) with In ⊂ {0, 1, . . . , 2n − 2} and 0 ∈ In, and write Rn = {rTn(i), i ∈
In}. Then as n→∞,(

(3n)−1/2C
TRn

n
(t), (4n/3)−1/4Z

TRn
n

(t)
)
0≤t≤1

d→ (e(t), Z(t))0≤t≤1, (10)

for the topology of uniform convergence on C([0, 1],R)2.

Proof. Since 0 ∈ In we have v(ξn) ∈ Rn. By Corollary 5.9, Tn has law LGW(µ, ν, n), so
TRn
n has law LGW(µ, ν̂, n). Since ν̂ is locally centred, the result follows by (9). □
The next proposition, together with Corollary 6.6, will allow us to establish convergence

of random FDDs without first symmetrizing, and is the reason why we study random rather
than deterministic FDDs. For u ∈ V (T ⟨R⟩), write AT,R(u) = {i : 1 ≤ i ≤ kT(u), cT(u, i) ∈
V (T ⟨R⟩)} for the indices of the children of u that are vertices of T ⟨R⟩.

Proposition 6.7. Given integers n, j ≥ 1, let Tn = (Tn, ξn, Dn) be uniformly random in
T vl
n . Let v1, . . . , vj be independent and uniformly random elements of V (Tn), and let R =
{v(ξn), v1, . . . , vj}. Conditional on Tn, on {kT(u) : u ∈ V (Tn⟨R⟩)} and on {|AT,R(u)| :
u ∈ V (Tn⟨R⟩)}, the sets {AT,R(u) : u ∈ V (Tn⟨R⟩)} are independent and, for each u ∈
V (Tn⟨R⟩), AT,R(u) is a uniformly random subset of {1, . . . , kT(u)} of size |AT,R(u)|.

Proof. Independence follows easily from the branching property, so we focus on a single
vertex u ∈ V (Tn⟨R⟩). Now condition further: on everything except the ordering of the
subtrees rooted at the children of u. More precisely, for w ∈ V (Tn) temporarily write
Twn for the subtree of Tn rooted at w. Condition further on the sets AT,R(w) for w ∈
V (Tn⟨R⟩) \ {u}, on the ordered sequences of plane trees (T

cT(w,i)
n : 1 ≤ i ≤ kT(w)) for

w ∈ V (T )\{u}, and on the unordered set {T cT(u,i)n , 1 ≤ i ≤ kT(w)}. Each possible ordering
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of {T cT(u,i)n , 1 ≤ i ≤ kT(w)} then specifies (Tn, ξn) and the vertices v1, . . . , vj , and distinct
orderings lead to different results for the triple (Tn, ξn, (v1, . . . , vj)).

Since planted plane trees with the same child sequence are equally likely to arise as the
genealogical tree of any fixed Galton–Watson process, and v1, . . . , vj are uniformly random
vertices, it follows that under this conditioning, each possible ordering of the children of
u is equally likely. The result follows. □

From the preceding proposition, it will follow straightforwardly that, distributionally,
the effect of partial symmetrization on the displacements along edges of Tn⟨R⟩ is insignif-
icant.

Proof of Lemma 6.2. Let Tn, n ≥ 1 have law LGW(µ, ν, n), fix j ≥ 1 and let U1, . . . , Uj be
independent Uniform[0, 1] random variables independent of the trees Tn. In what follows
we suppress n-dependence whenever possible to lighten notation.

For 1 ≤ i ≤ j, let {ui, wi} ∈ E(Tn) be the edge of Tn traversed at time Ui by CTn . More
formally, let {ui, wi} be such that ui = p(wi) and

{rTn(⌊(2n− 2) · Ui⌋), rTn(⌈(2n− 2) · Ui⌉)} = {ui, wi} .
Then |CTn(Ui)− dTn(v(ξn), wi)| ≤ 1 and |ZTn(Ui)−XTn(wi)| ≤ 1. Furthermore, {ui, wi}
is a uniformly random edge of Tn, so wi is a uniformly random element of V (Tn)\{v(ξn)}.
For n large, then, (w1, . . . , wj) are essentially independent, uniformly random elements of
V (Tn); we may couple the sequence (w1, . . . , wj) with a sequence (v1, . . . , vj) of indepen-
dent uniformly random elements of V (Tn) so that P {(w1, . . . , wj) ̸= (v1, . . . , vj)} → 0 as
n→∞. It thus suffices to show that

((3n)−1/2(dTn(v(ξn), vi), (4n/3)
−1/4XTn(vi)))1≤i≤j

d→ (e(Ui), Z(Ui))1≤i≤j . (11)

Now write R = {v1, . . . , vj}, and note that Fact 6.4 implies the indices of vR1 , . . . , v
R
j in

lexicographic order agree with those of v1, . . . , vj ; it follows that vR1 , . . . , v
R
j are indepen-

dent, uniformly random elements of V (TRn ) conditional on TRn . By construction we have
(dTn(v(ξn), vi), 1 ≤ i ≤ j) = (dTR

n
(v(ξRn ), v

R
i ), 1 ≤ i ≤ j), so we turn our attention to the

second coordinate.
For 1 ≤ i ≤ j let Bi be the set of edges {u,w} ∈ E(Tn) with u = p(w), with w an

ancestor of vi, and with |AT,R(u)| = 1. Then let

Ai =
∑
e∈Bi

Dn(e), and ARi =
∑
e∈Bi

DR
n (e

R) .

By Corollary 6.6 we have

((3n)−1/2(dTR
n
(v(ξRn ), v

R
i ), (4n/3)

−1/4XTR
n
(vRi )))1≤i≤j

d→ (e(Ui), Z(Ui))1≤i≤j .

For all 1 ≤ i ≤ j we have |ARi −XTR
n
(vRi )| ≤ j − 1 since Tn⟨R⟩ has at most j − 1 vertices

with more than one child, and all displacements are at most 1 in absolute value. Since
(j − 1) is constant it follows that we may replace XTR

n
(vRi ) by ARi without changing the

distributional limit.
Next, by Claim 6.5, (TRn , ξ

R
n , D

R
n ) has law LGW(µ, ν̂, n). By the definition of the sym-

metrized law ν̂, each summand DR
n (e

R) of ARi is uniformly distributed on {−1, 0, 1}. Also,
for e = {u,w} ∈ Bi with u = p(w), by Proposition 6.7, w is a uniformly random child of
u, so by the definition of ν, Dn(e) is uniformly distributed on {−1, 0, 1}. It follows that
(Ai, 1 ≤ i ≤ j) and (ARi , 1 ≤ i ≤ j) are identically distributed (even conditional on Tn⟨R⟩),
so

((3n)−1/2dTn(v(ξn), vi), (4n/3)
−1/4Ai)1≤i≤j

d→ (e(Ui), Z(Ui))1≤i≤j .

Finally, for all 1 ≤ i ≤ j we have |Ai −XTn(vi)| ≤ j − 1 so we may replace Ai by XTn(vi)
and convergence in distribution still occurs. This establishes (11). □
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6.3. Tightness. The argument for Lemma 6.3 hinges on a simple deterministic bound
relating fluctuations of the displacements in a tree T and in its symmetrization TR. Fix
T = (T, ξ,D), and a set R ⊂ V (T ) with v(ξ) ∈ R. As earlier, we write S = {vR, v ∈
V (T ⟨R⟩)}. For 0 ≤ j ≤ 2|V (T )| − 2, let fT,R(j) = min{j′ ≥ j : rT(j

′) ∈ V (T ⟨R⟩)}. By

Fact 6.4 we have fT,R(j) = min{j′ ≥ j : rTR(j′) ∈ V (TR⟨S⟩)}, and if rT(fT,R(j)) = v

then rTR(fT,R(j)) = vR. Now let δT,R(j) = |XT(j) − XT(fT,R(j))|, and let δ′T,R =

|XTR(j)−XTR(fT,R(j))|. Finally, let ∆T,R = max{δT,R(j), 0 ≤ j ≤ 2|V (T )| − 2} and let
∆′

T,R = max{δ′T,R(j), 0 ≤ j ≤ 2|V (T )| − 2}.

Claim 6.8. For R ⊂ V (T ) with v(ξ) ∈ R, |∆T,R −∆′
T,R| ≤ 2max{|D(e)|, e ∈ E(T )}.

Proof. First, if fT,R(j) = j then rT(j) ∈ V (T ⟨R⟩), so rTR(j) ∈ V (TR⟨S⟩) and so δT,R(j) =
δ′T,R(j) = 0. Next, if fT,R(j) ̸= j then rT(fT,R(j)) is the most recent ancestor of rT(j)

in V (T ⟨R⟩). Let u be the unique child of rT(fT,R(j)) that is an ancestor of rT(j). By
construction, the displacements on the path from rT(j) to u in T are identical to the
displacements on the path from rTR(j) to uR in TR. It follows that

|δT,R(j)− δ′T,R(j)| = |D({rT(fT,R(j)), u})−DR({rTR(fT,R(j)), u
R})|

≤ 2max{D(e), e ∈ E(T )},

from which the claim follows immediately. □

Proof of Lemma 6.3. Given any sequence Rn, n ≥ 1 with Rn ⊂ V (Tn) and v(ξn) ∈ Rn, by
Claim 6.5, TRn

n has law LGW(µ, ν̂, n), so by Corollary 6.6 we have

((4n/3)−1/4Z
TRn

n
(t))0≤t≤1

d→ (Z(t))0≤t≤1 .

It follows that the family of laws of the processes (Z
TRn

n
(t))0≤t≤1 are tight; in other words,

for all ϵ > 0 there exists α = α(ϵ) > 0 such that

lim sup
n→∞

P

{
sup

x,y∈[0,1],|x−y|≤α
|Z

TRn
n

(x)− Z
TRn

n
(y)| > ϵn1/4

}
< ϵ . (12)

We emphasize that this bound is uniform over the choice of the sets Rn.
Next, let Ui, i ≥ 1 be independent, uniformly random elements of [0, 1]. Fix δ > 0 and

let J = J(δ) be minimal so that {U1, . . . , UJ} forms a δ-net in [0, 1]6. As in the proof of
Lemma 6.2, we couple U1, . . . , UJ with a sequence (v1, . . . , vJ) of independent uniformly
random elements of V (Tn) so that with probability tending to one, for each 1 ≤ i ≤ J either
vi = rTn(⌊Ui ·(2n−2)⌋) or vi = rTn(⌈Ui ·(2n−2)⌉). Then let Rn = Rn(δ) = {v1, . . . , vJ(δ)}.

