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In the literature, most of the results about the enumeration of
directed animals on lattices via gas considerations are obtained by
a formal passage to the limit of enumeration of directed animals on
cyclical versions of the lattice.

Here we provide a new point of view on this phenomenon. Using
the gas construction given in [10], we describe the gas process on the
cyclical versions of the lattices as a cyclical Markov chain (roughly
speaking, Markov chains conditioned to come back to their starting
point). Then we introduce a notion of convergence of graphs, such
that if (G») — G then the gas process built on G, converges in
distribution to the gas process on G. That gives a general tool to
show that gas processes related to animals enumeration are often
Markovian on lines extracted from lattices.

We provide examples and computations of new generating func-
tions for directed animals with various sources on the triangular lat-
tice, on the 7, lattices introduced in [6] and on a generalization of
the L, lattices introduced in [5].

1. Introduction. Let G = (V, E) be a directed graph with set of ver-
tices V and set of oriented edges E. Let A and S be two subsets of V', with
S C A. We say that A is a directed animal (DA) with source S if and only
if any vertex of A can be reached from an element of S through a directed
path having all its vertices in A (see Figure 1). The vertices of A are called
cells and the number of cells, denoted |A|, is the area of A. We denote G§
the generating function (GF) for DA on G with source S counted according

to their area:
gity= > =" gt

A, DA k>|S|
with source S

where aj, is the number of DA on G with source S and area k.

In the following, we will always assume that the cells of S form an inde-
pendent set on the directed graph G we say that S is a free set the
formal definition follows.
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2 M. ALBENQUE

Fic 1. Ezample of a DA with area 6. The cells of the DA are dark and the vertices of the
source double circled.

DEFINITION 1. Let G = (V, E) be an oriented graph and z and y be two
vertices of G. We say that z is a father of y or equivalently that y is a child
of x if there is an edge from z to y.

More generally, x is called an ancestor of y if there exists a directed path
from z to y.

Let now S be a subset of V; we say that S is a free set of vertices of G if
and only if for every x,y € S such that x # y, x is not an ancestor of y.

In this article we focus on the link between enumeration of DA and hard
particle gas models.

DEFINITION 2. Let G = (V,E) be a graph, a gas occupation or gas
configuration on G is a map X from V to {0,1}. The vertices v € V such
that X (v) = 1 are said to be occupied, the others are said to be empty.

A hard particle gas occupation of a graph is a gas occupation with the
additional constraint that two occupied vertices cannot be neighbors (the
occupied cells form then an independent set).

A gas model is a probability law on gas occupations. For a given gas
model, we call density in a vertex v the probability for v to be occupied,

that is P(X (v) = 1).

Since the pioneering work of Dhar [7], the connection between DA and gas
models have been widely exploited. We shall now give a short overview of the
different contributions on this subject (we refer the reader to [4| and [10] for
more exhaustive references). In [7], Dhar using some statistical mechanics
shows that computing the area generating function for DA on the square
lattice is equivalent to computing the density of a hard particle gas model.
This result was obtained after Nadal et al. [11] and Hakim and Nadal 9]
obtained the generating function of DA on some “cylindric” square lattices.
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GAS AND ENUMERATION OF DIRECTED ANIMALS 3

Fig 2. The same DA on two representations of the cylindric version of the square lattice
with a width of 6.

Those “cylindric” lattices are defined as follows : let G be an oriented
lattice that is an oriented translation-invariant graph  with its vertices
indexed by a subset of Z2. If we consider that the abscissa of the vertices
of G are labeled by elements of [N] := Z/NZ instead of Z, we obtain the
width-bounded variant of G with cyclic boundary conditions (see Figure 2).
We denote it GV) and call it the cyclic or cylindric version of G of width
N.

In [4], Bousquet-Mélou extends Dhar’s correspondence between the hard
particle gas models and enumeration of DA on cyclic square lattices. Par-
ticularly, she shows that gas models allow the enumeration of DA not only
according to their area but also for instance according to their left perimeter
or their number of loops. Those results were then generalized to a family of
lattices in a joint work with Conway [5]. In [5] and [4] the gas models studied
are defined on the cylindric versions of graphs and the GF for DA is obtained
as the formal limit of the density of the gas when the width grows to infinity.
Since computing the density of the gas model is not always tractable, the
former result does not necessarily lead to effective results about enumera-
tion of DA. However that new link establishes gas models as a powerful and
polyvalent tool for the counting of DA.

In the latter works, the link between DA and gas is formal and appears
because DA and gas models are shown to verify the same recursive decom-
position along with the layers of the graph. It notably implies that that
approach is only valid for graphs that can be decomposed nicely into layers.

