Géométrie des clusters de spins dans les triangulations munies d'un modèle d'Ising

Marie Albenque (CNRS, LIX, École Polytechnique)

joint works with Laurent Ménard (Univ. Paris Nanterre – NYU Shanghai) and Gilles Schaeffer (CNRS, LIX – École Polytechnique)

A planar map is a proper embedding of a planar connected graph in the 2-dimensional sphere (considered up to orientation-preserving homeomorphisms).

A planar map is a proper embedding of a planar connected graph in the 2-dimensional sphere (considered up to orientation-preserving homeomorphisms).

Planar map = planar graph + cyclic order of edges around each vertex.

A planar map is a proper embedding of a planar connected graph in the 2-dimensional sphere (considered up to orientation-preserving homeomorphisms).

Planar map = planar graph + cyclic order of edges around each vertex.

To avoid dealing with symmetries: maps are **rooted** (an edge is marked and oriented).

 $\mathcal{M}=\mathsf{set}$ of rooted planar maps

A planar map is a proper embedding of a planar connected graph in the 2-dimensional sphere (considered up to orientation-preserving homeomorphisms).

Planar map = planar graph + cyclic order of edges around each vertex.

To avoid dealing with symmetries: maps are **rooted** (an edge is marked and oriented).

 $\mathcal{M}=\mathsf{set}$ of rooted planar maps

A map M defines a discrete **metric space**:

- points: set of vertices of M = V(M).
- distance: graph distance = d_{gr} .

A triangulation is a planar map in which all faces have degree 3.

Triangulation of size n has 3n edges (or equivalently n+2 vertices, 2n faces).

A triangulation is a planar map in which all faces have degree 3.

Triangulation of size n has 3n edges (or equivalently n+2 vertices, 2n faces).

A triangulation with a boundary is a planar map in which all faces have degree 3, except possibly the root face.

Triangulation with a boundary of length 4.

A triangulation is a planar map in which all faces have degree 3.

Triangulation of size n has 3n edges (or equivalently n+2 vertices, 2n faces).

What does a random triangulation of size n look like (as n tends to ∞)?

Local limit point of view

Scaling limit point of view

A triangulation is a planar map in which all faces have degree 3.

Triangulation of size n has 3n edges (or equivalently n+2 vertices, 2n faces).

What does a random triangulation of size n look like (as n tends to ∞)?

Today: local limit point of view

Scaling limit point of view

Local topology (~ Benjamini–Schramm convergence)

For m a rooted planar map and $R \in \mathbb{N}^{\star}$,

 $B_R(\mathbf{m}) = \mathsf{ball}$ of radius R around the root vertex of \mathbf{m}

Definition:

The **local topology** on \mathcal{G} is induced by the distance:

$$d_{loc}(\mathbf{m}, \mathbf{m}') := \frac{1}{1 + \max\{R \ge 0 : B_R(\mathbf{m}) = B_R(\mathbf{m})\}}$$

$$m_n \to m$$
 for the local topology \Leftrightarrow

For all **fixed** R, there exists n_0 s.t.:

$$B_R(\mathbf{m}_n) = B_R(\mathbf{m})$$
 for $n \ge n_0$

First examples:

$$Root = 0$$

Local topology (~ Benjamini–Schramm convergence)

For m a rooted planar map and $R \in \mathbb{N}^{\star}$,

 $B_R(\mathbf{m}) = \mathsf{ball}$ of radius R around the root vertex of \mathbf{m}

Definition:

The **local topology** on \mathcal{G} is induced by the distance:

$$d_{loc}(\mathbf{m}, \mathbf{m}') := \frac{1}{1 + \max\{R \ge 0 : B_R(\mathbf{m}) = B_R(\mathbf{m})\}}$$

$$m_n \to m$$
 for the local topology \Leftrightarrow

For all **fixed** R, there exists n_0 s.t.:

$$B_R(\mathbf{m}_n) = B_R(\mathbf{m}) \quad \text{ for } n \ge n_0$$

First examples:

$$Root = 0$$

Local topology (~ Benjamini–Schramm convergence)

For m a rooted planar map and $R \in \mathbb{N}^{\star}$,

 $B_R(\mathbf{m}) = \mathsf{ball}$ of radius R around the root vertex of \mathbf{m}

Definition:

The **local topology** on \mathcal{G} is induced by the distance:

$$d_{loc}(\mathbf{m}, \mathbf{m}') := \frac{1}{1 + \max\{R \ge 0 : B_R(\mathbf{m}) = B_R(\mathbf{m})\}}$$

$$m_n \to m$$
 for the local topology \Leftrightarrow

For all **fixed** R, there exists n_0 s.t.:

$$B_R(\mathbf{m}_n) = B_R(\mathbf{m})$$
 for $n \ge n_0$

First examples:

Root = 0

Uniformly chosen root

Local topology (~ Benjamini–Schramm convergence)

For m a rooted planar map and $R \in \mathbb{N}^{\star}$,

 $B_R(\mathbf{m}) = \mathsf{ball}$ of radius R around the root vertex of \mathbf{m}

Definition:

The **local topology** on \mathcal{G} is induced by the distance:

$$d_{loc}(\mathbf{m}, \mathbf{m}') := \frac{1}{1 + \max\{R \ge 0 : B_R(\mathbf{m}) = B_R(\mathbf{m})\}}$$

$$m_n \to m$$
 for the local topology \Leftrightarrow

For all **fixed** R, there exists n_0 s.t.:

$$B_R(\mathbf{m}_n) = B_R(\mathbf{m})$$
 for $n \ge n_0$

First examples:

Uniformly chosen root

Local topology (~ Benjamini–Schramm convergence)

