
Submitted to the Annals of Applied ProbabilityarXiv: math.PR/0805.1349A NOTE ON THE ENUMERATION OF DIRECTEDANIMALS VIA GAS CONSIDERATIONSBy Marie AlbenqueUniversité Bordeaux 1 and Université Paris 7In the literature, most of the results about the enumeration ofdire
ted animals on latti
es via gas 
onsiderations are obtained bya formal passage to the limit of enumeration of dire
ted animals on
y
li
al versions of the latti
e.Here we provide a new point of view on this phenomenon. Usingthe gas 
onstru
tion given in [10℄, we des
ribe the gas pro
ess on the
y
li
al versions of the latti
es as a 
y
li
al Markov 
hain (roughlyspeaking, Markov 
hains 
onditioned to 
ome ba
k to their startingpoint). Then we introdu
e a notion of 
onvergen
e of graphs, su
hthat if (Gn) → G then the gas pro
ess built on Gn 
onverges indistribution to the gas pro
ess on G. That gives a general tool toshow that gas pro
esses related to animals enumeration are oftenMarkovian on lines extra
ted from latti
es.We provide examples and 
omputations of new generating fun
-tions for dire
ted animals with various sour
es on the triangular lat-ti
e, on the Tn latti
es introdu
ed in [6℄ and on a generalization ofthe Ln latti
es introdu
ed in [5℄.1. Introdu
tion. Let G = (V,E) be a dire
ted graph with set of ver-ti
es V and set of oriented edges E. Let A and S be two subsets of V , with
S ⊂ A. We say that A is a dire
ted animal (DA) with sour
e S if and onlyif any vertex of A 
an be rea
hed from an element of S through a dire
tedpath having all its verti
es in A (see Figure 1). The verti
es of A are 
alled
ells and the number of 
ells, denoted |A|, is the area of A. We denote GG

Sthe generating fun
tion (GF) for DA on G with sour
e S 
ounted a

ordingto their area:
GG

S (t) =
∑

A, DAwith sour
e S t|A| =
∑

k≥|S|
akt

k,where ak is the number of DA on G with sour
e S and area k.In the following, we will always assume that the 
ells of S form an inde-pendent set on the dire
ted graph G � we say that S is a free set � theformal de�nition follows.AMS 2000 subje
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2 M. ALBENQUE
Fig 1. Example of a DA with area 6. The 
ells of the DA are dark and the verti
es of thesour
e double 
ir
led.Definition 1. Let G = (V,E) be an oriented graph and x and y be twoverti
es of G. We say that x is a father of y or equivalently that y is a 
hildof x if there is an edge from x to y.More generally, x is 
alled an an
estor of y if there exists a dire
ted pathfrom x to y.Let now S be a subset of V ; we say that S is a free set of verti
es of G ifand only if for every x, y ∈ S su
h that x 6= y, x is not an an
estor of y.In this arti
le we fo
us on the link between enumeration of DA and hardparti
le gas models.Definition 2. Let G = (V,E) be a graph, a gas o

upation or gas
on�guration on G is a map X from V to {0, 1}. The verti
es v ∈ V su
hthat X(v) = 1 are said to be o

upied, the others are said to be empty.A hard parti
le gas o

upation of a graph is a gas o

upation with theadditional 
onstraint that two o

upied verti
es 
annot be neighbors (theo

upied 
ells form then an independent set).A gas model is a probability law on gas o

upations. For a given gasmodel, we 
all density in a vertex v the probability for v to be o

upied,that is P(X(v) = 1).Sin
e the pioneering work of Dhar [7℄, the 
onne
tion between DA and gasmodels have been widely exploited. We shall now give a short overview of thedi�erent 
ontributions on this subje
t (we refer the reader to [4℄ and [10℄ formore exhaustive referen
es). In [7℄, Dhar using some statisti
al me
hani
sshows that 
omputing the area generating fun
tion for DA on the squarelatti
e is equivalent to 
omputing the density of a hard parti
le gas model.This result was obtained after Nadal et al. [11℄ and Hakim and Nadal [9℄obtained the generating fun
tion of DA on some �
ylindri
� square latti
es.imsart-aap ver. 2007/12/10 file: animaux.tex date: February 12, 2009



GAS AND ENUMERATION OF DIRECTED ANIMALS 3
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Fig 2. The same DA on two representations of the 
ylindri
 version of the square latti
ewith a width of 6.Those �
ylindri
� latti
es are de�ned as follows : let G be an orientedlatti
e � that is an oriented translation-invariant graph � with its verti
esindexed by a subset of Z
2. If we 
onsider that the abs
issa of the verti
esof G are labeled by elements of [N ] := Z/NZ instead of Z, we obtain thewidth-bounded variant of G with 
y
li
 boundary 
onditions (see Figure 2).We denote it G(N) and 
all it the 
y
li
 or 
ylindri
 version of G of width

N .In [4℄, Bousquet-Mélou extends Dhar's 
orresponden
e between the hardparti
le gas models and enumeration of DA on 
y
li
 square latti
es. Par-ti
ularly, she shows that gas models allow the enumeration of DA not onlya

ording to their area but also for instan
e a

ording to their left perimeteror their number of loops. Those results were then generalized to a family oflatti
es in a joint work with Conway [5℄. In [5℄ and [4℄ the gas models studiedare de�ned on the 
ylindri
 versions of graphs and the GF for DA is obtainedas the formal limit of the density of the gas when the width grows to in�nity.Sin
e 
omputing the density of the gas model is not always tra
table, theformer result does not ne
essarily lead to e�e
tive results about enumera-tion of DA. However that new link establishes gas models as a powerful andpolyvalent tool for the 
ounting of DA.In the latter works, the link between DA and gas is formal and appearsbe
ause DA and gas models are shown to verify the same re
ursive de
om-position along with the layers of the graph. It notably implies that thatapproa
h is only valid for graphs that 
an be de
omposed ni
ely into layers.In [10℄, Le Borgne and Mar
kert give a new insight into the 
onne
tionbetween gas and DA. They 
onstru
t a 
oupling between random DA andrandom gas models and give a 
ombinatorial proof that for a free set S theGF of DA with sour
e S is equal to the probability for the verti
es of S to beo

upied (a 
onstru
tion of that 
oupling is sket
hed in Se
tion 2). Contraryimsart-aap ver. 2007/12/10 file: animaux.tex date: February 12, 2009



