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Maps — Definition(s)

A planar map is a proper embedding of a planar connected graph in the
2-dimensional sphere (considered up to orientation-preserving homeomorphisms).
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Planar map = planar graph + cyclic order of edges around each vertex.

To avoid dealing with symmetries: maps are rooted (an edge is marked and oriented).

M = set of rooted planar maps

A map M defines a discrete metric space:
e points: set of vertices of M = V(M).

e distance: graph distance = dg .



Triangulations

A triangulation is a planar map in which
all faces have degree 3.

Triangulation of size n has 3n edges
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A triangulation is a planar map in which
all faces have degree 3.

Triangulation of size n has 3n edges

(or equivalently n + 2 vertices, 2n faces). g
A triangulation with a boundary is a
planar map in which all faces have
degree 3, except possibly the root face.
=

Triangulation with a boundary of length 4.
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What does a random triangulation of size n look like (as n tends to oc0)?
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A triangulation is a planar map in which
all faces have degree 3.

Triangulation of size n has 3n edges
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(or equivalently n + 2 vertices, 2n faces).

What does a random triangulation of size n look like (as n tends to o0)?
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Local topology (~ Benjamini—Schramm convergence)

For m a rooted planar map and R € N*,

Br(m) = ball of radius R around the root vertex of m

Definition: m,, — m for the local topology
The local topology on G is induced by the =

distance:

] For all fixed R, there exists ng s.t.:

dioe(m, m') := _
l (m m) 1—|—maX{R2 0 : BR(HI) _ BR(m BR(mn) = BR(m) for n Z no
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Local topology (~ Benjamini—Schramm convergence)

For m a rooted planar map and R € N*,

Br(m) = ball of radius R around the root vertex of m

Definition: m,, — m for the local topology
The local topology on G is induced by the =

distance:

] For all fixed R, there exists ng s.t.:

dioe(m, m') := _
l (m m) 1—|—maX{R2 0 : BR(HI) _ BR(m BR(mn) = BR(m) for n Z no

First examples:

—o—o - *—o—o _ (Z+’0) *—0o o ---- *—eo—o N (Z’ 0)
0 1 2 n 0 1 2 n
Root = 0 Uniformly chosen root

— (Z,0)

Root does not matter
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Local convergence: more complicated examples

L., = uniform measure on plane trees with n vertices:

T

1/5  1/5  1/5 | 1/5

o

The limit is a probability distribution on
infinite trees with one infinite branch [Kesten].
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Local limit of large uniformly random triangulations

Theorem [Angel — Schramm, '03]
Let IP,, = uniform distribution on triangulations of size n.

P, —“ s UIPT, for the local topology

= Uniform Infinite Planar Triangulation
= measure supported on infinite planar triangulations.
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Local limit of large uniformly random triangulations

Theorem [Angel — Schramm, '03]
Let IP,, = uniform distribution on triangulations of size n.

P, —%Y » UIPT, for the local topology

UIPT = Uniform Infinite Planar Triangulation
— measure supported on infinite planar triangulations.

Some properties of the UIPT:
e The UIPT has almost surely one end [Angel — Schramm), 03]
e Volume (nb. of vertices) and perimeters of balls known to some extent.

2
E [|Br(Tso)|] ~ ?R‘L [Angel 04, Curien — Le Gall 12]

e The simple random walk is recurrent [Gurel-Gurevich + Nachmias, 13]

Universality: we expect the same behavior for other “reasonable” models of maps.
In particular, we expect the volume growth to be 4.

(proved for quadrangulations [Krikun 05], simple triangulations [Angel 04])
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Two example for maps:

e one-endedness in the UIPT:

Allows to give an explicit description of what can
happen when the map gets disconnected.

e spatial Markov property 5 {A \
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Il - Local limits
of Ising-weighted triangulations



Escaping universality: adding matter

First, Ising model on a finite deterministic planar triangulation T":

Spin configuration on T
o:V(T)—{-1,+1} ={e.0 }.
Ising model on T': take a random spin configuration with probability:

BJ a1 _ / B > 0: inverse temperature.
P(O-) X € ZU vl e (v)=a(v)) J = =£1: coupling constant.

h = 0O: no magnetic field.
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Escaping universality: adding matter

First, Ising model on a finite deterministic planar triangulation T":

Spin configuration on T

o:V(T)—{-1,+1} ={e,0 }.

m(o) =5
Ising model on T': take a random spin configuration with probability:
J 1 _ B > 0: inverse temperature.
P(O-) X 65 ZUNU, {o(w)=a (D} J = =£1: coupling constant.
h = 0O: no magnetic field.
o~ Combinatorial formulation: P(c) oc ™)

with m (o) = number of monochromatic edges (v = e””).

v™ TG 1y =3n
Zn

Z, = normalizing constant.

