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A map is a collection of polygons glued along their sides (with some technical conditions).

Maps – Definition(s)

Here, the resulting surface is the sphere:
this is a planar map.

Side remark: we could also obtain
a surface different from the sphere

(and even not connected !)

If all the polygons have p sides, the resulting map is called a p-angulation.

3-angulation = triangulation, 4-angulation = quadrangulation



Maps – Definition(s)

A planar map is a proper embedding of a planar connected graph in the
2-dimensional sphere (considered up to orientation-preserving homeomorphisms).



Maps – Definition(s)

Planar map = planar graph + cyclic order of edges around each vertex.

A planar map is a proper embedding of a planar connected graph in the
2-dimensional sphere (considered up to orientation-preserving homeomorphisms).



Maps – Definition(s)

Planar map = planar graph + cyclic order of edges around each vertex.

A planar map is a proper embedding of a planar connected graph in the
2-dimensional sphere (considered up to orientation-preserving homeomorphisms).

This is the root corner

To avoid dealing with symmetries: maps are rooted (a corner is marked).



Maps – Definition(s)

Planar map = planar graph + cyclic order of edges around each vertex.

A planar map is a proper embedding of a planar connected graph in the
2-dimensional sphere (considered up to orientation-preserving homeomorphisms).

This is the root corner

To avoid dealing with symmetries: maps are rooted (a corner is marked).

A map M defines a discrete metric space:

• points: set of vertices of M = V (M).

• distance: graph distance = dgr.
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physics (connections with representation theory, KP-hierarchies, topological recurrence,...).
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Maps – Motivations
Maps appear in various fields of mathematics, computer science and statistical
physics (connections with representation theory, KP-hierarchies, topological recurrence,...).

They can be studied from many angles.

Today, I focus on the study of limits of random planar maps
and, more precisely on local limits of random planar triangulations.

Tn = {Triangulations of size n}
= n+ 2 vertices, 2n faces, 3n edges

Tn = Uniform random element of Tn

Tn = {Triangulations of size n}Model:

In the second half of the talk, we will
change the probability distribution.

Spoiler:
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Tn = {Triangulations of size n}Model:

Two possible points of view: Today:



Scaling limit of random maps
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Tn = Uniform random element of Tn

Simulation by T.Budd

When the size of the map goes to infinity, so does the
typical distance between two vertices.

Idea: ”scale” the map = length of edges decreases with the size of the map.
Goal: obtain a limiting (non-trivial) compact object



Scaling limit of random maps

Tn = {Triangulations of size n}
= n+ 2 vertices, 2n faces, 3n edges

Tn = Uniform random element of Tn

Simulation by T.Budd

When the size of the map goes to infinity, so does the
typical distance between two vertices.

Idea: ”scale” the map = length of edges decreases with the size of the map.
Goal: obtain a limiting (non-trivial) compact object

Motivations + Results:

• Discretization of a continuous surface.

• Construction of a 2-dim. analogue of the Brownian motion: The Brownian Map,
homeomorphic to the sphere, Hausdorff dimension = 4 [Miermont 13],[Le Gall 13].

• Link with Liouville Quantum Gravity, (will maybe be discussed at the end of the talk)
[Duplantier, Sheffield 11], [Duplantier, Miller, Sheffield 14], [Miller, Sheffield 16,16,17]

• Universality: the scaling is “always” n−1/4 + the limiting object does not depend on
the precise combinatorics of the model (p-angulations, simple triangulations,...)



Local limits of random maps

Tn = {Triangulations of size n}
= n+ 2 vertices, 2n faces, 3n edges

Tn = Uniform random element of Tn

When the size of the map goes to infinity, so does the
typical distance between two vertices.

Idea: Do NOT scale the distances
Look at neighborhoods of the root

Goal: obtain some (probability distribution on) infinite random maps.

Simulation by I.Kortchemski



Local limits of random maps

Tn = {Triangulations of size n}
= n+ 2 vertices, 2n faces, 3n edges

Tn = Uniform random element of Tn

When the size of the map goes to infinity, so does the
typical distance between two vertices.

Idea: Do NOT scale the distances
Look at neighborhoods of the root

Goal: obtain some (probability distribution on) infinite random maps.