For m a rooted planar map and $R \in \mathbb{N}^{\star}$,

 $B_R(\mathbf{m}) = \mathsf{ball}$ of radius R around the root vertex of \mathbf{m}

Definition:

The **local topology** on \mathcal{G} is induced by the distance:

$$d_{loc}(\mathbf{m}, \mathbf{m}') := \frac{1}{1 + \max\{R \ge 0 : B_R(\mathbf{m}) = B_R(\mathbf{m})\}}$$

$$m_n \to m$$
 for the local topology \Leftrightarrow

For all **fixed** R, there exists n_0 s.t.:

$$B_R(\mathbf{m}_n) = B_R(\mathbf{m})$$
 for $n \ge n_0$

First examples:

Root = 0

Uniformly chosen root

Root does not matter

Local convergence: more complicated examples

 $\mu_n = \text{uniform measure on plane trees with } n \text{ vertices:}$

Local convergence: more complicated examples

 $\mu_n = \text{uniform measure on plane trees with } n \text{ vertices:}$

Local convergence: more complicated examples

 $\mu_n = \text{uniform measure on plane trees with } n \text{ vertices:}$

Local limit of large uniformly random triangulations

Theorem [Angel – Schramm, '03]

Let \mathbb{P}_n = uniform distribution on triangulations of size n.

$$\mathbb{P}_n \xrightarrow{(d)} \mathsf{UIPT}$$
, for the local topology

UIPT = Uniform Infinite Planar Triangulation

= measure supported on infinite planar triangulations.

Simulation by I. Kortchemski

Simulation by T.Budd

Local limit of large uniformly random triangulations

Theorem [Angel – Schramm, '03]

Let \mathbb{P}_n = uniform distribution on triangulations of size n.

$$\mathbb{P}_n \xrightarrow{(d)} \mathsf{UIPT}$$
, for the local topology

UIPT = Uniform Infinite Planar Triangulation = measure supported on infinite planar triangulations.

Some properties of the UIPT:

- The UIPT has almost surely one end [Angel Schramm, 03]
- Volume (nb. of vertices) and perimeters of balls known to some extent.

$$\mathbb{E}\left[|B_R(\mathbf{T}_\infty)|\right] \sim \frac{2}{7}R^4$$
 [Angel 04, Curien – Le Gall 12]

• The simple random walk is recurrent [Gurel-Gurevich + Nachmias, 13]

Universality: we expect the same behavior for other "reasonable" models of maps.

In particular, we expect the volume growth to be 4.

(proved for quadrangulations [Krikun 05], simple triangulations [Angel 04])

Suppose that a sequence of random graphs G_n admits a local weak limit G_{∞} ,

Then, $f(G_n) \xrightarrow{proba} f(G_\infty)$ for any f which is continuous for d_{loc} . e.g: $f = |B_R(.)|$

Suppose that a sequence of random graphs G_n admits a local weak limit G_{∞} ,

Then, $f(G_n) \xrightarrow{proba} f(G_\infty)$ for any f which is continuous for d_{loc} . e.g: $f = |B_R(.)|$

Main idea: The limiting object is often "nicer".

Hence, it is easier to compute $f(G_{\infty})$, from which we can deduce the behavior of $f(G_n)$.

Suppose that a sequence of random graphs G_n admits a local weak limit G_{∞} ,

Then, $f(G_n) \xrightarrow{proba} f(G_\infty)$ for any f which is continuous for d_{loc} . e.g: $f = |B_R(.)|$

Main idea: The limiting object is often "nicer".

Hence, it is easier to compute $f(G_{\infty})$, from which we can deduce the behavior of $f(G_n)$.

For graphs, it has been formalized as the objective method [Aldous-Steele 94].

Suppose that a sequence of random graphs G_n admits a local weak limit G_{∞} ,

Then, $f(G_n) \xrightarrow{proba} f(G_\infty)$ for any f which is continuous for d_{loc} . e.g : $f = |B_R(.)|$

Main idea: The limiting object is often "nicer".

Hence, it is easier to compute $f(G_{\infty})$, from which we can deduce the behavior of $f(G_n)$. For graphs, it has been formalized as the objective method [Aldous-Steele 94].

Two example for maps:

one-endedness in the UIPT:

Allows to give an explicit description of what can happen when the map gets disconnected.

spatial Markov property

Simulation by T.Budd

II - Local limits of Ising-weighted triangulations

First, Ising model on a finite deterministic planar triangulation T:

Spin configuration on T:

$$\sigma: V(T) \to \{-1, +1\} = \{ \ominus, \bullet \}.$$

Ising model on T: take a random spin configuration with probability:

$$P(\sigma) \propto e^{\beta J \sum_{v \sim v'} \mathbf{1}_{\{\sigma(v) = \sigma(v')\}}} \qquad \begin{array}{l} \beta > 0: \text{ inverse temperature.} \\ J = \pm 1: \text{ coupling constant.} \\ h = 0: \text{ no magnetic field.} \end{array}$$

First, Ising model on a finite deterministic planar triangulation T:

Spin configuration on T:

$$\sigma: V(T) \to \{-1, +1\} = \{ \Theta, \bullet \}.$$

Ising model on T: take a random spin configuration with probability:

$$P(\sigma) \propto e^{\beta J \sum_{v \sim v'} \mathbf{1}_{\{\sigma(v) = \sigma(v')\}}} \qquad \begin{array}{l} \beta > 0: \text{ inverse temperature.} \\ J = \pm 1: \text{ coupling constant.} \\ h = 0: \text{ no magnetic field.} \end{array}$$

Combinatorial formulation: $P(\sigma) \propto \nu^{m(\sigma)}$

with $m(\sigma) =$ number of monochromatic edges $(\nu = e^{\beta J})$.

