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Maps – Definition(s)

Planar map = planar graph + cyclic order of edges around each vertex.

A planar map is a proper embedding of a planar connected graph in the
2-dimensional sphere (considered up to orientation-preserving homeomorphisms).

To avoid dealing with symmetries: maps are rooted (an edge is marked and oriented).

A map M defines a discrete metric space:

• points: set of vertices of M = V (M).

• distance: graph distance = dgr.

M = set of rooted planar maps
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A triangulation is a planar map in which
all faces have degree 3.

Triangulation of size n has 3n edges

(or equivalently n+ 2 vertices, 2n faces).

A triangulation with a boundary is a
planar map in which all faces have
degree 3, except possibly the root face.

Triangulation with a boundary of length 4.
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Triangulations

A triangulation is a planar map in which
all faces have degree 3.

Triangulation of size n has 3n edges

(or equivalently n+ 2 vertices, 2n faces).

What does a random triangulation of size n look like (as n tends to ∞)?

Simulation by I.Kortchemski

Scaling limit point of viewToday: local limit point of view



First examples:

1 2 n0
Root = 0

Local topology (∼ Benjamini–Schramm convergence)

For m a rooted planar map and R ∈ N?,

BR(m) = ball of radius R around the root vertex of m

mn → m for the local topology
⇔

For all fixed R, there exists n0 s.t.:

BR(mn) = BR(m) for n ≥ n0
dloc(m,m

′) :=

Definition:
The local topology on G is induced by the
distance:

1

1 + max{R ≥ 0 : BR(m) = BR(m′)}
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First examples:

1 2 n0
Root = 0

−→ (Z+, 0)
1 2 n0

Uniformly chosen root

−→ (Z, 0)

Local topology (∼ Benjamini–Schramm convergence)

For m a rooted planar map and R ∈ N?,

BR(m) = ball of radius R around the root vertex of m

mn → m for the local topology
⇔

For all fixed R, there exists n0 s.t.:

BR(mn) = BR(m) for n ≥ n0
dloc(m,m

′) :=

Definition:
The local topology on G is induced by the
distance:

1

1 + max{R ≥ 0 : BR(m) = BR(m′)}

1
2

n

−→ (Z, 0)Root does not matter
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µn = uniform measure on plane trees with n vertices:

µ4 =

1/5 1/5 1/5 1/5 1/5

n = 1000n = 500

The limit is a probability distribution on
infinite trees with one infinite branch [Kesten].

Local convergence: more complicated examples



Simulation by I. Kortchemski Simulation by T.Budd

Local limit of large uniformly random triangulations

Theorem [Angel – Schramm, ’03]
Let Pn = uniform distribution on triangulations of size n.

UIPT = Uniform Infinite Planar Triangulation
= measure supported on infinite planar triangulations.

Pn UIPT, for the local topology
(d)



Universality: we expect the same behavior for other “reasonable” models of maps.

In particular, we expect the volume growth to be 4.

(proved for quadrangulations [Krikun 05], simple triangulations [Angel 04])

Some properties of the UIPT:

• Volume (nb. of vertices) and perimeters of balls known to some extent.

E [|BR(T∞)|] ∼ 2

7
R4

• The UIPT has almost surely one end [Angel – Schramm, 03]

[Angel 04, Curien – Le Gall 12]

Local limit of large uniformly random triangulations

Theorem [Angel – Schramm, ’03]
Let Pn = uniform distribution on triangulations of size n.

UIPT = Uniform Infinite Planar Triangulation
= measure supported on infinite planar triangulations.

Pn UIPT, for the local topology
(d)

• The simple random walk is recurrent [Gurel-Gurevich + Nachmias, 13]
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Intermezzo: why should we care about local limits ?

• one-endedness in the UIPT:

Suppose that a sequence of random graphs Gn admits a local weak limit G∞,

Then, f(Gn)
proba−−−→ f(G∞) for any f which is continuous for dloc.

e.g : f = |BR(.)|

Hence, it is easier to compute f(G∞), from which we can deduce the behavior of f(Gn).