In [10], Le Borgne and Marckert give a new insight into the connection
between gas and DA. They construct a coupling between random DA and
random gas models and give a combinatorial proof that for a free set S the
GF of DA with source S is equal to the probability for the vertices of S to be
occupied (a construction of that coupling is sketched in Section 2). Contrary
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4 M. ALBENQUE

to the construction on cylinders, in [10| the gas model is well defined on
any acyclic graph and in particular on the whole lattice, where some of its
stochastic properties can be studied. On the square lattice for instance, its
restriction to a line is shown to be Markovian, which allows to compute
explicitly the GF for DA with any source included in a line.

We must mention that there exist other fruitful approaches to the combi-
natorics of DA. Some results have been obtained by establishing links with
heaps of pieces introduced by Viennot in [12] (see for instance [13], [3], 2],
[6]) or with paths in the plane [8] or via the ECO method [1].

We now describe the content of this paper and its organization. OQur aim
here is to give a general framework that allows to reduce the enumeration of
DA with various sources on a graph G to the same enumeration on “simpler”
versions of G. As mentioned above, simplifying the graphs we work on is a
classical idea. Here, the difference with the works cited above relies on the
fact that thanks to the gas construction given in [10], we can now study the
convergence of the gas models as stochastic processes and not only the formal
convergence of their density. This leads both to a better understanding of
the gas models and to new results about enumeration of DA with various
sources.

The first point is to make the notion of “simpler” versions of G accu-
rate; in Section 3.1 we provide a distance on the set of graphs with marked
vertices, corresponding to sources (see Equation 3.1). Roughly speaking G,
converges to G for the notion of convergence of graphs induced by that dis-
tance (which corresponds roughly to the convergence of the neighborhood
of sources) implies that Gg™ converges to Q’g. In terms of probability, that
means the convergence of the finite-dimensional laws of the gas under addi-
tional assumptions (Theorem 2).

Then we need to compute the law of the limiting gas process obtained
thanks to that convergence. That is possible on some lattices. The multi-
plicative formula obtained for the distribution of gas restricted to a line on
the cylinder in [4] and [5] leads to the intuition that that multiplicative
structure may be preserved when the width of the cylinder goes to infinity
and that the limiting process obtained above should be Markovian. For that
reason, in Section 3.2 we define a cyclic Markov chain as a Markov chain
conditioned to come back to its initial state after a fixed number of steps
(Definition 6). We then give a representation of the gas on the cylinder as
a cyclic Markov chain. Then in broad terms when the width of the cylin-
der grows, the conditioning induced by the cyclic condition is less and less
constraining. At the limit, it eventually disappears which therefore yields
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GAS AND ENUMERATION OF DIRECTED ANIMALS 5

that the limiting process is Markovian. We provide in Theorem 3 a formal
statement of those two ideas; that provides a frame in which the gas process
on a line is Markovian.

We define in Section 4.1 the family of lattices (Lgr)rcn, which extends
the family of lattices (L£,)n,>2 introduced in [5]. We apply Theorem 2 and
Theorem 3 to it, to the triangular lattice and to the family of 7, lattices
introduced in [6]. In Section 4, we show that for those three examples, the
restriction of the gas process to a line is Markovian. Thanks to the link
between gas models and GF of DA, that allows to obtain some GF for DA
with various sources, see for example Proposition 1 for some results on the
triangular lattice.

2. Definition of the gas model. We sketch the construction of the
gas model given in [10] and its link with enumeration of DA according to
their area. Let G = (V, E) be a directed graph without multiple edges nor
directed cycles and such that the number of children of each node is finite.

The probability space we work on is Q = {a,b}" endowed with the o-
field generated by the finite subsets of vertices. We equip that space with
the product probability P, = (pd, + (1 — p)d)®V, where &, is the standard
Dirac measure on {a}. In other terms, w € § is a coloring of G and under
[P, each vertex has, independently of the others, color a or b with respective
probabilities p and 1 — p. For x € V, w(x) gives the color of z. From that
random coloring we construct DA and a model of gas. Notice that the DA
and gas process defined below are deterministic functions of the random
coloring.

DEFINITION 3. Let S be a subset of V and w be a random coloring of
G. We denote by Se(w) = {z € S, w(z) = a}, the (random) subset of S
with color a. We then define the random variable A as the maximal DA for
the inclusion partial order with source So(w) and set of cells the a-colored
vertices = that can be reached from Se(w) by an a-colored path (see Figure 3).

For a set S such that |S| > 1, the random DA A may be infinite with
positive probability. Let p&.., be the threshold for the existence of an infinite
DA with positive probability (it corresponds to the critical probability for
the oriented percolation on G):

(2.1) PG = sup{p, S : P,(|A%] < 00) =1 and [S] < o0}.

