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Abstract In this article we study a class of monoids that includes @amnonoids, and give a simple combinatorial
proof of a formula for the formal sum of all elements of the mioh This leads to a formula for the growth function
of the monoid in the homogeneous case, and can also be bifeecesolution of the monoid algebra. These results are
then applied to known monoids related to Coxeter systemsgiveethe growth function of the Artin-Tits monoids,
and do the same for the dual braid monoids. In this last casshew that the monoid algebras of the dual braid
monoids of type A and B are Koszul algebras.

RésuméNous étudions une classe de monoides incluant les mondédésdide, et donnons une preuve combina-

toire simple d'une formule pour la somme formelle de leuérénts. Cela méne a une formule pour la fonction de

croissance du monoide dans le cas homogene, et peut étreedess en une résolution de I'algebre de monoides.

Ces résultats sont ensuite appliqués aux monoides liésyateases de Coxeter: nous donnons la fonction de crois-
sance des monoides d'Artin-Tits ainsi que des monoidesxdyzaur ces derniers nous montrons que leur algebre de
monoide en types A et B est une algebre de Koszul.
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Introduction

We consider left cancellative monoidg that are generated by their atoisand such that if a subset of
S admits a common right multiple, then it actually admits asteaommon multiple.

These monoids include trace monoids, for which there eaistse combinatorial theory due to Viennot
[23]. Our first result (Theorem 2) generalizes one of the fwobViennot for the formal sum of elements
a monoid. When the monoid is homogeneous with respect tetitsf atomsS, then we have immediately
that the growth function of the monoid (i.e. the generatingction according to the length of elements as
words in.S) is the inverse of a polynomial. We will apply this formulaAaetin-Tits monoids, and more
generally it applies to all Garside monoids [9].

The combinatorial proof, which is a actually a sign revegsimvolution, has an interpretation as a
resolution ofZ as aZM-module, whereZ M stands for the monoid algebra bf. Another resolution can
be deduced from this one, and in turn this new resolutionsgvether formula for the growth generating
function of the monoid. We use this reduced resolution incdeee of thedual braid monoidslefined by
Bessis in the typed and B; for a particular choice of the reduced resolution in thesses, we will show
that the monoid algebra&\/ areKoszul algebra$l9, 11].
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We now give an outline of the paper. In Section 1 we define thescbf monoids we study, give
formulas for the formal sum of their elements (Theorem 2) #nedgrowth functions of such monoids,
and give interpretations of these results as resolutiotiseo€orresponding monoid algebras. In Section
2, we explain how these results apply to both trace monoidsGarside monoids. The following two
sections apply the results of Section 1 to two families of Sk monoids related to irreducible finite
Coxeter groups. In Section 3 we give the growth functionsefdorresponding Artin-Tits monoids. In
Section 4, we also give the corresponding growth functionstfe dual braid monoids, and show that in
type A and B the corresponding monoid algebras are Koszul algebras.

1 Growth function and exact resolution
1.1 Monoids

A monoid (M, -) is a setM together with an internal lawthat is associative and such that there exists an
identity element. A subsetS C M is agenerating seif every element of\/ can be written as a product
of elements of5.

Let S be a set, andk a collection of pairgw, w’) (calledrelationy, wherew andw’ are words inS.
We say that S| R) is apresentatiorof the monoidM if M is isomorphic toS*/ < R>>, where< R>
is the congruence generated By The presentation is said to hemogeneous all relations of R are
composed of two words of equal length. Given a generating e&t\/, thelengthof an elementn € M
is the smallest number of generators needed to write it. Vilennite |m|g for this length, and we note
that this length is additive i/ admits an homogeneous presentation.

An elementa is anatomof M if a # 1, and ifa = bc impliesb = 1 or ¢ = 1; a monoid isatomicif it
is generated by its set of atoms, and if in addition every el@mm possesses a finite number of different
decompositions as a product of atoms. It is easy to see tratbaric monoid has the property that~ 1
andb # 1 imply thatab # 1.