Two example for maps:

Allows to give an explicit description of what can
happen when the map gets disconnected.

Simulation by T.Budd

• spatial Markov property

Main idea: The limiting object is often “nicer”.

For graphs, it has been formalized as the objective method [Aldous-Steele 94].



II - Local limits
of Ising-weighted triangulations



Escaping universality: adding matter

First, Ising model on a finite deterministic planar triangulation T :

Spin configuration on T :

Ising model on T : take a random spin configuration with probability:

P (σ) ∝ eβJ
∑
v∼v′ 1{σ(v)=σ(v′)} β > 0: inverse temperature.

J = ±1: coupling constant.
h = 0: no magnetic field.

σ : V (T )→ {−1,+1} = { , }.
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Escaping universality: adding matter

First, Ising model on a finite deterministic planar triangulation T :

Spin configuration on T :

Ising model on T : take a random spin configuration with probability:

P (σ) ∝ eβJ
∑
v∼v′ 1{σ(v)=σ(v′)} β > 0: inverse temperature.

J = ±1: coupling constant.
h = 0: no magnetic field.

σ : V (T )→ {−1,+1} = { , }.

with m(σ) = number of monochromatic edges (ν = eβJ).

Combinatorial formulation: P (σ) ∝ νm(σ)

m(σ) = 5

Remark: This is a probability distribution on triangulations with spins. But, forgetting the
spins gives a probability a distribution on triangulations without spins different from the
uniform distribution.

Next step: Sample a triangulation of size n
together with a spin configuration,
with probability ∝ νm(T,σ). Zn = normalizing constant.

Pνn
(
{(T, σ)}

)
=
νm(T,σ)δ|e(T )|=3n

Zn
.Pνn

(
{(T, σ)}

)
=
νm(T,σ)δ|e(T )|=3n

Zn
.



Escaping universality: new asymptotic behavior

Counting exponent for undecorated maps:

where κ and ρ depend on the combinatorics of the model.

number of (undecorated) maps of size n ∼ κρ−nn−5/2

(e.g.: triangulations, quadrangulations, general maps, simple maps,...)



Escaping universality: new asymptotic behavior

Theorem [Bernardi – Bousquet-Mélou 11]
For every ν > 0, Z(ν, t) is algebraic and satisfies

This suggests a different behavior of the underlying maps for ν = νc.

See also [Boulatov – Kazakov 1987], [Bousquet-Melou – Schaeffer 03]
and [Bouttier – Di Francesco – Guitter 04].

Counting exponent for undecorated maps:

where κ and ρ depend on the combinatorics of the model.

number of (undecorated) maps of size n ∼ κρ−nn−5/2

(e.g.: triangulations, quadrangulations, general maps, simple maps,...)

Z(ν, t) =
∑

T triangulation

∑
σ:V (T )→{−1,+1}

νm(T,σ)te(T ).

[t3n]Z(ν, t) ∼
n→∞

{
κ ρ−nνc n−7/3 if ν = νc = 1 + 1√

7
,

κ ρ−nν n−5/2 if ν 6= νc.

Generating series of Ising-weighted triangulations:



Local convergence of triangulations with spins

Theorem [A. – Ménard – Schaeffer, 21]

Pνn ν-IIPT, for the local topology with spins
(d)

Let Pνn = ν–Ising weighted probability distribution for triangulations of size n:

ν-IIPT = ν-Ising Infinite Planar Triangulation
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Local convergence of triangulations with spins

Theorem [A. – Ménard – Schaeffer, 21]

Pνn ν-IIPT, for the local topology with spins
(d)

Let Pνn = ν–Ising weighted probability distribution for triangulations of size n:

ν-IIPT = ν-Ising Infinite Planar Triangulation

Non-universality: we expect a different behavior for ν = νc
In particular, we expect the volume growth to be different from 4.