For a general graph G, pgit is difficult to compute and can even be equal
to zero. In the examples given in Section 4, the outdegree of any vertex
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6 M. ALBENQUE

is bounded and in that case peit > 0 (see for instance Proposition 2.2 of
[10]). For any p < pS.., a gas occupation X on G is defined from a random
coloring w = (w(v))yev as follows (see Figure 3 for an example):

Gy ] 0 if wiv) =5
(2.2) * ( ) { Hv’ children of v(l - XG(U,)) if w(v) =a

The definition of pgit ensures that the gas process is almost surely well
defined as its recursive computation ends within a finite number of steps for
any p < pG.., (see Proposition 2.4 of [10] for details). From now on we always
assume that p < pgit and that the gas model considered is the probability
law denoted IP’I? induced by that construction.

F1G 3. The gas occupation (on the left) and the DA A® on L3z, obtained from the same
coloring of the vertices. Cells colored with a (respectively b) are dark (respectively white)
and the vertices of S are double circled.

The link between enumeration of DA and that gas model is given by the
following result:

THEOREM 1 (Le Borgne and Marckert [10]). Let G = (V, E) be a directed
graph and S be a free set of G. For any p in [0, Rg), we have:

(2.3) PY(X%(v) = 1,v € §) = (=1)*1G§ (—p).
where Rg 1s the radius of convergence of gg%.

With that theorem, the computation of the generating function for DA
comes down to the computation of the probability for some vertices to be
occupied for the gas model IP’E. That explains why in the next section, we
focus only on the study of the gas model and resume the enumeration of DA
in Section 4.

3. Convergence of graphs, gas models and DA. We develop in
that section some tools allowing to reduce to simpler graphs the study of the
stochastic properties of a gas model on a graph.
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GAS AND ENUMERATION OF DIRECTED ANIMALS 7

3.1. Convergence of graphs. As recalled in the introduction, most of the
results obtained about the enumeration of DA on a lattice G via the study
of gas models have been proved by a passage to the limit. More precisely the
gas models are studied on GV the cylindric version of G (see introduction).
For a fixed size n, the set of DA with size n coincide on G and G®¥) when
say IV > n. It amounts to saying that

or equivalently in the gas model’s point of view that the density of the gas
converges formally (in the sense that Zamkaﬁk — Zakxk if and only if
Gl — for every n € N).

The aim of this section is to make clear a notion of convergence of graphs
(that is a topology on the set of graphs) which induces the convergence of
the finite-dimensional laws of the gas process and hence the convergence of
the generating function of DA. That convergence is no longer seen only as
a formal convergence of generating functions but as the convergence of the
distribution of a stochastic process.

In the following, we always assume that the graphs considered are directed,
without directed cycles nor multiple edges and that the number of children
of each node is finite (a node can though have an infinite number of parents),
so that the gas model given in Section 2 is defined.

DEFINITION 4. We call marked directed graph, a pair (G = (V,E), Z)
where Z is a subset of V. We denote by Vz the subset of V of nodes having
at least one ancestor in Z, and by G(Z) the subgraph of G having as set of
nodes V7 (and set of edges the edges of E linking them).

To see Z as a source and G(Z) as the maximal DA on G with source Z
may help to understand better Theorem 2.

DEFINITION 5. Two directed marked graphs (G = (V, E), Z) and (G’ =
(V' E"), Z") are said to be isomorphic we write (G, Z) ~ (G',Z") it G(Z)
and G'(Z') are equal up to a relabeling of the vertices, in other words if there
exists a bijective application ¢ from Vz onto V7, such that for any z,y in
Vz, (z,y) € E is equivalent to (¢(x), ¢(y))EFE'.

The relation ~ is an equivalence relation on the set of marked directed
graphs. We denote by O the set of directed graph quotiented by that relation.

For any marked graph (G, Z) we denote by (G, Z) its class in O.

We denote A% the set of DA on G with source Z. The graph (G, Z) is
the right (or minimal) structure that provides all the knowledge necessary
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8 M. ALBENQUE

to study the gas configuration on Z and the DA with source Z in G (that
depends also on the coloring on (G, Z)). From the construction of the gas
model and random DA given in Section 2, it is clear that if (G, Z) ~ (G', Z')
then |Z| = |Z'| and G§ = gg,' and the application ¢ provides a probability
isomorphism between the gas occupations on Z and Z’, which implies that
PG(XE =1,5€ Z) =P (X =1,5€ 7).

For any r > 0, we define B, (G, Z) as the subgraph of (G, Z) containing
only the vertices v of (G, Z) such that d(v, Z) = inf,cz d(u,v) < r, where
the distance must be understood as a directed distance on graphs, that is:

d(u,v) = inf{|w|, where w is an oriented path from u to v}.

As announced above, we now define a distance dp on O which gives a
suitable notion of convergence of graphs: for any O and O" in O, we set

(3.1)  do(0,0') = inf{ri 7 such that B, (G, 7) ~ By(C z’)} ,

where (G,Z) € O and (G',Z') € O' (we let the reader check that that is
indeed a distance in O and in particular, that it does not depend on the
choices of (G,Z) and (G',Z")).

