AN INTRODUCTION TO ORIENTATIONS ON MAPS

1st lecture - May, 15th 2017

Marie Albenque (CNRS, LIX, École Polytechnique)

Mini-school on Random Maps and the Gaussian Free Field - ProbabLyon

Overview

Today: Construction of orientations, existence, uniqueness

1 - Some definitions : maps, orientations.
2 - Existence of orientations
3 - Flip and flop : the lattice of orientations
Tuesday: Applications : graph drawings, couplings, bijections
1 - Schnyder woods and graph drawings.
2 - Couplings and spanning trees.
3 - Orientations and blossoming trees
Thursday: Why should you care?
1 - Higher genus
2 - Scaling limits for simple triangulations.
3 - Scaling limits for maps with an orientation?

Plane maps - Definition

A plane map is the proper embedding of a connected planar graph in the plane (considered up to continuous deformations).

Plane maps - Definition

A plane map is the proper embedding of a connected planar graph in the plane (considered up to continuous deformations).

Plane maps - Definition

A plane map is the proper embedding of a connected planar graph in the plane (considered up to continuous deformations).

face $=$ one of the connected components obtained after removing the edges.

Plane maps - Definition

A plane map is the proper embedding of a connected planar graph in the plane (considered up to continuous deformations).

face $=$ one of the connected components obtained after removing the edges.

Plane maps - Definition

A plane map is the proper embedding of a connected planar graph in the plane (considered up to continuous deformations).

face $=$ one of the connected components obtained after removing the edges.

Plane maps - Definition

A plane map is the proper embedding of a connected planar graph in the plane (considered up to continuous deformations).

plane map $=$ planar graph + cyclical ordering around the vertices.

Plane maps - Definition

A plane map is the proper embedding of a connected planar graph in the plane (considered up to continuous deformations).

plane map \approx plane graph + cyclical ordering around the vertices.

plane map

planar map

+ choice of an outer face

Plane maps - Definition

A plane map is the proper embedding of a connected planar graph in the plane (considered up to continuous deformations).

plane map $=$ plane graph + cyclical ordering around the vertices

plane map

planar map

+ choice of an outer face
+ choice of an outer face

Plane maps - Definition

A plane map is the proper embedding of a connected planar graph in the plane (considered up to continuous deformations).

plane map $=$ plane graph + cyclical ordering around the vertices + choice of an outer face
rooted plane map $=$ marked vertex $\boldsymbol{\square}$ (incident to the outer face)

Plane maps - Definition

A plane map is the proper embedding of a connected planar graph in the plane (considered up to continuous deformations).

plane map $=$ plane graph + cyclical ordering around the vertices + choice of an outer face
rooted plane map $=$ marked vertex $\boldsymbol{\square}$ (incident to the outer face)
Notation: $V(M)=\{$ vertices of $M\}$

$$
\begin{aligned}
& E(M)=\{\text { edges of } M\} \\
& F(M)=\{\text { faces of } M\}
\end{aligned}
$$

Digression : Euler Formula

Euler Formula

$$
|V(M)|+|F(M)|=2+|E(M)|
$$

M a rooted plane map

Digression : Euler Formula

Euler Formula

$$
|V(M)|+|F(M)|=2+|E(M)|
$$

Digression : Euler Formula

Euler Formula

$$
|V(M)|+|F(M)|=2+|E(M)|
$$

M a rooted plane map
M^{\star} its dual map

$$
V\left(M^{\star}\right)=F(M)
$$

Digression : Euler Formula

Euler Formula

$$
|V(M)|+|F(M)|=2+|E(M)|
$$

M a rooted plane map T spanning tree of M $V(T)=V(M)$, $|E(T)|=|V(M)|-1$
M^{\star} its dual map

$$
V\left(M^{\star}\right)=F(M)
$$

Digression : Euler Formula

Euler Formula

$$
|V(M)|+|F(M)|=2+|E(M)|
$$

M a rooted plane map
T spanning tree of M
$V(T)=V(M)$,
$|E(T)|=|V(M)|-1$
M^{\star} its dual map

$$
\begin{aligned}
& V\left(M^{\star}\right)=F(M) \\
& T^{\star}=\text { complement of } T \\
\Longrightarrow & T^{\star}=\text { spanning tree of } M^{\star}
\end{aligned}
$$

α-Orientations - Definition

An orientation of a plane map is the choice of one orientation for each of its edges.

α-Orientations - Definition

An orientation of a plane map is the choice of one orientation for each of its edges.

