# Limite locale de surfaces discrètes aléatoires

#### Marie Albenque (CNRS, LIX, École Polytechnique) GT Alea



Journées nationales du GDR-IM, 25 mars 2021

I - Definition of planar maps

A map is a collection of polygons glued along their sides (with some technical conditions).



A map is a collection of polygons glued along their sides (with some technical conditions).



If all the polygons have p sides, the resulting map is called a **p**-angulation. 3-angulation = **triangulation**, 4-angulation = **quadrangulation** 

A map is a collection of polygons glued along their sides (with some technical conditions).



If all the polygons have p sides, the resulting map is called a **p**-angulation. 3-angulation = **triangulation**, 4-angulation = **quadrangulation** 

Side remark: we could also obtain a surface different from the sphere (and even not connected !)



A **planar map** is a proper embedding of a planar connected graph in the 2-dimensional sphere (considered up to orientation-preserving homeomorphisms).



A **planar map** is a proper embedding of a planar connected graph in the 2-dimensional sphere (considered up to orientation-preserving homeomorphisms).



Planar map = planar graph + cyclic order of edges around each vertex.

A **planar map** is a proper embedding of a planar connected graph in the 2-dimensional sphere (considered up to orientation-preserving homeomorphisms).



Planar map = planar graph + cyclic order of edges around each vertex. To avoid dealing with symmetries: maps are **rooted** (a corner is marked).

A **planar map** is a proper embedding of a planar connected graph in the 2-dimensional sphere (considered up to orientation-preserving homeomorphisms).



Planar map = planar graph + cyclic order of edges around each vertex. To avoid dealing with symmetries: maps are **rooted** (a corner is marked).

#### A map M defines a discrete **metric space**:

- points: set of vertices of M = V(M).
- distance: graph distance =  $d_{gr}$ .

#### Maps – Motivations

Maps appear in various fields of mathematics, computer science and statistical physics (connections with representation theory, KP-hierarchies, topological recurrence,...).

They can be studied from many angles.

#### Maps – Motivations

Maps appear in various fields of mathematics, computer science and statistical physics (connections with representation theory, KP-hierarchies, topological recurrence,...).

They can be studied from many angles.

Today, I focus on the study of limits of random planar maps and, more precisely on local limits of random planar triangulations.

 $\begin{array}{ll} \textbf{Model:} & \mathcal{T}_n = \{ \texttt{Triangulations of size } n \} \\ & = n+2 \texttt{ vertices, } 2n \texttt{ faces, } 3n \texttt{ edges} \\ \\ & T_n = \textbf{Uniform random element of } \mathcal{T}_n \end{array}$ 

#### Maps – Motivations

Maps appear in various fields of mathematics, computer science and statistical physics (connections with representation theory, KP-hierarchies, topological recurrence,...).

They can be studied from many angles.

Today, I focus on the study of limits of random planar maps and, more precisely on local limits of random planar triangulations.

> Model:  $T_n = \{\text{Triangulations of size } n\}$ = n + 2 vertices, 2n faces, 3n edges  $T_n = \text{Uniform random element of } T_n$ Spoiler: In the second half of the talk, we will change the probability distribution.

Model:  $\mathcal{T}_n = \{ \text{Triangulations of size } n \}$ = n + 2 vertices, 2n faces, 3n edges

 $T_n =$ **Uniform** random element of  $\mathcal{T}_n$ 

#### Two possible points of view:



Local point of view (Benjamini-Schramm topology):





### **Scaling limit of random maps**

 $\mathcal{T}_n = \{ \mathsf{Triangulations of size } n \}$ 

= n+2 vertices, 2n faces, 3n edges

 $T_n = \mathsf{Uniform} random element of <math>\mathcal{T}_n$ 

When the size of the map goes to infinity, so does the typical distance between two vertices.