Motivations + Results:

• Nice model of random discrete geometry.

• Construction of the Uniform Infinite Planar Triangulation (= UIPT). [Angel, Schramm]

• Connection with some models on Euclidean lattices via the KPZ formula (for
Knizhnik, Polyakov and Zamolodchiko), [Duplantier, Sheffield 11]

• Universality: the number of vertices at distance R from the root is “always”
of order R4.

Simulation by I.Kortchemski



II - Local limits

Definitions and first examples



G := family of (locally finite) rooted graphs

Local topology (∼ Benjamini–Schramm convergence)

For g ∈ G and R ∈ N?,

BR(g) = ball of radius R around the root vertex of g
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Local topology (∼ Benjamini–Schramm convergence)

For g ∈ G and R ∈ N?,

BR(g) = ball of radius R around the root vertex of g
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G := family of (locally finite) rooted graphs

Local topology (∼ Benjamini–Schramm convergence)

For g ∈ G and R ∈ N?,

BR(g) = ball of radius R around the root vertex of g

R = 1
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G := family of (locally finite) rooted graphs

Local topology (∼ Benjamini–Schramm convergence)

For g ∈ G and R ∈ N?,

BR(g) = ball of radius R around the root vertex of g

R = 1
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G := family of (locally finite) rooted graphs

Local topology (∼ Benjamini–Schramm convergence)

For g ∈ G and R ∈ N?,

BR(g) = ball of radius R around the root vertex of g

R = 1

R = 2

dloc(g, g
′) :=

Definition:
The local topology on G is induced by the
distance:

1

1 + max{R ≥ 0 : BR(g) = BR(g′)}
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G := family of (locally finite) rooted graphs

Local topology (∼ Benjamini–Schramm convergence)

For g ∈ G and R ∈ N?,

BR(g) = ball of radius R around the root vertex of g

gn → g for the local topology
⇔

For all fixed R, there exists n0 s.t.:

BR(gn) = BR(g) for n ≥ n0

And for random graphs ?

dloc(g, g
′) :=

Definition:
The local topology on G is induced by the
distance:

1

1 + max{R ≥ 0 : BR(g) = BR(g′)}

(µn) = sequence of probability distributions on G (e.g. uniform distribution on Tn)(µn) = sequence of probability distributions on G (e.g. uniform distribution on Tn)

if µn
n→∞−−−−→ µ in distribution for the local topology,

we say that µ is the local weak limit of (µn).



1 2 n0
Root = 0

Local convergence: simple examples



1 2 n
−→ (Z+, 0)

0
Root = 0

Local convergence: simple examples



1 2 n
−→ (Z+, 0)

0
Root = 0

1 2 n0
Uniformly chosen root

Local convergence: simple examples



1 2 n
−→ (Z+, 0)

0
Root = 0

1 2 n0
Uniformly chosen root

Local convergence: simple examples



1 2 n
−→ (Z+, 0)

0
Root = 0

1 2 n
−→ (Z, 0)

0
Uniformly chosen root

Local convergence: simple examples



1 2 n
−→ (Z+, 0)

1
2

n

−→ (Z, 0)

0
Root = 0

1 2 n
−→ (Z, 0)

0
Uniformly chosen root

Root does not matter

Local convergence: simple examples



1 2 n
−→ (Z+, 0)

1
2

n

−→ (Z, 0)

n

n

−→
(
Z2

+, 0
)

0
Root = 0

1 2 n
−→ (Z, 0)

0
Uniformly chosen root

Root does not matter

0

Local convergence: simple examples



1 2 n
−→ (Z+, 0)

1
2

n

−→ (Z, 0)

n

n

−→
(
Z2
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0
Root = 0

1 2 n
−→ (Z, 0)

0
Uniformly chosen root

Root does not matter

0 n

n

−→
(
Z2, 0

)
0

Uniformly chosen root

Local convergence: simple examples



III - Local limits
of random trees and maps



µn = uniform measure on plane trees with n vertices:

µ1 µ2 µ4µ3

1/2 1/2 1/5 1/5 1/5 1/5 1/5

Local convergence: more complicated examples
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µn = uniform measure on plane trees with n vertices:

µ1 µ2 µ4µ3

1/2 1/2 1/5 1/5 1/5 1/5 1/5

n = 1000n = 500

The limit is a probability distribution on
infinite trees with one infinite branch [Kesten].