We choose to characterize an orientation by the outdegree of each vertex.
$\operatorname{out}(v)=4$

out $(v)=$ outdegree of v

α-Orientations - Definition

An orientation of a plane map is the choice of one orientation for each of its edges.

We choose to characterize an orientation by the outdegree of each vertex.
$\operatorname{out}(v)=4$

out $(v)=$ outdegree of v

Let $\alpha: V(M) \rightarrow \mathbb{N}$, an α-orientation is an orientation such that :

$$
\begin{aligned}
& \text { out }(v)=\alpha(v), \text { for all } v \\
& \text { [Propp '93], [Ossona de Mendez '94], [Felsner '04] }
\end{aligned}
$$

Why α-orientations? Some motivations.

Schnyder woods [Schnyder '89] : Initial motivation.

More details in the coming lectures.

Orientation and coloring of the edges of a simple triangulation such that the local configuration around an inner vertex is :

The red (resp. blue or green) edges form a spanning tree of the inner vertices rooted at one outer vertex.

In particular $\operatorname{out}(v)=3$ for any inner vertex v.

Why α-orientations? Some motivations.

Schnyder woods [Schnyder '89] : Initial motivation.

More details in the coming lectures.

Orientation and coloring of the edges of a simple triangulation such that the local configuration around an inner vertex is :

The red (resp. blue or green) edges form a spanning tree of the inner vertices rooted at one outer vertex.

In particular $\operatorname{out}(v)=3$ for any inner vertex v.

Theorem :

Schnyder woods are in bijection with 3-orientations on a simple triangulation.

Why α-orientations? Some motivations.

Eulerian orientations :

Eulerian tour of a graph : walk which takes once every edge and stops at its starting point.

Why α-orientations? Some motivations.

Eulerian orientations :

Eulerian tour of a graph : walk which takes once every edge and stops at its starting point.

Why α-orientations? Some motivations.

Eulerian orientations :

Eulerian tour of a graph : walk which takes once every edge and stops at its starting point.

Why α-orientations? Some motivations.

Eulerian orientations :

Eulerian tour of a graph : walk which takes once every edge and stops at its starting point.

Why α-orientations? Some motivations.

Eulerian orientations :

Eulerian tour of a graph : walk which takes once every edge and stops at its starting point.

Why α-orientations? Some motivations.

Eulerian orientations :

Eulerian tour of a graph : walk which takes once every edge and stops at its starting point.

Why α-orientations? Some motivations.

Eulerian orientations :

Eulerian tour of a graph : walk which takes once every edge and stops at its starting point.

Why α-orientations? Some motivations.

Eulerian orientations :

Eulerian tour of a graph : walk which takes once every edge and stops at its starting point.

Eulerian orientation : for any vertex $v, \operatorname{in}(v)=\operatorname{out}(v)$,

$$
\text { i.e. } \operatorname{out}(v)=\operatorname{deg}(v) / 2
$$

Each tour gives naturally birth to a Eulerian orientation : the one
 obtained by orienting the edges according to their direction in the tour.

Why α-orientations? Some motivations.

Eulerian orientations :

Eulerian tour of a graph : walk which takes once every edge and stops at its starting point.

Eulerian orientation : for any vertex $v, \operatorname{in}(v)=\operatorname{out}(v)$,

$$
\text { i.e. } \operatorname{out}(v)=\operatorname{deg}(v) / 2
$$

Each tour gives naturally birth to a Eulerian orientation : the one
 obtained by orienting the edges according to their direction in the tour.

Theorem : Euler (1759), Hierholzer (1873)

There exists a Eulerian tour for a connected graph iff it is Eulerian ($=$ even degree $\forall v$).
\Rightarrow A graph admits a Eulerian orientation iff it is Eulerian.

Why α-orientations? Some motivations.

Perfect matching in bipartite graphs :

Matching in a graph: set of edges such that each vertex belongs at most to one edge.

Why α-orientations? Some motivations.

Perfect matching in bipartite graphs :

Matching in a graph: set of edges such that each vertex belongs at most to one edge.

Why α-orientations? Some motivations.

Perfect matching in bipartite graphs :

Matching in a graph: set of edges such that each vertex belongs at most to one edge.

Perfect matching : each vertex belongs exactly to one edge.

Why α-orientations? Some motivations.

Perfect matching in bipartite graphs :

Matching in a graph: set of edges such that each vertex belongs at most to one edge.

Perfect matching : each vertex belongs exactly to one edge.

Why α-orientations? Some motivations.