Idea: "scale" the map = length of edges decreases with the size of the map. Goal: obtain a limiting (non-trivial) compact object



### **Scaling limit of random maps**

 $\mathcal{T}_n = \{ \mathsf{Triangulations of size } n \}$ 

= n+2 vertices, 2n faces, 3n edges

 $T_n = \mathsf{Uniform} \text{ random element of } \mathcal{T}_n$ 

When the size of the map goes to infinity, so does the typical distance between two vertices.

Idea: "scale" the map = length of edges decreases with the size of the map. Goal: obtain a limiting (non-trivial) compact object

#### **Motivations + Results:**

- Discretization of a continuous surface.
- Construction of a 2-dim. analogue of the Brownian motion: The Brownian Map, homeomorphic to the sphere, Hausdorff dimension = 4 [Miermont 13],[Le Gall 13].
- Link with Liouville Quantum Gravity, (will maybe be discussed at the end of the talk) [Duplantier, Sheffield 11], [Duplantier, Miller, Sheffield 14], [Miller, Sheffield 16,16,17]
- Universality: the scaling is "always"  $n^{-1/4}$  + the limiting object does not depend on the precise combinatorics of the model (*p*-angulations, simple triangulations,...)



### **Local limits of random maps**

 $\mathcal{T}_n = \{ \mathsf{Triangulations of size } n \}$ 

= n+2 vertices, 2n faces, 3n edges

 $T_n = \mathsf{Uniform} \text{ random element of } \mathcal{T}_n$ 

When the size of the map goes to infinity, so does the typical distance between two vertices.

Idea: Do NOT scale the distances Look at neighborhoods of the root

Goal: obtain some (probability distribution on) infinite random maps.



### Local limits of random maps

 $\mathcal{T}_n = \{ \mathsf{Triangulations of size } n \}$ 

= n+2 vertices, 2n faces, 3n edges

 $T_n = \mathsf{Uniform} \text{ random element of } \mathcal{T}_n$ 

When the size of the map goes to infinity, so does the typical distance between two vertices.

Idea: **Do NOT scale** the distances Look at **neighborhoods of the root** 

Goal: obtain some (probability distribution on) infinite random maps.

#### **Motivations + Results:**

- Nice model of random discrete geometry.
- Construction of the Uniform Infinite Planar Triangulation (= UIPT). [Angel, Schramm]
- Connection with some models on Euclidean lattices via the KPZ formula (for Knizhnik, Polyakov and Zamolodchiko), [Duplantier, Sheffield 11]
- Universality: the number of vertices at distance R from the root is "always" of order  $R^4$ .



II - Local limits Definitions and first examples

 $\mathcal{G} :=$  family of (locally finite) rooted graphs

For  $g \in \mathcal{G}$  and  $R \in \mathbb{N}^{\star}$ ,



 $\mathcal{G} :=$  family of (locally finite) rooted graphs

For  $g \in \mathcal{G}$  and  $R \in \mathbb{N}^{\star}$ ,



 $\mathcal{G} :=$  family of (locally finite) rooted graphs

For  $g \in \mathcal{G}$  and  $R \in \mathbb{N}^{\star}$ ,



 $\mathcal{G} :=$  family of (locally finite) rooted graphs

For  $g \in \mathcal{G}$  and  $R \in \mathbb{N}^{\star}$ ,



 $\mathcal{G} :=$  family of (locally finite) rooted graphs

For  $g \in \mathcal{G}$  and  $R \in \mathbb{N}^{\star}$ ,





 $\mathcal{G} :=$  family of (locally finite) rooted graphs

For  $g \in \mathcal{G}$  and  $R \in \mathbb{N}^{\star}$ ,

 $B_R(g) =$ ball of radius R around the root vertex of g

#### **Definition:**

The **local topology** on  $\mathcal{G}$  is induced by the distance:

$$d_{loc}(g,g') := \frac{1}{1 + \max\{R \ge 0 : B_R(g) = B_R(g')\}}$$

 $g_n \rightarrow g$  for the local topology  $\Leftrightarrow$ For all **fixed** R, there exists  $n_0$  s.t.:  $B_R(g_n) = B_R(g)$  for  $n \ge n_0$ 