Given x ∈ [0, 1] let u(x) = rTn(⌊x·(2n−2)⌋), and let u1(x) = rTn(fTn,Rn(⌊x·(2n−2)⌋)).
By the definitions of fTn,Rn and of Rn = Rn(δ) we have

|⌊x · (2n− 2)⌋ − fTn,Rn(⌊x · (2n− 2)⌋)| < δ · (2n− 2) + 2 ,

which is less than 2δ · (2n − 2) for n large. Applying Claim 6.8, since max{|D(e)|, e ∈
E(T )} ≤ 1 < ϵn1/4 for n large, we obtain

lim sup
n→∞

P

{
sup
x∈[0,1]

|XTn(u(x))−XTn(u1(x))| ≥ 2ϵn1/4

}

≤ lim sup
n→∞

P

{
sup

x,y∈[0,1],|x−y|<2δ
|Z

TRn
n

(x)− Z
TRn

n
(y)| > ϵn1/4

}
. (13)

6In other words, so that min{Ui, 1 ≤ i ≤ J} ≤ δ, max{Ui, 1 ≤ i ≤ J} ≥ 1 − δ, and for all 1 ≤ i ≤ J
there is 1 ≤ i′ ≤ J such that |Ui − U ′

i | < δ.
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Next, fix x, y ∈ [0, 1]. Recall that Ju1(x), u1(y)K is the shortest path from u1(x) to u1(y)
in Tn, and note that all vertices of Ju1(x), u1(y)K lie in Tn⟨Rn⟩. Let

B(u1(x), u1(y)) = {{w,w′} ∈ E(Tn) : w,w
′ ∈ Ju1(x), u1(y)K : w = p(w′), |ATn,Rn(w)| = 1}

be the set of edges of Ju1(x), u1(y)K for which the parent vertex has only one child in
Tn⟨Rn⟩, let A = |

∑
e∈B(u1(x),u1(y))

Dn(e)|, and let ARn =
∑

e∈B(u1(x),u1(y))
DRn
n (eRn). Ar-

guing from Proposition 6.7 as in the proof of Lemma 6.2 shows that A and ARn have
the same distribution7, that |A − |XTn(u1(x)) − XTn(u1(y))|| ≤ J and that |ARn −
|X

TRn
n

(u1(x)) − XTRn
n

(u1(y))|| ≤ J . (The bound is J rather than J − 1 since the most

recent common ancestor of u1(x) and u1(y) may be the parent vertex of two edges ofJu1(x), u1(y)K.) Furthermore, by the definitions of fTn,Rn and of Rn = Rn(δ) we have

|fTn,Rn(⌊x · (2n− 2)⌋)− fTn,Rn(⌊y · (2n− 2)⌋)| ≤ (|x− y|+ δ) · (2n− 2) + 4,

and if x − y < δ then for any ϵ > 0, the above difference is less than (4 + ϵ)nδ for n
sufficiently large. Also, Fact 6.4 states that vertices of Tn⟨Rn⟩ are visited at the same time

in the contour explorations of Tn and of TRn
n . Since J/n1/4 → 0 almost surely, this yields

lim sup
n→∞

P

{
sup

x,y∈[0,1]:|x−y|<δ
|XTn(u1(x))−XTn(u1(y))| ≥ 2ϵn1/4

}

≤ lim sup
n→∞

P

{
sup

x,y∈[0,1]:|x−y|<5δ
|XTn(u(x))−XTn(u(y))| ≥ 2ϵn1/4 − 2J

}

≤ lim sup
n→∞

P

{
sup

x,y∈[0,1],|x−y|<5δ
|Z

TRn
n

(x)− Z
TRn

n
(y)| > ϵn1/4

}
. (14)

Finally, for x, y ∈ [0, 1], if |ZTn(x) − ZTn(y)| > 6ϵn1/4 + 2 then one of |XTn(u(x)) −
XTn(u1(x))|, |XTn(u1(x)) −XTn(u1(y))|, or |XTn(u1(y)) −XTn(u(y))| is at least 2ϵn1/4.
It follows from (13) and (14) that

lim sup
n→∞

P

{
sup

x,y∈[0,1]:|x−y|<δ
|ZTn(x)− ZTn(y)| > 6ϵn1/4 + 2

}

≤3 lim sup
n→∞

P

{
sup

x,y∈[0,1],|x−y|<5δ
|Z

TRn
n

(x)− Z
TRn

n
(y)| > ϵn1/4

}
.

This bound holds for any ϵ > 0. Taking δ = α(ϵ)/3, by (12) the final bound is at most 3ϵ,
which establishes the requisite tightness. □

7. Blossoming trees, labelling, and distances

The goal of this section is to deterministically relate labels in a validly-labelled plane tree
with the distances in the corresponding triangulation. For the remainder of Section 7, we
fix n ∈ N and (T, ξ, ξ̂) ∈ T •

n , let (G, c, ĉ) = χ•
n(T, ξ, ξ̂) and let (T ′, ξ′, D) = ϕn(ψn(T, ξ, ξ̂)),

and write G = (G, c) and T = (T, ξ). Writing B for the buds of T , we suppose throughout
that V (T ′) = V (T )\B = V (G)\{A,B}. Finally, define YT as in Section 5.3, and note that
since T is balanced, YT(v) ≥ 2 for all v ∈ V (T ). It will be useful to extend the domain of
YT by setting YT(A) = 1 and YT(B) = 2, and we adopt this convention.

7This is the only place in this proof where we require that v1, . . . , vJ are uniformly random.
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7.1. Bounding distances using leftmost paths. To warm up, we prove a basic lemma
bounding the difference between labels of adjacent vertices.

Lemma 7.1. For all {u,w} ∈ E(G), |YT(u)− YT(w)| ≤ 3.

Proof. First, recall from Page 15 that if u ∈ V (T ) and {u,A} ∈ E(G) or {u,B} ∈ E(G)
then there is a corner c incident to u with λT(c) ≤ 3, so YT(u) ≤ 3. From this, if
{u,w} ∩ {A,B} ̸= ∅ then the result is immediate. Next, if {u, v} ∈ E(T ) then it is
an inner edge of T , in which case Y (u) − Y (v) = D{u,v}(T, ξ) ∈ {−1, 0, 1}. Finally, if

{u,w} ̸∈ E(T ) but u,w ∈ V (T ) then there are corners c1, c2 of T such that v(c1) = u,
v(c2) = w, and either c2 = sT(c

1) or c1 = sT(c
2). Assuming by symmetry that c2 = s(c1),

we have λT(c
2) = λT(c

1)− 1. Since the labels on corners incident to a single vertex differ
by at most two, the result follows in this case. □

The above lemma, though simple, already allows us to prove the labels provide a lower
bound for the graph distance to A in G, up to a constant factor.

Corollary 7.2. For all u ∈ V (G), dG(u,A) ≥ YT(u)/3.

Proof. Let (u0, u1, . . . , ul) be a shortest path from u = u0 to A = ul in G. Then by
Lemma 7.1, since YT(A) = 1 we have YT(u) = |YT(u0) − YT(ul) − 1| < 3l, so dG(u,A) =
l ≥ YT(u)/3. □

We next aim to prove a corresponding upper bound. For this we use the leftmost

paths briefly introduced in Section 1.3. Let (G, c) = χ(T, ξ) as above, and let
−→
E be its

unique minimal 3-orientation (defined in Section 5.5). Given an oriented edge e = uw
with {u,w} ∈ E and x ∈ V (G), a path from e to x is a path Q = (v0, v1, . . . , vm) in G

with v0v1 = uw and vm = x. (In the preceding, we do not require that uw ∈
−→
E .) Given

e = {u0, u1} ∈ E(G) with u0u1 ∈
−→
E , the leftmost path from e to A is the unique directed

path P (e) = P(G,c)(e) = (u0, u1, . . . , uℓ) with uℓ = A such that for each 1 ≤ i ≤ ℓ − 1,
uiui+1 is the first outgoing edge incident to ui when considering the edges incident to
ui in clockwise order starting from {ui−1, ui}. The following fact establishes two basic
properties of leftmost paths.

Fact 7.3. For all e ∈ E(G), P (e) is a simple path. Furthermore, if P (e) = (u0, u1, . . . , uℓ)
and P (e′) = (v0, v1, . . . , vm) are distinct leftmost paths to A with u0 = v0 = u, and ui = vj
for some i, j > 0, then ui+k = vj+k for all 0 ≤ k ≤ ℓ− i = m− j.

Proof. Let P (e) = (u0, u1, . . . , uℓ) be the leftmost path from u0u1 to A. Suppose there
are 0 ≤ i < j ≤ ℓ such that ui = uj , and choose such i, j for which |j − i| is minimum.
Then C = (ui, ui+1, . . . , uj) is an oriented cycle with j − i vertices; let V ′ ⊂ V (G) be

the vertices lying on or to the right of this cycle. Since
−→
E is minimal, C is necessarily

a clockwise cycle, so v(c) ̸∈ V ′. Also, neither A nor B are in any directed cycles, and it

follows that {A,B, v(c)}∩V ′ = ∅. Since
−→
E is a 3-orientation it follows that for all x ∈ V ′,

deg+−→
E
(x) = 3. Furthermore, for all x ∈ V ′ \ {ui}, since P (e) is a leftmost path, all out-

neighbours of x are elements of V ′. WritingG′ for the sub-map ofG induced by V , it follows
that |E(G′)| ≥ 3|V ′ \ {ui}|. But G′ is a simple planar map, and C is a face of G′ of degree
j− i ≥ 3. It follows by Euler’s formula that |E(G′)| ≤ 3|V ′|−3− (j− i) ≤ 3|V ′ \{ui}|−3,
a contradiction.

The proof that two leftmost paths merge if they meet after their starting point follows
the same lines and is left to the reader. □

The next proposition provides a key connection between the corner labelling λT and
the lengths of leftmost paths.
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Proposition 7.4. For any edge e = {u,w} ∈ E(G) with uw ∈
−→
E and u ̸= B, λT(κ

ℓ(u,w)) =
|P (e)|.

Proof. First, a simple counting argument shows that if {x, y1} is an inner edge of T , and
{x, y2} is the first stem following {x, y1} in clockwise order around x, then writing c for
the corner of T incident to y2 we have λT(κ

r(x, y1)) = λT(c). Recall the definition of the
successor function s from (5) and the equivalent definition from Section 5.2. Since {x, y2}
is a stem, in G, y2 is identified with s(c), and by definition λT(s(c)) = λT(c)− 1.

Next, recall the definition of the labelling λ∗ = λ∗T : C(G) → Z≥0 from the end

of Section 5.2. It follows from that definition that for any oriented edge xy ∈
−→
E ,

λ∗(κr(y, x)) = λ∗(κℓ(x, y)) − 1. In other words, the label on the left decreases by ex-
actly one when following any oriented edge.

Now write P (e) = (u0, u1, . . . , uℓ). Since there are no edges oriented away from P (e)
leaving P (e) to the left, it follows from the two preceding paragraphs that for 0 < i < ℓ
we have λ∗(κr(ui+1, ui)) = λ∗(κℓ(ui, ui+1))− 1 = λ∗(κr(ui, ui−1))− 1, so

λ∗(κr(uℓ, uℓ−1)) = λ∗(κℓ(u0, u1))− ℓ = λ∗(κℓ(u,w))− ℓ .

. Finally, λ∗(κr(uℓ, uℓ−1)) = 1 by definition since uℓ = A and uℓ−1 ̸= v(ξ). We thus obtain
λ∗(κℓ(u,w)) = ℓ+ 1 = |P (e)|. □

Corollary 7.5. For all u ∈ V (G), dG(u,A) ≤ YT(u)− 1.