We noteZM the monoid algebra af/, whose elements are formal linear combinations of elenants
M with coefficients inZ; we note als&(( M )) the algebra of formahfinite such linear combinations.
The productof , ¢,,m and)_,  d,,m isin both cases given by . e,,m wheree,, = > Cadp:
the product is well defined if the sum is finite, which is theecaden)M is atomic.

ab=m

1.2 Main result

In all this work, we consider monoid¥ with a finite generating s&t satisfying the following properties:
M is atomic, left-cancellative (ifi, u, v € M are such thatu = av, thenu = v) and verifies that if a
subset ofS has a right common multiple, then it has a least right commaolttiphe.
Lemma 1. For such a monoid, if/ C S is such that/ has a common multiple, then a least common
multiple (Icm) exists and is unique.

We will call cliquesthe subsets af having a common multiple, and lgt be the set of all cliques; if
J is a clique, we noté/; its unique least common multiple, and tat; be the length of\/;. Then we
have our first result:

Theorem 2. Let M, S be as above. Then the following identity hold&if{ M )):

(Z(_l)lJlMJ) : ( 3 m’) = 1u (1.1)

JeJ m’'eM
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As an important corollary, we get the following:

Corollary 3 (Bronfman '01) Givenl,S as in the above theorem, suppose also thiaadmits a homo-
geneous presentatidnS | R ). Then its growth function is equal to :

Gurlt) = Y #hmls = lZuwth] 7 L2)

meM JeJg

Proof of Corollary 3: Admitting a homogeneous presentation is equivalent to dlee that the length
according toS is additive, which means that the applicati®?) ¢,,m — >, emt!™ls is @ homomor-
phism fromZ{{ M )) to Z[[t]], the ring of power series with integer coefficients. It iséed well defined
because there is a finite number of element&/o6f a given length. We can apply this homomorphism to
both sides of the above theorem, which finishes the proof.

Proof of Theorem 2:

For every element: € M, let us define7(m) C J to be the subsetg$ of S such that every element
s of J dividesm; by the lcm property of\/, we have that there exists a subdgt C S, such that7(m)
consists exactly of the subsets.5f .

From now on we fix a total ordet on the set of generatos. Let us fix anym # 1. Clearly J,, is not
empty in this case, and so we can defifi) as the maximal (for the order) element of/,,,. Define the
involution ®,,, on 7 (m) as follows: ®,,,(J) = JA{s(m)} whereA denotes the symmetric difference
AAB = (AUB)\ (AN B). The applicationp,, is simply the classical involution on the subsets/pf;
since®,,, changes the parity df/|, we have obviously

> M=o (1.3)

JCIm

Note that this sum ig if we takem = 1, since there is only one term corresponding to the empty set.
Now J € J(m) means precisely that/; dividesm, that is there exists:)’ such thatM ;m’ = m: such

an elementn’ is uniquely determined by the cancellability property. figfere Equation (1.3) can be
rewritten equivalently as

st 1 ifm=1.
M,Im’:m

But this quantity is precisely the coefficient, of m in the left term of Equation (1.1) written in the
form} ¢, m,and so this proves Theorem 2.

1.3 Posets

We refer to [22, ch. 3] for standard notions about posets.eG& locally finite posetP, <) (i.e all
intervals have a finite number of elements), the Mdbius fionatan be defined inductively on all pairs
x < zhy

ple, ) =1, plz,2)= Y play) for <z (1.5)

r<y<z



144 Marie Albenque and Philippe Nadeau

Now consider a monoid/ (as in Paragraph 1.2 with the divisibility relatieh It forms a locally finite
posetP,, as is readily checked, so it has a Mdbius function; it has alsmallest elemerit and we write
w(m) = p(1,m). In this poset, atoms of the monoids become atoms of the ficsetlements that cover
1), and lcms become joins. We will use this in Section 4 to compioe growth functions of dual braid
monoids of type A and B in particular, since the interfualMs] in Py, for these monoids are noncrossing
partitions.

Note that one can identify the algel£&( M )) with the incidence algebrB Py,). From this we know
that{y = >_,,cprm € Z(( M )) has for inverse itZ.(( M )) the function)  n(m)m, so that Theorem
2 is actually a manner of computing the Mdbius function o thoset, related to the crosscut theorem of
Rota [21].