First, Ising model on a finite deterministic planar triangulation T:

Spin configuration on T:

$$\sigma: V(T) \to \{-1, +1\} = \{ \Theta, \bullet \}.$$

Ising model on T: take a random spin configuration with probability:

$$P(\sigma) \propto e^{\beta J \sum_{v \sim v'} \mathbf{1}_{\{\sigma(v) = \sigma(v')\}}} \qquad \begin{array}{l} \beta > 0: \text{ inverse temperature.} \\ J = \pm 1: \text{ coupling constant.} \\ h = 0: \text{ no magnetic field.} \end{array}$$

Combinatorial formulation: $P(\sigma) \propto \nu^{m(\sigma)}$

with $m(\sigma) =$ number of monochromatic edges $(\nu = e^{\beta J})$.

Next step: Sample a triangulation of size n together with a spin configuration, with probability $\propto \nu^{m(T,\sigma)}$.

$$\mathbb{P}_n^{
u}igg(\{(T,\sigma)\}igg) = rac{
u^{m(T,\sigma)}\delta_{|e(T)|=3n}}{\mathcal{Z}_n}.$$
 $\mathcal{Z}_n = ext{normalizing constant}.$

First, Ising model on a finite deterministic planar triangulation T:

Spin configuration on T:

$$\sigma: V(T) \to \{-1, +1\} = \{ \Theta, \bullet \}.$$

Ising model on T: take a random spin configuration with probability:

$$P(\sigma) \propto e^{\beta J \sum_{v \sim v'} \mathbf{1}_{\{\sigma(v) = \sigma(v')\}}} \qquad \begin{array}{c} \beta > 0 \text{: inverse temperature.} \\ J = \pm 1 \text{: coupling constant.} \\ h = 0 \text{: no magnetic field.} \end{array}$$

Combinatorial formulation: $P(\sigma) \propto \nu^{m(\sigma)}$

with $m(\sigma) =$ number of monochromatic edges $(\nu = e^{\beta J})$.

Next step: Sample a triangulation of size n together with a spin configuration, with probability $\propto \nu^{m(T,\sigma)}$.

$$\mathbb{P}_n^{
u}igg(\{(T,\sigma)\}igg) = rac{
u^{m(T,\sigma)}\delta_{|e(T)|=3n}}{\mathcal{Z}_n}.$$
 $\mathcal{Z}_n = ext{normalizing constant}.$

Remark: This is a probability distribution on triangulations with spins. But, forgetting the spins gives a probability a distribution on triangulations without spins different from the uniform distribution.

Escaping universality: new asymptotic behavior

Counting exponent for undecorated maps:

```
number of (undecorated) maps of size n \sim \kappa \rho^{-n} n^{-5/2} (e.g.: triangulations, quadrangulations, general maps, simple maps,...) where \kappa and \rho depend on the combinatorics of the model.
```

Escaping universality: new asymptotic behavior

Counting exponent for undecorated maps:

number of (undecorated) maps of size $n \sim \kappa \rho^{-n} n^{-5/2}$

(e.g.: triangulations, quadrangulations, general maps, simple maps,...) where κ and ρ depend on the combinatorics of the model.

Generating series of Ising-weighted triangulations:

$$Z(\nu,t) = \sum_{T \text{ triangulation } \sigma: V(T) \to \{-1,+1\}} \nu^{m(T,\sigma)} t^{e(T)}.$$

Theorem [Bernardi – Bousquet-Mélou 11]

For every $\nu > 0$, $Z(\nu, t)$ is algebraic and satisfies

$$[t^{3n}]Z(\nu,t) \underset{n\to\infty}{\sim} \begin{cases} \kappa \, \rho_{\nu_c}^{-n} \, n^{-7/3} & \text{if } \nu = \nu_c = 1 + \frac{1}{\sqrt{7}}, \\ \kappa \, \rho_{\nu}^{-n} \, n^{-5/2} & \text{if } \nu \neq \nu_c. \end{cases}$$

See also [Boulatov – Kazakov 1987], [Bousquet-Melou – Schaeffer 03] and [Bouttier – Di Francesco – Guitter 04].

This suggests a different behavior of the underlying maps for $\nu = \nu_c$.

Theorem [A. – Ménard – Schaeffer, 21]

Let $\mathbb{P}_n^{\nu} = \nu$ —Ising weighted probability distribution for triangulations of size n:

$$\mathbb{P}_n^{\nu} \xrightarrow{(d)} \nu$$
-IIPT, for the local topology with spins

 $\nu\text{-IIPT} = \nu\text{-Ising Infinite Planar Triangulation}$

Theorem [A. – Ménard – Schaeffer, 21]

Let $\mathbb{P}_n^{\nu} = \nu$ —Ising weighted probability distribution for triangulations of size n:

$$\mathbb{P}_n^{\nu} \xrightarrow{(d)} \nu$$
-IIPT, for the local topology with spins

 ν -IIPT = ν -Ising Infinite Planar Triangulation

Related result by [Chen, Turunen, 20] for a slightly different model.

Theorem [A. – Ménard – Schaeffer, 21]

Let $\mathbb{P}_n^{\nu} = \nu$ —Ising weighted probability distribution for triangulations of size n:

$$\mathbb{P}_n^{\nu} \xrightarrow{(d)} \nu$$
-IIPT, for the local topology with spins

 ν -IIPT = ν -Ising Infinite Planar Triangulation

Related result by [Chen, Turunen, 20] for a slightly different model.

Some properties of the ν -IIPT:

- One-ended a.s.
- Simple random walk is recurrent.
- Geometry of the clusters ?
- Volume (nb. of vertices) and perimeters of balls ???