 $\mathcal{G} :=$  family of (locally finite) rooted graphs

For  $g \in \mathcal{G}$  and  $R \in \mathbb{N}^{\star}$ ,

 $B_R(g) =$ ball of radius R around the root vertex of g

## **Definition:** The local topology on $\mathcal{G}$ is induced by the distance: $d_{loc}(g,g') := \frac{1}{1 + \max\{R \ge 0 : B_R(g) = B_R(g')\}}$

 $g_n \rightarrow g$  for the local topology  $\Leftrightarrow$ For all **fixed** R, there exists  $n_0$  s.t.:  $B_R(g_n) = B_R(g)$  for  $n \ge n_0$ 

#### And for random graphs ?

 $(\mu_n) =$  sequence of probability distributions on  $\mathcal{G}$  (e.g. uniform distribution on  $\mathcal{T}_n$ )

if  $\mu_n \xrightarrow{n \to \infty} \mu$  in distribution for the local topology,

we say that  $\mu$  is the **local weak limit** of  $(\mu_n)$ .









































Uniformly chosen root

III - Local limits of random trees and maps

#### Local convergence: more complicated examples
#### Local convergence: more complicated examples



#### Local convergence: more complicated examples



**Theorem** [Angel – Schramm, '03] Let  $\mathbb{P}_n =$  uniform distribution on triangulations of size n.  $\mathbb{P} \xrightarrow{(d)} UIPT$ , for the local topology UIPT = Uniform Infinite Planar Triangulation = measure supported on infinite planar triangulations.





Simulation by I. Kortchemski

Simulation by T.Budd

#### A very short idea of the proof:

1 / Need to evaluate the probability that a given neighborhood  $\Delta$  of the root appears:



#### A very short idea of the proof:

1 / Need to evaluate the probability that a given neighborhood  $\Delta$  of the root appears:

 $\mathcal{T}_n^{(k)} = \{ \text{triangulations with } n \text{ edges} \\ \textbf{J} \qquad \text{and perimeter } k \}$ 



#### A very short idea of the proof:

 $1 \ /$  Need to evaluate the probability that a given neighborhood  $\Delta$  of the root appears:

 $\mathcal{T}_n^{(k)} = \{ \text{triangulations with } n \text{ edges } \}$ 



#### A very short idea of the proof:

1 / Need to evaluate the probability that a given neighborhood  $\Delta$  of the root appears:



 $\mathcal{T}_n^{(k)} = \{ \text{triangulations with } n \text{ edges} \}$ 

degree n

Ex:

**Problem:** the space  $(\mathcal{T}, d_{loc})$  is **not compact**!

#### A very short idea of the proof:

 $1 \ /$  Need to evaluate the probability that a given neighborhood  $\Delta$  of the root appears:



#### A very short idea of the proof:

 $1 \ /$  Need to evaluate the probability that a given neighborhood  $\Delta$  of the root appears:



 $\mathcal{T}_n^{(k)} = \{ \text{triangulations with } n \text{ edges} \}$ 

degree n

2/ No loss of mass at the limit: the measure  $\mathbb{P}_{\infty}$  defined by the limits is a probability measure.

Enough to prove a tightness result, which amounts here to say that  $\deg(\text{root})$  cannot be too big.

**Theorem** [Angel – Schramm, '03] Let  $\mathbb{P}_n$  = uniform distribution on triangulations of size n.  $\mathbb{P} \xrightarrow{(d)} UIPT$ , for the local topology UIPT = Uniform Infinite Planar Triangulation = measure supported on infinite planar triangulations.