1.4 An exact resolution

In this paragraph we give resolutions that generalize tleeiofil4] which concerned trace monoids: let
M, S be as at the beginning of Paragraph 142 ZM be the monoid algebra aff. Let B = Z.7 be
the free module with basi§, andB,, be the submodule with basig, the cliques of cardinal. Consider
thenC,, = B,, ®z A the free (right)A-module with basis7,,. Now we fix a total ordek on S, and we

’
write cliques as words; ... s,, wheres; < s;,; for all i. For two cliques/ C J’, we also Ietéj \ be

the element of\/ such thatMJchl\J = My, itis well defined thanks to the cancellability property. We
define anA-module homomorphisnd, : C,, — C,,_1 by

n

dn(s1. .. sn®1)=> (=1)"'s1...8i...on @65 o (1.6)

=1

We definealse : A — Z bye(m) = 0if m # 1 ande(1) = 1, so that we have the following sequence
of A-modules andd-homomorphism (where we lét= |S|):

00— Cp 2 0y B Ao o= A7 1.7)

Theorem 4. The complex1.7)is a resolution ofZ as anA-module.

We recall that this means that the sequence is exact, i.eaweth check thaim(d,,) = Ker(d,—1)
for all n.

Proof: Let J = s;...s, be a clique, then one checks first tligt ; o d,, = 0 for anyn. Indeed the
computation gives,,_jod,(J®1) = Zi<j(—1)i+j—1ji7j® (62’],533 - 6;‘}]62) ,where we let/;,
be the clique obtained by removing the generatgrs. . ., s;, from J. Now the difference in the second
term is0 since both terms are equaldg ™.

So we havdm(d,,) C Ker(d,—1), and to check the reverse inclusion, we defirf&omomorphism
int1 : Cn — Chyq in the following way: letJ @ m € C,, with J = s;...s,, and consider the set
E(J,m) of divisors of M ym that are greater than,. If this setis empty, sat, 1 (J @ m) = 0; otherwise,
let s, +1 be the maximum element &éf(J, m) for the order<, and definen, by 63”“m1 = m; then set
int1(81...8, @ M) = 81...8,8,+1 ® my1. One can then check thaf o d,, + dy+1 0 i1 = 1 forall
n in a similar manner to [14], whergis the identity onC,,. This shows tha&er(d,,) € I'm(d,) and
concludes the proof.
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Now we show how this resolution gives a proof of Theorem 2:

Proof of Theorem 2: Define theZ-moduleC'(m) = &,,C,, ., by letting the basis of, ,,, be the elements
J ® mq such that.J| = n andM ;m; = m in M. Then the functiond,, andi,,..; mapC(m) to itself as
is immediately checked, so we obtain for eveiyc M an exact sequence of frédemodules:

d d— d d
0— Ck,m - Ck—l,m —; """ — Cl,m — CO,m £ Zm (18)

We have thatlimzC,, ,,, is the number of pairéJ,m,) € J x M such thatJ| = n andM;m, = m;
furthermoredimyZ,, is equal tol if m = 1 and0 otherwise. Taking the Euler-Poincaré characteristic of
the resolution (1.8) gives us then Equation (1.4), whichbeen shown to be equivalent to Theorem 2.
Reduced resolution Given a total order or$' as above, introduce now the sgt C 7 of order com-
patible cliques these are the cliques . .. s, such that for ali we have thas; is the largest divisor of

s; for the order<. We will write OC for order compatible.

.....

Lemma 5. A cligueJ = s;...s, is OC if and only if for allt < n and all sequences of indices
1 <4y <--- <4 < nwe have that;, is the maximal divisor oMSi1

Proof: The condition is clearly sufficient; now if = s;...s,isOCandl < i; < --- < i; < n, we
have the inequalities;, < maxdiv(Ms, . s, ) < maxdiv(Ms, s, . s, ) = si,- SO all inequalities are
in fact equalities and the lemma is proved.

Corollary 6. If J is an OC clique then every subsetbfs also an OC clique.
Now let C; be theA-submodule ofC; with basis the OC cliques of size By the last corollary, the
derivationsd; are well defined when restricted to these submodules, so veegheomplex:

00— Cp 2 Gy M0l NS R Ny N RN (1.9)

Proposition 7. The complex1.9)is an exact resolution df by A-modules.