Perfect matching in bipartite graphs :

Matching in a graph: set of edges such that each vertex belongs at most to one edge.

Perfect matching : each vertex belongs exactly to one edge.

Bipartite graph proper coloring of vertices in black and white such that :

Why α-orientations? Some motivations.

Perfect matching in bipartite graphs :

Matching in a graph: set of edges such that each vertex belongs at most to one edge.

Perfect matching : each vertex belongs exactly to one edge.

Bipartite graph proper coloring of vertices in black and white such that :

Why α-orientations? Some motivations.

Perfect matching in bipartite graphs:

Matching in a graph: set of edges such that each vertex belongs at most to one edge.

Perfect matching : each vertex belongs exactly to one edge.

Bipartite graph proper coloring of vertices in black and white such that :

$\alpha(\bullet)=\operatorname{deg}-1\}$ The perfect matchings of a bipartite graph $\alpha(\circ)=1 \quad\}$ and its α-orientations are in bijection.

Why α-orientations? Some motivations.

Perfect matching in bipartite graphs :

Matching in a graph: set of edges such that each vertex belongs at most to one edge.

Perfect matching : each vertex belongs exactly to one edge.

Bipartite graph proper coloring of vertices in black and white such that :

$\alpha(\bullet)=\operatorname{deg}-1\}$ The perfect matchings of a bipartite graph $\alpha(\circ)=1 \quad\}$ and its α-orientations are in bijection.
Does a perfect matching always exist?

Why α-orientations? Some motivations.

Perfect matching in bipartite graphs:

Matching in a graph: set of edges such that each vertex belongs at most to one edge.

Perfect matching : each vertex belongs exactly to one edge.

Bipartite graph proper coloring of vertices in black and white such that :

$\alpha(\bullet)=\operatorname{deg}-1\}$ The perfect matchings of a bipartite graph $\alpha(\circ)=1 \quad\}$ and its α-orientations are in bijection.
Does a perfect matching always exist?

Perfect matching ?

Why α-orientations? Some motivations.

Perfect matching in bipartite graphs:

Matching in a graph: set of edges such that each vertex belongs at most to one edge.

Perfect matching : each vertex belongs exactly to one edge.

Bipartite graph proper coloring of vertices in black and white such that :

$\alpha(\bullet)=\operatorname{deg}-1\}$ The perfect matchings of a bipartite graph $\alpha(\circ)=1 \quad\}$ and its α-orientations are in bijection.
Does a perfect matching always exist?

Perfect matching ? NO

Why α-orientations? Some motivations.

Perfect matching in bipartite graphs :

Matching in a graph: set of edges such that each vertex belongs at most to one edge.
Perfect matching : each vertex belongs exactly to one edge.

Bipartite graph proper coloring of vertices in black and white such that :

$\alpha(\bullet)=\operatorname{deg}-1\}$ The perfect matchings of a bipartite graph
$\alpha(\circ)=1 \quad\}$ and its α-orientations are in bijection.

Theorem : Hall (1935)
A bipartite graph admits a perfect matching iff \forall subset W of white vertices, $|W| \leq \mid \cup_{w \in W}\{$ neighbours of $w\} \mid$

Existence of orientations : necessary conditions

plane map M α is feasible iff \exists an α-orientation on M $\alpha: V(M) \rightarrow \mathbb{N} \longrightarrow$

II

Existence of orientations : necessary conditions

plane map M $\alpha: V(M) \rightarrow \mathbb{N} \longrightarrow$ α is feasible iff \exists an α-orientation on M

Necessary conditions :
$1-\sum_{v} \alpha(v)=|E(M)|$

II

Existence of orientations : necessary conditions

plane map M
$\alpha: V(M) \rightarrow \mathbb{N} \longrightarrow$ α is feasible iff \exists an α-orientation on M

Necessary conditions :
$1-\sum_{v} \alpha(v)=|E(M)|$

II

Existence of orientations: necessary conditions

plane map M
$\alpha: V(M) \rightarrow \mathbb{N} \longrightarrow$ α is feasible iff \exists an α-orientation on M

Necessary conditions :
$1-\sum_{v} \alpha(v)=|E(M)|$
2 - For all $A \subseteq V(M)$,

$$
\sum_{v \in A} \alpha(v) \geq|E[A]|
$$

$E[A]=$ edges between vertices of A

II

Existence of orientations: necessary conditions

plane map M
$\alpha: V(M) \rightarrow \mathbb{N} \longrightarrow$ α is feasible iff \exists an α-orientation on M