Next step: Sample a triangulation of size n [p); ({(T) g)}) —

together with a spin configuration,

with probability oc 2™(T>9),

Remark: This is a probability distribution on triangulations with spins. But, forgetting the
spins gives a probability a distribution on triangulations without spins different from the
uniform distribution.



Escaping universality: new asymptotic behavior

Counting exponent for undecorated maps:

number of (undecorated) maps of size n ~ kp~"n">/2

(e.g.: triangulations, quadrangulations, general maps, simple maps,...)
where k and p depend on the combinatorics of the model.



Escaping universality: new asymptotic behavior

Counting exponent for undecorated maps:

number of (undecorated) maps of size n ~ kp~"n">/2

(e.g.: triangulations, quadrangulations, general maps, simple maps,...)
where k and p depend on the combinatorics of the model.

Generating series of Ising-weighted triangulations:

Z(v,t) = Z Z o) el

T triangulation o:V(T)—{—1,41}

Theorem [Bernardi — Bousquet-Mélou 11]
For every v > 0, Z(v,t) is algebraic and satisfies

—5/2

—n, —T7/3
[tgn]Z(y,t) N {/ﬁzpuc n

See also [Boulatov — Kazakov 1987], [Bousquet-Melou — Schaeffer 03]
and [Bouttier — Di Francesco — Guitter 04].

This suggests a different behavior of the underlying maps for v = v..
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Local convergence of triangulations with spins

Theorem [A. — Ménard — Schaeffer, 21]
Let P¥ = v—Ising weighted probability distribution for triangulations of size n:

P Y 5 L |IPT, for the local topology with spins

n

v-lIIPT = v-Ising Infinite Planar Triangulation

Related result by [Chen, Turunen, 20| for a slightly different model.

Some properties of the v-IIPT:
e One-ended a.s.
Simple random walk is recurrent.
e Geometry of the clusters ?
e Volume (nb. of vertices) and perimeters of balls 777

Non-universality: we expect a different behavior for v = v,

In particular, we expect the volume growth to be different from 4.

Watabiki's conjecture: 7+}l/9_7 ~4.21...
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Ferromagnetic Ising model on Z*: clusters

Simulations by R.Cerf:

Same universality class as CLE; One infinite cluster
critical percolation.
CLEg 77 [Chelkak+Smirnov 2012]

[Smirnov 2001]
for critical percolation



Clusters in the v-l1IPT: phase transition

Theorem [A. — Ménard, 22+]
Under P7_, the cluster of the root vertex is:

e finite almost surely for v < v,

e infinite with (“explicit”!) positive probability for v > v..
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Clusters in the v-1IPT: phase transition

Theorem [A. — Ménard, 22+]
Under P7_, the cluster of the root vertex is:

e finite almost surely for v < v,

e infinite with (“explicit”!) positive probability for v > v..

- PZ, (€] = oo)

0.5

0.4 . . .
Percolation critical exponent:

PZ (|€] = 00) ~ k(v — Vc)1/4

0.3 1

0.2 4
0.1 ,G Z°, exponent = 1/8 [Onsager 1944], [Yang 1952].
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Clusters in the v-lIPT: cluster size exponents

Theorem [A. — Ménard, 22+]

Denote by € the spin cluster of the root vertex.




The special case v = 1: UIPT with critical percolation

m(1,o
v™ ) ) =3

Recall that for a triangulation T" with spin configuration o, P, ({(T, a)}) = =

For v = 1, all configurations (= trig. + spins) have the same probability
& uniform triangulation of size n where spins are independent and + /- with probability 1/2.

< uniform triangulation of size n with a percolation of parameter 1/2 on its vertices.
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The special case v = 1: UIPT with critical percolation

. . . . . . y ™) S oy —an
Recall that for a triangulation T" with spin configuration o, P, ({(T, a)}) = Z

For v = 1, all configurations (= trig. + spins) have the same probability
& uniform triangulation of size n where spins are independent and + /- with probability 1/2.

< uniform triangulation of size n with a percolation of parameter 1/2 on its vertices.