Proof. Recall the convention that YT(B) = 2 and YT(A) = 1; since also YT(v(ξ)) = 2, it
suffices to prove the result for u ∈ V (G) \ {A,B, v(ξ)}. For such u, if {u,w} is the first
stem incident to u in clockwise order around u starting from {u, pT (u)}, then YT(u) =
λ(κℓ(u,w)). The claim then follows from Proposition 7.4. □

7.2. Bounding distances between two points using modified leftmost paths. In
this section we use arguments similar to those of the preceding section, this time to prove
deterministic upper bounds on pairwise distances in G. Fix u, v ∈ V (G) with u ⪯lex,T v.
Let cu be the first corner c of T (with respect to ⪯ctr,T) for which v(c) = u, and define cv
likewise. Then set

Y̌T(u, v) = min{YT(w) : ∃c ∈ C(T ), cu ⪯ctr c ⪯ctr cv, w = v(c)} ,
Y̌T(v, u) = min{YT(w) : ∃c ∈ C(T ), cv ⪯ctr c or c ⪯ctr cu, w = v(c)} .

Proposition 7.6. For all u, v ∈ V (G),

dG(u, v) ≤ YT(u) + YT(v)− 2max{Y̌T(u, v), Y̌T(v, u)}+ 2.

Before proving the proposition, we establish some preliminary results. Given an oriented
edge e = u0u1 with {u0, u1} ∈ E(T ), the modified leftmost path from e to A is the
unique (not necessarily oriented) path Q(e) = (u0, u1, . . . , uℓ) in G with uℓ = A and such
that for each 1 ≤ i ≤ ℓ − 1, uiui+1 is the first edge (considering the edges incident to
ui in clockwise order starting from {ui−1, ui}) which is either an outgoing edge (with

respect to the orientation
−→
E ) incident to ui or an inner edge of T . Equivalently, it is the

leftmost oriented path, with the modified orientation obtained by viewing edges of E(T )
as unoriented (or as oriented in both directions).

We view Q(e) as an oriented path from e to A (though the edge orientations given by

the path need not agree with
−→
E ); we may thus speak of the left and right side of Q(e).

Fact 7.7. For 1 ≤ i ≤ ℓ − 1, λ∗(κℓ(ui, ui+1)) = λ∗(κℓ(ui−1, ui)) − 1. In other words, the
labels along the left of a modified leftmost path decrease by one along each edge.
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Proof. First, by the definitions of λ and λ∗, for any edge {ui−1, ui} of a modified leftmost
path, λ∗(κr(ui, ui−1)) = λ∗(κℓ(ui−1, ui))− 1. Moreover, from the definition of a modified
leftmost path, there is no stem incident to ui in T that lies strictly between {ui−1, ui} and
{ui, ui+1} (in clockwise order around ui starting from {ui−1, ui}). Hence κℓ(ui, ui+1) =
κr(ui, ui−1) in T (see the proof of Proposition 7.4 for more details). The result follows. □

Given {u, v} ∈ E(G), if {u, v} ̸∈ E(T ) and {u, v} ≠ {A,B} then by symmetry we may
assume there is an edge {u, b} ∈ E(T ) such that v = v(s(b)). In this case, by a slight
abuse of notation we write κℓ(u, v) = κℓ(u, b).

In the statement and proof of the next fact, write L = λ∗(κℓ(u0, u1)) and let M =
min{λ(ξ) : ξ ∈ C(T ), κℓ(u0, u1) ⪯ctr ξ}, where we view {u0, u1} as an edge of E(T ). By
the discussion on Page 15, M ∈ {2, 3} and M = 3 precisely if c′ ⪯ctr κ

ℓ(u0, u1), where c
′

is the unique element of C(T ) \ {c} for which (T, c′) is balanced.
Let c∗e(0) = κℓ(u0, u1), and for 1 ≤ j ≤ L −M let c∗e(j) be the first corner following

c∗e(0) in T for which λ(c) = L− j. For 1 ≤ j ≤ L−M , c∗e(j) is necessarily an inner corner
of T . Then, for 0 ≤ j ≤ L−M let v∗e(j) = vT(c

∗
e(j)).

Fact 7.8. For all 0 ≤ j ≤ L−M , c∗e(j) = κℓ(uj , uj+1), so v
∗
e(j) ∈ Q(e).

Before giving the proof, observe that this property need not hold for a regular leftmost
path; this is the reason we require modified leftmost paths.

Proof. For j = 0 this holds by definition; we now fix j ≥ 1 and argue by induction. The
definition of λ yields that c∗e(j) ⪯ctr,T c∗e(j + 1), for any 0 ≤ j < L − 2. We consider
two cases. First, suppose {uj−1, uj} is an inner edge of T . Let w ∈ V (T ) be such that
κr(uj , uj−1) = ({uj−1, uj}, {uj , w}). If w is an inner vertex then w = uj+1. Likewise, if w

is a blossom then v(s(w)) = uj+1. In either case, κℓ(uj , uj+1) = κr(uj , uj−1) in T . Hence

κℓ(uj , uj+1) is the corner immediately following κℓ(uj−1, uj) in the contour exploration of

T . By Fact 7.7, λ∗(κℓ(uj , uj+1)) = λ∗(κℓ(uj−1, uj)) − 1 , and c∗e(j − 1) = κℓ(uj−1, uj) by

the inductive hypothesis. It follows that c∗e(j) = κℓ(uj , uj+1).
Second, suppose {uj−1, uj} is not an inner edge. By definition, there is no edge in

T incident to uj and lying strictly between {uj−1, uj} and {uj , uj+1} in clockwise order

around uj . Hence, in T , s(uj−1) = κℓ(uj , uj+1). In this case the result follows by the
definition of s(uj−1) and by induction. □

u
v

w

z

X(u)
X(u)−1

X(u)−2 X̌(u, v)

X̌(u, v) − 1

X(v)

X(v)−1

Figure 8. Path between u and v formed by concatenating sections of two

modified leftmost paths. Arrows indicate orientation in
−→
E . Straight arrows

along the path are edges of E(T ); curved arrows are edges of E(G) \E(T ).
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Proof of Proposition 7.6. Fix u, v ∈ V (T ) write su and sv for the lexicographically first
stem edges incident to u and v, respectively, and eu and ev for the corresponding edges
in G. Write Q(eu) = (u0, u1, . . . , uλ∗(κℓ(u0,u1))−1) with u0 = u and eu = {u0, u1}, and
likewise write Q(ev) = (v0, v1, . . . , vλ∗(κℓ(v0,v1))−1). Observe that λ∗(κℓ(u0, u1)) = YT(u)

and λ∗(κℓ(v0, v1)) = YT (v).
We assume for simplicity that Y̌T(u, v) > 3 (when Y̌T(u, v) ≤ 3 there is a minor case

analysis involving the presence of vertices A and B in Q(eu) and Q(ev); the details are
straightforward and we omit them). By Fact 7.8 and the definition of Y̌T(u, v), necessarily
v∗eu(YT (u) − Y̌ (u, v) + 1) = v∗ev(YT (v) − Y̌ (u, v) + 1). Let P be the concatenation of
the subpath of Q(eu) from u = u0 to uYT (u)−Y̌ (u,v)+1 with the subpath of Q(ev) from

vYT (v)−Y̌ (u,v)+1 to v0 = v (see Figure 8 for an illustration). Then P connects u and v in

G, so dG(u, v) ≤ |P | − 1 = YT (u) + YT (v)− 2Y̌ (u, v) + 2.
A symmetric argument proves the existence of a path P ′ in G between v and u of length

YT (u) + YT (v)− 2Y̌ (v, u) + 2; this gives the desired bound. □

7.3. Winding numbers and distance lower bounds. It turns out that the lower
bound on dG(u,A) given by Corollary 7.2 can be improved by considering winding numbers
around u; we now remind the reader of their definition.

Consider a closed curve γ : [0, 1]→ R2 \ {0}, and parametrize γ in polar coordinates as
((r(t), θ(t)), 0 ≤ t ≤ 1) so that θ is a continuous function. We define the winding number of
γ around zero to be (θ(1)−θ(0))/(2π). Next, fix a reference point r ∈ S2. For x ∈ S2 \{r}
and a closed curve γ : [0, 1]→ S2 \ {r, x}, let φ : S2 \ {r} to R2 be a homeomorphism with
φ(x) = 0, and define the winding number windr(x, γ) of γ around x to be the winding
number of φ ◦ γ : [0, 1] → R2 around zero. It is straightforward that this definition does
not depend on the choice of φ(x).

In what follows, it is useful to imagine having chosen a particular representative from the
equivalence class of G, or in other words a particular planar embedding (it is straightfor-
ward to verify that the coming arguments do not depend on which embedding is chosen).
Let r be any point in the interior of the face of G incident to c.

Definition 7.9. Fix an oriented edge e = uw ∈
−→
E and a simple path Q = (v0, v1, . . . , vm)

from u to A. Define the winding number w(Q, e) = wG(Q, e) of Q around e as follows.
Write P (e) = (u0, u1, . . . , uℓ). Note that u0 = v0 = u, u1 = w and uℓ = vm = A. Form a
cycle C = (v0, v1, . . . , vm = uℓ, uℓ−1, . . . , u0). Then fix a point x in the interior of the face
incident to κr(u,w), and let w(Q, e) = windr(x,C).

In the preceding definition, we conflate C with its image in S2 under the embedding of
G (and likewise with x); it is straightforward to verify that w(Q, e) does not depend on
the choice of such embeddings.

Proposition 7.10. For all e = uw ∈ −→E , if Q is a simple path from u to A then |Q| ≥
|P (e)|+ 2(w(Q, e)− 2).

Proof. Write P (e) = (u0, u1, . . . , uℓ). Let R = (w0, w1, . . . , wk) be a simple path meeting
P (e) only at w0 and wk, with w0 = ui, wk = uj for some 0 ≤ i < j ≤ ℓ. If j < ℓ then let
ĉ = κr(uj , uj+1) and if j = ℓ (so uj = A) then let ĉ be the corner of the root face of (G, c)
incident to A.

We say R leaves P (e) from the right if i > 0 and the corner κrG(ui, ui+1) precedes
κrG(ui, w1) in clockwise order around ui starting from κrG(ui, ui−1). Otherwise say that R
leaves P (e) from the left; in particular, if i = 0 then R leaves from the left by convention.
Likewise, R returns to P (e) from the right if ĉ precedes κr(uj , wk−1) in clockwise order
around uj starting from κr(uj , uj−1); otherwise say that R returns to P (e) from the left.

The key to the proof is the following set of inequalities. Note that k = |R| − 1.
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(1) If R leaves P (e) from the right and returns from the left then k ≥ j − i− 2.
(2) If R leaves P (e) from the left and returns from the left then k ≥ j − i.
(3) If R leaves P (e) from the left and returns from the right then k ≥ j − i − 1 +

2(ıi > 0 + 1[j<ℓ]).
(4) If R leaves P (e) from the right and returns from the right then k ≥ j−i−1+21[j<ℓ].

For later use, we say R has type 1 if R leaves P (e) from the right and returns from the
left, and define types 2, 3, and 4 accordingly. Let C = (w0, . . . , wk = uj , . . . , ui) be the
cycle contained in the union of R and P (e). We provide the details of the bounds from
(1) and (3), as (2) and (4) are respectively similar.

Note that although C does not respect the orientation of edges given by
−→
E , it is nonethe-

less an oriented cycle, so it makes sense to speak of the right- and left-hand sides of C.
For (1), let V ′ be the set of vertices on or to the right of C, and let G′ be the submap of
G induced by V ′. All faces of G′ have degree three except C, which has degree k + j − i.
By Euler’s formula it follows that |E(G′)| = 3|V ′| − 3− (k + j − i).