Necessary conditions:
$1-\sum_{v} \alpha(v)=|E(M)|$
2 - For all $A \subseteq V(M)$,

$$
\sum_{v \in A} \alpha(v) \geq|E[A]|
$$

$E[A]=$ edges between vertices of A
$E_{\text {cut }}[A]=$ edges with only one vertex in A

Existence of orientations: necessary conditions

plane map M
$\alpha: V(M) \rightarrow \mathbb{N} \longrightarrow$ α is feasible iff \exists an α-orientation on M

Necessary conditions :
$1-\sum_{v} \alpha(v)=|E(M)|$
2 - For all $A \subseteq V(M)$,
$\sum_{v \in A}^{\text {and }} \alpha(v) \leq|E[A]|+\left|E_{\text {cut }}[A]\right|$

$E[A]=$ edges between vertices of A
$E_{\text {cut }}[A]=$ edges with only one vertex in A

Existence of orientations: necessary conditions

plane map M
$\alpha: V(M) \rightarrow \mathbb{N} \longrightarrow$
α is feasible iff \exists an α-orientation on M

Necessary conditions :

$1-\sum_{v} \alpha(v)=|E(M)|$
2 - For all $A \subseteq V(M)$,
$\sum_{v \in A}^{\text {and }} \alpha(v) \leq|E[A]|+\left|E_{\text {cut }}[A]\right|$

$E[A]=$ edges between vertices of A
$E_{\text {cut }}[A]=$ edges with only one vertex in A

$$
\operatorname{dem}_{\alpha}(A)=|E[A]|+\left|E_{\text {cut }}[A]\right|-\sum_{v \in A} \alpha(v)
$$

demand of $A \approx \mathrm{nb}$ of edges of $E_{\mathrm{cut}}[A]$ oriented towards A

Existence of orientations: necessary conditions

plane map M
$\alpha: V(M) \rightarrow \mathbb{N} \longrightarrow$
α is feasible iff \exists an α-orientation on M

Necessary conditions :

$1-\sum_{v} \alpha(v)=|E(M)|$
2 - For all $A \subseteq V(M)$,

$0 \leq \operatorname{dem}_{\alpha}(A) \leq\left|E_{\text {cut }}[A]\right|$

$E[A]=$ edges between vertices of A
$E_{\text {cut }}[A]=$ edges with only one vertex in A
$\operatorname{dem}_{\alpha}(A)=|E[A]|+\left|E_{\text {cut }}[A]\right|-\sum_{v \in A} \alpha(v)$
demand of $A \approx \mathrm{nb}$ of edges of $E_{\text {cut }}[A]$ oriented towards A

Existence of orientations: necessary conditions

plane map M
$\alpha: V(M) \rightarrow \mathbb{N} \longrightarrow$
α is feasible iff \exists an α-orientation on M

Necessary conditions :

$1-\sum_{v} \alpha(v)=|E(M)|$
2 - For all $A \subseteq V(M)$,
$0 \leq \operatorname{dem}_{\alpha}(A) \leq\left|E_{\text {cut }}[A]\right|$

$E[A]=$ edges between vertices of A
$E_{\text {cut }}[A]=$ edges with only one vertex in A

$$
\operatorname{dem}_{\alpha}(A)=|E[A]|+\left|E_{\text {cut }}[A]\right|-\sum_{v \in A} \alpha(v)
$$

demand of $A \approx \mathrm{nb}$ of edges of $E_{\mathrm{cut}}[A]$ oriented towards A

Existence of orientations: necessary conditions

plane map M
$\alpha: V(M) \rightarrow \mathbb{N} \longrightarrow$
α is feasible iff \exists an α-orientation on M

Necessary conditions :

$1-\sum_{v} \alpha(v)=|E(M)|$
2 - For all $A \subseteq V(M)$,
$0 \leq \operatorname{dem}_{\alpha}(A) \leq\left|E_{\text {cut }}[A]\right|$

Theorem :

Those conditions are sufficient.

$E[A]=$ edges between vertices of A
$E_{\text {cut }}[A]=$ edges with only one vertex in A

$$
\operatorname{dem}_{\alpha}(A)=|E[A]|+\left|E_{\text {cut }}[A]\right|-\sum_{v \in A} \alpha(v)
$$

demand of $A \approx \mathrm{nb}$ of edges of $E_{\mathrm{cut}}[A]$ oriented towards A

Existence of orientations : sufficient conditions

Theorem :

Let M and α be such that:

$$
\begin{aligned}
& 1-\sum_{v} \alpha(v)=|E(M)| \text {, i.e. } \operatorname{dem}_{\alpha}(V)=0 \\
& 2 \text { - For all } A \subsetneq V(M), 0 \leq \operatorname{dem}_{\alpha}(A) \leq\left|E_{\text {cut }}[A]\right| \text {. }
\end{aligned}
$$

then α is feasible.