#### Some properties of the UIPT:

- The UIPT has almost surely one end [Angel Schramm, 03]
- Volume (nb. of vertices) and perimeters of balls known to some extent.  $\mathbb{E}\left[|B_R(\mathbf{T}_{\infty})|\right] \sim \frac{2}{7}R^4 \quad \text{[Angel 04, Curien - Le Gall 12]}$
- Simple random Walk is recurrent [Gurel-Gurevich Nachmias 13]

**Theorem** [Angel – Schramm, '03] Let  $\mathbb{P}_n$  = uniform distribution on triangulations of size n.  $\mathbb{P} \xrightarrow{(d)} UIPT$ , for the local topology UIPT = Uniform Infinite Planar Triangulation = measure supported on infinite planar triangulations.

#### Some properties of the UIPT:

- The UIPT has almost surely one end [Angel Schramm, 03]
- Volume (nb. of vertices) and perimeters of balls known to some extent.  $\mathbb{E}\left[|B_R(\mathbf{T}_{\infty})|\right] \sim \frac{2}{7}R^4 \quad \text{[Angel 04, Curien - Le Gall 12]}$
- Simple random Walk is recurrent [Gurel-Gurevich Nachmias 13]

Universality: we expect the same behavior for other "reasonable" models of maps. In particular, we expect the volume growth to be 4. (proved for quadrangulations [Krikun 05], simple triangulations [Angel 04])

Suppose that a sequence of random graphs  $G_n$  admits a local weak limit  $G_\infty$ ,

Then,  $f(G_n) \xrightarrow{proba} f(G_\infty)$  for any f which is continuous for  $d_{loc}$ . e.g:  $f = |B_R(.)|$ 

Suppose that a sequence of random graphs  $G_n$  admits a local weak limit  $G_\infty$ ,

Then,  $f(G_n) \xrightarrow{proba} f(G_\infty)$  for any f which is continuous for  $d_{loc}$ . e.g:  $f = |B_R(.)|$ 

Main idea: The limiting object is often "nicer".

Hence, it is easier to compute  $f(G_{\infty})$ , from which we can deduce the behavior of  $f(G_n)$ .

Suppose that a sequence of random graphs  $G_n$  admits a local weak limit  $G_\infty$ ,

Then,  $f(G_n) \xrightarrow{proba} f(G_\infty)$  for any f which is continuous for  $d_{loc}$ . e.g:  $f = |B_R(.)|$ 

Main idea: The limiting object is often "nicer".

Hence, it is easier to compute  $f(G_{\infty})$ , from which we can deduce the behavior of  $f(G_n)$ . For graphs, it has been formalized as the **objective method** [Aldous-Steele 94].

Suppose that a sequence of random graphs  $G_n$  admits a local weak limit  $G_\infty$ ,

Then,  $f(G_n) \xrightarrow{proba} f(G_\infty)$  for any f which is continuous for  $d_{loc}$ . e.g:  $f = |B_R(.)|$ 

Main idea: The limiting object is often "nicer".

Hence, it is easier to compute  $f(G_{\infty})$ , from which we can deduce the behavior of  $f(G_n)$ . For graphs, it has been formalized as the **objective method** [Aldous-Steele 94].

#### **Two example for maps:**

• one-endedness in the UIPT:

Allows to give an explicit description of what can happen when the map gets disconnected.

This is crucial to study a "peeling" exploration spiraling around the root, which gives the volume of the balls [Angel 03].

• spatial Markov property

Conditionally on their perimeter, the interior and exterior of a ball are independent



IV - Local limits of lsing-weighted triangulations

First, **Ising model** on a finite deterministic planar triangulation T:

**Spin configuration** on *T*:



 $\sigma: V(T) \to \{-1, +1\} = \{\Theta, \odot\}.$ 

**Ising model** on T: take a random spin configuration with probability:

 $P(\sigma) \propto e^{\beta J \sum_{v \sim v'} \mathbf{1}_{\{\sigma(v) = \sigma(v')\}}} \qquad \begin{array}{l} \beta > 0: \text{ inverse temperature.} \\ J = \pm 1: \text{ coupling constant.} \end{array}$ 

h = 0: no magnetic field.