THEOREM 2. Let (Gy, = (Vy, En), Zn) be a sequence of directed marked
graphs, and (G = (V,E),Z) be a directed marked graph. Let a,j = #{A €
.Ag:, |A| = k} be the number of DA with source Zy,, in Gy, having k cells, and
denote by ay = #{A € AG,|A| = k}.

If do ((Gn’ Zn), (W)) — 0 then

Gr
1. an (p) = Zkz\zn\ an,kpk njgo gg(p) = ZkZ\Zl akpk where the conver-
gence holds formally in the set of formal series with coefficient in N
(that is for any k, an — ar when n — 00).
2. If there exists c¢,d > 0 such that for any n large enough:

(3.2) an i < cd® for any k > 1

then for any p < 1/d, the finite-dimensional laws of the gas occupa-
tion on Z, according to IP’?" converge towards those on Z distributed
according to IP’E, e :

PO (XS = 1,5 € Zy) - PY(XE =15 € Z).
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GAS AND ENUMERATION OF DIRECTED ANIMALS 9

PROOF. 1. First, if dp ((Gn, Zn), (W)) — 0, then for any r, when n is
large enough, the two graphs B,.(G,,, Z,) and B,.(G, Z) are isomorphic. That
implies that the coefficients of Qg: and gg coincides at least up to the rth.

2. First, condition 3.2 implies that pgfgt > 1/d therefore the gas model
IP’E" is well defined for any p < 1/d.

From the construction of the gas model, we can notice that the event
{X% = 1,5 € Z} does not depend on the coloring of all the vertices of G but
only on vertices of A? (see Definition 3). Since we assume p < 1/d, A? is
almost surely finite according to IP’E ; that implies that for any € > 0, there
exists m such that PS(|A%| > m.) <e.

As when n is large enough the two graphs B, (G, Z,) and By, (G, Z)
are isomorphic, there exists an application ¢ that maps By, (Gy, Z,) onto
B, (G, Z). Thus ¢ induces a probability isomorphism between the coloring
of By, (Gn,Zy) and of By, (G,Z). Therefore, conditionally on the event
{|A%| < m.}, the image of A" by ¢ is A and we get :

PS (XS = 1,5 € Z, | |[A?] < m.) = PY(XE = 1,5 € Z||A?] < m.).

That concludes the proof, since P§(|AZ\ < me) > 1 — ¢ by definition of
Me. O

REMARK 1. Even if in the applications of that theorem in Section 4 we
always assume that Z,, and Z are free sets. There is no such assumption in
the theorem and Z, and Z can be any sets.

3.2. A wariation on Markov processes. The spirit of this section is guided
by the results obtained for enumeration of DA in [4] and [5]. It often happens
that the probability distribution of the gas has a multiplicative form on
cylinders. That leads to the intuition that the limiting process obtained when
the width goes to infinity is Markovian. We give here an appropriate frame
to make that intuition rigorous.

In this section, we always assume that FE is a finite state space, v a
probability measure on F and M a stochastic matrix on E. We say that
Y = (Yi)ien is a (v, M)-MC if it is a Markov chain with v as initial law and
M as transition matrix.

DEFINITION 6. For any non-negative N, we call cyclic Markov chain
of length N on E with initial law v and transition matrix M, a process
(Xi)ie{o,...n—13 which is a Markov chain conditioned to come back to its
starting point after N steps and we say that X is a (v, M, N)-cyclic MC.
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10 M. ALBENQUE

Let Y be a (v,M)-MC, for any xo,...,zn-1 € E, the law of (X;);cq0,...n—1}
is equal to:

(3.3)

P(XO =Ty - - aXN—l = QS‘N_l) = P(Yb =Ty - - >YN—1 = TN-1 |YZ) = YN)

In other words,

N-—1
NIM,
(34 P(Xo=a0,.... Xy 1 =an_1) = 2E) _ZOV TiTit1
N

~ N—-1
where zy = zp and Zy = Zxé,...,.r;vil v(zp) [Tizo M:cg,:cgﬂ-
Note that if X is a (v, M, N)-cyclic MC, the distribution of X is given
by

o (M),
(3.5) P(Xo=2)= ———"=, foranyz € E
ZN

and the distribution of X; by

(3.6) P(X)=x1) = (Z v(x0)Mgg o <MN_1)3317$0> (%)—1'

o

Equation (3.5) implies that the distribution of Xy is not v except for excep-
tional cases. Combining Equations (3.5) and (3.6) implies that if v = Up,
the uniform law on E. then the cyclic MC is stationary, i.e : for any z € F,

On the other hand, assume that the initial law v is an invariant law for M,
then a (v, M, N)-cyclic MC is not necessarily stationary. Roughly speaking
the term (MN_I)IWO which appears in (3.6) prevents that probability to
simplifying even if v is an invariant measure associated with M.