4 M. ALBENQUEto the 
onstru
tion on 
ylinders, in [10℄ the gas model is well de�ned onany a
y
li
 graph and in parti
ular on the whole latti
e, where some of itssto
hasti
 properties 
an be studied. On the square latti
e for instan
e, itsrestri
tion to a line is shown to be Markovian, whi
h allows to 
omputeexpli
itly the GF for DA with any sour
e in
luded in a line.We must mention that there exist other fruitful approa
hes to the 
ombi-natori
s of DA. Some results have been obtained by establishing links withheaps of pie
es introdu
ed by Viennot in [12℄ (see for instan
e [13℄, [3℄, [2℄,[6℄) or with paths in the plane [8℄ or via the ECO method [1℄.We now des
ribe the 
ontent of this paper and its organization. Our aimhere is to give a general framework that allows to redu
e the enumeration ofDA with various sour
es on a graph G to the same enumeration on �simpler�versions of G. As mentioned above, simplifying the graphs we work on is a
lassi
al idea. Here, the di�eren
e with the works 
ited above relies on thefa
t that thanks to the gas 
onstru
tion given in [10℄, we 
an now study the
onvergen
e of the gas models as sto
hasti
 pro
esses and not only the formal
onvergen
e of their density. This leads both to a better understanding ofthe gas models and to new results about enumeration of DA with varioussour
es.The �rst point is to make the notion of �simpler� versions of G a

u-rate; in Se
tion 3.1 we provide a distan
e on the set of graphs with markedverti
es, 
orresponding to sour
es (see Equation 3.1). Roughly speaking Gn
onverges to G for the notion of 
onvergen
e of graphs indu
ed by that dis-tan
e (whi
h 
orresponds roughly to the 
onvergen
e of the neighborhoodof sour
es) implies that GGn

S 
onverges to GG
S . In terms of probability, thatmeans the 
onvergen
e of the �nite-dimensional laws of the gas under addi-tional assumptions (Theorem 2).Then we need to 
ompute the law of the limiting gas pro
ess obtainedthanks to that 
onvergen
e. That is possible on some latti
es. The multi-pli
ative formula obtained for the distribution of gas restri
ted to a line onthe 
ylinder in [4℄ and [5℄ leads to the intuition that that multipli
ativestru
ture may be preserved when the width of the 
ylinder goes to in�nityand that the limiting pro
ess obtained above should be Markovian. For thatreason, in Se
tion 3.2 we de�ne a 
y
li
 Markov 
hain as a Markov 
hain
onditioned to 
ome ba
k to its initial state after a �xed number of steps(De�nition 6). We then give a representation of the gas on the 
ylinder asa 
y
li
 Markov 
hain. Then in broad terms when the width of the 
ylin-der grows, the 
onditioning indu
ed by the 
y
li
 
ondition is less and less
onstraining. At the limit, it eventually disappears whi
h therefore yieldsimsart-aap ver. 2007/12/10 file: animaux.tex date: February 12, 2009



GAS AND ENUMERATION OF DIRECTED ANIMALS 5that the limiting pro
ess is Markovian. We provide in Theorem 3 a formalstatement of those two ideas; that provides a frame in whi
h the gas pro
esson a line is Markovian.We de�ne in Se
tion 4.1 the family of latti
es (LR)R⊂N, whi
h extendsthe family of latti
es (Ln)n≥2 introdu
ed in [5℄. We apply Theorem 2 andTheorem 3 to it, to the triangular latti
e and to the family of Tn latti
esintrodu
ed in [6℄. In Se
tion 4, we show that for those three examples, therestri
tion of the gas pro
ess to a line is Markovian. Thanks to the linkbetween gas models and GF of DA, that allows to obtain some GF for DAwith various sour
es, see for example Proposition 1 for some results on thetriangular latti
e.2. De�nition of the gas model. We sket
h the 
onstru
tion of thegas model given in [10℄ and its link with enumeration of DA a

ording totheir area. Let G = (V,E) be a dire
ted graph without multiple edges nordire
ted 
y
les and su
h that the number of 
hildren of ea
h node is �nite.The probability spa
e we work on is Ω = {a, b}V endowed with the σ-�eld generated by the �nite subsets of verti
es. We equip that spa
e withthe produ
t probability Pp = (pδa + (1 − p)δb)
⊗V , where δa is the standardDira
 measure on {a}. In other terms, ω ∈ Ω is a 
oloring of G and under

Pp ea
h vertex has, independently of the others, 
olor a or b with respe
tiveprobabilities p and 1 − p. For x ∈ V , ω(x) gives the 
olor of x. From thatrandom 
oloring we 
onstru
t DA and a model of gas. Noti
e that the DAand gas pro
ess de�ned below are deterministi
 fun
tions of the random
oloring.Definition 3. Let S be a subset of V and ω be a random 
oloring of
G. We denote by S•(ω) = {x ∈ S, ω(x) = a}, the (random) subset of Swith 
olor a. We then de�ne the random variable A

S as the maximal DA forthe in
lusion partial order with sour
e S•(ω) and set of 
ells the a-
oloredverti
es x that 
an be rea
hed from S•(ω) by an a-
olored path (see Figure 3).For a set S su
h that |S| ≥ 1, the random DA A
S may be in�nite withpositive probability. Let pG

crit be the threshold for the existen
e of an in�niteDA with positive probability (it 
orresponds to the 
riti
al probability forthe oriented per
olation on G):(2.1) pG
crit := sup{p, S : Pp(|AS | < ∞) = 1 and |S| < ∞}.For a general graph G, pG

crit is di�
ult to 
ompute and 
an even be equalto zero. In the examples given in Se
tion 4, the outdegree of any verteximsart-aap ver. 2007/12/10 file: animaux.tex date: February 12, 2009



6 M. ALBENQUEis bounded and in that 
ase pcrit > 0 (see for instan
e Proposition 2.2 of[10℄). For any p < pG
crit a gas o

upation XG on G is de�ned from a random
oloring ω = (ω(v))v∈V as follows (see Figure 3 for an example):(2.2) XG(v) =

{
0 if ω(v) = b∏

v′ 
hildren of v(1 − XG(v′)) if ω(v) = a
.The de�nition of pG

crit ensures that the gas pro
ess is almost surely wellde�ned as its re
ursive 
omputation ends within a �nite number of steps forany p < pG
crit (see Proposition 2.4 of [10℄ for details). From now on we alwaysassume that p < pG

crit and that the gas model 
onsidered is the probabilitylaw denoted P
G
p indu
ed by that 
onstru
tion.

