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C Here, the resulting surface is the sphere:

this is a planar map.

If all the polygons have p sides, the resulting map is called a p-angulation.

3-angulation = triangulation, 4-angulation = quadrangulation

Side remark: we could also obtain
a surface different from the sphere J— _—

(and even not connected !)



Maps — Definition(s)

A planar map is a proper embedding of a planar connected graph in the
2-dimensional sphere (considered up to orientation-preserving homeomorphisms).
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Maps — Definition(s)

A planar map is a proper embedding of a planar connected graph in the
2-dimensional sphere (considered up to orientation-preserving homeomorphisms).
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This is the root corner

Planar map = planar graph + cyclic order of edges around each vertex.
To avoid dealing with symmetries: maps are rooted (a corner is marked).

A map M defines a discrete metric space:

e points: set of vertices of M = V(M).
e distance: graph distance = d,.
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Maps — Motivations

Maps appear in various fields of mathematics, computer science and statistical
physics (connections with representation theory, KP-hierarchies, topological recurrence,...).

They can be studied from many angles.

Today, | focus on the study of limits of random planar maps
and, more precisely on local limits of random planar triangulations.

Model: 7, = {Triangulations of size n}
= n + 2 vertices, 2n faces, 3n edges

T,, = Uniform random element of 7,

Spoiler: In the second half of the talk, we will
change the probability distribution.
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Scaling limit of random maps

T = {Triangulations of size n}

= n + 2 vertices, 2n faces, 3n edges

T,, = Uniform random element of 7,

When the size of the map goes to infinity, so does the
typical distance between two vertices.

. Simulation by T.Budd

|ldea: "scale” the map = length of edges decreases with the size of the map.
Goal: obtain a limiting (non-trivial) compact object



Scaling limit of random maps

T = {Triangulations of size n}
= n + 2 vertices, 2n faces, 3n edges

T,, = Uniform random element of 7,

When the size of the map goes to infinity, so does the

typical distance between two vertices. Simulation by T.Budd

|ldea: "scale” the map = length of edges decreases with the size of the map.
Goal: obtain a limiting (non-trivial) compact object

Motivations + Results:

e Discretization of a continuous surface.

e Construction of a 2-dim. analogue of the Brownian motion: The Brownian Map,
homeomorphic to the sphere, Hausdorff dimension = 4  [Miermont 13],[Le Gall 13].

e Link with Liouville Quantum Gravity, (will maybe be discussed at the end of the talk)
[Duplantier, Sheffield 11], [Duplantier, Miller, Sheffield 14], [Miller, Sheffield 16,16,17]

e Universality: the scaling is “always” n~'/* + the limiting object does not depend on
the precise combinatorics of the model (p-angulations, simple triangulations,...)



Local limits of random maps

T = {Triangulations of size n}

= n + 2 vertices, 2n faces, 3n edges

T,, = Uniform random element of 7,

When the size of the map goes to infinity, so does the
typical distance between two vertices.

ldea: Do NOT scale the distances
Look at neighborhoods of the root
Goal: obtain some (probability distribution on) infinite random maps.

Simulation by |.Kortchemski



Local limits of random maps

T, = {Triangulations of size n}

= n + 2 vertices, 2n faces, 3n edges

T,, = Uniform random element of 7,

When the size of the map goes to infinity, so does the
typical distance between two vertices.

ldea: Do NOT scale the distances
Look at neighborhoods of the root
Goal: obtain some (probability distribution on) infinite random maps.

Simulation by |.Kortchemski

Motivations + Results:

e Nice model of random discrete geometry.

e Construction of the Uniform Infinite Planar Triangulation (= UIPT). [Angel, Schramm]

e Connection with some models on Euclidean lattices via the KPZ formula (for
Knizhnik, Polyakov and Zamolodchiko), [Duplantier, Sheffield 11]

e Universality: the number of vertices at distance R from the root is “always”
of order R*.