Watabiki’s conjecture: 7+
√

97
4 ∼ 4.21...

Related result by [Chen, Turunen, 20] for a slightly different model.

• Volume (nb. of vertices) and perimeters of balls ???

Some properties of the ν-IIPT:
• One-ended a.s.
• Simple random walk is recurrent.
• Geometry of the clusters ?
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Ferromagnetic Ising model on Z2: clusters

Clusters in the ν-IIPT: definition and first intuitions

ν < νc ν > νcν = νc

Simulations by R.Cerf:

CLE3
One infinite clusterSame universality class as

critical percolation.
CLE6 ??

Same universality class as
critical percolation.

[Smirnov 2001]
for critical percolation

[Chelkak+Smirnov 2012]



Clusters in the ν-IIPT: phase transition

Theorem [A. – Ménard, 22+]

Under Pν∞, the cluster of the root vertex is:

• finite almost surely for ν ≤ νc
• infinite with (“explicit”!) positive probability for ν > νc.

νc

Pν∞(|C| =∞)



Clusters in the ν-IIPT: phase transition

Theorem [A. – Ménard, 22+]

Under Pν∞, the cluster of the root vertex is:

• finite almost surely for ν ≤ νc
• infinite with (“explicit”!) positive probability for ν > νc.

νc

Pν∞(|C| =∞)

Pν∞(|C| =∞) ∼ κ(ν − νc)1/4
Percolation critical exponent:

On Z2, exponent = 1/8 [Onsager 1944], [Yang 1952].



Clusters in the ν-IIPT: cluster size exponents

Theorem [A. – Ménard, 22+]

Pν∞ (|C| ≥ n)

Pν∞ (|∂C| = p)

for ν < νc for ν = νc for ν > νc

∝ n−1/11∝ n−1/7

∝ p−2 ∝ p−4/3

not relevant

∝ exp(−αp)

Denote by C the spin cluster of the root vertex.

C ∂C



The special case ν = 1: UIPT with critical percolation

Recall that for a triangulation T with spin configuration σ, Pνn
(
{(T, σ)}

)
=
νm(T,σ)δ|e(T )|=3n

Zn
.

For ν = 1, all configurations (= trig. + spins) have the same probability

⇔ uniform triangulation of size n where spins are independent and +/- with probability 1/2.

⇔ uniform triangulation of size n with a percolation of parameter 1/2 on its vertices.
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The special case ν = 1: UIPT with critical percolation

Recall that for a triangulation T with spin configuration σ, Pνn
(
{(T, σ)}

)
=
νm(T,σ)δ|e(T )|=3n

Zn
.

For ν = 1, all configurations (= trig. + spins) have the same probability

⇔ uniform triangulation of size n where spins are independent and +/- with probability 1/2.

⇔ uniform triangulation of size n with a percolation of parameter 1/2 on its vertices.

Our results reinforce the idea that:

Ising model in high-temperature (i.e. ν < νc) ∼ Critical percolation

Percolation on the UIPT much studied:

pc = 1/2 + no infinite cluster at pc [Angel 04]

Percolation of the UIPT via its clusters in [Bernardi, Curien, Miermont, 17].

P1
∞ = UIPT with critical percolation
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Idea of the proof I: Gasket decomposition

A
B

necklace

island

[Borot – Bouttier – Guitter, 2012], [Bernardi – Curien – Miermont, 2017]

Weight of a triangulation with spins t := νm(t) t|E(t)|

Total weight of triangulations with spin cluster C:

≡
∏

f∈Faces(C)

(ν t)deg(f)/2
∑
l

Neck(deg(f), l)Ql(ν, t)

Triangulations with boundary length l and
monochromatic boundary conditions



Idea of the proof I: Gasket decomposition

A
B

necklace

island

[Borot – Bouttier – Guitter, 2012], [Bernardi – Curien – Miermont, 2017]

Weight of a triangulation with spins t := νm(t) t|E(t)|

Total weight of triangulations with spin cluster C:

≡
∏

f∈Faces(C)