Theorem [A. – Ménard – Schaeffer, 21]

Let $\mathbb{P}_n^{\nu} = \nu$ —Ising weighted probability distribution for triangulations of size n:

$$\mathbb{P}_n^{\nu} \xrightarrow{(d)} \nu$$
-IIPT, for the local topology with spins

 ν -IIPT = ν -Ising Infinite Planar Triangulation

Related result by [Chen, Turunen, 20] for a slightly different model.

Some properties of the ν -IIPT:

- One-ended a.s.
- Simple random walk is recurrent.
- Geometry of the clusters ?
- Volume (nb. of vertices) and perimeters of balls ???

Non-universality: we expect a **different** behavior for $\nu = \nu_c$

In particular, we expect the volume growth to be different from 4.

Watabiki's conjecture:
$$\frac{7+\sqrt{97}}{4} \sim 4.21...$$

III - Clusters in the ν -IIPT

Ferromagnetic Ising model on \mathbb{Z}^2 : clusters

Simulations by R.Cerf:

One infinite cluster

Ferromagnetic Ising model on \mathbb{Z}^2 : clusters

Simulations by R.Cerf:

[Chelkak+Smirnov 2012]

One infinite cluster

Ferromagnetic Ising model on \mathbb{Z}^2 : clusters

Simulations by R.Cerf:

Same universality class as critical percolation. CLE_6 ??

[Smirnov 2001] for critical percolation

[Chelkak+Smirnov 2012]

One infinite cluster

Clusters in the ν -IIPT: phase transition

Theorem [A. – Ménard, 22+]

Under $\mathbb{P}^{\nu}_{\infty}$, the cluster of the root vertex is:

- finite almost surely for $\nu \leq \nu_c$
- infinite with ("explicit"!) positive probability for $\nu > \nu_c$.

Clusters in the ν -IIPT: phase transition

Theorem [A. – Ménard, 22+]

Under $\mathbb{P}^{\nu}_{\infty}$, the cluster of the root vertex is:

- finite almost surely for $\nu \leq \nu_c$
- infinite with ("explicit"!) positive probability for $\nu > \nu_c$.

Clusters in the ν -IIPT: cluster size exponents

Theorem [A. – Ménard, 22+]

Denote by \mathfrak{C} the spin cluster of the root vertex.

	for $ u < u_c$	for $ u = u_c$	for $ u > u_c$
$\mathbb{P}^{\nu}_{\infty}\left(\mathfrak{C} \geq n\right)$	$\propto n^{-1/7}$	$\propto n^{-1/11}$	not relevant
$\mathbb{P}^{\nu}_{\infty}\left(\left \partial\mathfrak{C}\right =p\right)$	$\propto p^{-2}$	$\propto p^{-4/3}$	$\propto \exp(-\alpha p)$

The special case $\nu=1$: UIPT with critical percolation

Recall that for a triangulation T with spin configuration σ , $\mathbb{P}_n^{\nu}\bigg(\{(T,\sigma)\}\bigg) = \frac{\nu^{m(T,\sigma)}\delta_{|e(T)|=3n}}{\mathcal{Z}_n}.$

For $\nu=1$, all configurations (= trig. + spins) have the same probability

- \Leftrightarrow uniform triangulation of size n where spins are independent and +/- with probability 1/2.
- \Leftrightarrow uniform triangulation of size n with a percolation of parameter 1/2 on its vertices.

The special case $\nu=1$: UIPT with critical percolation

Recall that for a triangulation T with spin configuration σ , $\mathbb{P}_n^{\nu}\bigg(\{(T,\sigma)\}\bigg) = \frac{\nu^{m(T,\sigma)}\delta_{|e(T)|=3n}}{\mathcal{Z}_n}.$

For $\nu=1$, all configurations (= trig. + spins) have the same probability

- \Leftrightarrow uniform triangulation of size n where spins are independent and +/- with probability 1/2.
- \Leftrightarrow uniform triangulation of size n with a percolation of parameter 1/2 on its vertices.

Percolation on the UIPT much studied:

 $p_c = 1/2 + \text{no infinite cluster at } p_c \text{ [Angel 04]}$

 $\mathbb{P}^1_{\infty}= \mathsf{UIPT}$ with critical percolation

Percolation of the UIPT via its clusters in [Bernardi, Curien, Miermont, 17].

The special case $\nu=1$: UIPT with critical percolation

Recall that for a triangulation T with spin configuration σ , $\mathbb{P}_n^{\nu}\bigg(\{(T,\sigma)\}\bigg) = \frac{\nu^{m(T,\sigma)}\delta_{|e(T)|=3n}}{\mathcal{Z}_n}.$

For $\nu=1$, all configurations (= trig. + spins) have the same probability

- \Leftrightarrow uniform triangulation of size n where spins are independent and +/- with probability 1/2.
- \Leftrightarrow uniform triangulation of size n with a percolation of parameter 1/2 on its vertices.

Percolation on the UIPT much studied:

 $p_c = 1/2 + \text{no infinite cluster at } p_c \text{ [Angel 04]}$

 $\mathbb{P}^1_{\infty}= \mathsf{UIPT}$ with critical percolation

Percolation of the UIPT via its clusters in [Bernardi, Curien, Miermont, 17].