First, **Ising model** on a finite deterministic planar triangulation T:

**Spin configuration** on *T*:



 $\sigma: V(T) \to \{-1, +1\} = \{\Theta, \odot\}.$ 

**Ising model** on T: take a random spin configuration with probability:

 $P(\sigma) \propto e^{\beta J \sum_{v \sim v'} \mathbf{1}_{\{\sigma(v) = \sigma(v')\}}} \qquad \begin{array}{l} \beta > 0: \text{ inverse temperature.} \\ J = \pm 1: \text{ coupling constant.} \end{array}$ 

h = 0: no magnetic field.

**Combinatorial formulation:**  $P(\sigma) \propto \nu^{m(\sigma)}$ with  $m(\sigma) =$  number of monochromatic edges ( $\nu = e^{\beta J}$ ).

First, **Ising model** on a finite deterministic planar triangulation T:

**Spin configuration** on *T*:



 $\sigma: V(T) \to \{-1, +1\} = \{\Theta, \bullet\}.$ 

**Ising model** on T: take a random spin configuration with probability:

 $P(\sigma) \propto e^{\beta J \sum_{v \sim v'} \mathbf{1}_{\{\sigma(v) = \sigma(v')\}}}$ 

 $\beta > 0$ : inverse temperature.  $J = \pm 1$ : coupling constant. h = 0: no magnetic field.

**Combinatorial formulation:**  $P(\sigma) \propto \nu^{m(\sigma)}$ with  $m(\sigma)$  = number of monochromatic edges ( $\nu = e^{\beta J}$ ).

Next step: Sample a triangulation of size ntogether with a spin configuration, with probability  $\propto \nu^{m(T,\sigma)}$ .

$$\begin{aligned} \mathbb{P}_{n}^{\nu} \bigg( \{ (T, \sigma) \} \bigg) &= \frac{\nu^{m(T, \sigma)} \delta_{|e(T)| = 3n}}{\mathcal{Z}_{n}}. \\ \mathcal{Z}_{n} &= \text{normalizing constant.} \end{aligned}$$

First, **Ising model** on a finite deterministic planar triangulation T:

**Spin configuration** on *T*:



 $\sigma: V(T) \to \{-1, +1\} = \{\Theta, \bullet\}.$ 

**Ising model** on T: take a random spin configuration with probability:

 $P(\sigma) \propto e^{\beta J \sum_{v \sim v'} \mathbf{1}_{\{\sigma(v) = \sigma(v')\}}}$ 

 $\beta > 0$ : inverse temperature.  $J = \pm 1$ : coupling constant. h = 0: no magnetic field.

**Combinatorial formulation:**  $P(\sigma) \propto \nu^{m(\sigma)}$ with  $m(\sigma)$  = number of monochromatic edges ( $\nu = e^{\beta J}$ ).

Next step: Sample a triangulation of size ntogether with a spin configuration, with probability  $\propto \nu^{m(T,\sigma)}$ .

$$\begin{aligned} \mathbb{P}_{n}^{\nu} \bigg( \{ (T, \sigma) \} \bigg) &= \frac{\nu^{m(T, \sigma)} \delta_{|e(T)| = 3n}}{\mathcal{Z}_{n}}. \\ \mathcal{Z}_{n} &= \text{normalizing constant.} \end{aligned}$$

**Remark:** This is a probability distribution on triangulations with spins. But, forgetting the spins gives a probability a distribution on triangulations without spins different from the uniform distribution.

### **Escaping universality: new asymptotic behavior**

#### **Counting exponent for undecorated maps:**

number of (undecorated) maps of size  $n \sim \kappa \rho^{-n} n^{-5/2}$ 

(e.g.: triangulations, quadrangulations, general maps, simple maps,...)

where  $\kappa$  and  $\rho$  depend on the combinatorics of the model.