Local convergence: more complicated examples



Simulation by I. Kortchemski

Local limit of large uniformly random triangulations

Simulation by T.Budd

Theorem [Angel – Schramm, ’03]
Let Pn = uniform distribution on triangulations of size n.

UIPT = Uniform Infinite Planar Triangulation
= measure supported on infinite planar triangulations.

P UIPT, for the local topology
(d)



1 / Need to evaluate the probability that a given
neighborhood ∆ of the root appears:

A very short idea of the proof:
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1 / Need to evaluate the probability that a given
neighborhood ∆ of the root appears:

A very short idea of the proof:

Local limit of large uniformly random triangulations

( )
???

)
???Pn =

|T (k)
3n−e(∆)+`(∆)|
|Tn|{

e(∆) = #{edges of ∆}
`(∆) = perimeter of ∆`(∆) = 11

T (k)
n = {triangulations with n edges

and perimeter k}

P∞
n→∞ ( )

Problem: the space (T , dloc) is not compact!

degree n

Ex:

2/ No loss of mass at the limit:
the measure P∞ defined by the limits is a probability measure.

∀r ≥ 0,
∑

r−balls ∆

Pν
(
{T ∈ T∞ : Br(T ) = ∆}

)
= 1.



1 / Need to evaluate the probability that a given
neighborhood ∆ of the root appears:

A very short idea of the proof:

Local limit of large uniformly random triangulations

( )
???

)
???Pn =

|T (k)
3n−e(∆)+`(∆)|
|Tn|{

e(∆) = #{edges of ∆}
`(∆) = perimeter of ∆`(∆) = 11

T (k)
n = {triangulations with n edges

and perimeter k}

P∞
n→∞ ( )

Problem: the space (T , dloc) is not compact!

degree n

Ex:

Enough to prove a tightness result, which amounts here to say that deg(root)
cannot be too big.

2/ No loss of mass at the limit:
the measure P∞ defined by the limits is a probability measure.



Local limit of large uniformly random triangulations

Some properties of the UIPT:

• Volume (nb. of vertices) and perimeters of balls known to some extent.

E [|BR(T∞)|] ∼ 2

7
R4

• Simple random Walk is recurrent [Gurel-Gurevich – Nachmias 13]

• The UIPT has almost surely one end [Angel – Schramm, 03]

[Angel 04, Curien – Le Gall 12]

Theorem [Angel – Schramm, ’03]
Let Pn = uniform distribution on triangulations of size n.

UIPT = Uniform Infinite Planar Triangulation
= measure supported on infinite planar triangulations.

P UIPT, for the local topology
(d)



Universality: we expect the same behavior for other “reasonable” models of maps.

In particular, we expect the volume growth to be 4.

(proved for quadrangulations [Krikun 05], simple triangulations [Angel 04])
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Suppose that a sequence of random graphs Gn admits a local weak limit G∞,

Then, f(Gn)
proba−−−→ f(G∞) for any f which is continuous for dloc.

e.g : f = |BR(.)|
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Main idea: The limiting object is often “nicer”.
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Intermezzo: why should we care about local limits ?

• one-endedness in the UIPT:

Suppose that a sequence of random graphs Gn admits a local weak limit G∞,

Then, f(Gn)
proba−−−→ f(G∞) for any f which is continuous for dloc.

e.g : f = |BR(.)|

Hence, it is easier to compute f(G∞), from which we can deduce the behavior of f(Gn).

Two example for maps:

This is crucial to study a “peeling” exploration
spiraling around the root, which gives the volume
of the balls [Angel 03].

Allows to give an explicit description of what can
happen when the map gets disconnected.

Simulation by T.Budd• spatial Markov property
Conditionally on their perimeter, the interior and exterior of a ball are independent

Main idea: The limiting object is often “nicer”.

For graphs, it has been formalized as the objective method [Aldous-Steele 94].