Our results reinforce the idea that:

Ising model in high-temperature (i.e. $\nu < \nu_c$) \sim Critical percolation

[Borot – Bouttier – Guitter, 2012], [Bernardi – Curien – Miermont, 2017]

Weight of a triangulation with spins $\mathfrak{t}:=\nu^{m(\mathfrak{t})}\,t^{|E(\mathfrak{t})|}$

[Borot – Bouttier – Guitter, 2012], [Bernardi – Curien – Miermont, 2017]

Weight of a triangulation with spins $\mathfrak{t} := \nu^{m(\mathfrak{t})} t^{|E(\mathfrak{t})|}$

$$\equiv \prod_{f \in \mathsf{Faces}(\mathfrak{C})} (\nu \, t)^{\deg(f)/2} \, \sum_{l} \operatorname{Neck}(\deg(f), l) \, Q_l(\nu, t)$$

[Borot – Bouttier – Guitter, 2012], [Bernardi – Curien – Miermont, 2017]

Weight of a triangulation with spins $\mathfrak{t}:=\nu^{m(\mathfrak{t})}\,t^{|E(\mathfrak{t})|}$

[Borot – Bouttier – Guitter, 2012], [Bernardi – Curien – Miermont, 2017]

Weight of a triangulation with spins $\mathfrak{t} := \nu^{m(\mathfrak{t})} t^{|E(\mathfrak{t})|}$

[Borot – Bouttier – Guitter, 2012], [Bernardi – Curien – Miermont, 2017]

Weight of a triangulation with spins $\mathfrak{t}:=\nu^{m(\mathfrak{t})}\,t^{|E(\mathfrak{t})|}$

[Borot – Bouttier – Guitter, 2012], [Bernardi – Curien – Miermont, 2017]

Weight of a triangulation with spins $\mathfrak{t} := \nu^{m(\mathfrak{t})} t^{|E(\mathfrak{t})|}$

$$\equiv \prod_{f \in \mathsf{Faces}(\mathfrak{C})} (\nu t)^{\deg(f)/2} \sum_{l} \mathrm{Neck}(\deg(f), l) \, Q_l(\nu, t)$$

$$\equiv \prod_{f \in \mathsf{Faces}(\mathfrak{C})} q_{\deg(f)}(\nu, t)$$

[Borot - Bouttier - Guitter, 2012], [Bernardi - Curien - Miermont, 2017]

Weight of a triangulation with spins $\mathfrak{t} := \nu^{m(\mathfrak{t})} t^{|E(\mathfrak{t})|}$

$$\equiv \prod_{f \in \mathsf{Faces}(\mathfrak{C})} (\nu t)^{\deg(f)/2} \sum_{l} \mathrm{Neck}(\deg(f), l) \, Q_l(\nu, t)$$

$$\equiv \prod_{f \in \mathsf{Faces}(\mathfrak{C})} q_{\deg(f)}(\nu,t) \quad \text{, where} \quad q_k(\nu,t) = (\nu\,t)^{k/2}\,\mathbf{1}_{\{k=3\}} \\ \qquad \qquad + \left(\nu\,t^3\right)^{k/2} \cdot \sum_{l \geq 0} \binom{k+l-1}{k-1}\,t^l\,Q_l^+(\nu,t)$$

Boltzmann map associated to $(q_k) =$

Probability distribution on the set of rooted planar maps such that:

$$\mathbb{P}^{\mathrm{bol}}(\mathfrak{m}) \propto \prod_{f \in F(\mathfrak{m})} q_{\deg(f)} \quad \text{for any rooted planar map } \mathfrak{m}$$

$$\mathbb{P}^{\mathrm{bol}} \text{ is admissible if } \sum_{\mathfrak{m} \in \mathcal{M}} \prod_{f \in F(\mathfrak{m})} q_{\deg(f)} < \infty$$

Boltzmann map associated to $(q_k) =$

Probability distribution on the set of rooted planar maps such that:

$$\mathbb{P}^{\mathrm{bol}}(\mathfrak{m}) \propto \prod_{f \in F(\mathfrak{m})} q_{\deg(f)} \quad \text{for any rooted planar map } \mathfrak{m}$$

$$\mathbb{P}^{\mathrm{bol}} \text{ is admissible if } \sum_{\mathfrak{m} \in \mathcal{M}} \prod_{f \in F(\mathfrak{m})} q_{\deg(f)} < \infty$$

Properties of the random map depends on the properties of (q_k) .

Boltzmann map associated to $(q_k) =$

Probability distribution on the set of rooted planar maps such that:

$$\mathbb{P}^{\mathrm{bol}}(\mathfrak{m}) \propto \prod_{f \in F(\mathfrak{m})} q_{\deg(f)} \quad \text{for any rooted planar map } \mathfrak{m}$$

$$\mathbb{P}^{\mathrm{bol}} \text{ is admissible if } \sum_{\mathfrak{m} \in \mathcal{M}} \prod_{f \in F(\mathfrak{m})} q_{\deg(f)} < \infty$$

Properties of the random map depends on the properties of (q_k) .

[Marckert-Miermont, Miermont-Le Gall, Borot-Bouttier-Guitter, Budd, Bernardi-Curien-Miermont, Marzouk]

The Bouttier – Di Francesco – Guitter bijection (a.k.a the BDG bijection).

Boltzmann map associated to $(q_k) =$

Probability distribution on the set of rooted planar maps such that:

$$\mathbb{P}^{\mathrm{bol}}(\mathfrak{m}) \propto \prod_{f \in F(\mathfrak{m})} q_{\deg(f)} \quad \text{for any rooted planar map } \mathfrak{m}$$

$$\mathbb{P}^{\mathrm{bol}} \text{ is admissible if } \sum_{\mathfrak{m} \in \mathcal{M}} \prod_{f \in F(\mathfrak{m})} q_{\deg(f)} < \infty$$

Properties of the random map depends on the properties of (q_k) .

[Marckert-Miermont, Miermont-Le Gall, Borot-Bouttier-Guitter, Budd, Bernardi-Curien-Miermont, Marzouk]

 $\mathbb{P}^{\mathsf{bol}}$ is critical if $\mathbb{E}^{\mathsf{bol}}(|\mathbf{m}|) < \infty$ and $\mathbb{E}^{\mathsf{bol}}(|\mathbf{m}|^2) = \infty$.