### **Escaping universality: new asymptotic behavior**

#### **Counting exponent for undecorated maps:**

number of (undecorated) maps of size  $n \sim \kappa \rho^{-n} n^{-5/2}$ 

(e.g.: triangulations, quadrangulations, general maps, simple maps,...) where  $\kappa$  and  $\rho$  depend on the combinatorics of the model.

#### **Generating series of Ising-weighted triangulations:**

$$Q(\nu, t) = \sum_{T \in \mathcal{T}_f} \sum_{\sigma: V(T) \to \{-1, +1\}} \nu^{m(T, \sigma)} t^{e(T)}$$

**Theorem** [Bernardi – Bousquet-Mélou 11] For every  $\nu > 0$ ,  $Q(\nu, t)$  is algebraic and satisfies

$$[t^{3n}]Q(\nu,t) \sim_{n \to \infty} \begin{cases} \kappa \rho_{\nu_c}^{-n} n^{-7/3} & \text{if } \nu = \nu_c = 1 + \frac{1}{\sqrt{7}}, \\ \kappa \rho_{\nu}^{-n} n^{-5/2} & \text{if } \nu \neq \nu_c. \end{cases}$$

See also [Boulatov – Kazakov 1987], [Bousquet-Melou – Schaeffer 03] and [Bouttier – Di Francesco – Guitter 04].

This suggests a **different behavior** of the underlying maps for  $\nu = \nu_c$ .

**Theorem** [A. – Ménard – Schaeffer, 21] Let  $\mathbb{P}_n^{\nu} = \nu$ -Ising weighted probability distribution for triangulations of size n:  $\mathbb{P}_n^{\nu} \xrightarrow{(d)} \nu$ -IIPT, for the local topology  $\nu$ -IIPT =  $\nu$ -Ising Infinite Planar Triangulation = measure supported on infinite planar triangulations.

**Theorem** [A. – Ménard – Schaeffer, 21] Let  $\mathbb{P}_n^{\nu} = \nu$ -Ising weighted probability distribution for triangulations of size n:

 $\mathbb{P}_n^{\nu} \xrightarrow{(d)} \nu$ -IIPT, for the local topology

 $\nu$ -IIPT =  $\nu$ -Ising Infinite Planar Triangulation

= measure supported on infinite planar triangulations.

#### A very very short idea of the proof:

Need to evaluate the probability that a given neighborhood of the root appears:



**Theorem** [A. – Ménard – Schaeffer, 21] Let  $\mathbb{P}_n^{\nu} = \nu$ -Ising weighted probability distribution for triangulations of size n:  $\mathbb{P}_n^{\nu} \xrightarrow{(d)} \nu$ -IIPT, for the local topology

 $\nu$ -IIPT =  $\nu$ -Ising Infinite Planar Triangulation

= measure supported on infinite planar triangulations.

#### A very very short idea of the proof:

Need to evaluate the probability that a given neighborhood of the root appears:



**Theorem** [A. – Ménard – Schaeffer, 21] Let  $\mathbb{P}_n^{\nu} = \nu$ -Ising weighted probability distribution for triangulations of size *n*:  $\mathbb{P}_n^{\nu} \xrightarrow{(d)} \nu$ -IIPT, for the local topology  $\nu$ -IIPT =  $\nu$ -Ising Infinite Planar Triangulation = measure supported on infinite planar triangulations.

Moreover:

- The  $\nu$ -IIPT has almost surely one end
- Simple random Walk is recurrent on  $\nu_c$ -IIPT.

**Theorem** [A. – Ménard – Schaeffer, 21] Let  $\mathbb{P}_n^{\nu} = \nu$ -Ising weighted probability distribution for triangulations of size *n*:  $\mathbb{P}_n^{\nu} \xrightarrow{(d)} \nu$ -IIPT, for the local topology  $\nu$ -IIPT =  $\nu$ -Ising Infinite Planar Triangulation = measure supported on infinite planar triangulations.

Moreover:

- The  $\nu$ -IIPT has almost surely one end
- Simple random Walk is recurrent on  $\nu_c$ -IIPT.