IV - Local limits
of Ising-weighted triangulations



Escaping universality: adding matter

First, Ising model on a finite deterministic planar triangulation T :

Spin configuration on T :

Ising model on T : take a random spin configuration with probability:

P (σ) ∝ eβJ
∑
v∼v′ 1{σ(v)=σ(v′)} β > 0: inverse temperature.

J = ±1: coupling constant.
h = 0: no magnetic field.

σ : V (T )→ {−1,+1} = { , }.
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First, Ising model on a finite deterministic planar triangulation T :

Spin configuration on T :

Ising model on T : take a random spin configuration with probability:

P (σ) ∝ eβJ
∑
v∼v′ 1{σ(v)=σ(v′)} β > 0: inverse temperature.

J = ±1: coupling constant.
h = 0: no magnetic field.

σ : V (T )→ {−1,+1} = { , }.

with m(σ) = number of monochromatic edges (ν = eβJ).

Combinatorial formulation: P (σ) ∝ νm(σ)

m(σ) = 5

Next step: Sample a triangulation of size n
together with a spin configuration,
with probability ∝ νm(T,σ). Zn = normalizing constant.
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Escaping universality: adding matter

First, Ising model on a finite deterministic planar triangulation T :

Spin configuration on T :

Ising model on T : take a random spin configuration with probability:

P (σ) ∝ eβJ
∑
v∼v′ 1{σ(v)=σ(v′)} β > 0: inverse temperature.

J = ±1: coupling constant.
h = 0: no magnetic field.

σ : V (T )→ {−1,+1} = { , }.

with m(σ) = number of monochromatic edges (ν = eβJ).

Combinatorial formulation: P (σ) ∝ νm(σ)

m(σ) = 5

Remark: This is a probability distribution on triangulations with spins. But, forgetting the
spins gives a probability a distribution on triangulations without spins different from the
uniform distribution.

Next step: Sample a triangulation of size n
together with a spin configuration,
with probability ∝ νm(T,σ). Zn = normalizing constant.

Pνn
(
{(T, σ)}

)
=
νm(T,σ)δ|e(T )|=3n

Zn
.Pνn

(
{(T, σ)}

)
=
νm(T,σ)δ|e(T )|=3n

Zn
.



Escaping universality: new asymptotic behavior

Counting exponent for undecorated maps:

where κ and ρ depend on the combinatorics of the model.

number of (undecorated) maps of size n ∼ κρ−nn−5/2

(e.g.: triangulations, quadrangulations, general maps, simple maps,...)



Escaping universality: new asymptotic behavior

Theorem [Bernardi – Bousquet-Mélou 11]
For every ν > 0, Q(ν, t) is algebraic and satisfies

This suggests a different behavior of the underlying maps for ν = νc.

See also [Boulatov – Kazakov 1987], [Bousquet-Melou – Schaeffer 03]
and [Bouttier – Di Francesco – Guitter 04].

Counting exponent for undecorated maps:

where κ and ρ depend on the combinatorics of the model.

number of (undecorated) maps of size n ∼ κρ−nn−5/2

(e.g.: triangulations, quadrangulations, general maps, simple maps,...)

Q(ν, t) =
∑
T∈Tf

∑
σ:V (T )→{−1,+1}

νm(T,σ)te(T ).

[t3n]Q(ν, t) ∼
n→∞

{
κ ρ−nνc n−7/3 if ν = νc = 1 + 1√

7
,

κ ρ−nν n−5/2 if ν 6= νc.

Generating series of Ising-weighted triangulations:



Local convergence of triangulations with spins

Theorem [A. – Ménard – Schaeffer, 21]

Pνn ν-IIPT, for the local topology
(d)

Let Pνn = ν–Ising weighted probability distribution for triangulations of size n:

ν-IIPT = ν-Ising Infinite Planar Triangulation

= measure supported on infinite planar triangulations.
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Pνn

( )
+

+

+

+

+

-
-

-

---

???

Need to evaluate the probability that a
given neighborhood of the root appears:

( )
+

+

+

+

+

-
-

-

---

???

A very very short idea of the proof:

???

???



Local convergence of triangulations with spins

Theorem [A. – Ménard – Schaeffer, 21]

Pνn ν-IIPT, for the local topology
(d)

Let Pνn = ν–Ising weighted probability distribution for triangulations of size n:

ν-IIPT = ν-Ising Infinite Planar Triangulation

= measure supported on infinite planar triangulations.