We now give the main result about the convergence of cyclic Markov
chains.

THEOREM 3. Let E be a finite state space and V be a square non-negative
matriz indexed by the elements of E such that V admits a simple real eigen-
value \ greatest in modulus than every other eigenvalues. Let (X(N))Nzl be
a family of stochastic processes such that for every N, XN is indezed by
{0,...,N —1} and

N—-1
Hi:O inyxi+l
trace(VIV) 7

(3.7) PXSN = zo,..., XY, =2y 1) =
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GAS AND ENUMERATION OF DIRECTED ANIMALS 11

with the convention xny = .

Let R = (R;)icg and L = (L;)icp be respectively a right and a left
eigenvector associated with A such that their dot product is equal to one,
(i) For each N > 1, XV) 45 ¢ (Up, M, N)-cyclic MC, where M is equal to :

(3.8) M,

i, :VJ)\RR,fO’FZjEE

(1) Let now X = (X;)ien be a (well-defined) stochastic process and its finite-
dimensional laws are given, for any k € N, by

(39)  plwo,..., o)) = lim PG = 2o, XY = a).

Under p, X is a (v, M)-MC, where M is defined as in Equation (3.8) and v
is the invariant probability measure for M and is given by v(x) = Ly R, for
r el

PROOF. We begin with (i) and show that the limit in (3.9) exists. Let
k € Nand xg,...,z; € E, for any N > k we have :

N—k
(V )fk#”o

(N) (N) _
1 - .. Zi, T
(3.10) P(X, Toy ..y Xp | | V1) trace(VN)

When N goes to infinity, the only significant terms of (VN=F) and

Tf,T0
trace(V™) are those in AN. More precisely,

— ka on )\N*k 4 Z a)\/)\/N*k
N eigenvalue of V#A

(3.12) = Ry, Lo AV 7F 4 oAV 7F)

(3.11) (V=R

Tk>T0

as A > |X|, besides trace(VY) = AV 4 o(AY) which leads to

k-1
. N N R, L
(3.13) lim P(XN =z, XV =) = 2 T Vo
i=0
Ray Loy yrk—1
Let p({zo,...,7x}) = =572 [1;i29 Vi1, We can check that v is a prob-

ability distribution. Indeed from Equations (3.10) and (3.13)

VM), . (V&)
RyLy, =) i =1i — T =,
Z Z Z N trace(VN) trace( VN) e :D;E trace(VY)

zeFE zeE zelE
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12 M. ALBENQUE

where the inversion of the sum and the limit is immediate since E is finite.
We check similarly that the matrix M defined in (3.8) is stochastic.

Now it is easy to see that the finite-dimensional laws given in (3.9) are
consistent, the Kolmogorov extension Theorem applies and ensures that the
stochastic process X is well defined.

Point (i) follows directly from the definition of a cyclic Markov chain. 0

4. Examples of graphs. We give in this section some examples of re-
sults that can be obtained by the application of Theorems 2 and 3. In the
following examples, we only consider oriented lattices with vertices indexed
by a subset of Z2. The j-th line of the graph is the set of vertices with sec-
ond coordinate equal to j. We will see why the restriction of the gas model
“to a line” of the graph is Markovian. The general approach used is widely
inspired of the method developed in [4] and [5]. For a given graph G, we first
show that the assumptions of Theorem 2 are verified for G and the sequence
of lattices (G(N))n7 that implies that the gas process on G(Y)
distribution to the gas process on G. We then compute the distribution of
the gas on a line of G™) and interpret it as a cyclic MC by checking that
its distribution can be written in a multiplicative form as in Equation 3.7.
Theorem 2 and Theorem 3 imply then that the gas process restricted to a
line is Markovian. We explain fully the first example and sketch the others.

converges in

4.1. The family of lattices (Lr)rcn. We define in this section a new
family of lattices. For any finite subset R of N such that |R| > 2, we define
Lp as the lattice with set of vertices indexed by Z? and from each vertex
(i,7), there are |R| emerging edges from (i,j) to (i +7,j + 1) for r € R. In
the following, we always assume that inf(R) = 0 without loss of generality.
We set R = sup(R).

Note that Lo 1} corresponds to the square lattice. If R = {0,...,n—1},
then L = L,,, which corresponds to the family of lattices introduced in [5]
and detailed in the following. Another example is given in Figure 4.