Boltzmann map associated to $(q_k) =$

Probability distribution on the set of rooted planar maps such that:

$$\mathbb{P}^{\mathrm{bol}}(\mathfrak{m}) \propto \prod_{f \in F(\mathfrak{m})} q_{\deg(f)} \quad \text{for any rooted planar map } \mathfrak{m}$$

$$\mathbb{P}^{\mathrm{bol}} \text{ is admissible if } \sum_{\mathfrak{m} \in \mathcal{M}} \prod_{f \in F(\mathfrak{m})} q_{\deg(f)} < \infty$$

Properties of the random map depends on the properties of (q_k) .

```
\mathbb{P}^{\mathsf{bol}} is critical if \mathbb{E}^{\mathsf{bol}}(|\mathbf{m}|) < \infty and \mathbb{E}^{\mathsf{bol}}(|\mathbf{m}|^2) = \infty.
```

- \mathbb{P}^{bol} is regular critical if \mathbb{P}^{bol} (degree of a typical face > k) decreases exponentially.
- \mathbb{P}^{bol} is non-regular critical if \mathbb{P}^{bol} (degree of a typical face > k) decreases polynomially.

Boltzmann map associated to $(q_k) =$

Probability distribution on the set of rooted planar maps such that:

$$\mathbb{P}^{\mathrm{bol}}(\mathfrak{m}) \propto \prod_{f \in F(\mathfrak{m})} q_{\deg(f)} \quad \text{for any rooted planar map } \mathfrak{m}$$

$$\mathbb{P}^{\mathrm{bol}} \text{ is admissible if } \sum_{\mathfrak{m} \in \mathcal{M}} \prod_{f \in F(\mathfrak{m})} q_{\deg(f)} < \infty$$

Properties of the random map depends on the properties of (q_k) .

$$\mathbb{P}^{\mathsf{bol}} \text{ is critical if } \mathbb{E}^{\mathsf{bol}}(|m|) < \infty \text{ and } \mathbb{E}^{\mathsf{bol}}(|m|^2) = \infty.$$

- \mathbb{P}^{bol} is regular critical if \mathbb{P}^{bol} (degree of a typical face > k) decreases exponentially.
- \mathbb{P}^{bol} is non-regular critical if \mathbb{P}^{bol} (degree of a typical face > k) decreases polynomially.

Boltzmann map associated to $(q_k) =$

Probability distribution on the set of rooted planar maps such that:

$$\mathbb{P}^{\mathrm{bol}}(\mathfrak{m}) \propto \prod_{f \in F(\mathfrak{m})} q_{\deg(f)} \quad \text{for any rooted planar map } \mathfrak{m}$$

$$\mathbb{P}^{\mathrm{bol}} \text{ is admissible if } \sum_{\mathfrak{m} \in \mathcal{M}} \prod_{f \in F(\mathfrak{m})} q_{\deg(f)} < \infty$$

Properties of the random map depends on the properties of (q_k) .

$$\mathbb{P}^{\mathsf{bol}} \text{ is critical if } \mathbb{E}^{\mathsf{bol}}(|m|) < \infty \text{ and } \mathbb{E}^{\mathsf{bol}}(|m|^2) = \infty.$$

- \mathbb{P}^{bol} is regular critical if \mathbb{P}^{bol} (degree of a typical face > k) decreases exponentially.
- \mathbb{P}^{bol} is non-regular critical if \mathbb{P}^{bol} (degree of a typical face > k) decreases polynomially.

Idea of the proof III: singularity analysis via rational parametrization

$$Q^+(\nu,t,y) := \sum_{l \geq 0} Q_l^+(\nu,t) y^l, \qquad \text{where } Q_l^+ := \sum_{l \geq 0} t^{|T|} \nu^{m(T,\sigma)}$$

$$(T,\sigma) = \bigcup_{l \geq 0} l$$

Theorem [A. – Ménard, 22+]

Study of the singular developments of Q^+ in t and in y.

Idea of the proof III: singularity analysis via rational parametrization

$$Q^+(\nu,t,y):=\sum_{l\geq 0}Q^+_l(\nu,t)y^l, \qquad \text{where } Q^+_l:=\sum_{l\geq 0}t^{|T|}\nu^{m(T,\sigma)}$$

$$(T,\sigma)=\bigcup_{l\geq 0}l$$

Theorem [A. – Ménard, 22+]

Study of the singular developments of Q^+ in t and in y.

Sketch of the proof:

- Obtained in [AMS 21] an algebraic equation for Q^+ , by Tutte's invariants method [Bernardi, Bousquet-Mélou].
- ullet We use the rational parametrization (for t) given in [Bernardi, Bousquet-Mélou] for Q_1 .
- ullet With Maple, we compute a rational parametrization (for y) for different values of ν .
- We interpolate the coefficients given in the different parametrizations.
- With the rational parametrizations (and Maple), can compute the asymptotics.

Same strategy used in a slightly different context by [Chen, Turunen]

Idea of the proof III: singularity analysis via rational parametrization

$$Q^{+}(\nu, t, y) := \sum_{l \geq 0} Q_{l}^{+}(\nu, t) y^{l}, \qquad \text{where } Q_{l}^{+} := \sum_{l \geq 0} t^{|T|} \nu^{m(T, \sigma)}$$

$$t^{3} = U \frac{((1+\nu)U - 2) P(\nu, U)}{32\nu^{3}(1-2U)^{2}}$$

$$y = \frac{8\nu(1-2U)}{U\left((1+\nu)\cdot U - 2\right)} \cdot \frac{V(V+1)}{V^3 + \frac{9(1+\nu)\cdot U^2 - 2(3+10\nu)U + 8\nu}{U\left((1+\nu)\cdot U - 2\right)}V^2 - \frac{9(1+\nu)\cdot U - 2(2\nu+3)}{U\left((1+\nu)\cdot U - 2\right)}V - \frac{V(V+1)}{U\left((1+\nu)\cdot U - 2\right)}V - \frac{$$