For i < m < j, since P (e) is a leftmost path, |{x ∈ V ′ : umx ∈
−→
E }| = 1. Also, since R

returns from the left, we must have wk−1uj ∈
−→
E (or else wk−1 = uj+1, which contradicts

that P (e) meets R only at its endpoints), so |{x ∈ V ′ : ujx ∈
−→
E }| = 0. Since

−→
E is a

3-orientation, it follows that E(G′) ≤ 3|V ′|−2(j−i)−1, which combined with the equality
of the preceding paragraph yields that k ≥ j − i− 2.

For (3) let V ′ be the set of vertices on or to the left of C. Euler’s formula again yields
|E(G′)| = 3|V ′| − 3 − (k + j − i). For x ∈ V ′ not lying on C, we have x ̸∈ {A,B, v(c)},
so since

−→
E is a 3-orientation, |{y ∈ V ′ : xy ∈

−→
E }| = 3. For i < m < j − 1 we have

m < ℓ − 1, so um is not on the root face; since R returns from the right, it follows that

|{y ∈ V ′ : umy ∈
−→
E }| = 3. Lastly, |{x ∈ V ′ : uj−1x ∈

−→
E }| ≥ 1 since uj−1, uj lies on C,

and likewise |{x ∈ V ′ : uix ∈
−→
E }| ≥ 1. The edges of R are disjoint from the sets of edges

counted above, so

|E(G′)| ≥ 3|V ′ \ {w1, . . . , wk, ui, uj−1}|+ 2 + k = 3|V ′| − 2k − 4.

Combined with the equality given by Euler’s formula this yields k ≥ (j − i) − 1. Next,
since P (e) is leftmost, um ̸∈ {A,B, v(c)} for m < ℓ − 1, which is straightforwardly seen.

Thus, if j < ℓ then since
−→
E is a 3-orientation, we in fact have |{x ∈ V ′ : uj−1x ∈

−→
E }| = 3,

and the same counting argument yields that k ≥ (j − i) + 1. Similarly, if i > 0 then

|{x ∈ V ′ : uix ∈
−→
E }| = 3 and again k ≥ (j− i)+1. Finally, if 0 < i < j < ℓ then the same

argument yields k ≥ (j − i) + 3.
To conclude, subdivide the path Q into edge-disjoint sub-paths R1, . . . , Rt, each of which

is either a sub-path of P (e) or else meets P (e) only at its endpoints. We assume R1, . . . , Rt
are ordered so that Q is the concatenation of R1, . . . , Rt, so in particular, u = u0 is the
first vertex of R1, A = uℓ is the last vertex of Rt, and for 1 ≤ s < t the last vertex of Rs
is the first vertex of Rs+1.

For 1 ≤ i ≤ 4, let ni be the number of sub-paths of type i among {R1, . . . , Rt}. Since
Rt is the only sub-path that intersects the root face, and R1 is the only sub-path which
may contain u = u0, the above inequalities and a telescoping sum give

|Q| = 1+
t∑

s=1

(|Ri| − 1) ≥ |P (e)| − 2n1 +3n3 + n4− 2(1[R1 has type 3] + 1[Rt has type 3 or 4]) .

In particular, we obtain the bound |Q| ≥ |P (e)| + 2(n3 − n1 − 2). Finally, sub-paths
that leave from the right and return from the left correspond to clockwise windings of C
around u, and subpaths that leave from the left and return from the right correspond to
counterclockwise windings of C around u. It follows that n3 − n1 is precisely the winding
number w(Q, e); this completes the proof. □
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In what follows, if C is an oriented cycle in G then we write V l(C) (resp. V r(C)) for
the sets of vertices lying on or to the left (resp. on or to the right) of C, and note that
V l(C) ∩ V r(C) = V (C).

Proposition 7.11. For all e = uw ∈
−→
E , if Q is a shortest path from u to A and w(Q, e) <

0 then there is a cycle C in G such that G[V l(C)] and G[V r(C)] each have diameter at least
⌊−w(Q, e)/2⌋ − 2, and such that maxy∈V h(C) YT(y) − miny∈V h(C) YT(y) ≥ ⌊−w(Q, e)/2⌋
for h ∈ {l, r}.

Proof. We writeQ = (u0, u1, . . . , uℓ), and partitionQ into edge-disjoint sub-pathsR1, . . . , Rt
as at the end of the proof of Proposition 7.10. For 1 ≤ s ≤ t and 1 ≤ i ≤ 4, let ni(s) be
the number of sub-paths of type i among {R1, . . . , Rs}. If u0u1 ̸= e then by definition R1

leaves P (e) from the left, so n1(1) = 0.
Let m = ⌊−w(Q, e)/2⌋, and let s be minimal so that n1(s) − n3(s) = m; necessarily,

Rs has type 1. Also, s ≥ m + 1, and since n1(t) − n3(t) = −w(Q, e) ≥ 2m we also
have m ≤ t − m. Write Rs = (w0, w1, . . . , wk), with w0 = ui, w1 = uj for distinct
i, j ∈ {1, . . . , ℓ}. By reversing Rs if necessary, we may assume i < j,8 and write C =
(w0, w1, . . . , wk, uj−1, . . . , ui = w0). Since m + 1 ≤ s ≤ t − m, the concatenation of
R1, . . . , Rs−1 has length at least m and so does the concatenation of Rs+1, . . . , Rt. Since
Q is a shortest path from u to A, it follows that for 0 ≤ i ≤ k, dG(u,wi) ≥ m+ i+ 1 and
dG(A,wi) ≥ m+ (k − i).

Fix 0 < a < j − i and let S be a shortest path from u to ui+a. The concatenation of S,
(ui+a, . . . , uj), and Rs+1, . . . , Rt has dG(u, ui+a)+(j−i−a)+dG(uj , A) edges. On the other
hand, by the inequality in (1) from the proof of Proposition 7.10, we have k ≥ j − i − 2,
so Q has at least dG(u, ui) + j − i − 2 + dG(uj , A) edges. Since Q is a shortest path, it
follows that

dG(u, ui+a) ≥ dG(w, ui) + a− 2 ≥ m+ a− 2 ≥ m− 1.

A similar argument shows that for all 0 < a < j − i, dG(A, ui+a) ≥ m− 1. Finally, one of
G[V l(C)] or G[V r(C)] contains R1, . . . , Rs, and the other contains Rs, . . . , Rt. Therefore,
each of G[V l(C)] and G[V r(C)] contains at least m vertices of P (e); since vertex labels
strictly decrease along P (e), the final claim of the proposition follows. □

Proposition 7.12. For all e = uw ∈ −→E , if Q is a shortest path from u to A and w(Q, e) <
−2 then there is an oriented cycle C in G of length at most 6(|Q|−1)/(−w(Q, e)−2) such
that G[V l(C)] and G[V r(C)] each have diameter at least ⌊−w(Q, e)/3⌋ − 2 and such that
maxy∈V h(C) YT(y)−miny∈V h(C) YT(y) ≥ ⌊−w(Q, e)/3⌋ for h ∈ {l, r}.

Proof. The proof is very similar to that of Proposition 7.11, so we omit most details.
Partition Q into R1, . . . , Rt and define ni(s), 1 ≤ s ≤ t, 1 ≤ i ≤ 4 as before. Let
m = ⌊−w(Q, e)/3⌋. There are at least m values of s such that Rs has type 1 and m+1 ≤
n1(s)− n3(s) ≤ 2m; among these, let s⋆ minimize |Rs⋆ |. Then

dG(u,A) ≥ m · (|Rs⋆ | − 1) ≥ −(w(Q, e) + 2)

3
· (|Rs⋆ | − 1).

The sub-path of P (e) joining the endpoints of Rs⋆ has at most two more edges than Rs⋆ ,
so the cycle formed by this sub-path of P (e) and Rs⋆ has at most 2|Rs⋆ | ≤ 6(dG(w,A) +
1)/(−w(Q, e)−2) = 6(|Q|−1)/(−w(Q, e)−2) vertices. The remainder of the proof closely
follows that of Proposition 7.11. □

8It is not hard to prove that there is always some shortest path Q for which the ordered sequence of
intersections with P (e) respect the orientation of P (e), so that there is no need to reverse Rs to ensure
i < j. However, we do not require such a property for the current proof.
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8. Labels approximate distances for random triangulations

Fix n ∈ N, and let (T, ξ, ξ̂) be uniformly distributed in T •
n . (We will later take n→∞,

but suppress the dependence of (T, ξ, ξ̂) on n for readability.) As in Section 7, let (G, c, ĉ) =

χ•
n(T, ξ, ξ̂) and let (T ′, ξ′, D) = ϕn(ψn(T, ξ, ξ̂)), and write G = (G, c) and T = (T, ξ). By

(4), (G, c, ĉ) is uniformly distributed in △•
n and (T ′, ξ′, D′) is uniformly distributed in T vl

n .
Again define YT as in Section 5.3 and again extend YT to V (G) by taking YT(A) = 1 and
YT(B) = 2.

Using Corollary 7.5 and Proposition 7.10, we now show that with high probability, the
labelling YT : V (G)→ Z≥0 gives distances to A up to a uniform o(n1/4) correction.

Theorem 8.1. For all ϵ > 0,

lim
n→∞

P
{
∃ u ∈ V (G) : dG(u,A) ̸∈ [YT(u)− ϵn1/4, YT(u)− 1]

}
= 0 .

The upper bound dG(u,A) ≤ YT(u) − 1 holds deterministically by Corollary 7.5. To
prove the lower bound (in probability), we begin by stating a lemma whose proof, post-
poned to the end of the section, is based on soft convergence arguments and the continuity
of the Brownian snake. Recall the definition of the contour exploration (rT(j), 0 ≤ j ≤
2n− 2). Given 0 ≤ i ≤ 2n− 2 = 2|V (T )| − 2 and ∆ > 0, let

gT(i,∆) = sup {j < i : |YT(rT(j))− YT(rT(i))| ≥ ∆ or j = 0}
dT(i,∆) = inf {j > i : |YT(rT(j))− YT(rT(i))| ≥ ∆ or j = 2n− 2} .

Then let N(i,∆) = {v ∈ V (T ) : ∃ gT(i, δ) ≤ j ≤ dT(i,∆), rT(j) = v} be the set of vertices
of T visited by the contour exploration between times gT(i,∆) and dT(i,∆).

Lemma 8.2. For all ϵ > 0 and β > 0, there exist α > 0 and n0 ∈ N such that for n ≥ n0,

P
{
inf
{
|N(i, βn1/4)| : 0 ≤ i ≤ 2n− 2

}
≥ αn

}
≥ 1− ϵ .