Proof (by example) :

Existence of orientations: sufficient conditions

Theorem :

Let M and α be such that:

$$
\begin{aligned}
& 1-\sum_{v} \alpha(v)=|E(M)| \text {, i.e. } \operatorname{dem}_{\alpha}(V)=0 \\
& 2 \text { - For all } A \subsetneq V(M), 0 \leq \operatorname{dem}_{\alpha}(A) \leq\left|E_{\text {cut }}[A]\right| .
\end{aligned}
$$

then α is feasible.

Proof (by example) :

Existence of orientations: sufficient conditions

Theorem :

Let M and α be such that :

$$
\begin{aligned}
& 1-\sum_{v} \alpha(v)=|E(M)| \text {, i.e. } \operatorname{dem}_{\alpha}(V)=0 \\
& 2 \text { - For all } A \subsetneq V(M), 0 \leq \operatorname{dem}_{\alpha}(A) \leq\left|E_{\text {cut }}[A]\right| .
\end{aligned}
$$

then α is feasible.

Proof (by example) :

As long as some edges are not oriented, do :

- As long as $\exists A$ such that $\operatorname{dem}_{\alpha}(A)=0$,
a) orient the edges of $E_{\text {cut }}[A]$,

Existence of orientations: sufficient conditions

Theorem :

Let M and α be such that :

$$
\begin{aligned}
& 1-\sum_{v} \alpha(v)=|E(M)| \text {, i.e. } \operatorname{dem}_{\alpha}(V)=0 \\
& 2 \text { - For all } A \subsetneq V(M), 0 \leq \operatorname{dem}_{\alpha}(A) \leq\left|E_{\text {cut }}[A]\right| .
\end{aligned}
$$

then α is feasible.

Proof (by example) :

As long as some edges are not oriented, do :

- As long as $\exists A$ such that $\operatorname{dem}_{\alpha}(A)=0$,
a) orient the edges of $E_{\text {cut }}[A]$,
b) update α.

Existence of orientations: sufficient conditions

Theorem :

Let M and α be such that :

$$
\begin{aligned}
& 1-\sum_{v} \alpha(v)=|E(M)| \text {, i.e. } \operatorname{dem}_{\alpha}(V)=0 \\
& 2 \text { - For all } A \subsetneq V(M), 0 \leq \operatorname{dem}_{\alpha}(A) \leq\left|E_{\text {cut }}[A]\right| .
\end{aligned}
$$

then α is feasible.

Proof (by example) :

As long as some edges are not oriented, do :

- As long as $\exists A$ such that $\operatorname{dem}_{\alpha}(A)=0$,
a) orient the edges of $E_{\text {cut }}[A]$,
b) update α.
- Orient an edge arbitrarily

Existence of orientations: sufficient conditions

Theorem :

Let M and α be such that:

$$
\begin{aligned}
& 1-\sum_{v} \alpha(v)=|E(M)| \text {, i.e. } \operatorname{dem}_{\alpha}(V)=0 \\
& 2 \text { - For all } A \subsetneq V(M), 0 \leq \operatorname{dem}_{\alpha}(A) \leq\left|E_{\text {cut }}[A]\right| \text {. }
\end{aligned}
$$

then α is feasible.

Proof (by example) :

As long as some edges are not oriented, do :

- As long as $\exists A$ such that $\operatorname{dem}_{\alpha}(A)=0$,
a) orient the edges of $E_{\text {cut }}[A]$,
b) update α.
- Orient an edge arbitrarily + update α.

Existence of orientations: sufficient conditions

Theorem :

Let M and α be such that :

$$
\begin{aligned}
& 1-\sum_{v} \alpha(v)=|E(M)| \text {, i.e. } \operatorname{dem}_{\alpha}(V)=0 \\
& 2 \text { - For all } A \subsetneq V(M), 0 \leq \operatorname{dem}_{\alpha}(A) \leq\left|E_{\text {cut }}[A]\right| \text {. }
\end{aligned}
$$

then α is feasible.

Proof (by example) :

As long as some edges are not oriented, do :

- As long as $\exists A$ such that $\operatorname{dem}_{\alpha}(A)=0$,
a) orient the edges of $E_{\text {cut }}[A]$,
b) update α.
- Orient an edge arbitrarily + update α.