0 0 0 0 0 0 0

1 0 1 0 0 0 0

0 0 0 0 0 1 0

0 0 1 0 1 0 0

0 0 0 0 0 0 0

Fig 3. The gas o

upation (on the left) and the DA A
S on L3, obtained from the same
oloring of the verti
es. Cells 
olored with a (respe
tively b) are dark (respe
tively white)and the verti
es of S are double 
ir
led.The link between enumeration of DA and that gas model is given by thefollowing result:Theorem 1 (Le Borgne and Mar
kert [10℄). Let G = (V,E) be a dire
tedgraph and S be a free set of G. For any p in [0, RG

S ), we have:(2.3) P
G
p (XG(v) = 1, v ∈ S) = (−1)|S|GG

S (−p).where RG
S is the radius of 
onvergen
e of GG

S .With that theorem, the 
omputation of the generating fun
tion for DA
omes down to the 
omputation of the probability for some verti
es to beo

upied for the gas model P
G
p . That explains why in the next se
tion, wefo
us only on the study of the gas model and resume the enumeration of DAin Se
tion 4.3. Convergen
e of graphs, gas models and DA. We develop inthat se
tion some tools allowing to redu
e to simpler graphs the study of thesto
hasti
 properties of a gas model on a graph.imsart-aap ver. 2007/12/10 file: animaux.tex date: February 12, 2009



GAS AND ENUMERATION OF DIRECTED ANIMALS 73.1. Convergen
e of graphs. As re
alled in the introdu
tion, most of theresults obtained about the enumeration of DA on a latti
e G via the studyof gas models have been proved by a passage to the limit. More pre
isely thegas models are studied on G(N), the 
ylindri
 version of G (see introdu
tion).For a �xed size n, the set of DA with size n 
oin
ide on G and G(N) whensay N ≫ n. It amounts to saying that
GG(N)

{x} −→
N

GG
{x}or equivalently in the gas model's point of view that the density of the gas
onverges formally (in the sense that ∑ an,kx

k −→
n

∑
akx

k if and only if
an,k −→

n
ak for every n ∈ N).The aim of this se
tion is to make 
lear a notion of 
onvergen
e of graphs(that is a topology on the set of graphs) whi
h indu
es the 
onvergen
e ofthe �nite-dimensional laws of the gas pro
ess and hen
e the 
onvergen
e ofthe generating fun
tion of DA. That 
onvergen
e is no longer seen only asa formal 
onvergen
e of generating fun
tions but as the 
onvergen
e of thedistribution of a sto
hasti
 pro
ess.In the following, we always assume that the graphs 
onsidered are dire
ted,without dire
ted 
y
les nor multiple edges and that the number of 
hildrenof ea
h node is �nite (a node 
an though have an in�nite number of parents),so that the gas model given in Se
tion 2 is de�ned.Definition 4. We 
all marked dire
ted graph, a pair (G = (V,E), Z)where Z is a subset of V . We denote by VZ the subset of V of nodes havingat least one an
estor in Z, and by G(Z) the subgraph of G having as set ofnodes VZ (and set of edges the edges of E linking them).To see Z as a sour
e and G(Z) as the maximal DA on G with sour
e Zmay help to understand better Theorem 2.Definition 5. Two dire
ted marked graphs (G = (V,E), Z) and (G′ =

(V ′, E′), Z ′) are said to be isomorphi
 � we write (G,Z) ∼ (G′, Z ′) � if G(Z)and G′(Z ′) are equal up to a relabeling of the verti
es, in other words if thereexists a bije
tive appli
ation φ from VZ onto V ′
Z′ su
h that for any x, y in

VZ , (x, y) ∈ E is equivalent to (φ(x), φ(y))∈E′.The relation ∼ is an equivalen
e relation on the set of marked dire
tedgraphs. We denote by O the set of dire
ted graph quotiented by that relation.For any marked graph (G,Z) we denote by (G,Z) its 
lass in O.We denote AG
Z the set of DA on G with sour
e Z. The graph (G,Z) isthe right (or minimal) stru
ture that provides all the knowledge ne
essaryimsart-aap ver. 2007/12/10 file: animaux.tex date: February 12, 2009



8 M. ALBENQUEto study the gas 
on�guration on Z and the DA with sour
e Z in G (thatdepends also on the 
oloring on (G,Z)). From the 
onstru
tion of the gasmodel and random DA given in Se
tion 2, it is 
lear that if (G,Z) ∼ (G′, Z ′)then |Z| = |Z ′| and GG
Z = GG′

Z′ and the appli
ation φ provides a probabilityisomorphism between the gas o

upations on Z and Z ′, whi
h implies that
P

G
p (XG

s = 1, s ∈ Z) = P
G′

p (XG′

s = 1, s ∈ Z ′).For any r ≥ 0, we de�ne Br(G,Z) as the subgraph of (G,Z) 
ontainingonly the verti
es v of (G,Z) su
h that d(v, Z) = infu∈Z d(u, v) ≤ r, wherethe distan
e must be understood as a dire
ted distan
e on graphs, that is:
d(u, v) = inf{|w|, where w is an oriented path from u to v}.As announ
ed above, we now de�ne a distan
e dO on O whi
h gives asuitable notion of 
onvergen
e of graphs: for any O and O′ in O, we set(3.1) dO(O,O′) = inf