Il - Local limits

Definitions and first examples



Local topology (~ Benjamini—Schramm convergence)

G := family of (locally finite) rooted graphs
For g € G and R € N*,
Br(g) = ball of radius R around the root vertex of g
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Local topology (~ Benjamini—Schramm convergence)

G := family of (locally finite) rooted graphs
For g € G and R € N*,
Br(g) = ball of radius R around the root vertex of g

Definition: gn — g  for the local topology
The local topology on G is induced by the =

distance:

] For all fixed R, there exists ng s.t.:

1 +max{R > 0: Br(g) = Br(g) Br(gn) = Br(g) forn =mng

leC(gv g/) =

And for random graphs ?

(un) = sequence of probability distributions on G (e.g. uniform distribution on 7,,)

if nmee, 1 in distribution for the local topology,

we say that p is the local weak limit of (u,).
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Local convergence: simple examples

oo — (Z4,0) oo

44444

i--o—o—o — (Z,0)
01 2 n
Uniformly chosen root

—»e — (Z,0)

2 Root does not matter

o o (Zz, O)

0 n
Uniformly chosen root



Il - Local limits
of random trees and maps



Local convergence: more complicated examples

L., = uniform measure on plane trees with n vertices:
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L., = uniform measure on plane trees with n vertices:
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Local convergence: more complicated examples

L., = uniform measure on plane trees with n vertices:

1/2 1/2 1/5 1/5  1/5 :1/5
11 E 2 E M3 E 22!

{

The limit is a probability distribution on
infinite trees with one infinite branch [Kesten].

_______________________________________________________________________________________________________________________



Local limit of large uniformly random triangulations

Theorem [Angel — Schramm, '03]
Let P,, = uniform distribution on triangulations of size n.

P —Y 5 UIPT, for the local topology

= Uniform Infinite Planar Triangulation
= measure supported on infinite planar triangulations.
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Local limit of large uniformly random triangulations
A very short idea of the proof:

1 / Need to evaluate the probability that a given
neighborhood A of the root appears:
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Local limit of large uniformly random triangulations
A very short idea of the proof:

1 / Need to evaluate the probability that a given

neighborhood A of the root appears: 7’n(k) = {triangulations with n edges
/ and perimeter k}
P, e(A)+4(A)]
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A very short idea of the proof:
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neighborhood A of the root appears: 7;fk) = {triangulations with n edges
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A very short idea of the proof:

1 / Need to evaluate the probability that a given
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Local limit of large uniformly random triangulations

A very short idea of the proof:

1 / Need to evaluate the probability that a given

neighborhood A of the root appears: 7;fk) = {triangulations with n edges
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2/ No loss of mass at the limit:
the measure P, defined by the limits is a probability measure.

vr>0, Y IP”({TETOO:BT(T):A}>:

r—balls A



Local limit of large uniformly random triangulations

A very short idea of the proof:

1 / Need to evaluate the probability that a given

neighborhood A of the root appears: 7;fk) = {triangulations with n edges
/ and perimeter k}
k) .\
. T n — oo \ \
P,, v 277 Tan-ea)+ea)] > P \
Tx|
’ N AN e(A) = +F{edges of A} \
A ' ((A) = perimeter of A o
Problem: the space (7, d;,.) is not compact! ‘ l
2/ No loss of mass at the limit: / degree n

the measure P, defined by the limits is a probability measure.

Enough to prove a tightness result, which amounts here to say that deg(root)
cannot be too big.



Local limit of large uniformly random triangulations

Theorem [Angel — Schramm, '03]
Let IP,, = uniform distribution on triangulations of size n.

P —Y 5 UIPT, for the local topology

UIPT = Uniform Infinite Planar Triangulation
= measure supported on infinite planar triangulations.

Some properties of the UIPT:
e The UIPT has almost surely one end [Angel — Schramm), 03]

e Volume (nb. of vertices) and perimeters of balls known to some extent.

2
E [|Br(Tso)|] ~ ?R‘L [Angel 04, Curien — Le Gall 12]

e Simple random Walk is recurrent [Gurel-Gurevich — Nachmias 13]



Local limit of large uniformly random triangulations

Theorem [Angel — Schramm, '03]
Let IP,, = uniform distribution on triangulations of size n.

P —Y 5 UIPT, for the local topology

UIPT = Uniform Infinite Planar Triangulation
= measure supported on infinite planar triangulations.