Proof of Theorem 8.1. As mentioned, we need only prove the lower bound. It suffices to
show that for all ϵ > 0,

lim sup
n→∞

P
{
∃ e = uv ∈

−→
E : dG(u,A) < YT(u)− 6(ϵn1/4 + 2)

}
≤ 4ϵ

(we have done a little anticipatory selection of constants in the preceding formula). Write
diam(G) for greatest distance between any two vertices of G. By Corollary 7.5 , diam(G) ≤
2maxu∈V (G)(YT(u) − 1) = 2(maxu∈V (T ) YT(u) − minu∈V (T ) YT(u)) + 2, so by Fact 5.10,
diam(G) ≤ maxu∈V (T ′)X(T ′,ξ′,D)(u)−minu∈V (T ′)X(T ′,ξ′,D)(u) + 8. Finally,

max
u∈V (T ′)

X(T ′,ξ′,D)(u)− min
u∈V (T ′)

X(T ′,ξ′,D)(u) = max
x∈[0,1]

Z(T ′,ξ′,D)(x)− min
x∈[0,1]

Z(T ′,ξ′,D)(x) ,

and Proposition 6.1 implies that (maxx∈[0,1] Z(T ′,ξ′,D)(x) − minx∈[0,1] Z(T ′,ξ′,D)(x))n
−1/4

converges in distribution as n = |V (T ′)| → ∞, to an almost surely finite random variable.

It follows that there is c = c(ϵ) > 0 such that P
{
diam(G) ≥ cn1/4

}
< ϵ. Choose such c,

and let B be the event that G contains a cycle C of length at most 2c/ϵ such that with
V l(C) and V r(C) as defined earlier, for h ∈ {l, r} we have

max
y∈V h(C)

YT(y)− min
y∈V h(C)

YT(y) ≥ ϵn1/4.

Next, suppose there exists e = uv ∈ −→E for which dG(u,A) < YT(u) − 6(ϵn1/4 + 2).
Fix such an edge e, and any shortest path Q from u to A; by Proposition 7.10 we have
w(Q, e) ≤ −3ϵn1/4 − 2. It follows from Proposition 7.12 that either diam(G) ≥ cn1/4 or
else B occurs. It thus suffices to show that

P
{
B, diam(G) ≤ cn1/4

}
≤ 3ϵ. (15)
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Suppose B occurs, let C be as in the definition of B, and let F be the subgraph of T
induced by V (T ) \ V (C). Then F is a forest, and each component of F is contained
within G[V l(C)] or G[V r(C)] since T is a subgraph of G. Also, for {u,w} ∈ E(G) we have
|YT(u)− YT(w)| ≤ 1. It follows that, for h ∈ {l, r}, if G[V h(C)] contains k components of
F then one such component Th must have

max
y∈V (Th)

YT(y)− min
y∈V (Th)

YT(y) > ϵn1/4/k − 1.

But F has at most |E(C)| ≤ 2(|Q| − 1)/(ϵn1/4) connected components. When diam(G) ≤
cn1/4 we have 2(|Q| − 1)/(ϵn1/4) ≤ 2c/ϵ, so for each h ∈ {l, r}, some component Th of F
contained in G[V h(C)] must have

max
y∈V (Th)

YT(y)− min
y∈V (Th)

YT(y) ≥
ϵ2n1/4

2c
− 1.

Using again that labels of adjacent vertices differ by at most one, if diam(G) ≤ cn1/4 then
for h ∈ {l, r} there is vh ∈ V h(C) such that

min
v∈V (C)

|YT(vh)− YT(v)| ≥
ϵ2n1/4

4c
− 1

2
− 2c

ϵ
.

Now for h ∈ {l, r} let jh = jh(T) = inf{0 ≤ i ≤ 2n − 2 : rT(i) = vh}. Also, fix any
β ∈ (0, ϵ2/2c). By Lemma 8.2 there is α > 0 such that for n sufficiently large,

P
{
min(N(jl, βn

1/4), N(jr, βn
1/4)) ≤ αn

}
≤ ϵ.

For n large enough that ϵ2n1/4/(4c) − 1/2 − 2c/ϵ > βn1/4, for h ∈ {l, r} we also have

N(jh, βn
1/4) ⊂ V h(C), and it follows that for n sufficiently large

P
{
B, diam(G) ≤ cn1/4

}
≤2ϵ+P

{
∃ C a cycle in G, |C| ≤ 2c

ϵ
, min(|V l(C)|, |V r(C)|) ≥ αn

}
. (16)

The event in the last probability is that G contains a separating cycle of length at most
2c/ϵ that separates G into two subtriangulations, each of size at least αn. The number
tn,m of simple triangulations of an (m + 2)-gon with n inner vertices has been computed

in [8], and has the asymptotic form tn,m ∼ Amα
nn−5/2, where Am and α are explicit

constants. (Observe that, in this notation, the number of rooted simple triangulations
with n vertices is equal to tn−3,1.) For K ∈ N and α > 0, denote by ΓK(α) the event that
a random simple triangulation with n vertices admits a separating cycle γn of length at
most K that separates Gn into two components each of size at least αn. Then

P {ΓK(α)} ∼ (tn−3,1)
−1

K−2∑
k=1

∫ 1−α

α
t⌊un⌋,kt⌊(1−u)n⌋,kdu ∼ AK,αn−5/2, (17)

where AK,α depends only on α and K. The event within the last probability in (16) is
contained within the event Γ⌈2c/ϵ⌉(α), so for n sufficiently large its probability is at most ϵ.
In view of (15), this completes the proof. □
Proof of Lemma 8.2. Fix ϵ > 0 and β > 0 as in the statement of the lemma. List the
elements of V (T ′

n) according to lexicographic order in Tn as vn(1), . . . , vn(n), and for
1 ≤ m ≤ n let in(m) = inf{i ≥ 0 : rTn(i) = vn(m)}.

By considering the height process, a straightforward argument (almost identical that
given for equations (12) and (13) of [19]) shows that

sup
0≤t≤1

∣∣∣ in(⌊tn⌋)
2n− 2

− t
∣∣∣ d→ 0 .
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from which it follows that for any δ > 0,

P

{
inf
{
|N(i, βn1/4)| : 0 ≤ i ≤ 2n− 2

}
+ δn

inf{dTn(i, βn
1/4)− gTn(i, βn

1/4) : 0 ≤ i ≤ 2n− 2}
<

1

2

}
→ 0.

In particular, given α > 0, for n large, if dTn(i, βn
1/4)− gTn(i, βn

1/4) > αn for all 0 ≤ i ≤
2n−2 then with high probability inf

{
|N(i, βn1/4)| : 0 ≤ i ≤ 2n− 2

}
> αn/3. It therefore

suffices to prove there exists α > 0 such that for all n sufficiently large,

P
{
inf{dTn(i, βn

1/4)− gTn(i, βn
1/4) : 0 ≤ i ≤ 2n− 2} ≥ αn

}
> 1− ϵ . (18)

By Proposition 6.1 and Skorohod’s embedding theorem, we now work in a space in which(
(3n)−1/2CTn(t), (4n/3)

−1/4ZTn(t)
)
0≤t≤1

a.s.→ (e(t), Z(t))0≤t≤1 . (19)

Let A = A(Z) = inf{|x−y| : x, y ∈ [0, 1], |Z(x)−Z(y)| > β/(2·(4/3)1/4)}, or let A(Z) = 1 if

the set in the preceding infimum is empty. When (dTn(i, βn
1/4)−gTn(i, βn

1/4))/(2n−2) <
1 either dTn(i, βn

1/4) ̸= 0 or gTn(i, β
1/4) ̸= 2j− 2, so either ZTn(dTn(i, βn

1/4)/(2n− 2))−
ZTn(i/(2n − 2)) > βn1/4 or ZTn(i/(2n − 2)) − ZTn(gTn(i, βn

1/4)/(2n − 2)) > βn1/4. By
(19), it follows that a.s.

(2n− 2)−1 · inf{dTn(i, βn
1/4)− gTn(i, βn

1/4) : 0 ≤ i ≤ 2n− 2} > A

for all n sufficiently large. Finally, since Z is a.s. uniformly continuous on [0, 1], almost
surely A > 0, and (18) follows immediately. □

9. The proof of Theorem 1.1 for triangulations

Fix n ∈ N and (T, ξ, ξ̂) ∈ T •
n . Let (M, ζ, ζ̂) = χ•

n(T, ξ, ξ̂) ∈ △•
n+2, and let (T ′, ξ′, D) =

ϕn(ψn(T, ξ, ξ̂)) ∈ T vl
n . Then let M = (M, ζ̂), let T = (T ′, ξ′), let R = V (T ′) = V (M) \

{A,B}, let X = X(T ′,ξ′,D) be as in Section 2.3. Finally, note that vT (ξ) = vM (ζ) ∈ R and

that vT (ξ̂) = vM (ζ̂) ∈ R. Then set P = P(T, ξ, ξ̂) = (M,T, R,X, vT (ξ)), and let

Pn = {P(T, ξ, ξ̂) : (T, ξ, ξ̂) ∈ T •
n } .

The triple (T, ξ, ξ̂) may be recovered from (T ′, ξ′, D) and the vertex vT (ξ), and (T ′, ξ′, D)
may be recovered from (T ′, ξ′) and X; it follows that P is a bijection between T •

n and Pn.
Now let (Tn, ξn, ξ̂n) be a uniformly random element of T •

n and let Pn = P(Tn, ξn, ξ̂n),

so that Pn is a uniformly random element of Pn. For later use, let (Mn, ζn, ζ̂n) =

χ•
n(Tn, ξn, ξ̂n), and let (T ′

n, ξ
′
n, Dn) = ϕn(ψn(Tn, ξn, ξ̂n)). Then set Mn = (Mn, ζ̂n), set

Tn = (T ′
n, ξ

′
n), set Rn = V (Mn) \ {A,B}, set Xn = X(T ′

n,ξ
′
n,D

′
n)
, and set un = vTn(ξn), so

that Pn = (Mn,Tn, Rn, Xn, un).
To prove Theorem 1.1 for triangulations, we verify that Pn is a CS family, with se-

quences an = (3n)−1/2 and bn = (4n/3)−1/4. Assuming this, to conclude note that, by
Corollary 5.8, (Mn, ζn) is a uniformly random element of △◦

n+2. Since bn+2/bn → 1 as
n→∞, the result then follows from Theorem 4.1.

By Proposition 5.5 and Corollaries 5.8 and 5.9, (T ′
n, ξ

′
n, Dn) has law LGW(µ, ν, n), where

the law of µ is given by (6) and ν = (νk, k ≥ 1) is as in Corollary 5.9. Condition 1.
then holds by Proposition 6.1. Condition 2.(i) is immediate from the construction as Mn

contains only two vertices (A and B) that are not elements of Rn. Next, for u, v ∈ V (Mn),
by Proposition 7.6 and Fact 5.10,

dMn(u, v) ≤ XTn(u) +XTn(v)− 2max{X̌Tn(u, v), X̌Tn(v, u)}+ 14,

where the additive constant 14 arises from the 2 in Proposition 7.6 and four times the
additive error of 3 from Fact 5.10. By the definition of X̌T(u, v), if i and j are such that
u = rTn(Rn)(i) and v = rTn(Rn)(j) then X̌Tn(u, v) ≤ ŽPn(i/m, j/m) + 2 and X̌Tn(v, u) ≤
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ŽPn(i/m, j/m) + 2 (these additive factors of 2 arise from the possibility that i and j not
the first times u and v are visited by the contour exploration). It follows that for all
i, j ∈ [2|Rn| − 2],

dMn(u, v) ≤ ZPn(i/m) + ZPn(j/m)− 2max
(
ŽPn(i/m, j/m), ŽPn(j/m, i/m)

)
+ 18 ,

which verifies 3.(i). Condition 3.(ii) follows from Theorem 8.1 since un and A are always
adjacent in M. It remains to establish 2.(ii).