{
1

r + 1
, r su
h that Br(G,Z) ∼ Br(G

′, Z ′)
}

,where (G,Z) ∈ O and (G′, Z ′) ∈ O′ (we let the reader 
he
k that that isindeed a distan
e in O and in parti
ular, that it does not depend on the
hoi
es of (G,Z) and (G′, Z ′)).Theorem 2. Let (Gn = (Vn, En), Zn) be a sequen
e of dire
ted markedgraphs, and (G = (V,E), Z) be a dire
ted marked graph. Let an,k = #{A ∈
AGn

Zn
, |A| = k} be the number of DA with sour
e Zn in Gn having k 
ells, anddenote by ak = #{A ∈ AG

Z , |A| = k}.If dO
(
(Gn, Zn), (G,Z)

)
→ 0 then1. GGn

Zn
(p) =

∑
k≥|Zn| an,kp

k −→
n→∞ GG

Z (p) =
∑

k≥|Z| akp
k where the 
onver-gen
e holds formally in the set of formal series with 
oe�
ient in N(that is for any k, an,k → ak when n → ∞).2. If there exists c, d ≥ 0 su
h that for any n large enough:(3.2) an,k ≤ c dk for any k ≥ 1then for any p < 1/d, the �nite-dimensional laws of the gas o

upa-tion on Zn a

ording to P

Gn

p 
onverge towards those on Z distributeda

ording to P
G
p , ie :

P
Gn

p (XGn

s = 1, s ∈ Zn) →
n

P
G
p (XG

s = 1, s ∈ Z).imsart-aap ver. 2007/12/10 file: animaux.tex date: February 12, 2009



GAS AND ENUMERATION OF DIRECTED ANIMALS 9Proof. 1. First, if dO
(
(Gn, Zn), (G,Z)

)
→ 0, then for any r, when n islarge enough, the two graphs Br(Gn, Zn) and Br(G,Z) are isomorphi
. Thatimplies that the 
oe�
ients of GGn

Zn
and GG

Z 
oin
ides at least up to the rth.2. First, 
ondition 3.2 implies that pGn

crit ≥ 1/d therefore the gas model
P

Gn

p is well de�ned for any p < 1/d.From the 
onstru
tion of the gas model, we 
an noti
e that the event
{XG

s = 1, s ∈ Z} does not depend on the 
oloring of all the verti
es of G butonly on verti
es of A
Z (see De�nition 3). Sin
e we assume p < 1/d, A

Z isalmost surely �nite a

ording to P
G
p ; that implies that for any ε > 0, thereexists mε su
h that P

G
p (|AZ | ≥ mε) < ε.As when n is large enough the two graphs Bmε

(Gn, Zn) and Bmε
(G,Z)are isomorphi
, there exists an appli
ation φ that maps Bmε

(Gn, Zn) onto
Bmε

(G,Z). Thus φ indu
es a probability isomorphism between the 
oloringof Bmε
(Gn, Zn) and of Bmε

(G,Z). Therefore, 
onditionally on the event
{|AZ | < mε}, the image of A

Zn by φ is A
Z and we get :

P
Gn

p (XGn

s = 1, s ∈ Zn

∣∣ |AZ | < mε) = P
G
p (XG

s = 1, s ∈ Z
∣∣ |AZ | < mε).That 
on
ludes the proof, sin
e P

G
p (|AZ | < mε) ≥ 1 − ε by de�nition of

mε.Remark 1. Even if in the appli
ations of that theorem in Se
tion 4 wealways assume that Zn and Z are free sets. There is no su
h assumption inthe theorem and Zn and Z 
an be any sets.3.2. A variation on Markov pro
esses. The spirit of this se
tion is guidedby the results obtained for enumeration of DA in [4℄ and [5℄. It often happensthat the probability distribution of the gas has a multipli
ative form on
ylinders. That leads to the intuition that the limiting pro
ess obtained whenthe width goes to in�nity is Markovian. We give here an appropriate frameto make that intuition rigorous.In this se
tion, we always assume that E is a �nite state spa
e, ν aprobability measure on E and M a sto
hasti
 matrix on E. We say that
Y = (Yi)i∈N is a (ν,M)-MC if it is a Markov 
hain with ν as initial law and
M as transition matrix.Definition 6. For any non-negative N , we 
all 
y
li
 Markov 
hainof length N on E with initial law ν and transition matrix M, a pro
ess
(Xi)i∈{0,...,N−1} whi
h is a Markov 
hain 
onditioned to 
ome ba
k to itsstarting point after N steps and we say that X is a (ν,M,N)-
y
li
 MC.imsart-aap ver. 2007/12/10 file: animaux.tex date: February 12, 2009



10 M. ALBENQUELet Y be a (ν,M)-MC, for any x0, . . . , xN−1 ∈ E, the law of (Xi)i∈{0,...,N−1}is equal to:(3.3)
P(X0 = x0, . . . ,XN−1 = xN−1) = P(Y0 = x0, . . . , YN−1 = xN−1 |Y0 = YN )In other words,(3.4) P(X0 = x0, . . . ,XN−1 = xN−1) =

ν(x0)
∏N−1

i=0 Mxi,xi+1

Z̃Nwhere xN = x0 and Z̃N =
∑

x′

0,...,x′

N−1
ν(x′

0)
∏N−1

i=0 Mx′

i
,x′

i+1
.Note that if X is a (ν,M,N)-
y
li
 MC, the distribution of X0 is givenby(3.5) P(X0 = x) =

ν(x)
(
M

N
)

x,x

Z̃N

, for any x ∈ Eand the distribution of X1 by(3.6) P(X1 = x1) =

(
∑

x0

ν(x0)Mx0,x1

(
M

N−1
)

x1,x0

)(
Z̃N

)−1
.Equation (3.5) implies that the distribution of X0 is not ν ex
ept for ex
ep-tional 
ases. Combining Equations (3.5) and (3.6) implies that if ν = UE,the uniform law on E, then the 
y
li
 MC is stationary, i.e : for any x ∈ E,

P(Xi = x) = P(X0 = x).On the other hand, assume that the initial law ν is an invariant law for M,then a (ν,M, N)-
y
li
 MC is not ne
essarily stationary. Roughly speakingthe term (
M