REMARK 2. For any finite subset R of N, the lattice Lr verifies the
assumption of Section 2 so the gas model is well defined for any p < pfr’ft
and since the outdegree of any vertex is equal to |R|, pf,,fft > 1/|R| > 0.
For N > n + R, the balls or radius n of L'SRN) and of Lp are isomorphic,
moreover assumption 2 of Theorem 2 holds true with d = |R|, thus the

finite-dimensional laws of the gas model on Lp converge to the ones on

£y
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GAS AND ENUMERATION OF DIRECTED ANIMALS 13

Fic 4. Ezample of a DA of size 10 on lattice Lr, when R = {0,1,4}

We denote XJ(-N) the N-tuple that gives the occupation of the gas on the

j-th line of L'%N) and compute its distribution. The construction of the gas

model given in Section 2 implies that, when j decreases, (XJ(-N))]-GZ is a
“vertical” Markov chain (with 2V states) under its stationary distribution.
Markov chain theory implies that such a distribution is unique (that one of
the main tool in [5] and [4]).

For C' C [N], let FéN) be the probability that the occupied vertices of a
line of the graph are exactly those with first coordinate lying in C. In other
terms, for a gas occupation X*# distributed according to the gas model given
in Section 2 :

(N)
(4.1) FY —p5r (X€R(i,j) = 1 if and only if i € C).

Note that the construction of the gas model implies that FéN) does not

depend on a particular choice of j.

We traduce the fact that (X](-N))jezjl is Markovian into recurrence rela-
(V)

tions for F, . To that purpose, we define for any subset C' of N :

N(@©)={i+r|reR}
icC
and B
N(@C)= J{i—r|r e R},
i€C
where the addition is taken in [N]. Notice that {N(C) x {1}} and {N(C) x
{—1}} correspond respectively to the set of children and of fathers of the

set {C' x {0}} and that |N(C)| = |[N(C)|. We thus obtain the following

equations:

P _\|C —IN
(4.2) FéN) _ (T)\ | Z (1—p)N WD)'F](DN).
P~ pewioye
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14 M. ALBENQUE

Following [5], we check that the probability distribution defined by
L p N
PV P 1 — p)V(©)

where

Zy = 3 plola — pM@-ic
CC[N]

is stationary for Equation (4.2).

To obtain a matrix formulation of that distribution, we consider the matrix
V indexed by the elements of {0, 1} and defined by, for o = (sg,...,s5_1)
and 7= (t1,...,t5):

Vo r=0if (s1,...,85_1) # (t1,---,tp_1)

and otherwise :

P iftp =1
Vor=491—p ifty =0 and there exists r such that s, =1 and R—reR
1 otherwise.

The quantity FéN) can then be rewritten as

) _ L v oN = 0o and

with
N-1 N
ZN - Zdl,...,o'N (Hi:(] VO'Z‘,O'Z‘+1> - trace(V )

The expression given for FéN) in Equation (4.3) is in the very same form as

the statement of Theorem 3. Furthermore it is immediate to check that all
the coefficients of VA~ are positive (for p € (0,1)) which ensures that V
satisfies the conditions of Theorem 3 by Perron-Frobenius theorem.

As mentioned in Remark 2, the finite dimensional laws of the gas occupa-

tion on E%N) converges to those on Lr. We apply Theorem 3 and get:

THROREM 4. Let X = (X(4,]))(; jez2 be the gas process on Lp dis-

tributed according to ]P’gR, with p <7pf£t. The stochastic process (2;)ien
defined by 3; = (X (7,0),...,X(i + R—1,0)) is a Markov chain under its
stationary distribution.

In other words, the stochastic process (X; = X (i,0)),cy s a Markov chain
with memory R — 1 under its stationary distribution.
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GAS AND ENUMERATION OF DIRECTED ANIMALS 15

Fic 5. DA on the lattices L3 and L4 (all the edges are oriented upwards). The cells are
black and the sources are circled.

The family of lattices L£,,. The family of lattices (L£,),>2 introduced in
[5] corresponds to the particular case of Lr when R = {0,1,...,n — 1}
(examples of DA on L3 and L4 are given in Figure 5). In [5] the GF for DA
with one source is given as the solution of an algebraic solution of degree at
most n + 1;

THEOREM 5 (Bousquet-Mélou and A.Conway [5]). The generating func-
tion G for DA on L, with a single source is solution of the following equation

(4.4) 2A+0)" N4+ 0+ DG —[1+t+ (n—1)G" 1t —26%) = 0.

We give some examples of computation obtained by the application of
Theorem 4 on the lattices £,,. In the case n = 2, the computation of the
eigenvalues and eigenvectors of V = (1ip ») constitutes an alternative proof
of Theorem 3.3 of [10].

For n = 3, the transition matrix can be given explicitly as (the coefficients
of the matrix are indexed by the lexicographical order on {0,1}?):

1A 1—1/) 0 0 o
0 0 1-p/2\ p/2) @ = oopoan
(4.5) 11—« 0 o | Where PR ERvAEE
0 0 1—p/A  p/A 2

For example we obtain as a consequence of that formula that the generating
function g,fB for DA on L3 with a compact source of size k > 2 is equal to :

O/ w22 B k-1
G 1t (VIi-4t—12) ( of ) |
b 1— 4t — 442 + (14 2t)V1 — 4t — 42 1— 4t — 412

To obtain the GF as the solution of an algebraic equation, we use that in
[5], the largest eigenvalue A of V is shown to be solution of

(4.6) M —p)t = - 12
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16 M. ALBENQUE

F1c 6. Ezamples of DA on the triangular lattice (left) and on Ty (right).