Proof: We check that the homotopy, is still well defined when restricted to tiemoduleC,,, which
will prove the proposition. Supposke= s; ... s, isan OC cliquem € M, and that the maximal element
sp+1 among the divisors ak/ ;m is greater tham,,. Then, ifs dividesM,, . s, .,, itdivides alsoM ;m,
and thus the greatest of these divisors,js; this shows that; ... s, is an OC clique, and thus that
the functioni,,; is well defined. So now the same proof as the one of Theorem Becapplied, and the
result follows.

These modules were already considered in [8][Section 4)wiih a different resolution.

Proposition 8. Theorem 2 and its corollary hold if the sum is restrictedfto (for any given total order
<onSs.)

The proof mimics the alternative proof of Theorem 2 above. Wil use this proposition and the
resolution in Section 4.

2 Application to some classes of monoids

We give in this section some examples of monoids that satigfgonditions of Theorem 2.
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2.1 Trace monoids

Trace monoids (also calldteaps of pieces monoids, Cartier-Foata monaidsee partially commutative
monoid$ are defined by the presentatidi = (S |ab = baif (a,b) € I), whereS is a finite set of
generators and is a symmetric and antireflexive relation ¢hx S called the commutation relation.
In [23], elements of\/ are interpreted as heaps of pieces

At the very beginning, the aim of the work presented here wageheralize the results of [23]. It is
indeed a special case of our Theorem 2: in trace monoids,dobset/ of S, only two disjoint cases can
occur: either all elements of commute, and their product s clearly their least commortipiel or there
exist two elements of which do not commute, and does not admit a common multiple.

The first case corresponds to what is called cliques in theetraonoid literature, from which we
borrowed our terminology in our more general setting. lthisrt straightforward that the set of all least
common multiples of cliques corresponds exactly to the Ekéeaps of pieces of height at most one.

This work applies too to divisibility monoids which are a matl generalization of trace monoids,
studied in [10, 16].

2.2 Artin-Tits monoids

The Artin-Tits monoids are a generalization of both tracenoids and braid monoids (which are exten-
sively studied in Section 3). Given a finite sgétand a symmetric matri®¥l = (ms+)s+es Such that
ms; € NU {oo} andm, s = 1, theArtin-Tits monoidM associated t& andM has the following
presentation:

M= (seS| sts..., = tst... ifmgy#00) (2.1)

me. t€IMS  m,, terms

An Artin-Tits monoid is clearly homogeneous, has the lefl aght cancellation property (see Michel,
Proposition 2.4 of [17]) and has the least common multiptgprty (see Brieskorn and Saito, Proposition
4.1 of [7]). So in this case also our main Theorem and its tampbpply.

The Coxeter groupassociated to an Artin-Tits monoid is defined as the quotiénie latter by the
relationss? = 1 for anys € S. In other words, the Coxeter Groufy is defined by the following
presentation :

W={(scS|s*=1and sts.., = t¢tst... if mg;# o).
—— ~——
ms,, termes m,, terms
An Artin-Tits monoids is calledsphericalif and only if its Coxeter group is finite. For example, the
only trace monoids that are spherical are the ones whosg elments commute. More generally, every

subset of generators of a spherical Artin-Tits monoid adgn@m. In this case the set of Theorem 2
and of Corollary 3 is naturally the set of all subsetsSof

2.3 Garside monoids

In [9], Dehornoy and Paris generalize spherical Artin-gitsups as follows:

Definition 9. A Garside monoids an atomic left cancellative monoit!, such that any two elements
have left and right lcm. We require besides thidtadmits aGarside elemen: this means an element
whose sets of left and right divisors coincide, and suchtthiatset is finite and generatés.
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A Garside monoid fitted with the sét of its atoms satisfies the conditions of the main theorem- Fur
thermore, as for spherical Artin-Tits monoids, all subsétatoms of a Garside monoids have a Icm and
so the set7 is the set of every subsets 6f