Existence of orientations: sufficient conditions

Theorem :

Let M and α be such that :

$$
\begin{aligned}
& 1-\sum_{v} \alpha(v)=|E(M)| \text {, i.e. } \operatorname{dem}_{\alpha}(V)=0 \\
& 2 \text { - For all } A \subsetneq V(M), 0 \leq \operatorname{dem}_{\alpha}(A) \leq\left|E_{\text {cut }}[A]\right| \text {. }
\end{aligned}
$$

then α is feasible.

Proof (by example) :

As long as some edges are not oriented, do :

- As long as $\exists A$ such that $\operatorname{dem}_{\alpha}(A)=0$,
a) orient the edges of $E_{\text {cut }}[A]$,
b) update α.
- Orient an edge arbitrarily + update α.

Existence of orientations: sufficient conditions

Theorem :

Let M and α be such that:

$$
\begin{aligned}
& 1-\sum_{v} \alpha(v)=|E(M)| \text {, i.e. } \operatorname{dem}_{\alpha}(V)=0 \\
& 2 \text { - For all } A \subsetneq V(M), 0 \leq \operatorname{dem}_{\alpha}(A) \leq\left|E_{\text {cut }}[A]\right| \text {. }
\end{aligned}
$$

then α is feasible.

Proof (by example) :

As long as some edges are not oriented, do :

- As long as $\exists A$ such that $\operatorname{dem}_{\alpha}(A)=0$,
a) orient the edges of $E_{\text {cut }}[A]$,
b) update α.
- Orient an edge arbitrarily + update α.

Existence of orientations: sufficient conditions

Theorem :

Let M and α be such that:

$$
\begin{aligned}
& 1-\sum_{v} \alpha(v)=|E(M)| \text {, i.e. } \operatorname{dem}_{\alpha}(V)=0 \\
& 2 \text { - For all } A \subsetneq V(M), 0 \leq \operatorname{dem}_{\alpha}(A) \leq\left|E_{\text {cut }}[A]\right| \text {. }
\end{aligned}
$$

then α is feasible.

Proof (by example) :

As long as some edges are not oriented, do :

- As long as $\exists A$ such that $\operatorname{dem}_{\alpha}(A)=0$,
a) orient the edges of $E_{\text {cut }}[A]$,
b) update α.
- Orient an edge arbitrarily + update α.

Set of α-orientations

$\left.\begin{array}{l}\text { a plane map } M \\ \text { a feasible } \alpha\end{array}\right\}$ What can we say about the α-orientations?

Set of α-orientations

$\left.\begin{array}{l}\text { a plane map } M \\ \text { a feasible } \alpha\end{array}\right\}$ What can we say about the α-orientations?
1 - Rigid edges
if there exists A such that or $\left\{\begin{array}{l}\operatorname{dem}_{\alpha}(A)=0 \\ \operatorname{dem}_{\alpha}(A)=\left|E_{\text {cut }}(A)\right|\end{array}\right.$
the edges of $E_{\text {cut }}(A)$ are rigid ($=$ no choice for their orientation)

Set of α-orientations

$\left.\begin{array}{l}\text { a plane map } M \\ \text { a feasible } \alpha\end{array}\right\}$ What can we say about the α-orientations? 2 - Cycles

Set of α-orientations

$\left.\begin{array}{l}\text { a plane map } M \\ \text { a feasible } \alpha\end{array}\right\}$ What can we say about the α-orientations?

2 - Cycles

The flip on an oriented cycle gives a new α-orientation.

Set of α-orientations

$\left.\begin{array}{l}\text { a plane map } M \\ \text { a feasible } \alpha\end{array}\right\}$ What can we say about the α-orientations? 2 - Cycles

rigid edges in black
α-orientations: O_{1} and O_{2}

Set of α-orientations

$\left.\begin{array}{l}\text { a plane map } M \\ \text { a feasible } \alpha\end{array}\right\}$ What can we say about the α-orientations?

2 - Cycles

rigid edges in black
α-orientations: O_{1} and O_{2}
edges for which $O_{1} \neq O_{2}$

Set of α-orientations

$\left.\begin{array}{l}\text { a plane map } M \\ \text { a feasible } \alpha\end{array}\right\}$ What can we say about the α-orientations?

2 - Cycles

rigid edges in black
α-orientations: O_{1} and O_{2}
edges for which $O_{1} \neq O_{2}$

Property :

All vertices have even degree. (i.e. it is a union of cycles)

Set of α-orientations

$\left.\begin{array}{l}\text { a plane map } M \\ \text { a feasible } \alpha\end{array}\right\}$ What can we say about the α-orientations?