(ν t)deg(f)/2
∑
l

Neck(deg(f), l)Ql(ν, t)

(
deg(f) + l − 1

l

)
tdeg(f)+l



Idea of the proof I: Gasket decomposition

A
B

[Borot – Bouttier – Guitter, 2012], [Bernardi – Curien – Miermont, 2017]

Weight of a triangulation with spins t := νm(t) t|E(t)|

Total weight of triangulations with spin cluster C:

≡
∏

f∈Faces(C)

(ν t)deg(f)/2
∑
l

Neck(deg(f), l)Ql(ν, t)

≡
∏

f∈Faces(C)

qdeg(f)(ν, t)



Idea of the proof I: Gasket decomposition

A
B

[Borot – Bouttier – Guitter, 2012], [Bernardi – Curien – Miermont, 2017]

Weight of a triangulation with spins t := νm(t) t|E(t)|

Total weight of triangulations with spin cluster C:

≡
∏

f∈Faces(C)

(ν t)deg(f)/2
∑
l

Neck(deg(f), l)Ql(ν, t)

≡
∏

f∈Faces(C)

qdeg(f)(ν, t) qk(ν, t) = (ν t)k/2 1{k=3}

+
(
ν t3
)k/2 ·∑l≥0

(
k+l−1
k−1

)
tlQ+

l (ν, t)

, where
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Boltzmann map associated to (qk) =
Probability distribution on the set of rooted planar maps such that:

Pbol(m) ∝
∏
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qdeg(f) for any rooted planar map m

Pbol is admissible if
∑

m∈M
∏
f∈F (m) qdeg(f) <∞
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Boltzmann map associated to (qk) =
Probability distribution on the set of rooted planar maps such that:

Pbol(m) ∝
∏

f∈F (m)

qdeg(f) for any rooted planar map m

Properties of the random map depends on the properties of (qk).

Pbol is admissible if
∑

m∈M
∏
f∈F (m) qdeg(f) <∞

[Marckert-Miermont, Miermont-Le Gall, Borot-Bouttier-Guitter, Budd,
Bernardi-Curien-Miermont, Marzouk]

The Bouttier – Di Francesco – Guitter bijection (a.k.a the BDG bijection).

2 3

1

0 1
1 2

3

32

2 3

1

0 1
1 2

3

32

3.5

1.5

3.5

3 3-1

3-1
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0
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-2
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Idea of the proof II: Boltzmann maps

Boltzmann map associated to (qk) =
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∑
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Theorem [A. – Ménard, 22+]

Study of the singular developments of Q+ in t and in y.



Idea of the proof III:
singularity analysis via rational parametrization

Q+(ν, t, y) :=
∑
l≥0

Q+
l (ν, t)y

l, where Q+
l :=

∑
t|T |νm(T,σ)

(T, σ) = l

Theorem [A. – Ménard, 22+]

Study of the singular developments of Q+ in t and in y.

Sketch of the proof:

• Obtained in [AMS 21] an algebraic equation for Q+, by Tutte’s invariants method
[Bernardi, Bousquet-Mélou].

• We use the rational parametrization (for t) given in [Bernardi, Bousquet-Mélou] for Q1.

• With Maple, we compute a rational parametrization (for y) for different values of ν.

• We interpolate the coefficients given in the different parametrizations.

Same strategy used in a slightly different context by [Chen,Turunen]

• With the rational parametrizations (and Maple), can compute the asymptotics.



Idea of the proof III:
singularity analysis via rational parametrization

Q+(ν, t, y) :=
∑
l≥0

Q+
l (ν, t)y

l, where Q+
l :=

∑
t|T |νm(T,σ)

t
3

= U

(
(1 + ν)U − 2

)
P (ν, U)

32ν3(1 − 2U)2

y =
8ν(1 − 2U)

U
(
(1 + ν) · U − 2

) · V (V + 1)

V 3 +
9(1 + ν) · U2 − 2(3 + 10ν)U + 8ν

U
(
(1 + ν) · U − 2

) V 2 −
9(1 + ν) · U − 2(2ν + 3)

U
(
(1 + ν) · U − 2

) V − 1
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Idea of the proof IV: Computations + Maple =

We compute explicitely:

Pν∞ (|cluster| <∞) =
∑
c∈M

Pν∞ (cluster = c) = 1 for ν ≤ νc.