3 Spherical Artin-Tits monoids

We study in this section the combinatorics of the classicaildomonoid introduced by Artin and of some
of its generalizations, namely the classical braid monoidg/pes B and D. All these monoids are
spherical Artin-Tits monoids and hence some Garside manoid

3.1 Coxeter groups

Before going further, let us just mention some points abaitefiCoxeter groups. A Coxeter group is said
to beirreducibleif there does not exist two disjoint subsétsand S, of S such thats = S; U S, and
such that any; € S; commutes with anygs € S,. The irreducible finite Coxeter groups are completely
classified (see [13]). This section is devoted to the thréiaiia families A,,, B,, and D,, and more
precisely to the corresponding Artin monoids. We compugdr throwth functions by applying Theorem
2; this boils down to describing how to compute Icms in sucaids.

For X = A, B,, D,,, we write the corresponding growth function of the ArtirtsTinonoidG x (t) =
ﬁ(t), whereH x is the polynomial_ ;(—1)I/I¢#™7, in which the sum is over all subselsof generators
andm s is the length of the Icnd/ ; of .J. We describe in the following such Icms.

3.2 TypeA

The Artin monoid.A(A,,) is in fact the classical braid monoid an+ 1 strands. Hence, it admits the
following presentation:

A(An) = <O’1, .., 0p | 0;0;4+10; = 0i4+10;0i4+1 andO'iO'j = 0,05 if |Z 7]| < 2>

We denote®,, = {o1,...,0,} the set of Artin generators. To compute the Icm of a subdseft%,,, let
us consider a partitiod = .J; U -- - U J,, such that any; andc; in J belong to the same block of this
partition if and only ifj =7 + 1.

We setA (5. 5011000y = (05)(04105) - (0j4i .- 0j1105), thenM s is equal toA 5, ... A and
my =320 ([l 7] +1)/2).

In this case, no explicit formula is known féf 4, but the form of the Ilcms leads easily to the following
recurrence relation:

Ha, (1) = Y (=)D, () + (-1,
=1
3.3 TypeB
The Artin monoidA(B,,) of type B is the monoid whose set of generator&lis = {o1,...,0,} and
which is submitted to the following relations:

01020109 = 02010201, 0;0;410; = 0;410;0;41, for ¢ > 2 and 0,05 = 005 if |Z —j| < 2.
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The elements of this monoid are classically representecdssiye braids whose second strand is not
braided.

Similarly to Paragraph 3.2, fof C {o1,...,0,}, we writeJ = J; U ... U J,, where the properties
satisfied by this partition are the same as those given al®®eause of the particular role ef, three
different cases have to be considered to compute the Icth &itheroy ¢ J oroy € J andos ¢ J
and in these case®/; = Ay, ... A, just as before. Now itr, 02 € J, without loss of generality we
assume that, € J;,thenM; = A; Ay, ... Ay, whereA s, = (5105 . ..0,)71 with 7,,, the maximal
element of/J; for the classical ordering; < o2 < ... < o, Of 3.

The expression of lcms enable to obtain the following rezuee relation fot{ 5, for n > 1 (with the
conventionH g, (t) = 1):

n

Hp, (t) =Y (-0 0021, (1) + (-1)m™)”,

i=1
3.4 TypeD

The Artin monoidA(D,,) of type D is the monoid whose set of generator&is = {7,01,...,0n-1}
and submitted to the following relations:

TO9T = 09T02, 0i0i+10; = 0410011 fori > 2, (3.1)

To; = o7 fori # 2 and oi0j = 0,04 if i —j] < 2. (3.2)

In [1], Allcock introduced a representation in terms of bisaon some orbifolds of the elements of this
monoid.

LetJ C X, because of the symmetric roleofindo; we have to study two cases depending on either
at most one of them belongs tbor both of them. Without loss of generality, we assume thdy on
belongs toJ, thenM; = A, ... A;,, where theJ; as defined in Paragraph 3.2 (it suffices to replace
each occurrence of; in M; by 7 to deal with the symmetric case). 4fando; belong both ta/, we
moreover assume that € J;, thenM,; = A, Ay, LA, whereA, = (o103 . ..om)7t! with oy,
the maximal element of; for the classical ordering; < o2 < ... < o, Of 3J,,.