Some properties of the UIPT:
e The UIPT has almost surely one end [Angel — Schramm), 03]

e Volume (nb. of vertices) and perimeters of balls known to some extent.

2
E[|Br(Ts)|] ~ =R*  [Angel 04, Curien — Le Gall 12]

7

e Simple random Walk is recurrent [Gurel-Gurevich — Nachmias 13]

Universality: we expect the same behavior for other “reasonable” models of maps.
In particular, we expect the volume growth to be 4.

(proved for quadrangulations [Krikun 05], simple triangulations [Angel 04])
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Intermezzo: why should we care about local limits ?

Suppose that a sequence of random graphs (G,, admits a local weak limit G,

proba

Then, f(G,) ——
eg: [=I[Br()

Main idea: The limiting object is often “nicer”.
Hence, it is easier to compute f(G ), from which we can deduce the behavior of f(G,,).

f(Gs) for any f which is continuous for d;,..

For graphs, it has been formalized as the objective method [Aldous-Steele 94].

Two example for maps:

e one-endedness in the UIPT:

Allows to give an explicit description of what can
happen when the map gets disconnected.

This is crucial to study a “peeling” exploration
spiraling around the root, which gives the volume

I
of the balls [Angel 03]. Nedh
e spatial Markov property Simulation by T.Budd

Conditionally on their perimeter, the interior and exterior of a ball are independent



IV - Local limits
of Ising-weighted triangulations



Escaping universality: adding matter

First, Ising model on a finite deterministic planar triangulation T":

Spin configuration on T
o:V(T)—{-1,+1} ={e.0 }.
Ising model on T': take a random spin configuration with probability:

BJ a1 _ / B > 0: inverse temperature.
P(O-) X € ZU vl e (v)=a(v)) J = =£1: coupling constant.

h = 0O: no magnetic field.
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Escaping universality: adding matter

First, Ising model on a finite deterministic planar triangulation T":

Spin configuration on T

o:V(T)—{-1,+1} ={e,0 }.

m(o) =5
Ising model on T': take a random spin configuration with probability:
J 1 _ B > 0: inverse temperature.
P(O-) X 65 ZUNU, {o(w)=a (D} J = =£1: coupling constant.
h = 0O: no magnetic field.
o~ Combinatorial formulation: P(c) oc ™)

with m (o) = number of monochromatic edges (v = e””).

v™ TG 1y =3n
Zn

Z, = normalizing constant.

Next step: Sample a triangulation of size n [p); ({(T) g)}) —

together with a spin configuration,

with probability oc 2™(T>9),

Remark: This is a probability distribution on triangulations with spins. But, forgetting the
spins gives a probability a distribution on triangulations without spins different from the
uniform distribution.



Escaping universality: new asymptotic behavior

Counting exponent for undecorated maps:

number of (undecorated) maps of size n ~ kp~"n">/2

(e.g.: triangulations, quadrangulations, general maps, simple maps,...)
where k and p depend on the combinatorics of the model.



Escaping universality: new asymptotic behavior

Counting exponent for undecorated maps:
number of (undecorated) maps of size n ~ kp~"n">/2

(e.g.: triangulations, quadrangulations, general maps, simple maps,...)
where k and p depend on the combinatorics of the model.

Generating series of Ising-weighted triangulations:

Q(V, t) _ Z Z I/m(T,a)te(T).

TeTy o:V(T)—{—-1,+1}

Theorem [Bernardi — Bousquet-Mélou 11]
For every v > 0, Q(v,t) is algebraic and satisfies

Qv ) ~

n— oo _5/2

{Ii p;cn TL_7/3

Kp,'n

See also [Boulatov — Kazakov 1987], [Bousquet-Melou — Schaeffer 03]
and [Bouttier — Di Francesco — Guitter 04].

This suggests a different behavior of the underlying maps for v = v..



Local convergence of triangulations with spins

Theorem [A. — Ménard — Schaeffer, 21]
Let P¥ = v—Ising weighted probability distribution for triangulations of size n:

v-lIPT, for the local topology

v-lIIPT = v-Ising Infinite Planar Triangulation

— measure supported on infinite planar triangulations.
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Local convergence of triangulations with spins

Theorem [A. — Ménard — Schaeffer, 21]
Let P¥ = v—Ising weighted probability distribution for triangulations of size n:

P -9 5 L |IPT, for the local topology

n

v-lIIPT = v-Ising Infinite Planar Triangulation

— measure supported on infinite planar triangulations.