N−1
)
x1,x0

whi
h appears in (3.6) prevents that probability tosimplifying even if ν is an invariant measure asso
iated with M.We now give the main result about the 
onvergen
e of 
y
li
 Markov
hains.Theorem 3. Let E be a �nite state spa
e and V be a square non-negativematrix indexed by the elements of E su
h that V admits a simple real eigen-value λ greatest in modulus than every other eigenvalues. Let (X(N))N≥1 bea family of sto
hasti
 pro
esses su
h that for every N , X(N) is indexed by
{0, . . . , N − 1} and(3.7) P(X

(N)
0 = x0, . . . ,X

(N)
N−1 = xN−1) =

∏N−1
i=0 Vxi,xi+1

trace(VN )
,imsart-aap ver. 2007/12/10 file: animaux.tex date: February 12, 2009



GAS AND ENUMERATION OF DIRECTED ANIMALS 11with the 
onvention xN = x0.Let R = (Ri)i∈E and L = (Li)i∈E be respe
tively a right and a lefteigenve
tor asso
iated with λ su
h that their dot produ
t is equal to one,ie: ∑LiRi = 1.(i) For ea
h N ≥ 1, X(N) is a (UE ,M,N)-
y
li
 MC, where M is equal to :(3.8) Mi,j = Vi,j
Rj

λ · Ri
, for i, j ∈ E.(ii) Let now X = (Xi)i∈N be a (well-de�ned) sto
hasti
 pro
ess and its �nite-dimensional laws are given, for any k ∈ N, by(3.9) µ({x0, . . . , xk}) = lim

N→∞
P(X

(N)
0 = x0, . . . ,X

(N)
k = xk).Under µ, X is a (ν,M)-MC, where M is de�ned as in Equation (3.8) and νis the invariant probability measure for M and is given by ν(x) = LxRx, for

x ∈ E.Proof. We begin with (ii) and show that the limit in (3.9) exists. Let
k ∈ N and x0, . . . , xk ∈ E, for any N > k we have :(3.10) P(X

(N)
0 = x0, . . . ,X

(N)
k = xk) =

(k−1∏

i=0

Vxi,xi+1

)
(
V

N−k
)
xk,x0

trace(VN )When N goes to in�nity, the only signi�
ant terms of (VN−k
)
xk,x0

and
trace(VN ) are those in λN . More pre
isely,

(
V

N−k
)
xk,x0

= Rxk
Lx0λ

N−k +
∑

λ′ eigenvalue of V 6=λ

aλ′λ′N−k(3.11)
= Rxk

Lx0λ
N−k + o(λN−k)(3.12)as λ > |λ′|, besides trace(V N ) = λN + o(λN ) whi
h leads to(3.13) lim

N
P(X

(N)
0 = x0, . . . ,X

(N)
k = xk) =

Rxk
Lx0

λk

k−1∏

i=0

Vxi,xi+1.Let µ({x0, . . . , xk}) =
Rxk

Lx0

λk

∏k−1
i=0 Vxi,xi+1 , we 
an 
he
k that ν is a prob-ability distribution. Indeed, from Equations (3.10) and (3.13)

∑

x∈E

ν(x) =
∑

x∈E

RxLx =
∑

x∈E

lim
N

(
V

N
)
x,x

trace
(
VN

) = lim
N

∑

x∈E

(
V

N
)
x,x

trace
(
VN

) = 1,imsart-aap ver. 2007/12/10 file: animaux.tex date: February 12, 2009



12 M. ALBENQUEwhere the inversion of the sum and the limit is immediate sin
e E is �nite.We 
he
k similarly that the matrix M de�ned in (3.8) is sto
hasti
.Now it is easy to see that the �nite-dimensional laws given in (3.9) are
onsistent, the Kolmogorov extension Theorem applies and ensures that thesto
hasti
 pro
ess X is well de�ned.Point (i) follows dire
tly from the de�nition of a 
y
li
 Markov 
hain.4. Examples of graphs. We give in this se
tion some examples of re-sults that 
an be obtained by the appli
ation of Theorems 2 and 3. In thefollowing examples, we only 
onsider oriented latti
es with verti
es indexedby a subset of Z
2. The j-th line of the graph is the set of verti
es with se
-ond 
oordinate equal to j. We will see why the restri
tion of the gas model�to a line� of the graph is Markovian. The general approa
h used is widelyinspired of the method developed in [4℄ and [5℄. For a given graph G, we �rstshow that the assumptions of Theorem 2 are veri�ed for G and the sequen
eof latti
es (G(N))n, that implies that the gas pro
ess on G(N) 
onverges indistribution to the gas pro
ess on G. We then 
ompute the distribution ofthe gas on a line of G(N) and interpret it as a 
y
li
 MC by 
he
king thatits distribution 
an be written in a multipli
ative form as in Equation 3.7.Theorem 2 and Theorem 3 imply then that the gas pro
ess restri
ted to aline is Markovian. We explain fully the �rst example and sket
h the others.4.1. The family of latti
es (LR)R⊂N. We de�ne in this se
tion a newfamily of latti
es. For any �nite subset R of N su
h that |R| ≥ 2, we de�ne

LR as the latti
e with set of verti
es indexed by Z
2 and from ea
h vertex

(i, j), there are |R| emerging edges from (i, j) to (i + r, j + 1) for r ∈ R. Inthe following, we always assume that inf(R) = 0 without loss of generality.We set R̄ = sup(R).Note that L{0,1} 
orresponds to the square latti
e. If R = {0, . . . , n − 1},then LR = Ln, whi
h 
orresponds to the family of latti
es introdu
ed in [5℄and detailed in the following. Another example is given in Figure 4.Remark 2. For any �nite subset R of N, the latti
e LR veri�es theassumption of Se
tion 2 so the gas model is well de�ned for any p < pLR

critand sin
e the outdegree of any vertex is equal to |R|, pLR

crit > 1/|R| > 0.For N > n + R̄, the balls or radius n of L(N)
R and of LR are isomorphi
,moreover assumption 2 of Theorem 2 holds true with d = |R|, thus the�nite-dimensional laws of the gas model on LR 
onverge to the ones on

L(N)
R . imsart-aap ver. 2007/12/10 file: animaux.tex date: February 12, 2009



GAS AND ENUMERATION OF DIRECTED ANIMALS 13
Fig 4. Example of a DA of size 10 on latti
e LR, when R = {0, 1, 4}We denote X