Once again, this leads to the following recurrence reldiorthe denominator of the generating func-
tion of A(D,,), forn > 2 (by conventionH s, (t) = 1 andHp, (t) = 1):

n—1
HDn (ﬁ) — Z(_l)i+1ti(i_1)/2HDn,,i(t) + (_1)n—12t(n)(n—1)/2 + (_1)nt(n)(n—1)_

4 Dual braid monoids

4.1 Definition

We defined Coxeter systems in paragraph 2.2. T.éte the set of reflections d¥/, i.e. the sefl’ =
{wsw™!,s € S}; T is obviously a generating set fé¥, and we let/s(w) = k wherek is the minimal
number of reflections; € T such thatw = t; - t;; the function/r is then invariant under conjugation,
that is we havér(w) = (7 (zwz~!) for any two elements, = € W. Then one defines a partial order on
W by settingw <r z if {7(w) + lr(w™1z) = ¢r(z). A Coxeter element is an elementf 1/ which
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is the product of the Coxeter generatdré any order; one can show that any two Coxeter elements are
conjugate in¥’. Given a Coxeter elementc W, one defines a pos&tC (W, ¢) = [1, ¢] with respect to

the partial ordeK . Sincelr is invariant under conjugation and any two Coxeter elemamgonjugate,

we have that the isomorphism type B1C(1V, ¢) does not depend on the particulachosen, and we will
just write NC'(W). We refer to [2] and the references therein for more inforomeibout this topic.

Bessis [5] showed that one can define a cedaial braid monoidor every poset, with generating set in
bijection with7", which is a Garside monoid such that the lattice of elemeinididg the Garside element
is isomorphic to the lattice&v C'(W). As shown in Section 1.3, we need only this lattice to complute
growth function of the monoid. We refer the reader to [5] tog general definition of the monoid, and to
[18] for explicit presentations in classical types.

Note that the value_, ;. ., _;. n(x) of the Mobius functions of the posetéC' (1) have already been
computed in general, so by the results of Subsection 1.8ralth functions of the dual braid monoids
can be obtained. What we will do here is to find first a combinatg@roof of this result in type A
and B, and then verify that the resolution (1.9) we obtainghthat the corresponding algebras of the
corresponding dual braid monoids are in fact Koszul algeffParagraph 4.5). The combinatorial objects
that we will deal with arenoncrossing alternating foresta/hich we now study.

4.2 Noncrossing alternating forests and unary binary trees

Considem points aligned horizontally, labeldd2, . . ., n from left to right. We identify pairs pairg, j),
i < j, with arcs joiningi and j above the horizontal line. Two ards, j) and (k,1) are crossingif
1<k<j<lork<i<l<y.

Definition 10. A noncrossing alternating fores» points is a set of noncrossing arcs pn n] such that
at every vertey, all the arcs are going in the same direction (to the right othe left).

It is easily seen that these conditions determine foredtisargraph-theoretical sense, that is the arcs
cannot form a cycle.We defin'€C.AF (n, k) as the set of noncrossing alternating forests @oints with
k arcs, and in this subsection we will determine bijectivélgit cardinality denote& C AF (n, k).

We will actually define a bijection with unary binary treeg,which we mean rooted plane trees all of
whose vertices have, 1 or 2 sons. It is well known that such trees with vertices are counted by the
Motzkin numberM,,,_; (cf. [22]) and that they are in bijection with Motzkin pathgthvm — 1 steps:
these are paths iN? from (0, 0) to (m — 1, 0), with allowed step$1, 1), (1,0) and(1, —1). The bijection
consists of a prefix traversal of the tree, as shown by theddtie around the tree on the left of Figure
1; for every left son (respectively right son, resp. singla)sencountered for the first time, we draw an
up step (resp. a down step, resp. a horizontal step). Undebijection, unary vertices correspond to
horizontal steps; by the cyclic lemma, it is then easy to stiat

Proposition 11. The number of unary binary trees with vertices andg binary vertices is given by

1 m B (m—1)!
m\m—2p—1,p,p+1) (m—2p—1)pl(p+1)