But:

• Volume (nb. of vertices) and perimeters of balls is **unknown**.

**Non-universality**: we expect a **different** behavior for  $\nu = \nu_c$ In particular, we expect the volume growth to be different from 4.

 $\gamma \in (0,2)$ ,  $\gamma$ -Liouville Quantum Gravity = measure on a surface [Duplantier, Sheffield 11].



Simulation of the Brownian map by T.Budd



 $\gamma \in (0,2)$ ,  $\gamma$ -Liouville Quantum Gravity = measure on a surface [Duplantier, Sheffield 11].



[Duplantier, Miller, Sheffield 14] [Miller, Sheffield 16+16+17] Construction in the continuum.



Simulation of the Brownian map by T.Budd

 $\gamma \in (0,2)$ ,  $\gamma$ -Liouville Quantum Gravity = measure on a surface [Duplantier, Sheffield 11].



[Duplantier, Miller, Sheffield 14] [Miller, Sheffield 16+16+17] Construction in the continuum.



Simulation of the Brownian map by T.Budd

A priori , there is no canonical way to embed a planar map in the sphere.

But, for simple triangulations: the **circle packing theorem** gives a canonical embedding.

(Unique up to Möbius transformations.)





But, for simple triangulations: the **circle packing theorem** gives a canonical embedding.

(Unique up to Möbius transformations.)











Simulation of a large simple triangulation embedded in the sphere by circle packing. Software CirclePack by K.Stephenson.

Simulation of  $\sqrt{\frac{8}{3}}$ -LQG by T.Budd

Unknown for embedding via circle packings, but fantastic result similar in spirit in [Holden – Sun 20]

But, for simple triangulations: the **circle packing theorem** gives a canonical embedding.

(Unique up to Möbius transformations.)











Simulation of a large simple triangulation embedded in the sphere by circle packing. Software CirclePack by K.Stephenson.

Simulation of  $\sqrt{\frac{8}{3}}$ -LQG by T.Budd

Unknown for embedding via circle packings, but fantastic result similar in spirit in [Holden – Sun 20]

The critical Ising model is *believed* to converge to  $\sqrt{3}$ -LQG. Similar statements for other models of decorated maps (with a spanning subtree ( $\gamma = \sqrt{2}$ ), with a bipolar orientation ( $\gamma = \sqrt{4/3}$ ),...).

For  $\gamma \in (0,2)$ , there exists  $d_{\gamma} =$  "fractal dimension of  $\gamma$ -LQG"

 $d_{\gamma}$  = ball volume growth exponent for corresponding maps ??

YES, in some cases [Gwynne, Holden, Sun '17], [Ding, Gwynne '18]

The connection is not proven for Ising, but  $d_{\sqrt{3}}$  is a good candidate for the volume growth exponent.

What is  $d_{\sqrt{3}}$  ?

#### Watabiki's prediction:

$$d_{\gamma} = 1 + \frac{\gamma^2}{4} + \frac{1}{4}\sqrt{(4 + \gamma^2)^2 + 16\gamma^2} \quad \text{gives} \quad d_{\sqrt{3}} \approx 4.21...$$

[Ding, Gwynne '18] Bounds for  $d_{\gamma}$  which give:  $4.18 \leq d_{\sqrt{3}} \leq 4.25$ .

In particular  $d_{\sqrt{3}} \neq 4$  and growth volume would then be different than the uniform model.



Green = Watabiki.Blue and Red = bounds by Ding and Gwynne.

Thank you !

#### Perspectives

- Compute the volume growth of the  $\nu$ -IIPT or, at least, prove that it is different from 4 for  $\nu = \nu_c$
- Study the connected components of the + spins in the  $\nu$ -IIPT gives some insights about the Ising model on  $\mathbb{Z}^2$  via the KPZ formula

More generally, investigate the different statistical physics models and their link with  $\gamma\text{-}\text{LQG}$