(N)
j the N -tuple that gives the o

upation of the gas on the

j-th line of L(N)
R and 
ompute its distribution. The 
onstru
tion of the gasmodel given in Se
tion 2 implies that, when j de
reases, (X

(N)
j )j∈Z is a�verti
al� Markov 
hain (with 2N states) under its stationary distribution.Markov 
hain theory implies that su
h a distribution is unique (that one ofthe main tool in [5℄ and [4℄).For C ⊂ [N ], let F

(N)
C be the probability that the o

upied verti
es of aline of the graph are exa
tly those with �rst 
oordinate lying in C. In otherterms, for a gas o

upation XLR distributed a

ording to the gas model givenin Se
tion 2 :(4.1) F

(N)
C = P

L(N)
R

p (XL(N)
R (i, j) = 1 if and only if i ∈ C).Note that the 
onstru
tion of the gas model implies that F

(N)
C does notdepend on a parti
ular 
hoi
e of j.We tradu
e the fa
t that (X

(N)
j )j∈Z, j↓ is Markovian into re
urren
e rela-tions for F

(N)
C . To that purpose, we de�ne for any subset C of N :

N (C) =
⋃

i∈C

{i + r | r ∈ R}and
N̄ (C) =

⋃

i∈C

{i − r | r ∈ R},where the addition is taken in [N ]. Noti
e that {N (C)×{1}} and {N̄ (C)×
{−1}} 
orrespond respe
tively to the set of 
hildren and of fathers of theset {C × {0}} and that |N (C)| = | ¯N (C)|. We thus obtain the followingequations:(4.2) F

(N)
C =

( p

1 − p

)|C| ∑

D⊂(N (C))c

(1 − p)N−|N̄ (D)|F (N)
D .imsart-aap ver. 2007/12/10 file: animaux.tex date: February 12, 2009



14 M. ALBENQUEFollowing [5℄, we 
he
k that the probability distribution de�ned by
F

(N)
C =

1

ZN

( p

1 − p

)|C|
(1 − p)|N (C)|,where

ZN =
∑

C⊂[N ]

p|C|(1 − p)N (C)−|C|is stationary for Equation (4.2).To obtain a matrix formulation of that distribution, we 
onsider the matrix
V indexed by the elements of {0, 1}R̄ and de�ned by, for σ = (s0, . . . , sR̄−1)and τ = (t1, . . . , tR̄):

Vσ,τ = 0 if (s1, . . . , sR̄−1) 6= (t1, . . . , tR̄−1)and otherwise :
Vσ,τ =





p if tR̄ = 1

1 − p if tR̄ = 0 and there exists r su
h that sr = 1 and R̄ − r ∈ R

1 otherwise.The quantity F
(N)
C 
an then be rewritten as(4.3) F

(N)
C =

1

ZN

∏N−1

i=0
Vσi,σi+1 where { σN = σ0 and

σi(k) = 1 i� i + k − 1 ∈ Cwith
ZN =

∑
σ1,...,σN

(∏N−1

i=0
Vσi,σi+1

)
= tra
e(VN ).The expression given for F

(N)
C in Equation (4.3) is in the very same form asthe statement of Theorem 3. Furthermore it is immediate to 
he
k that allthe 
oe�
ients of V

R̄−1 are positive (for p ∈ (0, 1)) whi
h ensures that Vsatis�es the 
onditions of Theorem 3 by Perron-Frobenius theorem.As mentioned in Remark 2, the �nite dimensional laws of the gas o

upa-tion on L(N)
R 
onverges to those on LR. We apply Theorem 3 and get:Theorem 4. Let X = (X(i, j))(i,j)∈Z2 be the gas pro
ess on LR dis-tributed a

ording to P

LR
p , with p < pLR

crit. The sto
hasti
 pro
ess (Σi)i∈Nde�ned by Σi = (X(i, 0), . . . ,X(i + R̄ − 1, 0)) is a Markov 
hain under itsstationary distribution.In other words, the sto
hasti
 pro
ess (Xi = X(i, 0))i∈N
is a Markov 
hainwith memory R̄ − 1 under its stationary distribution.imsart-aap ver. 2007/12/10 file: animaux.tex date: February 12, 2009



GAS AND ENUMERATION OF DIRECTED ANIMALS 15
Fig 5. DA on the latti
es L3 and L4 (all the edges are oriented upwards). The 
ells arebla
k and the sour
es are 
ir
led.The family of latti
es Ln. The family of latti
es (Ln)n≥2 introdu
ed in[5℄ 
orresponds to the parti
ular 
ase of LR when R = {0, 1, . . . , n − 1}(examples of DA on L3 and L4 are given in Figure 5). In [5℄ the GF for DAwith one sour
e is given as the solution of an algebrai
 solution of degree atmost n + 1;Theorem 5 (Bousquet-Mélou and A.Conway [5℄). The generating fun
-tion G for DA on Ln with a single sour
e is solution of the following equation(4.4) t2(1 + t)n−1[1 + (n + 1)G]n+1 − [1 + t + (n − 1)G]n−1(t − 2G2) = 0.We give some examples of 
omputation obtained by the appli
ation ofTheorem 4 on the latti
es Ln. In the 
ase n = 2, the 
omputation of theeigenvalues and eigenve
tors of V =

( 1 p
1−p p

) 
onstitutes an alternative proofof Theorem 3.3 of [10℄.For n = 3, the transition matrix 
an be given expli
itly as (the 
oe�
ientsof the matrix are indexed by the lexi
ographi
al order on {0, 1}2):(4.5) 


1/λ 1 − 1/λ 0 0
0 0 1 − p/2λ p/2λ
α 1 − α 0 0
0 0 1 − p/λ p/λ


 where α = (1−p)2p

(2−p−λ)λ

λ =
1+
√

1+4p−4p2

2For example we obtain as a 
onsequen
e of that formula that the generatingfun
tion GL3
k for DA on L3 with a 
ompa
t sour
e of size k ≥ 2 is equal to :

GL3
k (t) =

1 − t
(√

1 − 4t − 4t2
)