Pνn

( )
+

+

+

+

+

-
-

-

---

???

Need to evaluate the probability that a
given neighborhood of the root appears:

( )
+

+

+

+

+

-
-

-

---

???

A very very short idea of the proof:

=
νm(∆)−m(ω) [t3n−e(∆)+|ω|]Zω(ν, t)

[t3n]Q(ν, t)

Generating series of triangulations
with boundary conditions given by ω.

Here ω = +−+−−−+−+ +−???

???



Local convergence of triangulations with spins

Theorem [A. – Ménard – Schaeffer, 21]

Pνn ν-IIPT, for the local topology
(d)

Let Pνn = ν–Ising weighted probability distribution for triangulations of size n:

• Simple random Walk is recurrent on νc-IIPT.
• The ν-IIPT has almost surely one end

Moreover:

ν-IIPT = ν-Ising Infinite Planar Triangulation

= measure supported on infinite planar triangulations.



Local convergence of triangulations with spins

Theorem [A. – Ménard – Schaeffer, 21]

Pνn ν-IIPT, for the local topology
(d)

Let Pνn = ν–Ising weighted probability distribution for triangulations of size n:

• Simple random Walk is recurrent on νc-IIPT.
• The ν-IIPT has almost surely one end

Moreover:

ν-IIPT = ν-Ising Infinite Planar Triangulation

= measure supported on infinite planar triangulations.

• Volume (nb. of vertices) and perimeters of balls is unknown.

Non-universality: we expect a different behavior for ν = νc
In particular, we expect the volume growth to be
different from 4.

But:



Link with Liouville Quantum Gravity

Simulation of
√
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-LQG by T.Budd

γ ∈ (0, 2), γ-Liouville Quantum Gravity = measure on a surface [Duplantier, Sheffield 11].

Simulation of the Brownian map by T.Budd
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Simulation of the Brownian map by T.Budd
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Construction in the continuum.
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Simulation of
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-LQG by T.Budd

γ ∈ (0, 2), γ-Liouville Quantum Gravity = measure on a surface [Duplantier, Sheffield 11].

Simulation of the Brownian map by T.Budd

[Duplantier, Miller, Sheffield 14]

[Miller, Sheffield 16+16+17]

Construction in the continuum.

A priori , there is no canonical way to embed a planar map in the sphere.

But, for simple triangulations:
the circle packing theorem
gives a canonical embedding.

(Unique up to Möbius transformations.)
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Unknown for embedding via circle packings, but fantastic result similar
in spirit in [Holden – Sun 20]

Simulation of a large simple triangulation
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(Unique up to Möbius transformations.)



Link with Liouville Quantum Gravity

Similar statements for other models of decorated maps
(with a spanning subtree (γ =

√
2), with a bipolar orientation (γ =

√
4/3),...).

The critical Ising model is believed to converge to
√

3-LQG.

YES, in some cases [Gwynne, Holden, Sun ’17], [Ding, Gwynne ’18]

The connection is not proven for Ising, but d√3 is a good candidate for
the volume growth exponent.

For γ ∈ (0, 2), there exists dγ = “fractal dimension of γ-LQG”

dγ = ball volume growth exponent for corresponding maps ??

What is d√3 ?



Link with Liouville Quantum Gravity

[Ding, Gwynne ’18]
Bounds for dγ which give:
4.18 ≤ d√3 ≤ 4.25.

Watabiki’s prediction:

dγ = 1 +
γ2

4
+

1

4

√
(4 + γ2)2 + 16γ2 gives d√3 ≈ 4.21...

In particular d√3 6= 4 and growth
volume would then be different than
the uniform model.

Green = Watabiki.
Blue and Red = bounds by Ding and Gwynne.



Thank you !



Perspectives

• Compute the volume growth of the ν-IIPT
or, at least, prove that it is different from 4 for ν = νc

• Study the connected components of the + spins in the ν-IIPT
gives some insights about the Ising model on Z2 via the KPZ formula

More generally, investigate the different statistical physics models
and their link with γ-LQG


