AN INTRODUCTION

TO ORIENTATIONS ON MAPS
Ist lecture — May, 15th 2017

Marie Albenque (CNRS, LIX, Ecole Polytechnique)
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Mini-school on Random Maps and the Gaussian Free Field — ProbabLyon



Overview

Today : Construction of orientations, existence, uniqueness

1 - Some definitions : maps, orientations.
2 - Existence of orientations
3 - Flip and flop : the lattice of orientations

Tuesday : Applications : graph drawings, couplings, bijections
1 - Schnyder woods and graph drawings.
2 - Couplings and spanning trees.
3 - Orientations and blossoming trees

Thursday : Why should you care?
1 - Higher genus
2 - Scaling limits for simple triangulations.
3 - Scaling limits for maps with an orientation ?




Plane maps — Definition

A plane map is the proper embedding of a connected planar graph
in the plane (considered up to continuous deformations).
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Plane maps — Definition

A plane map is the proper embedding of a connected planar graph
in the plane (considered up to continuous deformations).

~

plane map = plane graph + cyclical ordering around the vertices
+ choice of an outer face

rooted plane map = marked vertex O (incident to the outer face)

Notation : (M) = { ertices of M}
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Digression : Euler Formula

V(M)| + |[F(M)| =2+ [E(M)]

M a rooted plane map

T spanning tree of M

V(T) = V(M),
|E(T)| = V(M) -1

M™ its dual map
V(M*) = F(M)




Digression : Euler Formula

M a rooted plane map

T spanning tree of M

V(T) = V(M),
|E(T)| = V(M) -1

M™ its dual map
V(M*) = F(M)

T* = complement of T

S — "™ = spanning tree of M”*
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a-0rientations — Definition

An orientation of a plane map is out(v) =4
the choice of one orientation for
each of its edges.

We choose to characterize an
orientation by the outdegree of each
vertex.

out(v) = outdegree of v

Let o : V(M) — N, an «-orientation is an orientation such that :
out(v) = a(v), for all v

[Propp '93], [Ossona de Mendez '94], [Felsner '04]



Why «o-orientations 7 Some motivations.

Schnyder woods [Schnyder "89] : Initial motivation.
More details in the coming lectures.
Orientation and coloring of the edges of a simple

triangulation such that the local configuration
around an inner vertex is :

The red (resp. blue or green) edges form a spanning tree
of the inner vertices rooted at one outer vertex.

In particular out(v) = 3 for any inner vertex v.
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Schnyder woods [Schnyder '89] : Initial motivation.
More details in the coming lectures.
Orientation and coloring of the edges of a simple

triangulation such that the local configuration
around an inner vertex is :

The red (resp. blue or green) edges form a spanning tree
of the inner vertices rooted at one outer vertex.

In particular out(v) = 3 for any inner vertex v.

Theorem :

Schnyder woods are in bijection with 3-orientations on a simple
triangulation.
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Eulerian orientations :

Eulerian tour of a graph : walk which takes once every
edge and stops at its starting point.

Eulerian orientation : for any vertex v, in(v) = out(v),
i.e. out(v) = deg(v)/2.

Each tour gives naturally birth to a Eulerian orientation : the one
obtained by orienting the edges according to their direction in the tour.

Theorem : Euler (1759), Hierholzer
There exists a Eulerian tour for a connected graph iff it is Eulerian

(= even degree Vv).
= A graph admits a Eulerian orientation iff it is Eulerian.
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Perfect matching in bipartite graphs :

Matching in a graph : set of edges such that each vertex
belongs at most to one edge.

Perfect matching : each vertex belongs exactly to one

edge.

Bipartite graph proper coloring of vertices in black and
white such that : ¢——0

a(e) =deg — 1) The perfect matchings of a bipartite graph
afo) =1 and its a-orientations are in bijection.
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Perfect matching in bipartite graphs :

<
Matching in a graph : set of edges such that each vertex >/
belongs at most to one edge. <

Perfect matching : each vertex belongs exactly to one
edge.

Bipartite graph proper coloring of vertices in black and
white such that : ¢——0 B

a(e) =deg — 1) The perfect matchings of a bipartite graph
afo) =1 and its a-orientations are in bijection.