Percolation on the UIPT much studied:
pe = 1/2 + no infinite cluster at p. [Angel 04]

P! = UIPT with critical percolation

Percolation of the UIPT via its clusters in [Bernardi, Curien, Miermont, 17].

Our results reinforce the idea that:

Ising model in high-temperature (i.e. v < v.) ~ Critical percolation
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Idea of the proof |I: Gasket decomposition
[Borot — Bouttier — Guitter, 2012], [Bernardi — Curien — Miermont, 2017]

Weight of a triangulation with spins t := ™V ¢|E(V)]

Total weight of triangulations with spin cluster €:

= || @e)e)2 N "Neck(deg(f), 1) Qu(v,1)

fE€Faces(<)

= H Gaeg(f) (V5 1) , Where a(v,t) = (v )™° Lisy

fEFaces(®) + (v t3)k/2 s TN T QS (1)




Idea of the proof Il: Boltzmann maps

Boltzmann map associated to (q;) =
Probability distribution on the set of rooted planar maps such that:

IP’bO' H deg(f)  for any rooted planar map m
fEF (m)
PP is admissible if 35 o\ T e p(m) Qdes(s) < 0©



Idea of the proof Il: Boltzmann maps

Boltzmann map associated to (q;) =
Probability distribution on the set of rooted planar maps such that:

IP’bO' H deg(f)  for any rooted planar map m
fEF (m)
PP is admissible if 35 o\ T e p(m) Qdes(s) < 0©

Properties of the random map depends on the properties of (gx).

[Marckert-Miermont, Miermont-Le Gall, Borot-Bouttier-Guitter, Budd,
Bernardi-Curien-Miermont, Marzouk]



Idea of the proof Il: Boltzmann maps

Boltzmann map associated to (q;) =
Probability distribution on the set of rooted planar maps such that:

IP’bO' H deg(f)  for any rooted planar map m
fEF (m)
PP is admissible if 35 o\ T e p(m) Qdes(s) < 0©

Properties of the random map depends on the properties of (gx).

[Marckert-Miermont, Miermont-Le Gall, Borot-Bouttier-Guitter, Budd,
Bernardi-Curien-Miermont, Marzouk]

The Bouttier — Di Francesco — Guitter bijection (a.k.a the BDG bijection).
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Idea of the proof IllI:
singularity analysis via rational parametrization

Q+(V7t7 y) = Z Qf(u, t)yl, where Ql‘F = Ztmym(T"’)
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Study of the singular developments of QT in ¢t and in .




Idea of the proof IllI:
singularity analysis via rational parametrization

QT (v, t,y) : ZQZ (v, 1)y where Ql . Ztm m(To)

= =&y

Theorem [A. — Ménard, 22+]

Study of the singular developments of Q" in ¢t and in .

Sketch of the proof:

e Obtained in [AMS 21] an algebraic equation for Q*, by Tutte's invariants method
[Bernardi, Bousquet-Mélou].

e We use the rational parametrization (for t) given in [Bernardi, Bousquet-Mélou] for Q.
e With Maple, we compute a rational parametrization (for y) for different values of v.

e We interpolate the coefficients given in the different parametrizations.

e With the rational parametrizations (and Maple), can compute the asymptotics.

Same strategy used in a slightly different context by [Chen, Turunen]



Idea of the proof IllI:
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We compute explicitely:

P (|cluster| < co) = Z P2 (cluster =c) =1 forv < ..
ceM

For v > v,., we obtain an expression with an integral.

0.9 4

0.8 1

0.7

0.6

0.5

0.4 1

3 5

0.2 1

0.1




Additional results:

We obtain similar tail estimates for the size of the clusters for related models:

e Ising-weighted Boltzmann triangulations
We recover in particular the results obtained in [Bernardi, Curien, Miermont]

Connections with some results obtained in [Borot, Bouttier, Guitter| and
[Borot, Bouttier, Duplantier].

e Expected size of the cluster for Ising-weighted triangulations of size n.

for v < v, for v = 1, for v > v,

E¥ (|cluster|) ~

e Geometry of cluster interfaces, via looptrees [Curien, Kortchemski 15].
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Motivations from statistical physics

Originally the Ising model was studied on
regular lattices such as Z? [Ising, Onsager].

Why do we study it on random metric spaces ?

In general relativity, the underlying space is not Euclidian anymore but is a
Riemannian space, whose curvature describes the gravity.