$$\begin{split} \hat{Q}^{+}(\nu,U,V) &= U \cdot \frac{\left((1+\nu) \cdot U - 2\right)(1-\nu)}{(V+1)^{3} \cdot P(\nu,U)} \\ &\times \left(V^{3} + \frac{9(1+\nu) \cdot U^{2} - 2(3+10\nu) \cdot U + 8\nu}{U \cdot \left((1+\nu) \cdot U - 2\right)} \cdot V^{2} - \frac{9(1+\nu) \cdot U - 2(2\nu+3)}{U \cdot \left((1+\nu) \cdot U - 2\right)} \cdot V - 1\right) \\ &\times \left(V^{2} + \frac{5(1+\nu) \cdot U^{2} - 2(3\nu+2) \cdot U + 2\nu}{U \cdot \left((1+\nu) \cdot U - 2\right)} \cdot 2V - \frac{P(\nu,U)}{U \cdot \left((1+\nu) \cdot U - 2\right)(1-\nu))}\right) \end{split}$$

Idea of the proof IV: Computations + Maple =

Idea of the proof IV: Computations + Maple =

We compute explicitely:

$$\mathbb{P}_{\infty}^{\nu}\left(|\mathsf{cluster}|<\infty\right) = \sum_{c \in \mathcal{M}} \mathbb{P}_{\infty}^{\nu}\left(\mathsf{cluster} = c\right)$$

Idea of the proof IV: Computations + Maple = (

We compute explicitely:

$$\mathbb{P}_{\infty}^{\nu}\left(\left|\mathsf{cluster}\right|<\infty\right) = \sum_{c \in \mathcal{M}} \mathbb{P}_{\infty}^{\nu}\left(\mathsf{cluster}=c\right) = 1 \quad \text{for } \nu \leq \nu_c.$$

Idea of the proof IV: Computations + Maple =

We compute explicitely:

$$\mathbb{P}_{\infty}^{\nu}\left(\left|\mathsf{cluster}\right|<\infty\right) = \sum_{c \in \mathcal{M}} \mathbb{P}_{\infty}^{\nu}\left(\mathsf{cluster}=c\right) = 1 \quad \text{for } \nu \leq \nu_c.$$

For $\nu > \nu_c$, we obtain an expression with an integral.

Additional results:

We obtain similar tail estimates for the size of the clusters for related models:

- Ising-weighted Boltzmann triangulations
 We recover in particular the results obtained in [Bernardi, Curien, Miermont]
 Connections with some results obtained in [Borot, Bouttier, Guitter] and [Borot, Bouttier, Duplantier].
- Expected size of the cluster for Ising-weighted triangulations of size n.

	for $ u < u_c$	for $\nu=\nu_c$	for $ u > u_c$
$\mathbb{E}_n^ u\left(cluster ight) \sim$	$c(\nu) n^{3/4}$	$c(\nu_c) n^{5/6}$	c(u) n

• Geometry of cluster interfaces, via looptrees [Curien, Kortchemski 15].

IV - Link with Liouville Quantum Gravity and KPZ relation

Originally the Ising model was studied on regular lattices such as \mathbb{Z}^2 [Ising, Onsager].

Originally the Ising model was studied on regular lattices such as \mathbb{Z}^2 [Ising, Onsager].

Why do we study it on random metric spaces?

Originally the Ising model was studied on regular lattices such as \mathbb{Z}^2 [Ising, Onsager].

Why do we study it on **random** metric spaces ?

In general relativity, the underlying space is not Euclidian anymore but is a Riemannian space, whose curvature describes the gravity.

One of the main challenge of modern physics is to make two theories consistent:

- quantum mechanics (which governs microscopic scales)
- general relativity (which governs macroscopic scales)

Originally the Ising model was studied on regular lattices such as \mathbb{Z}^2 [Ising, Onsager].

Why do we study it on **random** metric spaces ?

In general relativity, the underlying space is not Euclidian anymore but is a Riemannian space, whose curvature describes the gravity.

One of the main challenge of modern physics is to make two theories consistent:

- quantum mechanics (which governs microscopic scales)
- general relativity (which governs macroscopic scales)

One attempt to reconcile these two theories, is the Liouville Quantum gravity which replaces the deterministic Riemannian space by a random metric space.

Liouville Quantum Gravity

For $\gamma \in (0,2)$, γ -Liouville Quantum Gravity (or γ -LQG) = measure on a surface defined as the "exponential of the Gaussian Free Field" [Polyakov, 1981], [Duplantier, Sheffield 2011].

Liouville Quantum Gravity

For $\gamma \in (0,2)$, γ -Liouville Quantum Gravity (or γ -LQG) = measure on a surface defined as the "exponential of the Gaussian Free Field" [Polyakov, 1981], [Duplantier, Sheffield 2011].

Maps without matter converge to $\sqrt{8/3}$ -LQG [Miermont 13, Le Gall 13, Miller-Sheffield 16+16+17, Holden-Sun 20].

Simulation of the Brownian map by T.Budd

Simulation of a large simple triangulation embedded in the sphere by circle packing. Software CirclePack by K.Stephenson.

Simulation of $\sqrt{\frac{8}{3}}\text{-LQG}$ by T.Budd

Liouville Quantum Gravity

For $\gamma \in (0,2)$, γ -Liouville Quantum Gravity (or γ -LQG) = measure on a surface defined as the "exponential of the Gaussian Free Field" [Polyakov, 1981], [Duplantier, Sheffield 2011].

Maps without matter converge to $\sqrt{8/3}$ -LQG [Miermont 13, Le Gall 13, Miller-Sheffield 16+16+17, Holden-Sun 20].