2 - Cycles

rigid edges in black α-orientations: O_{1} and O_{2}
edges for which $O_{1} \neq O_{2}$

Theorem :

We can go from one α-orientation to another by a sequence of flips of directed cycles.

Set of α-orientations

$\left.\begin{array}{l}\text { a plane map } M \\ \text { a feasible } \alpha\end{array}\right\}$ What can we say about the α-orientations?

2 - Cycles

rigid edges in black α-orientations: O_{1} and O_{2}
edges for which $O_{1} \neq O_{2}$

Theorem :

We can go from one α-orientation to another by a sequence of flips of directed cycles.

Essential cycles

Theorem :

We can go from one α-orientation to another by a sequence of successive flips of directed cycles.

A cycle C is essential iff :

- C is simple and chordless
- if $E_{\text {cut }}\left[I_{C}\right]$ is rigid ($I_{C}=$ intérieur de C)
- \exists an α-orientation in which C is a directed cycle.

Essential cycles

Theorem :

We can go from one α-orientation to another by a sequence of successive flips of directed cycles.

A cycle C is essential iff :

- C is simple and chordless
- if $E_{\text {cut }}\left[I_{C}\right]$ is rigid ($I_{C}=$ intérieur de C)
- \exists an α-orientation in which C is a directed cycle.

essential

Essential cycles

Theorem :

We can go from one α-orientation to another by a sequence of successive flips of directed cycles.

A cycle C is essential iff :

- C is simple and chordless
- if $E_{\text {cut }}\left[I_{C}\right]$ is rigid ($I_{C}=$ intérieur de C)
- \exists an α-orientation in which C is a directed cycle.

non-essential

Essential cycles

Theorem (Felsner '04) :

We can go from one α-orientation to another by a sequence of successive flips of directed essential cycles (= flips/flops).

A cycle C is essential iff :

- C is simple and chordless
- if $E_{\text {cut }}\left[I_{C}\right]$ is rigid ($I_{C}=$ intérieur de C)
- \exists an α-orientation in which C is a directed cycle.

Essential cycles

Theorem (Felsner '04) :

We can go from one α-orientation to another by a sequence of successive flips of directed essential cycles (= flips/flops).

A cycle C is essential iff :

- C is simple and chordless
- if $E_{\text {cut }}\left[I_{C}\right]$ is rigid ($I_{C}=$ intérieur de C)
- \exists an α-orientation in which C is a directed cycle.

essential

non-essential

Essential cycles

Theorem (Felsner '04) :

We can go from one α-orientation to another by a sequence of successive flips of directed essential cycles (= flips/flops).

A cycle C is essential iff :

- C is simple and chordless
- if $E_{\text {cut }}\left[I_{C}\right]$ is rigid ($I_{C}=$ intérieur de C)
- \exists an α-orientation in which C is a directed cycle.

essential

essential

non-essential

Essential cycles

Theorem (Felsner '04) :

We can go from one α-orientation to another by a sequence of successive flips of directed essential cycles (= flips/flops).

A cycle C is essential iff :

- C is simple and chordless
- if $E_{\text {cut }}\left[I_{C}\right]$ is rigid ($I_{C}=$ intérieur de C)
- \exists an α-orientation in which C is a directed cycle.

essential

essential

non-essential

non-essential

Set of α-orientations

Set of α-orientations

Set of α-orientations

Set of α-orientations

Remarks :

- "easy" to compute all α-orientations
(finding essential cycles $=$ polynomial time)

Set of α-orientations

Remarks :

- "easy" to compute all α-orientations
(finding essential cycles $=$ polynomial time)
- Flipping a cw essential cycle into a ccw cycle defines an ordering on the set of orientations.

Set of α-orientations

Theorem : (Felsner '04)

Endowed with this ordering, the set α-orientations is a lattice.
ie. every pair of elements admits a lower bound and an upper bound.

Corollary : There exists a unique minimal element (resp. maximal) which does. not have any counterclockwise (resp. clockwise) cycle.

Set of α-orientations

Existence of a maximal element

Theorem : (Felsner '04)
For all feasible α, there exists a unique α-orientation without cw cycle.

Existence of a maximal element

Theorem : (Felsner '04)
For all feasible α, there exists a unique α-orientation without cw cycle.
flip $=$ flip of a clockwise essential cycle into a counterclockwise cycle. Theorem \Leftrightarrow There is no infinite sequence of flips.