1 − 4t − 4t2 + (1 + 2t)
√

1 − 4t − 4t2

( −2t

1 +
√

1 − 4t − 4t2

)k−1

.To obtain the GF as the solution of an algebrai
 equation, we use that in[5℄, the largest eigenvalue λ of V is shown to be solution of(4.6) λ2(1 − p)n−1 = λn−1(λ − 1)2.imsart-aap ver. 2007/12/10 file: animaux.tex date: February 12, 2009



16 M. ALBENQUE
Fig 6. Examples of DA on the triangular latti
e (left) and on T4 (right).For n ≥ 4, λ 
annot be 
omputed expli
itly from Equation (4.6). Neverthe-less, sin
e L and R are eigenve
tors asso
iated to λ their 
oordinates 
an be
omputed in linear time and are polynomial of degree one in λ. With the
ondition of renormalization ∑LiRi = 1, we obtain that for any free set S,the generating fun
tion for DA on Ln with sour
e S is a rational fra
tion andits numerator and denominator are polynomial in λ. Moreover, we know that

λ is solution of Equation (4.6), whi
h implies that the generating fun
tion isalgebrai
 in p.4.2. The triangular latti
e. The triangular latti
e, denoted Tri, is de�nedas the oriented graph with set of verti
es (i, j) ∈ Z
2 su
h that i and jhave the same parity and with set of oriented edges ((i, j), (i − 1, j + 1)

),(
(i, j), (i + 1, j + 1)

) and ((i, j), (i, j + 2)
) (see Figure 6).We follow some ideas used in [4℄ to 
ompute the law of the gas on thatlatti
e (note that in [4℄ the generating fun
tion for DA with one sour
e onthe triangular latti
e is obtained by the study of an ad ho
 gas model).We work on Tri(N) the 
ylindri
 version of the triangular latti
e. We keepthe de�nition of F

(N)
C introdu
ed in Equation (4.1), but sin
e a vertex has
hildren in the two following lines, we need to de�ne an extension of F

(N)
C toobtain re
urren
e relations. Let C and D be two subsets of [N ] and X a gasmodel on Tri(N), we denote F

(N)
C,D the probability that the verti
es o

upiedin the line 0 (respe
tively the line 1) of Tri(N) are exa
tly the ones with �rst
oordinate belonging to C (respe
tively to D), in other words, for C,D ∈ [N ]:

F
(N)
C,D = P

Tri(N)

p

(
XTri(N)

(i, ε) = 1 if and only if {ε = 0 and i/2 ∈ C, or
ε = 1 and (i − 1)/2 ∈ D

)
.We de�ne N (C) as ∪i∈C{i−1, i+1} whi
h leads to the following re
urren
eimsart-aap ver. 2007/12/10 file: animaux.tex date: February 12, 2009



GAS AND ENUMERATION OF DIRECTED ANIMALS 17relation for C,D ∈ [N ] su
h that N (C) ∩ D = ∅,(4.7) F
(N)
C,D =

(
p

1 − p

)|C| ∑

E⊂c(C∪N (D))

FD,E(1 − p)N−|N (D)∪E|.Noti
e that sin
e the sum is taken on sets E su
h that N (D) ∩ E = ∅,
|N (D) ∪ E| is equal to |N (D)| + |E|. Therefore the distribution given by(4.8) FC,D =

p|C|p|D|

ZN
1N (C)∩D=∅ for C,D ∈ [N ]and where

ZN =
∑

C,D
N (C)∩D=∅

p|C|p|D|,is solution to the re
urren
e relation given in (4.7).Let V =
(

1 p
1 0

), we 
an rewrite Equation (4.8) as(4.9)
FC,D =

1

trace(VN )

2N−1∏

i=0

Vxi,xi+1, where xi =





1 if i is even and i ∈ C,

1 if i is odd and i ∈ D,

0 otherwise.Combining Equation (4.9) and Theorem 3 results in the following statement:Theorem 6. Let X = (X(i, j))(i,j)∈Tri be the gas pro
ess under P
Tri
p , thesto
hasti
 pro
ess Σ = (Σi)i∈Z de�ned by

Σi =

{
X(i, 0) if i is even,
X(i, 1) if i is oddis a Markov 
hain under its stationary distribution and its transition matrixis given by

W =

(
P(Σ1 = 0|Σ0 = 0) P(Σ1 = 1|Σ0 = 0)
P(Σ1 = 0|Σ0 = 1) P(Σ1 = 1|Σ0 = 1)

)
=

(
1/λ p/λ2

1 0

)
,where λ = 1+

√
1+4p
2 and its stationary distribution is given by

[P(Σ0 = 0), P(Σ0 = 1)] =
[
λ2/(p + λ2), p/(p + λ2)

]
.imsart-aap ver. 2007/12/10 file: animaux.tex date: February 12, 2009



18 M. ALBENQUE
d1

d2 d3

d1 d2Fig 7. Examples of sour
es 
onsidered in Proposition 1 (i) on the left and in Proposition 1
(ii) on the right.Adding up Equation (4.8) for all possible D leads to(4.10) FC =

1

ZN

p|C|(1 + p)N−|N (C)|.Setting V =
( 1+p p

1 p

) enables to rewrite Equation (4.10) as(4.11) FC =
1

trace(V N )

N−1∏

i=0

Vxi,xi+1 where xi = 1 if and only if 2i ∈ CAgain Theorem 3 and Equation (4.11) lead toTheorem 7. Let X = (X(i, j))(i,j)∈Tri be the gas pro
ess under P
Tri
p , thesto
hasti
 pro
ess Σ = (Σi)i∈Z de�ned by Σi = X(2i, 0) is a Markov 
hainunder its stationary distribution and its transition matrix is given by :(4.12)

W =

(
P(Σ1 = 0|Σ0 = 0) P(Σ1 = 1|Σ0 = 0)
P(Σ1 = 0|Σ0 = 1) P(Σ1 = 1|Σ0 = 1)