Does a pe.rfect matching Perfect matching ?
always exist ? NO




Why «o-orientations 7 Some motivations.

Perfect matching in bipartite graphs :

<
Matching in a graph : set of edges such that each vertex >(/
belongs at most to one edge. <

Perfect matching : each vertex belongs exactly to one
edge.

Bipartite graph proper coloring of vertices in black and
white such that : ¢——0 B

a(e) =deg — 1) The perfect matchings of a bipartite graph
afo) =1 and its a-orientations are in bijection.

Theorem : Hall (1935

A bipartite graph admits a perfect matching iff V subset W of white vertices,
[W| < | Uyew { neighbours of w}
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Existence of orientations : necessary conditions

plane map M « is feasible iff 4 an a-orientation on M
a:V(M)—->N —>

Necessary conditions :

1->,a()=[E(M)]
2 - Forall AC V(M),

0 < demy(A) < |Eeut|All ACV(M)
dem (A) = 4
E[A] = edges between vertices of A
Those conditions are sufficient. Ecu|A] = iend%éles with only one vertex

demqy (A) = [EA]] + [Ecut[Al] = 2_yea a(v)
demand of A =~ nb of edges of E.,+|A] oriented towards A
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then « 1s feasible.

Proof (by example) :
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a plane map M

. } What can we say about the «-orientations ?
a feasible o

1 - Rigid edges

If there exists A such that or { demq(A) =0

demy, (A) = |Ecut(A)]
the edges of E.,t(A) are rigid (= no choice for their orientation)
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a plane map M

. } What can we say about the a-orientations ?
a feasible o

2 - Cycles

The flip on an oriented cycle gives a new
a-orientation.
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a plane map M

. } What can we say about the «-orientations ?
a feasible o

2 - Cycles edges for which O; # O

orentations - O,
a-orientations : 7 and O- roperty -

All vertices have even degree.
(i.e. it is a union of cycles)
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directed cycles.
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2 - Cycles edges for which O # Os

rigid edges in black
«-orientations : O and O

Theorem :

We can go from one a-orientation to another by a sequence of flips of
directed cycles.
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Set of a-orientations

Remarks :

- “easy’ to compute all a-orientations
(finding essential cycles = polynomial time)

- Flipping a cw essential cycle into a ccw cycle
defines an ordering on the set of orientations.

o
S

O~ T

= 4
/

i
)
@

;

\



Set of a-orientations

Theorem : (Felsner '04)

Endowed with this ordering, the set

a-orientations is a lattice.
I.e. every pair of elements admits a lower
bound and an upper bound.

Corollary : There exists a unique

r minimal element (resp. maximal) which
does.not have any counterclockwise
(resp. clockwise) cycle.
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Theorem : (Felsner '04)

For all feasible «, there exists a unique a-orientation without cw cycle.

flip = flip of a clockwise essential cycle into a counterclockwise cycle.
Theorem < There is no infinite sequence of flips.

Property :

An edge belongs at most to 2 essential cycles.
The interior of those cycles are disjoint.
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Summary

e For a given plane map M and a function a: V(M) — N, an
a-orientation is an orientation of the edges of M such that for
any vertex v, out(v) = a(v).

e If there exists an a-orientation, « is feasible. Deciding whether «
is feasible or not is easy.

e We can go from one a-orientation to another by flipping directed
cycles and even by flipping only essential directed cycles.

e Flipping essential cycles gives a lattice structure. In particular,
there exists a unique a-orientation without counterclockwise
cycles and a unique one without clockwise cycles.
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Exercise : about simple triangulations

e Use Euler formula, to obtain an equation between the number of vertices
and edges in a triangulation.

Define a(v) = 3 for any inner vertex v, and a(v) = 1 otherwise.

e Is o feasible for any triangulation ?

e Give necessary and sufficient conditions for a triangulation to admit an

a-orientation.
e For such a triangulation, prove that it admits a unique «-orientation

without ccw cycles.

Let T" be endowed with its minimal a-orientation. For e € E(T), let P, be
the left most path started at e and stopped on the outer face.

e Prove that P. is self avoiding.