Simulation of the Brownian map by T.Budd

Simulation of a large simple triangulation embedded in the sphere by circle packing. Software CirclePack by K.Stephenson.

Simulation of $\sqrt{\frac{8}{3}}\text{-LQG}$ by T.Budd

Other statistical models on random maps are believed to converge towards γ -LQG: For critical Ising model on maps, $\gamma = \sqrt{3}$ (for non-critical Ising, $\gamma = \sqrt{8/3}$).

Decorated γ **-LQG**

Statistical models on random maps are believed to converge towards γ -LQG:

- Established for maps without matter, $\gamma = \sqrt{8/3}$.
- Conjectured for critical Ising model on maps, $\gamma = \sqrt{3}$
- Conjectured for non-critical Ising model on maps, $\gamma = \sqrt{8/3}$

Decorated γ -LQG

Statistical models on random maps are believed to converge towards γ -LQG:

- Established for maps without matter, $\gamma = \sqrt{8/3}$.
- Conjectured for critical Ising model on maps, $\gamma = \sqrt{3}$
- Conjectured for non-critical Ising model on maps, $\gamma = \sqrt{8/3}$

What about the clusters? And their boundary?

Recall the behaviour in the Euclidean case:

Critical Ising model

 CLE_3

Decorated γ -LQG

Statistical models on random maps are believed to converge towards γ -LQG:

- Established for maps without matter, $\gamma = \sqrt{8/3}$.
- Conjectured for critical Ising model on maps, $\gamma = \sqrt{3}$
- Conjectured for non-critical Ising model on maps, $\gamma = \sqrt{8/3}$

What about the clusters? And their boundary?

Recall the behaviour in the Euclidean case:

We expect the same behaviour but on the corresponding γ -LQG.

Critical Ising model

 CLE_3

For critical percolation on uniform triangulations, proved by [Holden-Sun 20], building on earlier works [Bernardi-Holden-Sun 18] and [Gwynne-Holden-Sun 21].

Decorated γ -LQG and KPZ

The KPZ relation [Knizhnik, Polyakov, Zamolodchikov, 1988], [Duplantier, Sheffield 2011]:

$$x = \frac{\gamma^2}{4}\Delta^2 + \left(1 - \frac{\gamma^2}{4}\right)\Delta.$$

links the Eucliden conformal weight x of a fractal to its quantum counterpart Δ .

i.e. We could "transfer" volume and perimeter exponents from deterministic to random geometry and vice versa.

Decorated γ -LQG and KPZ

The KPZ relation [Knizhnik, Polyakov, Zamolodchikov, 1988], [Duplantier, Sheffield 2011]:

$$x = \frac{\gamma^2}{4}\Delta^2 + \left(1 - \frac{\gamma^2}{4}\right)\Delta.$$

links the Eucliden conformal weight x of a fractal to its quantum counterpart Δ .

i.e. We could "transfer" volume and perimeter exponents from **deterministic** to **random** geometry and vice versa.

Exponents for the perimeter $|\partial \mathfrak{C}|$:

For $\nu=\nu_c$ KPZ, $\gamma=\sqrt{3}$ Dimension of SLE $_3$

Exponents for the volume $|\mathfrak{C}|$:

For
$$\nu = \nu_c$$
 \blacktriangleright Dimension of the gasket of CLE₃

Decorated γ -LQG and KPZ

The KPZ relation [Knizhnik, Polyakov, Zamolodchikov, 1988], [Duplantier, Sheffield 2011]:

$$x = \frac{\gamma^2}{4}\Delta^2 + \left(1 - \frac{\gamma^2}{4}\right)\Delta.$$

links the Eucliden conformal weight x of a fractal to its quantum counterpart Δ .

i.e. We could "transfer" volume and perimeter exponents from deterministic to random geometry and vice versa.

Exponents for the perimeter $|\partial \mathfrak{C}|$:

For
$$\nu < \nu_c$$
 KPZ, $\gamma = \sqrt{8/3}$

Dimension of SLE₆ [Beffara 08]

For
$$\nu = \nu_c$$
 KPZ, $\gamma = \sqrt{3}$

Dimension of SLE₃

All exponents match!

Exponents for the volume $|\mathfrak{C}|$:

For
$$\nu < \nu_c$$
 KPZ, $\gamma = \sqrt{8/3}$

Dimension of the gasket of CLE₆ [Miller, N.Sun, Watson 14]

For
$$\nu = \nu_c$$
 \longleftrightarrow Dimension of the KPZ, $\gamma = \sqrt{3}$

Dimension of the gasket of CLE₃

Perspectives

- Singularity with respect to the UIPT for $\nu \neq 1$.
- Geometry of the map via its clusters (especially for $\nu > \nu_c$).
- Convergence to the Brownian map for $\nu \neq \nu_c$.

Perspectives

- Singularity with respect to the UIPT for $\nu \neq 1$.
- Geometry of the map via its clusters (especially for $\nu > \nu_c$).
- Convergence to the Brownian map for $\nu \neq \nu_c$.
- Volume growth exponent > 4 for $\nu = \nu_c$.
- Find a bijection!
 Bijections with walks in the 1/4-plane for a "mating of trees" approach?
 And extend results in [Gwynne, Holden, Sun, 20]?

Perspectives

- Singularity with respect to the UIPT for $\nu \neq 1$.
- Geometry of the map via its clusters (especially for $\nu > \nu_c$).
- Convergence to the Brownian map for $\nu \neq \nu_c$.
- Volume growth exponent > 4 for $\nu = \nu_c$.
- Find a bijection ! Bijections with walks in the 1/4-plane for a "mating of trees" approach ? And extend results in [Gwynne, Holden, Sun, 20] ?

Thank you for your attention!