Since vMn(ζ̂n) = vTn(ξ
′
n) = rT′

n(Rn)(0), Xn(v(ξ
′
n)) = 0. By (3) it follows that

bn · |dMn(vMn(ζ̂n), un) + Žn(0, 1)|
d→ 0 ,

so by 1.,

bndMn(vMn(ζ̂n), un)
d→ −Ž(0, 1) d

= Z(V )− Ž(0, 1) , (20)

where V
d
= Uniform[0, 1] is independent of Z; the last equality in distribution is from (2).

Now let Vn be a uniformly random element of Rn. Arguing from (3) and 1. as above, we
obtain

bndMn(Vn, un)
d→ Z(V )− Ž(0, 1). (21)

Next, recall that (Mn, ζn) is uniformly random in △◦
n+2. It follows that, conditional

on Mn, ζn is a uniformly random element of C(Mn); let cn be another uniformly random
element of C(Mn), independent of ζn and of Vn. Since un = vMn(ζn), it follows that

dMn(Vn, un)
d
= dMn(Vn, vMn(cn)). (22)

Let
−→
E be the minimal 3-orientation associated to Mn. Writing cn = ({xn, yn}, {yn, zn}),

let ṽMn(cn) = yn if ynzn ∈
−→
E , and ṽMn(cn) = zn otherwise. Note that ṽMn(cn) is either

equal to or incident to vMn(cn), so |dMn(Vn, vMn(cn)) − dMn(Vn, ṽMn(cn))| ≤ 1. Further,
since cn is a uniformly random corner of Mn, {yn, zn} is a uniformly random edge of
Mn, so for all v ∈ V (Mn), P {ṽMn(cn) = v} is proportional to the outdegree of v in
−→
E . Since all inner vertices of Mn have outdegree 3 in

−→
E , and cn is independent of Vn,

we may couple ṽMn(cn) with a uniformly random element Un of Rn, independent of Vn,
such that P {Un ̸= ṽMn(cn)} → 0 as n → ∞. Furthermore, dMn(vMn(cn), Un) ≤ 1 on
{Un = ṽMn(cn)}, so bndMn(vMn(cn), Un) → 0 in probability, as n → ∞. It then follows
from (21) and (22) that

bndMn(Vn, Un)
d→ Z(V )− Ž(0, 1)

With (20), this establishes 2.(ii) and completes the proof. □

10. The proof of Theorem 1.1 for quadrangulations

The results on which the proof for simple triangulations rely all have nearly exact
analogues for simple quadrangulations, which makes the proof for quadrangulations quite
straightforward. In this section, we state the required results, with an emphasis on the
details that differ between the two cases.

10.1. Simple quadrangulations and blossoming trees. The counterpart of the bijec-
tion between simple triangulations and 2-blossoming trees is a bijection between simple
quadrangulations and 1-blossoming trees, due to Fusy [14]. In this section, by “blossoming
trees” we mean 1-blossoming trees, and write T ,n for the set of blossoming trees with n
inner vertices. Fix a blossoming tree T . Given a stem {b, u} with b ∈ B(T ), if bu is followed
by three inner edges in a clockwise contour exploration of T – uv, vw and wz, say – then
the local closure of {b, u} consists in removing the blossom b (from both V (T ) and B) and
its stem, and adding a new edge {u, z}.



36 LOUIGI ADDARIO-BERRY AND MARIE ALBENQUE

After all local closures have been performed, all unclosed blossoms are incident to a
single face f . A simple counting argument shows that there exist exactly two edges {u, v}
and {x, y} of f such that u, v, x and y are each incident to one unclosed stem; between
any two other consecutive unclosed stems, there are two edges of f . Assume by symmetry
that f lies to the left of both uv and xy, and write ξC = κr(v, u), ξD = κr(y, x), C = v(ξC)
and D = v(ξD) (see Fig.9(b)).

Given ξ ∈ C(T ), the planted blossoming tree (T, ξ) is balanced if ξ = ξC or ξ = ξD.
Suppose ξ ∈ {ξC , ξD} and write v = v(ξ). Let SCD (resp. SDC) be the set of non-blossom
vertices u incident to an unclosed blossom in the partial closure, such that in the planted
tree (T,C) (resp. (T,D)) we have C ⪯ctr v ≺ctr D (resp. D ⪯ctr v ≺ctr C).

To finish the construction, remove the remaining blossoms and their stems. Add two
additional vertices A and B within the outer face, and an edge between A (resp. B) and
each of the vertices of SCD (resp. of SDC). In the resulting map, define a corner c by
c = ({C,B}, {C,A}) if v = C or c = ({D,A}, {D,B}) if v = D. Finally, add an edge
between A and B in such a way that, after its addition, c lies on the same face as A,B,
and v (see Fig.9(c)). Write χ (T) for the resulting map.

Fix a planted planar quadrangulation (Q, ξ), and view (Q, ξ) as embedded in R2 so
that the face containing ξ is the unique unbounded face. A 2-orientation of a (Q, ξ) is an
orientation for which α(v) = 2 for each vertex v not incident to the root face and, listing
the vertices of the unbounded face in clockwise order as v,A,B,w with v = v(ξ), we have

α(A) = 0, α(B) = α(v) = 1 and α(w) = 2. Write
−→
E for the resulting quadrangulation.

Ossona de Mendez [30] showed that a quadrangulation admits a 2-orientation if and only
if it is simple, and in this case admits a unique minimal 2-orientation.

Proposition 10.1 ([14]). The closure operation χ ,n is a bijection between the set T ◦
,n of

balanced 1-blossoming trees with n inner vertices and the set □◦
n+2 of planted quadrangula-

tions with n+2 vertices. Furthermore, for T ∈ T ,n, χ ,n(T) is naturally endowed with its
minimal 2-orientation by viewing stems of T as oriented toward blossoms, and all other
edges as oriented toward the root.

(a) A balanced 1-blossoming
tree,

y

v

x

u

(b) its partial closure,

A B

D

C

(c) the rooted simple quad-
rangulation obtained, endowed
with its unique minimal 2-
orientation

Figure 9. The closure of a balanced 1-blossoming tree into a simple quadrangulation.

10.2. Sampling simple quadrangulations. Given a blossoming tree T = (T, ξ), define
λ := λ ,T : C(T )→ Z as follows. Let (ξT (i), 0 ≤ i ≤ 2|V (T )|−2) be the contour ordering
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from Section 2.2, with ξ0 = ξ. Let λ ,T (ξ0) = 2 and, for 0 ≤ i < 2|V (T )| − 3, set

λ ,T (ξT (i+ 1)) =


λ ,T (ξT (i))− 1 if v(ξi) ̸∈ B, v(ξT (i+ 1)) ̸∈ B,
λ ,T (ξT (i)) if v(ξi) ̸∈ B, v(ξT (i+ 1)) ∈ B,
λ ,T (ξT (i)) + 2 if v(ξi) ∈ B, v(ξT (i+ 1)) ̸∈ B,

As opposed to Section 5.2, here the label increases by 2 after each stem.
It is not hard to see that T = (T, ξ) is balanced if and only if ξ is incident to one stem

and λ ,T (c) ≥ 2 for all c ∈ C(T ). With the same definition of successors for corners, and
the same construction as in Section 5.2, this labelling yields another description of the
bijection from Section 10.1.

Let T vl
,n be the set of triples (T, ξ′, d) where (T, ξ′) is a planted plane tree and d = (de, e ∈

E(T )) is a ±1 labeling of E(T ) such that for all v ∈ V (T ), listing the edges from v to its
children in lexicographic order as e1, . . . , ek, the sequence de1 , . . . , dek is non-decreasing.

Let X
d
= Geometric(2/3), and let B have law given by

P {B = c} = (c+ 1)P {X = c}
E(X + 1)

, for c ∈ N. (23)

The following is the analogue of Corollary 5.9 for quadrangulations.

Proposition 10.2. Let (T ′, ξ′) be a Galton–Watson tree with branching factor B condi-
tioned to have n vertices. Conditional on (T ′, ξ′), independently for each v ∈ V (T ′), list
the children of v in clockwise order as c(v, 1), . . . , c(v, k) and let (D{v,c(v,j)}, 1 ≤ j ≤ k be
a random vector with law ν ,k, where ν ,k is the uniform law over non-decreasing vectors

(d1, . . . , dk) ∈ {−1, 1}k. Finally, let D = (De, e ∈ E(T ′)). Then (T ′, ξ′, D) is uniformly
distributed in T vl

,n and the closure χ ,n(T
′, ξ′, D) is uniformly distributed in □◦

n+2.

The proof of Theorem 6.1 extends immediately to this setting and we obtain the fol-
lowing convergence (see Appendix A for the computation of the constants).

Proposition 10.3. For n ∈ N let Tn = (Tn, ξn, Dn) be a uniformly random element of
T vl
,n. Then as n→∞,(

3

4n1/2
CTn(t),

(
3

8n

)1/4

ZTn(t)

)
0≤t≤1

d→ (e(t), Z(t))0≤t≤1, (24)

for the topology of uniform convergence on C([0, 1],R)2.

10.3. Labels and distance in simple quadrangulations. We next state analogues of
the results of Sections 7 and 8 for quadrangulations. Fix n ∈ N and (T, ξ) ∈ T ◦

,n, let

(Q, c) = χ ,n(T, ξ) be endowed with its minimal 2-orientation
−→
E and let (T ′, ξ′, D) ∈ T vl

,n

be the validly-labelled tree associated to (T, ξ). Finally, write Q = (Q, c) and T = (T, ξ).
The definition of leftmost paths for simple quadrangulations is an obvious modification

of that for triangulations. Together with the fact that (with YT defined as before) for
{u,w} ∈ E(Q), |YT (u)− YT (w)| ≤ 3, we obtain the following facts. The lemma is a coun-
terpart of Lemma 7.1 and Corollary 7.5; the proposition is a counterpart of Proposition 7.6,
and uses an identical definition for Y̌T (u, v).

Lemma 10.4. For all u ∈ V (Q), YT (u)/3 ≤ dQ(u,A) ≤ YT (u)− 1.

Proposition 10.5. For all u, v ∈ V (Q),

dQ(u, v) ≤ YT (u) + YT (v)− 2max{Y̌T (u, v), Y̌T (v, u)}+ 2.

The winding number introduced in Definition 7.9 is used in the following analogue of
Proposition 7.10.
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Proposition 10.6. For all e = uw ∈
−→
E , if Q is a simple path from e to A then |Q| ≥

|P (e)|+ 2(w(Q, e)− 1).

Proof. The proof of Proposition 7.10 extends readily to the case of quadrangulations.
Keeping the same notation, the following inequalities (whose proofs are left to the reader)
allow one to conclude along the same lines.

(1) If R leaves P (e) from the right and returns from the left then k ≥ j − i− 2.
(2) If R leaves P (e) from the left and returns from the left then k ≥ j − i.
(3) If R leaves P (e) from the left and returns from the right then k ≥ j− i+2(1[i>0]+

1[j<ℓ].
(4) If R leaves P (e) from the right and returns from the right then k ≥ j − i +

21[j<ℓ]. □
Combining Lemma 10.4 and Proposition 10.6, we obtain that with probability tending

to one, distances to A in Q are given by labels in T up to a o(n1/4) perturbation.