For n > 4, A cannot be computed explicitly from Equation (4.6). Neverthe-
less, since L and R are eigenvectors associated to A their coordinates can be
computed in linear time and are polynomial of degree one in A\. With the
condition of renormalization >  L;R; = 1, we obtain that for any free set S,
the generating function for DA on £,, with source S is a rational fraction and
its numerator and denominator are polynomial in A\. Moreover, we know that
A is solution of Equation (4.6), which implies that the generating function is
algebraic in p.

4.2. The triangular lattice. The triangular lattice, denoted Tri, is defined
as the oriented graph with set of vertices (i,j) € Z? such that i and j
have the same parity and with set of oriented edges ((7,7),(i — 1,5 + 1)),
((4,7), i + 1,5+ 1)) and ((4,5), (4,7 + 2)) (see Figure 6).

We follow some ideas used in [4] to compute the law of the gas on that
lattice (note that in [4] the generating function for DA with one source on
the triangular lattice is obtained by the study of an ad hoc gas model).
We work on Tri") the cylindric version of the triangular lattice. We keep

the definition of FéN) introduced in Equation (4.1), but since a vertex has
children in the two following lines, we need to define an extension of FéN) to

obtain recurrence relations. Let C' and D be two subsets of [N] and X a gas
model on Tri(N)7 we denote Fg\g the probability that the vertices occupied

in the line 0 (respectively the line 1) of Tri™ are exactly the ones with first
coordinate belonging to C' (respectively to D), in other words, for C, D € [N]

e=0andi/2€C, or
e=1land (i—1)/2€ D

).

Fg\g = Pgﬁ(m (XTri(N) (i,e) = 1 if and only if {

We define N'(C') as Ujec{i —1,i+ 1} which leads to the following recurrence
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GAS AND ENUMERATION OF DIRECTED ANIMALS 17

relation for C, D € [N] such that N'(C)N D = (),
(N) p \“ N—|N(D)UE]
(4.7) Fop = (T) > Fp (1 —p) :
P/ peecon(D))

Notice that since the sum is taken on sets F such that N(D) N E = 0,
IN(D) U E]| is equal to |[N(D)| + |E|. Therefore the distribution given by

plClplPl
(4.8) Fo,p = =7 —1Ly(cynp=p for €, D € [N]
and where
A DD
C.D
N(C)ND=0

is solution to the recurrence relation given in (4.7).
Let V = (}?), we can rewrite Equation (4.8) as

(4.9)
ON—1 1 ifiiseven and i € C,
FC7D = m H Vﬁfi,ﬂ?i-‘—l? where T; = 1 if ¢ is odd and i € D,
=0 0 otherwise.

Combining Equation (4.9) and Theorem 3 results in the following statement:

THEOREM 6. Let X = (X(i,7)) @ j)emi be the gas process under ]Pgri, the
stochastic process ¥ = (X;);ez defined by

s X (4,0)  if i is even,
"\ X(G, 1) ifiis odd

18 a Markov chain under its stationary distribution and its transition matrix
18 given by

W — <IP>(21 =0[Z0=0) P =1/ = 0)) B (1/)\ p/)\2>
“\PE =02 =1) P& =12=1)) \1 o0 )

14+/1+4p
2

where A = and its stationary distribution is given by

[P(S0 = 0), P(Zo = 1)] = [\2/(p+ 32),p/(p + A)]
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18 M. ALBENQUE

\ AN /
/N /N
s 3\
AN \ ,dz\ A /ds N
v N ¥ N N N/ o

Fia 7. Ezamples of sources considered in Proposition 1 (i) on the left and in Proposition 1
(#4) on the right.

Adding up Equation (4.8) for all possible D leads to
1
ZN

Setting V = (ITPZ) enables to rewrite Equation (4.10) as

N-1
1
(411) FC = m H in71i+l Where xTr; = ]. lf and only lf 2’L S C
=0

Again Theorem 3 and Equation (4.11) lead to

THEOREM 7. Let X = (X(i,7)) @ j)emi be the gas process under Pgri, the
stochastic process X = (X;)icz defined by 3; = X (2i,0) is a Markov chain
under its stationary distribution and its transition matriz is given by :
(4.12)

W — P(El = 0‘20 = 0) P(El = 1‘20 = 0) . 1-— (67 (67
- ]P(Zl = 0‘20 = 1) ]P(El = 1‘20 = 1) - (679 1-— (679

and its stationary distribution by [P(2o = 0),P(3y =1)] = [L e },

Qo+’ (tat+0ro
where

2
Qo = 729 and e =

1++/14+4p 2
The link between gas distribution and enumeration of DA given in Propo-
sition 1 and a simple matrix computation give the following reinterpretation
in terms of enumeration of DA of Theorems 6 and 7 (see Figure 7 for an
example of the different sources considered).