Suppose we have just one connected component in a nongadgmating forest, i.¢ = n — 1:
we obtain the noncrossing alternating trees introduced 2, where a bijection with binary trees with
n leaves was given. We recall this bijection: given a nondéngsalternating tree on > 2 points, there
is necessarily an edge betwekeandn. Destroying that arc, we get two smaller noncrossing adtimg
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Fig. 1: A unary binary tree and the corresponding Motzkirhpat

trees, on andn — ¢ points say. By induction, we can attach a binary tree to eétihese smaller trees;
let T}, andT; be these two trees respectively, and create a new root §pameling to the deleted arc) with
left subtre€el’ and right subtre&. The inverse bijection is immediate.

We can generalize this bijection as follows:

Theorem 12. There is a bijection between unary binary trees withk — 1 vertices and: binary vertices,
and noncrossing alternating forests erpoints withk arcs.

Proof: Let us be given a noncrossing alternating foresthgmoints with k& arcs; for each of the — k
components, we apply the bijection for noncrossing treesrileed above, keeping the labels on the
leaves. So we have a collectiéhof binary trees, such that each intedérn] appears exactly once as
the label of a leaf. Lef" be the tree containing the labkeland letm be such that, ..., m label leaves
of T, butm + 1 does not; lefl” be the tree containing the lab@l + 1. We then form a new tre&; by
transforming the leaf labeled in a unary vertex (still labeleth), whose attached subtre€lis. We now
removeT andT” from C' and replace them by} ; we can now repeat the same operation, and we do it
until C has just one element, which is a unary binary tree with £ — 1 unary vertices.

Conversely, given a unary binary tree with- 1 unary vertices and leaves, we make a prefix traversal
of the tree, and we label only unary vertices and leaves (gawing binary vertices unlabeled). Then we
cut every edge stemming from a unary vertex, which gives wsest ofk binary trees labeled on leaves:
we apply to each of them the bijection for noncrossing tres@ as point set the labels of the leaves),
thereby obtaining the desired noncrossing forest.

The bijection is illustrated on Figure 2, in which= 10 andk = 5. From Proposition 11, we have the
immediate corollary:

Corollary 13. The number of noncrossing alternating forestsopoints withk arcs is given by

(n—14k)!
(n—1—Fk)E!(k+1)!

NCAF(n, k) =

4.3 Type A

In type A, the posetVC(WW) is isomorphic to the noncrossing partition lattise”“ (n), which we de-
scribe. A set partition ofiz] is noncrossingf it does not have two blockB, B’ and elements j € B and
k,l € B'suchthat < k < j < I. Let NC*(n) be the poset of noncrossing partitions of sizerdered
by refinement.
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Fig. 2: Bijection between unary binary trees and noncragalternating forests

We now need to compute joins of cliques in this poset; we wa here a certain order on atoms to
restrict to certain order compatible cliques (see SectjoiTtie atoms ofVC(n) are the partitions with
one block of siz& and all other blocks are singletons, and we identify thesmatvith arcg, j) between
the points labeled andj if n points horizontally aligned and labelled fronto »n are given. Now we
define the following order on atonts; j) < (k,l)ifl —k > j —4,orifl — k = j —iandi < k; the
important point is that if an arc contains another arc, thénbigger.

Consider a clique of size twf(i, j), (k,1)}. If i < k < j < [, then the join of these elements is the
partition with one non-singleton blodk, j, k, 1 }; but (4, 1) is smaller in the poset than this partition, and
bigger than botHi, j) and(k, ) for the order<, so the clique cannot be OC. Now it can be shown that
all other size2 cliques are OC, and that OC cliques of skzare precisely the elements &fCAF (n, k);
the join of such an OC-clique is simply the partition whosedsl are the labels of each tree in the
forest. For the element of/C.AF(10,2) on the left of Figure 2, the noncrossing partition has blocks
{1,3,6,7},{2},{4,5},{8,10} and{9}.