Theorem 10.7. For all ϵ > 0,

lim
n→∞

P
{
∃ u ∈ V (Q) : dQ(u,A) ̸∈ [YT (u)− ϵn1/4, YT (u)− 1]

}
= 0 .

Proof. The only element of the proof of Theorem 8.1 that cannot be directly applied here
is the approximation of P {ΓK(α)} given in (25) that relies on the number tn,m of simple
triangulations of an (m + 2)-gon. This has an easy fix: for α > 0, write Γ ,K(α) for the
event that a uniformly random simple quadrangulationQn with n faces admits a separating
cycle of length at most K, separating Qn into two components each of size at least αn.
An explicit expression for the number qn,m of simple quadrangulations of a 2m-gon with

n inner vertices is derived in [9], and has the asymptotic form qn,m ∼ Amα
nn−5/2, where

Am and α are explicit constants. (Observe that, in this notation, the number of rooted
simple quadrangulations with n vertices is equal to qn−4,2.). Then

P {ΓK(α)} ∼ (qn−4,2)
−1

K∑
k=0

∫ 1−α

α
t⌊un⌋,kt⌊(1−u)n⌋,kdu ∼ A ,K,αn

−5/2, (25)

where A ,K,α depends only on α and K. □
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ratoire d’Informatique de l’École Polytechnique in May 2012, during which the research
progressed substantially.
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List of notation and terminology

3-orientation Orientation of a triangulation so all vertices not on a distinguished face have
outdegree 3; also see Section 5.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

⪯ctr,T Contour ordering of corners of planted plane tree T . . . . . . . . . . . . . . . . . . . . . . . 9
⪯cyc,T Cyclic ordering of corners of T induced by ⪯ctr,T . . . . . . . . . . . . . . . . . . . . . . . . . 9
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⪯lex,T Lexicographic ordering of vertices or edges of planted plane tree T . . . . . . . . 8
∼e Equivalence relation on [0, 1], x ∼e y if e(x) = e(y) = ě(x, y). . . . . . . . . . . . . . 4
Blossoming tree T is k-blossoming if each non-leaf is incident to exactly k leaves. . . . . . . . . . 12
B(T ) The blossoms of blossoming tree T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
C(G) Set of corners of planar map G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
CT Contour process of T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
C(X,X ′) Set of correspondences between X and X ′. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Coupling A coupling of prob. measures µ on X, µ′ on X ′ is a prob. measure ν on X×X ′

with marginals µ, µ′. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
χn Closure bijection from T ◦

n to △◦
n+2; same paragraph for χ . . . . . . . . . . . . . . . 13

χ̂n Push-forward of inner corners of T by χn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
dGH(X,X

′) Gromov–Hausdorff distance between X and X′; equal to 1
2 inf{dis(C) : C ∈

C(X,X ′)}. Same section for dkGH, dGHP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
dis(C) Distortion of the correspondence C; equal to sup{|d(x, y)−d′(x′, y′)| : (x, x′) ∈

C, (y, y′) ∈ C}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
d∗ Largest pseudo-metric on [0, 1] compatible with ∼e, with d

∗ ≤ dZ . . . . . . . . . 4
dZ For x, y ∈ [0, 1], dZ(x, y) = Z(x) + Z(y)− 2max(Ž(x, y), Ž(y, x)). . . . . . . . . . 4
e A standard Brownian excursion, e = (e(t), 0 ≤ t ≤ 1). . . . . . . . . . . . . . . . . . . . . . 4
−→
E An orientation of the edges of a graph G; usually, the minimal 3-orientation

of a planted triangulation. See also Section 5.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
f̌ For a function f : I → R, f̌(s, t) = infx∈[s,t]∩I f(s, t). . . . . . . . . . . . . . . . . . . . . . . 4
λ∗ Push-forward of λT by χ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
λT Corner labelling of planted blossoming tree T . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
(M, dGH) Set of isometry classes of compact metric spaces with GH distance; see same

section for (M(k), dkGH) and (Mw, dGHP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
ν̂ The “symmetrization” of the collection of measures ν = (νk, k ≥ 1) . . . . . . 22
P Spatial map-tree pair, P = (M,T, R,X); same section for marked version. 10
P Typically, a Chassaing–Schaeffer family, P = (Pn, n ∈ N). . . . . . . . . . . . . . . . .11
ϕn Bijection from Tn to T vl

n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
ψn Two-to-one map from T •

n to Tn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
ρ Equivalence class of 0 in S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
rT Contour exploration of planted plane tree T, rT : [2|V (T )| − 2]→ V (T ).. . .8
s(c) The “successor” of corner c in a blossoming tree . . . . . . . . . . . . . . . . . . . . . . . . . 13
s′ A modification of the “successor” function s defined for vertices instead of

corners. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
(S, d, µ) The Brownian map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Tn Blossoming trees with n inner vertices, planted at an inner corner. . . . . . . . 12
T ◦
n Balanced 2-blossoming trees with n inner vertices . . . . . . . . . . . . . . . . . . . . . . . . 12

T •
n Set of triples (T, ξ, ξ̂), where (T, ξ) ∈ T ◦

n (so is balanced) and (T, ξ) ∈ Tn . 12
T vl
n Validly labelled plane trees with n vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

TR R-symmetrization of T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
T(R) Reduced tree of T with vertices R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
T⟨R⟩ Subtree of T spanned by R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Tσ “Permutation” of T = (T, ξ,D) by σ = (σv : v ∈ V (T ), kT(v) > 0) . . . . . . . . 21
△◦

n Planted triangulations of S2 with n vertices; see also Section 1. . . . . . . . . . . 12
△•

n Set of triples (G, c, c′) where (G, c) ∈ △◦
n and c′ ∈ CB(G). . . . . . . . . . . . . . . . . 12

u∗ Equivalence class in S of point in [0, 1] where Z attains its minimum value.4
UT Ulam–Harris encoding of T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
v v(ξ) = vG(ξ) is the vertex incident to corner ξ in G . . . . . . . . . . . . . . . . . . . . . . . 8
XT For (T, ξ,D) a spatial planted plane tree and v ∈ V (T ), X(v) is sum of

displacements on root-to-v path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Y(T,ξ̂) Vertex labelling induced by λ, Y(T,ξ̂)(v) = min{λ(c) : c ∈ C(T ), v(c) = v} . 16
Z “Brownian snake driven by e”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
ZT The spatial process of T; ZT is XT, continuized, temporally rescaled to have

domain [0, 1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
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Appendix A. Notes about constants

In this section we briefly derive the forms of the constant coefficients arising in Theo-
rem 1.1 and Proposition 6.1.

For simple triangulations, we work with a critical Galton–Watson tree with a branching
factor B uniquely specified by the following facts.

(1) Criticality: EB = 1.
(2) There exists p ∈ (0, 1) such that if G is Geometric(p) then the law of B is given

by setting, for each c ∈ N,

P {B = c} =
(
c+2
2

)
P {G = c}

E
(
G+2
2

) .

From these conditions, a straightforward calculation shows that p = 3/4, and another easy
computation yields that E

[
B2
]
= 7/3 so Var {B} = 4/3. In the notation of Section 6.1,

this yields σµ = 2/31/2.
Next, the displacement D between a node in our tree and a uniformly selected child

is equal to one of {−1, 0, 1}, each with equal probability; it follows that E
[
D2
]
= 2/3.

Symmetrize as in Section 6.1, then let νk be the law of the displacement vector for a vertex
with k children. Again using the notation of Section 6.1, it follows that σ2ν̂k(i) = 2/3 for

all 1 ≤ i ≤ k, so σ2ν̂ = σ2ν = 2/3 and (σµ/2)
1/2/σν = (3/4)1/4. Together with Theorem 4.1,

this explains the values of constants relating to triangulations.
We remark that the scaling required for convergence of triangulations in Theorem 1.1

agrees with the intuition described in [7], Section 4.1. It differs by a factor 81/4 from
the scaling for general triangulations that arises in Theorem 1.1 of [22], which can be
understood as follows. First, in [22], the index n denotes the number of faces rather than

the number of vertices, which accounts for a factor 21/4. The size of the simple core
of a loopless triangulation with m vertices is typically ∼ m/2 (see Table 4 of [4]); this

explains another factor 21/4. Finally, the loopless core of a simple triangulation with m
vertices is again typically of order ∼ m/2 (this is not proved in [4] but may be handled

using the same technology); this explains the final factor 21/4. The latter factor does not
arise in considering quadrangulations, which can not contain loops; this may be viewed as
explaining the different form of the constant for triangulations versus those of bipartite
maps in Theorem 1.1 of [22].

For simple quadrangulations, we work with a critical Galton–Watson tree with branching
factor B uniquely specified by the following facts.

(1) Criticality: EB = 1.
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(2) There exists p ∈ (0, 1) such that if G is Geometric(p) then the law of B is given
by setting, for each c ∈ N,

P {B = c} = (c+ 1)P {G = c}
E [G+ 1]

.

From these calculations, a straightforward calculation shows that p = 2/3, and another
easy computation then yields that E

[
B2
]
= 5

2 , so Var {B} = 3/2. Next, the displacement
D between a node v and a uniformly selected child is equal to −1 or to 1, each with equal
probability, so has E [D] = 0 and Var {D} = 1. Using Theorem 4.1 as above then yields
the scaling for quadrangulations in Theorem 1.1, and agrees with the two-point calculation
for simple quadrangulations by Bouttier and Guitter [7].

Appendix B. Convergence for Chassaing–Schaeffer families

Throughout the section we let P = (Pn, n ∈ N) be a CS family (with associated se-
quences (an, n ∈ N) and (bn, n ∈ N) of constants), let Pn = (Mn,Tn, Rn, Xn, un) be a
uniformly random element of Pn, and write Mn = (Mn, ζn) and Tn = (Tn, ξn). We also
write rn = rTn(Rn), Cn = CPn , and Zn = ZPn for succinctness.

Next, for n ≥ 1, list the vertices of Rn according to their lexicographic order in Tn(Rn)
as vn(1), . . . , vn(|Rn|), and given 1 ≤ m ≤ |Rn|, let in(m) = inf{i : rn(i) = vn(m)} be the
index at which vn(m) first appears in the contour exploration.

Lemma B.1. As n→∞, we have

sup
0≤t≤1

∣∣∣∣ in(⌊t · |Rn|⌋)2|Rn| − 2
− t
∣∣∣∣ d→ 0 .

Proof. As in Lemma B.1, a straightforward argument using the height process (following
(12) and (13) of [19]) shows that when |Rn| ≥ 2, deterministically

sup
0≤t≤1

∣∣∣∣ in(⌊t · |Rn|⌋)2|Rn| − 2
− t
∣∣∣∣ ≤ max{|JvTn(ξn), vK ∩Rn| : v ∈ Rn}+ 4

2|Rn| − 2
,

where we abuse notation by writing JvTn(ξn), vK for the set of vertices of the simple
path between vTn(ξn) and v in Tn. Since |Rn| → ∞ it thus suffices to show that

max{|JvTn(ξn), vK ∩ Rn| : v ∈ Rn}/(2|Rn| − 2)
d→ 0. To see this, let U and V be in-

dependent Uniform[0, 1] random variables. If the latter convergence fails to hold then for
infinitely many n, with uniformly positive probability, a single path from the root in Tn
contains a macroscopic proportion of the elements of Rn. It follows easily that

lim sup
n→∞

P

{
U < V,Cn(U) = min

U≤x≤V
Cn(x)

}
> 0 .