A very very short idea of the proof:
Need to evaluate the probability that a

given neighborhood of the root appears: Generating series of triangulations

with boundary conditions given by w.

Herew——l——+———+—+t/

Vm(A)—m(w) [t3n—e(A)—|—|w|]Zw (V, t)

Qv t)
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Theorem [A. — Ménard — Schaeffer, 21]
Let P¥ = v—Ising weighted probability distribution for triangulations of size n:

v-lIPT, for the local topology

v-lIIPT = v-Ising Infinite Planar Triangulation

— measure supported on infinite planar triangulations.

Moreover:

e The v-lIPT has almost surely one end
e Simple random Walk is recurrent on v.-IIPT.



Local convergence of triangulations with spins

Theorem [A. — Ménard — Schaeffer, 21]
Let P¥ = v—Ising weighted probability distribution for triangulations of size n:

pr {2 » L |IPT, for the local topology

v-lIIPT = v-Ising Infinite Planar Triangulation

— measure supported on infinite planar triangulations.

Moreover:

e The v-lIPT has almost surely one end
e Simple random Walk is recurrent on v.-lIPT.

But:
e Volume (nb. of vertices) and perimeters of balls is unknown.

Non-universality: we expect a different behavior for v = v,
In particular, we expect the volume growth to be
different from 4.
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Link with Liouville Quantum Gravity

v € (0,2), y-Liouville Quantum Gravity = measure on a surface [Duplantier, Sheffield 11].

[Duplantier, Miller, Sheffield 14]
[Miller, Sheffield 164+164-17]

' Construction in the continuum.
o < >

: : ]
Simulation of the Brownian map by T.Budd Simulation of 4/ 5-LQG by T.Budd

A priori , there is no canonical way to embed a planar map in the sphere.

But, for simple triangulations:
the circle packing theorem
gives a canonical embedding.

(Unique up to Mobius transformations.)
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But, for simple triangulations:
the circle packing theorem
gives a canonical embedding.

(Unique up to Mobius transformations.)
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Software CirclePack by K.Stephenson. 3

Unknown for embedding via circle packings, but fantastic result similar
in spirit in [Holden — Sun 20|
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But, for simple triangulations:
the circle packing theorem
gives a canonical embedding.

(Unique up to Mobius transformations.)
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Simulation of a large simple triangulation

embedded in the sphere by circle packing. Simulation of /§—LQG by T.Budd
Software CirclePack by K.Stephenson. 3

Unknown for embedding via circle packings, but fantastic result similar
in spirit in [Holden — Sun 20|



Link with Liouville Quantum Gravity

The critical Ising model is believed to converge to v/3-LQG.

Similar statements for other models of decorated maps
(with a spanning subtree (v = v/2), with a bipolar orientation (7 = 1/4/3),...).
For v € (0,2), there exists d, = “fractal dimension of v-LQG"
d., = ball volume growth exponent for corresponding maps 77
YES, in some cases [Gwynne, Holden, Sun '17], [Ding, Gwynne '18]

The connection is not proven for Ising, but d s is a good candidate for
the volume growth exponent.

What is d\/g ?



Link with Liouville Quantum Gravity

Watabiki’'s prediction:
2

v .

dy =1+ T + Z\/(4 + %)% + 1692 gives d gz~ 4.21...

[Ding, Gwynne '18]
Bounds for d., which give:
418 < d sz < 4.25.

In particular d 5 # 4 and growth
volume would then be different than
the uniform model.

Green = Watabiki. *
Blue and Red = bounds by Ding and Gwynne. ¢




Thank you !



Perspectives

e Compute the volume growth of the v-IIPT
or, at least, prove that it is different from 4 for v = v,

e Study the connected components of the 4+ spins in the v-IIPT

gives some insights about the Ising model on Z? via the KPZ formula

More generally, investigate the different statistical physics models
and their link with v-LQG