One of the main challenge of modern physics is to make two theories consistent:
e quantum mechanics (which governs microscopic scales)

e general relativity (which governs macroscopic scales)

One attempt to reconcile these two theories, is the Liouville Quantum gravity
which replaces the deterministic Riemannian space by a random metric space.



Liouville Quantum Gravity

For v € (0,2), 7-Liouville Quantum Gravity (or 7-LQG)
— measure on a surface defined as the “exponential of the Gaussian Free Field”
[Polyakov, 1981], [Duplantier, Sheffield 2011].



Liouville Quantum Gravity

For v € (0,2), 7-Liouville Quantum Gravity (or 7-LQG)
— measure on a surface defined as the “exponential of the Gaussian Free Field”
[Polyakov, 1981], [Duplantier, Sheffield 2011].

Maps without matter converge to 1/8/3-LQG
[Miermont 13, Le Gall 13, Miller-Sheffield 16+16+17, Holden-Sun 20].

Simulation of the Brownian map Simulation of a large simple triangulation Simulation of %-LQG
by T.Budd embedded in the sphere by circle packing. by T.Budd

Software CirclePack by K.Stephenson.



Liouville Quantum Gravity

For v € (0,2), 7-Liouville Quantum Gravity (or 7-LQG)
— measure on a surface defined as the “exponential of the Gaussian Free Field”
[Polyakov, 1981], [Duplantier, Sheffield 2011].

Maps without matter converge to 1/8/3-LQG
[Miermont 13, Le Gall 13, Miller-Sheffield 16+16+17, Holden-Sun 20].
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Simulation of the Brownian map Simulation of a large simple triangulation Simulation of %-LQG
by T.Budd embedded in the sphere by circle packing. by T.Budd

Software CirclePack by K.Stephenson.

Other statistical models on random maps are believed to converge towards v-LQG:
For critical Ising model on maps, v = /3 (for non-critical Ising, v = 1/8/3).



Decorated 7-LQG

Statistical models on random maps are believed to converge towards v-LQG:

e Established for maps without matter, v = /8/3.
e Conjectured for critical Ising model on maps, v = /3

e Conjectured for non-critical Ising model on maps, v = /8/3



Decorated 7-LQG

Statistical models on random maps are believed to converge towards v-LQG:

e Established for maps without matter, v = /8/3.
e Conjectured for critical Ising model on maps, v = /3

e Conjectured for non-critical Ising model on maps, v = /8/3

What about the clusters 7 And their boundary ?

Vv < Ve

R
2

Recall the behaviour in the
Euclidean case:

Critical Ising model




Decorated 7-LQG

Statistical models on random maps are believed to converge towards v-LQG:

e Established for maps without matter, v = /8/3.
e Conjectured for critical Ising model on maps, v = /3

e Conjectured for non-critical Ising model on maps, v = /8/3

What about the clusters 7 And their boundary ?
v < Ve Critical Ising model

Recall the behaviour in the
Euclidean case:

We expect the same behaviour
but on the corresponding v-LQG.

e e ‘ R
CLEg 7 CLE;

For critical percolation on uniform triangulations, proved by [Holden-Sun 20],
building on earlier works [Bernardi-Holden-Sun 18] and [Gwynne-Holden-Sun 21].
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Decorated 7-LQG and KPZ

The KPZ relation [Knizhnik, Polyakov,Zamolodchikov, 1988], [Duplantier, Sheffield 2011]:

links the Eucliden conformal weight x of a fractal to its quantum counterpart A.

l.e. We could “transfer” volume and perimeter exponents
from deterministic to random geometry and vice versa.

Exponents for the perimeter |0€]:

For v < v, < > Dimension of SLEg
KPZ, v = \/3/3 [Beffara 08]
Forv=v. <= > Dimension of SLE;
KPZ, v =3 All exponents match !
Exponents for the volume |€&]|:
Forv <v., =& > Dimension of the gasket of CLEg
KPZ, v =/8/3 [Miller, N.Sun, Watson 14]
Forv=v. <& > Dimension of the gasket of CLEs

KPZ, ~ =3
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e Singularity with respect to the UIPT for v # 1.

e Geometry of the map via its clusters (especially for v > v,.).
e Convergence to the Brownian map for v #£ v,.

e Volume growth exponent > 4 for v = v...

e Find a bijection !

Bijections with walks in the 1/4-plane for a “mating of trees” approach ?
And extend results in [Gwynne, Holden, Sun, 20] 7

Thank you for your attention !