Existence of a maximal element

Theorem : (Felsner '04)

For all feasible α, there exists a unique α-orientation without cw cycle.
flip $=$ flip of a clockwise essential cycle into a counterclockwise cycle. Theorem \Leftrightarrow There is no infinite sequence of flips.

Property :

An edge belongs at most to 2 essential cycles.
The interior of those cycles are disjoint.

Existence of a maximal element

Theorem : (Felsner '04)
For all feasible α, there exists a unique α-orientation without cw cycle.
flip $=$ flip of a clockwise essential cycle into a counterclockwise cycle. Theorem \Leftrightarrow There is no infinite sequence of flips.

Existence of a maximal element

Theorem : (Felsner '04)

For all feasible α, there exists a unique α-orientation without cw cycle.
flip $=$ flip of a clockwise essential cycle into a counterclockwise cycle. Theorem \Leftrightarrow There is no infinite sequence of flips.

Existence of a maximal element

Theorem : (Felsner '04)

For all feasible α, there exists a unique α-orientation without cw cycle.
flip $=$ flip of a clockwise essential cycle into a counterclockwise cycle. Theorem \Leftrightarrow There is no infinite sequence of flips.

To flip again these edges, one must flip each one of them first.

Existence of a maximal element

Theorem : (Felsner '04)

For all feasible α, there exists a unique α-orientation without cw cycle.
flip $=$ flip of a clockwise essential cycle into a counterclockwise cycle. Theorem \Leftrightarrow There is no infinite sequence of flips.

To flip again these edges, one must flip each one of them first.

One must flip each of the red edges first etc etc...

Existence of a maximal element

Theorem : (Felsner '04)

For all feasible α, there exists a unique α-orientation without cw cycle.
flip $=$ flip of a clockwise essential cycle into a counterclockwise cycle. Theorem \Leftrightarrow There is no infinite sequence of flips.

To flip again these edges, one must flip each one of them first.

One must flip each of the red edges first etc etc...

Existence of a maximal element

Theorem : (Felsner '04)

For all feasible α, there exists a unique α-orientation without cw cycle.
flip $=$ flip of a clockwise essential cycle into a counterclockwise cycle. Theorem \Leftrightarrow There is no infinite sequence of flips.

Existence of a maximal element

Theorem : (Felsner '04)

For all feasible α, there exists a unique α-orientation without cw cycle.
flip $=$ flip of a clockwise essential cycle into a counterclockwise cycle. Theorem \Leftrightarrow There is no infinite sequence of flips.

Existence of a maximal element

Theorem : (Felsner '04)

For all feasible α, there exists a unique α-orientation without cw cycle.
flip $=$ flip of a clockwise essential cycle into a counterclockwise cycle. Theorem \Leftrightarrow There is no infinite sequence of flips.

Summary

- For a given plane map M and a function $\alpha: V(M) \rightarrow \mathbb{N}$, an α-orientation is an orientation of the edges of M such that for any vertex v, out $(v)=\alpha(v)$.
- If there exists an α-orientation, α is feasible. Deciding whether α is feasible or not is easy.
- We can go from one α-orientation to another by flipping directed cycles and even by flipping only essential directed cycles.
- Flipping essential cycles gives a lattice structure. In particular, there exists a unique α-orientation without counterclockwise cycles and a unique one without clockwise cycles.

Summary

- For a given plane map M and a function $\alpha: V(M) \rightarrow \mathbb{N}$, an α-orientation is an orientation of the edges of M such that for any vertex v, out $(v)=\alpha(v)$.
- If there exists an α-orientation, α is feasible. Deciding whether α is feasible or not is easy.
- We can go from one α-orientation to another by flipping directed cycles and even by flipping only essential directed cycles.
- Flipping essential cycles gives a lattice structure. In particular, there exists a unique α-orientation without counterclockwise cycles and a unique one without clockwise cycles.

Exercise : about simple triangulations

- Use Euler formula, to obtain an equation between the number of vertices and edges in a triangulation.

Define $\alpha(v)=3$ for any inner vertex v, and $\alpha(v)=1$ otherwise.

- Is α feasible for any triangulation?
- Give necessary and sufficient conditions for a triangulation to admit an α-orientation.
- For such a triangulation, prove that it admits a unique α-orientation without ccw cycles.

Let T be endowed with its minimal α-orientation. For $e \in E(T)$, let P_{e} be the left most path started at e and stopped on the outer face.

- Prove that P_{e} is self avoiding.