)
=

(
1 − α◦ α◦

α• 1 − α•

)and its stationary distribution by [P(Σ0 = 0), P(Σ0 = 1)] =
[

α•

α◦+α•

, α◦

α•+α◦

],where
α◦ =

2p

1 +
√

1 + 4p
and α• =

1 +
√

1 + 4p

2
.The link between gas distribution and enumeration of DA given in Propo-sition 1 and a simple matrix 
omputation give the following reinterpretationin terms of enumeration of DA of Theorems 6 and 7 (see Figure 7 for anexample of the di�erent sour
es 
onsidered).Proposition 1. (i) Let S = {s1, . . . , sk} where si = (xi, ǫi) be somepoints on the triangular latti
e with ǫi ∈ {0, 1} and su
h that di := xi+1 − xifor i ∈ {1, . . . , k−1} are non smaller than 2. The GF of DA on the triangularimsart-aap ver. 2007/12/10 file: animaux.tex date: February 12, 2009



GAS AND ENUMERATION OF DIRECTED ANIMALS 19latti
e with sour
e S is given by
GTri

S (−p) = (−1)|S|
α

1 + α

k−1∏

i=1

(−α)di + α

1 + α
, where α =

1 + 2p2 +
√

1 + 4p2

2p2

(ii) Let S = {s1, . . . , sk} where si = (2xi, 0) be some verti
es on a line of thetriangular latti
e, su
h that di := xi+1 −xi for i ∈ {1, . . . , k− 1} are positiveintegers. The GF of DA on the triangular latti
e with sour
e S is given by
GTri

S (−p) = (−1)|S|
α◦

α• + α◦

k−1∏

i=1

α•(1 − α• − α◦)di + α◦
α• + α◦In parti
ular, if Sn := {(i, 0), i = 1, . . . , n}, we obtain GTri

Sn
(−p) = α◦

α◦+α•

(1−
α•)n−1(−1)n. Then, the GF of DA on the triangular latti
e with 
ompa
tsour
es satis�es

∑

n≥1

GTri
Sn

(−p) =
∑

n≥1

α◦
α◦ + α•

(1 − α•)
n−1(−1)n =

−p

1 + 4p
.That formula was obtained in [8℄ by 
ombinatorial methods.4.3. The family of latti
es Tn. We now study the family of latti
es Tnintrodu
ed by Corteel & al. in [6℄. The oriented latti
e Tn is a 
ombinationof the latti
e Ln and the triangular latti
e, de�ned as follows:

• if n = 2k + 1, the verti
es of Tn are labeled by the elements of Z
2.From ea
h vertex (i, j) ∈ Z

2 there are n emerging edges from (i, j) to
(i + r, j + 1) for −k ≤ r ≤ k and one emerging edge from (i, j) to
(i, j + 2).

• if n = 2k, the verti
es are labeled by the elements (i, j) ∈ Z
2 su
hthat i and j have the same parity. From ea
h vertex (i, j) there are nemerging edges from (i, j) to (i+ 2r + 1, y + 1) for −k ≤ r ≤ k− 1 andone emerging edge from (i, j) to (i, j + 2).The 
ase n = 2 
orresponds to the triangular latti
e, treated separatelyin Subse
tion 4.2 for sake of 
larity. In [6℄, the generating fun
tion for DAon Tn with a single sour
e is shown to be solution of an algebrai
 equationgiven expli
itly. The proof relies on a 
ombinatorial argument whi
h linksthe generating fun
tion for DA on Tn to that for DA on Ln.The method used to obtain a stationary distribution for the gas modelon Tn is very similar to that used in the 
ase of the triangular latti
e inSubse
tion 4.2. We keep the same de�nitions for F

(N)
C and F

(N)
C,D as thosegiven for the triangular latti
e and de�ne for C ∈ [N ], N (C) as the set :imsart-aap ver. 2007/12/10 file: animaux.tex date: February 12, 2009



20 M. ALBENQUE
• ⋃i∈C{i + r, for − k ≤ r ≤ k} if n = 2k + 1
• ⋃i∈C{i + 2r + 1, for − k ≤ r ≤ k − 1} if n = 2k.With that new de�nition of N (C), Equations (4.7), (4.8) and (4.10) still holdtrue. Following the ideas introdu
ed to study Ln given in [5℄, we de�ne V asthe square matrix (Vσ,τ )σ,τ with indi
es running over {0, 1}n−1 and de�nedas follows. If σ = (s1, . . . , sn−1) and τ = (t2, . . . , tn), then:(4.13) Vσ,τ =





0 if (s2, . . . , sn−1) 6= (t2, . . . , tn−1)
p if (s2, . . . , sn−1) = (t2, . . . , tn−1) and s1 = 1
1 + p if σ = τ = (0, 0, . . . , 0)
1 otherwise.The stationary distribution of the gas model on a line of T (N)

n is given by(4.14)
FD =

1

ZN

∏N−1

i=0
Vσi,σi+1 where { σN = σ0 and

σi(k) = 1 if and only if i + k − 1 ∈ Dwith
ZN =

∑
σ0,...,σN−1

(∏N−1

i=0
Vσi,σi+1

)
= tra
e(VN ).The 
hara
teristi
 polynomial of V, denoted χ 
an be 
al
ulated expli
itly :

χ(x) = x2n−1−n

(
xn − xn−1(1 + 2p) + p2

n−2∑

k=0

xk

)
.We rewrite the latter equation as

χ(x) =
x2n−1−n

1 − x
(p2 − xn−1(x + p2 − 1)(x − (2p + 1))).That implies that the dominant eigenvalue λ of V satis�es λ 6= 1 and(4.15) p2 = λn−1(λ + p2 − 1)(λ − (2p + 1)).We are here in the very same situation as for Ln. We 
an 
ompute expli
-itly the solutions of Equation (4.15) only for n < 4. Nevertheless the samearguments as those given for Ln apply and we obtain from Theorem 3 andEquation (4.14) :Theorem 8. Let X = (X(i, j))(i,j)∈Tn

be the gas pro
ess under P
Tn

p . Thesto
hasti
 pro
ess (Σi)i∈N de�ned by
Σi = (X(2i, 0),X(2(i + 1), 0), . . . ,X(2(n − 2), 0)) for i ∈ Nis a Markov 
hain under its stationary distribution.In other words, (X(2i, 0))i∈N

is a Markov 
hain with memory n− 1 underits stationary distribution.imsart-aap ver. 2007/12/10 file: animaux.tex date: February 12, 2009
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