From this, Proposition 11 and 11 we have that the growth fandaif the dual braid monoid of typd

is given by
u —1+4k)! -
_ _1)* (n
Galt) (;}( U g gy S T 1)!)
This answers a conjecture of Krammer [15, Exercise 17.37].
4.4 Type B
Here the poselNC(W) is isomorphic to the type B noncrossing partitiaN€'” (n), which is defined
as the subposet ¥ C4(2n) formed by partitions of 1,2, --- ,n, —1,—2,--- , —n} that are invariant
under the bijectioni — —i . We note((i1, ..., %)) the partition with non singleton blocKs, ..., i:}
and{—iy,...,—i;}. There arex? atoms in the pose¥ CZ(n): n with exactly one non singleton block

[i] := {i,—i}, andn(n — 1) of the type((7, 7)) and((i, —j)) wherel < i < j < n. Consider now as
beforen labeled points aligned horizontally: we identify the atopiswith the points, and(i, j)) and
((z,—7)) with arcs betweenand; to which we assign respectively a positive and a negative sig

Now we consider any linear order that extends the followiagipl order defined by Blass and Sagan
[6]: an atom —identified with a positive or negative arc, oregative vertex— is bigger than another if it
strictly contains it, and a positive arc is bigger than theaarc with negative sign. By extending the
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analysis of [6] which focused on the top elemémt2,--- ,n,—1,—2,---  —n}, we can show that the
OC cliques of sizé can be constructed in two ways:

e Pick an element oVCAF (n, k); then either choose any of tihearcs and assign a negative sign to
this arc and all arcs above it, or assign all arcs positivessig

e Pick an element aNCAF (n, k — 1), either choose any of the— 1 arcs and assign both a positive
and a negative sign to it, or choose any of thgoints and mark it negatively. In both cases, assign
a negative sign to all arcs that contain the chosen arc ot paohassign a positive sign to all other
arcs.

In both cases one checks that the corresponding join of amofsankk exactly in the poset. From
their description above one has immediately that theréiaré ) NCAF (n, k)+(n+k—1)NCAF (n, k—
1) OC-cliques of sizé:, so we get that the growth functi@r (¢) for the dual braid monoid of typ8 is

given by -
Cnlt) = (é(l)k(jj) (" 1)#")

Remark: for W of type D,,, the posetNC(W) is isomorphic to the type D noncrossing partitions
NCP(n) defined in [4]; we did not find a similar order on atoms as déstfiin typesA and B in
order to compute the growth function. Note that the ordecdlesd in [6] cannot be used, since it is
applied to a certain poset of [20] that has been since showa thfferent from the poseVC(D,,).

4.5 Koszul algebras

Let A be a finitely generated graded algebta= @;>¢A;,0f the formA = Z < z4,...,x, >/I for an
homogeneous idedl . A is said to be &oszul algebraf Z admits a free resolution of-modules, such
that the matrices of all linear maps in the resolution haedffagents inA; (the resolution is then called
linear) [19, 11].

Now, given a homogeneous mondidl with atomsS verifying the conditions of Section 1, the algebra
Z.M is graded. In the resolutions (1.7) and (1.9), the entrigh@imatrices are (up to sign) the elements
5?;;, which are the elementsin M such thatM;_,yz = M, and the component, of the algebra
is ZS. For the orders on atoms defined for dual monoids in type A gmuBanalysis of OC clique$
show thaty’ = s;: indeed we showed that such cliques have joins of rainkthe poset, which means
that in the monoid the Icm is of lengtHi| precisely. The resolution (1.9) is thus linear, and we have:

Theorem 14. The monoid algebras of the dual braid monoids of tyjpend typeB are Koszul algebras.

By the general theory of Koszul algebras, they possess didui algebras callédoszul dualswhose
homogeneous components have the dimensions of the maduiesa linear resolution; in typed for
instance, we have that this dual algebra is finite dimensi@mal has a basis given by noncrossing al-
ternating forests, the number of arcs determining the gradit would be interesting to investigate the
structure of these algebras, and generalize this to akfiditxeter groups.

A promising way is certainly to investigate the descendihgies for the EL-labeling ofVC(W)
defined in [3] and relate them to the OC cliques we describéghi@ A and B: we can prove for instance
that they are identical in typd, but differ in typeB.

Acknowledgment. The authors thank Vic Reiner for pointing out the link betw&bkeorem 2 and Koszul
algebras.
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