PROPOSITION 1. (i) Let S = {s1,...,sk} where s; = (x;,€¢;) be some

points on the triangular lattice with €; € {0,1} and such that d; == x;41 — x;
forie{1,...,k—1} are non smaller than 2. The GF of DA on the triangular
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GAS AND ENUMERATION OF DIRECTED ANIMALS 19

lattice with source S is given by

k-1 d; 2 2

~ o —a)% + « 1+2p*+vV1+4

GF(—p) = (1) O T LS gy o = LV
i=1

+ o ; + 2p
(i9) Let S = {s1,...,sk} where s; = (2x;,0) be some vertices on a line of the
triangular lattice, such that d; :== x;41 —x; fori € {1,...,k—1} are positive

integers. The GF of DA on the triangular lattice with source S is given by

Qo ol — g — 0)% + o
Qg + Qi

g3 (—p) = (-1

In particular, if S, := {(4,0),i = 1,...,n}, we obtain G&"(—p) = e € S

@e)" 1(—1)". Then, the GF of DA on the triangular lattice with compact
sources satisfies

S G =Y — (1 a1y = 2

n>1 n>1

That formula was obtained in [8] by combinatorial methods.

4.3. The family of lattices 7,. We now study the family of lattices 7,
introduced by Corteel & al. in [6]. The oriented lattice 7, is a combination
of the lattice £,, and the triangular lattice, defined as follows:

e if n = 2k + 1, the vertices of 7,, are labeled by the elements of Z2.
From each vertex (i,j) € Z? there are n emerging edges from (i, j) to
(i+77+1) for —k < r < k and one emerging edge from (7,j) to
(1,7 +2).

e if n = 2k, the vertices are labeled by the elements (i,j) € Z? such
that ¢ and j have the same parity. From each vertex (i, j) there are n
emerging edges from (i,7) to (i+2r+1,y+1) for -k <r < k—1and
one emerging edge from (i,75) to (4,7 + 2).

The case n = 2 corresponds to the triangular lattice, treated separately
in Subsection 4.2 for sake of clarity. In [6], the generating function for DA
on 7, with a single source is shown to be solution of an algebraic equation
given explicitly. The proof relies on a combinatorial argument which links
the generating function for DA on 7, to that for DA on L,.

The method used to obtain a stationary distribution for the gas model
on 7, is very similar to that used in the case of the triangular lattice in
Subsection 4.2. We keep the same definitions for FéN) and Fg\g as those
given for the triangular lattice and define for C' € [N], N(C) as the set :
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20 M. ALBENQUE

o Uiecli+r, for —k<r<k}ifn=2k+1
o Uiec{i+2r+1, for —k <r<k—-1}if n=2k.

With that new definition of N'(C), Equations (4.7), (4.8) and (4.10) still hold
true. Following the ideas introduced to study £,, given in [5], we define V as
the square matrix (V. )or with indices running over {0,1}"~1 and defined
as follows. If 0 = (s1,...,8,-1) and 7 = (t2,...,t,), then:

0 if (82,...,8n_1) 75 (tg,...,tn_l)

p if (82,...,871,1) = (tg,...,tnfl) and S1 = 1
4.1 =
(413)  Vor 1+p ifo=7=1(0,0,...,0)
1 otherwise.

The stationary distribution of the gas model on a line of ’]T,L(N)

(4.14)

is given by

. 1 N—-1 ON = 09 and
Fp = Zy1Li=o Voo where { oi(k)y=1ifand onlyif i+ k—1€ D
with

N-1 N
ZN = ZO’OwwO’Nfl <Hz0 V0i70i+1) = trace(V™).

The characteristic polynomial of V, denoted x can be calculated explicitly :

n—2

k=0
We rewrite the latter equation as

on—1_p
x _
x(@) = ﬁ(PQ —a" Nz +p* —1)(x - (2p+ 1))
That implies that the dominant eigenvalue A of V satisfies A # 1 and
(4.15) = A"+ =)A= (2p +1)).

We are here in the very same situation as for £,,. We can compute explic-
itly the solutions of Equation (4.15) only for n < 4. Nevertheless the same
arguments as those given for £, apply and we obtain from Theorem 3 and
Equation (4.14) :

THROREM 8. Let X = (X (4, 7)) ; jyer, be the gas process under ]P’Z". The
stochastic process (X;)ien defined by
¥ = (X(24,0),X(2(: +1),0),...,X(2(n —2),0)) forieN

18 a Markov chain under its stationary distribution.
In other words, (X(2i,0)),cy s a Markov chain with memory n—1 under
its stationary distribution.
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