On the other hand, P {U < V, e(U) = minU≤x≤V e(x)} = 0, so the preceding equation
implies that e is not the distributional limit of any rescaling of Cn. Thus 1. does not hold,
a contradiction. □
Proof of Theorem 4.1. We claim that it suffices to establish

(Rn, bndMn , µn)
d→ (S, d, µ). (26)

for dGHP. (In the above, by dMn we really mean the distance on Rn induced by dMn . This
slight notational abuse should cause no confusion.) Indeed, suppose the latter convergence
holds. By Skorohod’s representation theorem, we may work in a space in which the
convergence (26) is almost sure. Fix ϵ > 0, and let En be the event that maxv∈V (Mn) bn ·
dMn(v,Rn) ≤ ϵ/2 and d2GH(Rn, bndMn , vMn(ζn), un), (S, d, ρ, u)) ≤ ϵ/2. Now let R0

n =
{(x, y) ∈ Rn×V (Mn); bndMn(x, y) ≤ ϵ/2}; then R0

n has distortion at most ϵ. Furthermore,
(vMn(ζn), vMn(ζn)) ∈ R0

n and (un, un) ∈ R0
n. Let νn be the probability measure on
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Rn × V (Mn) whose restriction to {(v, v) : v ∈ Rn} is the uniform probability measure.
Then νn is a coupling of µn (as a measure on Rn) and µn (as a measure on V (Mn)), and
νn(R0

n) = 1.
On En we have that R0

n is a correspondence, so on En,

dGHP((V (Mn), bndMn , µn), (Rn, bndMn , µn)) ≤ ϵ/2,
and by the triangle inequality it follows that on En,

dGHP((V (Mn), bndMn , µn), (S, d, µ)) ≤ ϵ .
Finally, in this space, since P is a CS family, P {En} → 1 as n → ∞, and it follows that

(V (Mn), bndMn , µn)
d→ (S, d, µ) for dGHP. We thus turn our attention to proving (26).

The first part of our argument is based on that of [20], Proposition 3.2; the second part
is based on an argument from Section 8.3 of [22]. Define a function dn : [0, 1]2 → [0,∞) as
follows. Let m = mn = 2|Rn| − 2, and for i, j ∈ [m], let dn(i/m, j/m) = dMn(rn(i), rn(j)).
Then extend dn to [0, 1] by “bilinear interpolation”: if (x, y) = ((i+ α)/m, (j + β)/m) for
0 ≤ α < 1, 0 ≤ β < 1 then let

dn(x, y) = αβdn((i+ 1)/m, (j + 1)/m) + α(1− β)dn((i+ 1)/m, j/m)

+ (1− α)βdn(i/m, (j + 1)/m) + (1− α)(1− β)dn(i/m, j/m) .

Using 1., we now work in a space in which

(anCn, bnZn)
a.s.→ (e, Z). (27)

We will show that in such a space, additionally

bndn
a.s.→ d∗ , (28)

for the topology of uniform convergence on C([0, 1]2). Assume (28) holds, and for n ∈ N,
consider the correspondence Rn between (S, d) and (Rn, bndMn) given by letting [s] ∈
[0, 1]/{d∗ = 0} = S correspond to rn(i) if and only if ⌈s ·m⌉ = i, for 0 ≤ i ≤ m. 9 By
(28), the distortion of Rn tends to zero.

Let µ−n be the uniform probability measure on Rn \ {v(ζn)}. Define a coupling between
µ−n and µ as follows. Fix s ∈ [0, 1]. Let f1(s) = [s] ∈ S. If s = i/m then let f2(s) = rn(i).
If s ∈ (i/m, (i + 1)/m) and {rn(i), rn(i + 1)} = {u, p(u)} ∈ E(Tn) then let f2(s) = u.
Finally, let f = (f1, f2) : [0, 1]→ S ×Rn, let λ denote one-dimensional Lebesgue measure
on [0, 1], and let ν = f∗λ. Write π and π′ for the projection maps from S × Rn to S and
to Rn, respectively. We clearly have π∗ν = µ. Also, for each edge e ∈ E(T ), there are
precisely two indices i, j ∈ {0, 1, . . . , 2|Rn| − 2} for which {rn(i), rn(i+ 1)} = {u, p(u)}; it
follows that π′∗ν = µ−n .

For any pair ([s], rn(i)) ∈ Rn, either f2(s) = rn(i) or f2(s) = p(rn(i)), the two possibil-
ities due to the two directions in which the edge {p(rn(i)), rn(i)} is traversed during the
contour exploration. We thus let

R+
n = {([s], w) : ([s], w) ∈ Rn or ([s], p(w)) ∈ Rn} .

Since Rn was a correspondence, R+
n is again a correspondence, and ν(R+

n ) = 1. Finally,
dis(R+

n ) ≤ dis(Rn) + 2bn so dis(R+
n )→ 0 as n→∞. It follows by definition that

(V (Mn), bndMn , µ
−
n )

d→ (S, d, µ)

for dGHP. Finally, the Prokhorov distance between µ−n and µn is 1/|Rn|, which tends to
zero as n → ∞. We may therefore replace µ−n by µn and the preceding convergence still
holds, which establishes (26) and so proves the theorem. It thus remains to prove (28) .

Define a function d◦n : [0, 1]2 → [0,∞) as follows: for x, y ∈ {i/m, 0 ≤ i ≤ m}, let
d◦n(x, y) = Zn(x) + Zn(y)− 2max

(
Žn(x, y), Žn(y, x)

)
.

9A similar technique is used at the end of Section 8 of [22].
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Then extend d◦n to [0, 1]2 by bilinear interpolation as with dn. Recalling that for integer
i ≤ m, Zn(i/m) = Xn(rn(i)), it follows straightforwardly from 1. that for all ϵ, δ > 0,

lim sup
n→∞

P

{
sup

|x−y|≤δ
bnd

◦
n(x, y) ≥ ϵ

}
≤ P

{
sup

|x−y|≤δ
(Z(x) + Z(y)− 2max(Ž(x, y), Ž(y, x))) ≥ ϵ

}
(the derivation of this inequality is spelled out in a little more detail in [20], Section 3).
Since Z is almost surely continuous, it follows that for any η > 0 and k ∈ N, there exist
δk > 0 and nk ∈ N such that for all n ≥ nk,

P

{
sup

|x−y|≤δk
bnd

◦
n(x, y) ≥ 2−(k+1)

}
≤ η

2k+1
.

Next, by 3(i), after increasing nk if necessary, for n ≥ nk,

P

{
sup

x,y∈[0,1]
bn(dn(x, y)− d◦n(x, y)) ≥ 2−(k+1)

}
≤ η

2k+1
. (29)

By decreasing δk if necessary, we may also ensure that for n < nk,

P

{
sup

|x−y|≤δk
bnmax(dn(x, y), d

◦
n(x, y)) ≤ 2−(k+1)

}
= 1 .

Combining the three preceding estimates yields that for all n ≥ 1,

P

{
sup

|x−y|≤δk
bndn(x, y) ≥ 2−k

}
≤ η

2k
,

so

P

{
∀n, k, sup

|x−y|≤bnδk
dn(x, y) < 2−k

}
≥ 1− η .

In other words, with (δk)k≥0 as above, with probability at least 1 − η, for all n, bndn
belongs to the compact

K = {f ∈ C([0, 1]2,R) : f(0, 0) = 0, ∀k, sup
|x−y|≤δk

f(x, y) ≤ 2−k} ,

which implies that {bndn, n ∈ N} is tight in C([0, 1]2,R) . For the remainder of the proof,

we let d̃ ∈ C([0, 1]2,R) be any almost sure subsequential limit of bndn; we suppress the
subsequence from the notation for readability.

Recall that we work in a space where (27) holds. In such a space, it follows from the

continuity of Z that bnd
◦
n

a.s.→ dZ , where dZ : [0, 1]2 → R is as defined in Section 1.1. By
(29), it follows that for any η > 0 and p ≥ 1,

lim sup
n→∞

P

{
sup

x,y∈[0,1]
(bndn(x, y)− dZ(x, y)) ≥ 2−p

}
≤ η2−p ,

so a.s. d̃ ≤ dZ .
We next claim that a.s. d̃(x, y) = 0 for all x ̸= y ∈ [0, 1] for which x ∼e y. To see this,

suppose that x ∼e y for some x, y ∈ [0, 1], and assume by symmetry that x < y. Continuing
to writem = mn = 2|Rn|−2, (28) implies there exist random integer sequences (xn, n ∈ N)
and (yn, n ∈ N) such that xn/mn

a.s.→ x, yn/mn
a.s.→ y, and

Cn(xn/mn) = Cn(yn/mn) = min{Cn(z) : xn ≤ mn · z ≤ yn} .
It follows that rn(xn) = rn(yn),or equivalently that in(xn) = in(yn), so

dn(xn/mn, yn/mn) = dMn(rn(in(xn)), rn(in(yn))) = 0 .
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Since bndn
a.s.→ d̃ (along a subsequence) and xn/mn

a.s.→ x, yn/mn
a.s.→ y, this implies that

0 = dn(xn/mn, yn/mn)
a.s.→ d̃(x, y) ,

so d̃(x, y)
a.s.
= 0 as claimed.

Since, almost surely, d̃ = 0 on {{x, y} : x ∼e y}, and d̃ ≤ dZ , we must have d̃ ≤ d∗ since
d∗ is the largest pseudo-metric on [0, 1] satisfying these constraints. We now show that in

fact, almost surely d̃ = d∗.
Let U, V be independent and uniform on [0, 1]. By 1. we have

bnXn(rn(In)) = bnŽn(0, 1)
d→ Ž(0, 1)

d
= −d∗(U, V ) ,

the last identity by (2) (which is Corollary 7.3 of [22]). Since vMn(ζn) = rn(0) and
Xn(rn(0)) = 0, by (3) we also have

lim
n→∞

P {bn · |dMn(vMn(ζn), un) +Xn(rn(In))| > ϵ} = 0 ,

so since Xn(rn(In)) = Žn(0, 1), we obtain

dMn(vMn(ζn), un)
d→ d∗(U, V ) .

Since the Prokhorov metric topologizes weak convergence, by 2.(ii) it follows that for Un
and Vn two independent random elements of Rn, then

bndMn(Un, Vn)
d→ d∗(U, V ) .

Now let 1 ≤ Jn,Kn ≤ |Rn| be such that vn(Jn) = Un and vn(Kn) = Vn. The preceding

convergence implies bndn(Jn,Kn)
d→ d∗(U, V ). Lemma B.1 implies that (Jn,Kn)

d→ (U, V ),
so the tightness of the collection (bndn, n ≥ 1) then yields

bndn(U, V )
d→ d∗(U, V ) .

Finally, along the subsequence where bndn
a.s.→ d̃, we also have bndn(U, V )

d→ d̃(U, V ), so it

must be that d̃(U, V )
d
= d∗(U, V ). Since a.s. d̃ ≤ d∗, it must therefore hold that d̃

a.s.
= d∗.

We have now shown that in the space where (27) holds, any subsequential limit d̃ of

bndn must satisfy d̃
a.s.
= d∗; this implies that in fact, in this space we have bndn

a.s.→ d̃, which
establishes (28) and so completes the proof. □
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