For ν > νc, we obtain an expression with an integral.



Additional results:

We obtain similar tail estimates for the size of the clusters for related models:

• Ising-weighted Boltzmann triangulations
We recover in particular the results obtained in [Bernardi, Curien, Miermont]

• Expected size of the cluster for Ising-weighted triangulations of size n.

Connections with some results obtained in [Borot, Bouttier, Guitter] and
[Borot, Bouttier, Duplantier].

Eνn (|cluster|) ∼

for ν < νc for ν = νc for ν > νc

c(ν)n3/4 c(νc)n
5/6 c(ν)n

• Geometry of cluster interfaces, via looptrees [Curien, Kortchemski 15].



IV - Link with
Liouville Quantum Gravity

and
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Motivations from statistical physics

Originally the Ising model was studied on
regular lattices such as Z2 [Ising, Onsager].

In general relativity, the underlying space is not Euclidian anymore but is a
Riemannian space, whose curvature describes the gravity.

One of the main challenge of modern physics is to make two theories consistent:

• quantum mechanics (which governs microscopic scales)

• general relativity (which governs macroscopic scales)

One attempt to reconcile these two theories, is the Liouville Quantum gravity
which replaces the deterministic Riemannian space by a random metric space.

Why do we study it on random metric spaces ?
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Liouville Quantum Gravity
For γ ∈ (0, 2), γ-Liouville Quantum Gravity (or γ-LQG)
= measure on a surface defined as the “exponential of the Gaussian Free Field”
[Polyakov, 1981], [Duplantier, Sheffield 2011].

Other statistical models on random maps are believed to converge towards γ-LQG:
For critical Ising model on maps, γ =

√
3 (for non-critical Ising, γ =

√
8/3).
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Decorated γ-LQG

What about the clusters ? And their boundary ?

Recall the behaviour in the
Euclidean case:

ν < νc

CLE6 ?

Statistical models on random maps are believed to converge towards γ-LQG:

• Established for maps without matter, γ =
√

8/3.

• Conjectured for critical Ising model on maps, γ =
√

3

• Conjectured for non-critical Ising model on maps, γ =
√

8/3

For critical percolation on uniform triangulations, proved by [Holden-Sun 20],
building on earlier works [Bernardi-Holden-Sun 18] and [Gwynne-Holden-Sun 21].

We expect the same behaviour
but on the corresponding γ-LQG.

Critical Ising model

CLE3



Decorated γ-LQG and KPZ

The KPZ relation [Knizhnik, Polyakov,Zamolodchikov, 1988], [Duplantier, Sheffield 2011]:
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The KPZ relation [Knizhnik, Polyakov,Zamolodchikov, 1988], [Duplantier, Sheffield 2011]:

x =
γ2

4
∆2 +

(
1− γ2
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)
∆.

links the Eucliden conformal weight x of a fractal to its quantum counterpart ∆.

Exponents for the perimeter |∂C|:
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Dimension of SLE6
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√
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Dimension of SLE3

Exponents for the volume |C|:
For ν < νc

KPZ, γ =
√

8/3
Dimension of the gasket of CLE6

For ν = νc
KPZ, γ =

√
3

Dimension of the gasket of CLE3

[Beffara 08]

[Miller, N.Sun, Watson 14]

All exponents match !

i.e. We could “transfer” volume and perimeter exponents
from deterministic to random geometry and vice versa.
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Thank you for your attention !
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And extend results in [Gwynne, Holden, Sun, 20] ?

• Find a bijection !
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• Geometry of the map via its clusters (especially for ν > νc).


