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Overview

Today : Construction of orientations, existence, uniqueness

1 - Some definitions : maps, orientations.
2 - Existence of orientations
3 - Flip and flop : the lattice of orientations

2 - Couplings and spanning trees.
3 - Orientations and blossoming trees

1 - Schnyder woods and graph drawings.
Tuesday : Applications : graph drawings, couplings, bijections

1 - Higher genus

3 - Scaling limits for maps with an orientation ?
2 - Scaling limits for simple triangulations.

Thursday : Why should you care ?
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+ choice of an outer face

plane map = plane graph + cyclical ordering around the vertices

A plane map is the proper embedding of a connected planar graph
in the plane (considered up to continuous deformations).

Plane maps — Definition

rooted plane map = marked vertex (incident to the outer face)

Notation :

E(M) = {edges of M}
V (M) = {vertices of M}

F (M) = {faces of M}
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Digression : Euler Formula

Euler Formula

|V (M)|+ |F (M)| = 2 + |E(M)|

M a rooted plane map

M? its dual map

V (M?) = F (M)

T spanning tree of M

V (T ) = V (M),
|E(T )| = |V (M)| − 1

T ? = complement of T

T ? = spanning tree of M?=⇒
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α-Orientations — Definition

An orientation of a plane map is
the choice of one orientation for
each of its edges.

We choose to characterize an
orientation by the outdegree of each
vertex.

out(v) = outdegree of v

[Propp ’93], [Ossona de Mendez ’94], [Felsner ’04]

out(v) = 4

Let α : V (M)→ N, an α-orientation is an orientation such that :

out(v) = α(v), for all v



Why α-orientations ? Some motivations.

Orientation and coloring of the edges of a simple
triangulation such that the local configuration
around an inner vertex is :

The red (resp. blue or green) edges form a spanning tree
of the inner vertices rooted at one outer vertex.

More details in the coming lectures.

Schnyder woods [Schnyder ’89] : Initial motivation.

In particular out(v) = 3 for any inner vertex v.



Why α-orientations ? Some motivations.

Orientation and coloring of the edges of a simple
triangulation such that the local configuration
around an inner vertex is :

The red (resp. blue or green) edges form a spanning tree
of the inner vertices rooted at one outer vertex.

More details in the coming lectures.

Schnyder woods [Schnyder ’89] : Initial motivation.

In particular out(v) = 3 for any inner vertex v.

Theorem :

Schnyder woods are in bijection with 3-orientations on a simple
triangulation.



Why α-orientations ? Some motivations.

Eulerian orientations :

Eulerian tour of a graph : walk which takes once every
edge and stops at its starting point.



Why α-orientations ? Some motivations.

Eulerian orientations :

Eulerian tour of a graph : walk which takes once every
edge and stops at its starting point.



Why α-orientations ? Some motivations.

Eulerian orientations :

Eulerian tour of a graph : walk which takes once every
edge and stops at its starting point.



Why α-orientations ? Some motivations.

Eulerian orientations :

Eulerian tour of a graph : walk which takes once every
edge and stops at its starting point.



Why α-orientations ? Some motivations.

Eulerian orientations :

Eulerian tour of a graph : walk which takes once every
edge and stops at its starting point.



Why α-orientations ? Some motivations.

Eulerian orientations :

Eulerian tour of a graph : walk which takes once every
edge and stops at its starting point.



Why α-orientations ? Some motivations.

Eulerian orientations :

Eulerian tour of a graph : walk which takes once every
edge and stops at its starting point.



Why α-orientations ? Some motivations.

Eulerian orientations :

Eulerian tour of a graph : walk which takes once every
edge and stops at its starting point.

Each tour gives naturally birth to a Eulerian orientation : the one
obtained by orienting the edges according to their direction in the tour.

Eulerian orientation : for any vertex v, in(v) = out(v),

i.e. out(v) = deg(v)/2.



Why α-orientations ? Some motivations.

Eulerian orientations :

Eulerian tour of a graph : walk which takes once every
edge and stops at its starting point.

Each tour gives naturally birth to a Eulerian orientation : the one
obtained by orienting the edges according to their direction in the tour.

Eulerian orientation : for any vertex v, in(v) = out(v),

Theorem : Euler (1759), Hierholzer (1873)
There exists a Eulerian tour for a connected graph iff it is Eulerian
(= even degree ∀v).

⇒ A graph admits a Eulerian orientation iff it is Eulerian.

i.e. out(v) = deg(v)/2.
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Why α-orientations ? Some motivations.

Perfect matching in bipartite graphs :

Matching in a graph : set of edges such that each vertex
belongs at most to one edge.

Perfect matching : each vertex belongs exactly to one
edge.

Bipartite graph proper coloring of vertices in black and
white such that :

α(•) = deg − 1
α(◦) = 1

The perfect matchings of a bipartite graph
and its α-orientations are in bijection.

}
Perfect matching ?

NO

Does a perfect matching
always exist ?



Why α-orientations ? Some motivations.

Perfect matching in bipartite graphs :

Matching in a graph : set of edges such that each vertex
belongs at most to one edge.

Perfect matching : each vertex belongs exactly to one
edge.

Bipartite graph proper coloring of vertices in black and
white such that :

α(•) = deg − 1
α(◦) = 1

The perfect matchings of a bipartite graph
and its α-orientations are in bijection.

}

Theorem : Hall (1935)

A bipartite graph admits a perfect matching iff ∀ subset W of white vertices,
|W | ≤

∣∣ ∪w∈W { neighbours of w}
∣∣
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Existence of orientations : necessary conditions
II

E[A] = edges between vertices of A

A ⊆ V (M)

Ecut[A] = edges with only one vertex
in A

demα(A) = |E[A]|+ |Ecut[A]| −
∑
v∈A α(v)

demand of A ≈ nb of edges ofEcut[A] oriented towards A

demα(A) = 4

0 ≤ demα(A) ≤ |Ecut[A]|
2 - For all A ⊆ V (M),

Necessary conditions :

1 -
∑
v α(v) = |E(M)|

Theorem :

Those conditions are sufficient.

plane map M
α : V (M)→ N

α is feasible iff ∃ an α-orientation on M



Existence of orientations : sufficient conditions

Theorem :

1 -
∑
v α(v) = |E(M)|, i.e. demα(V ) = 0.

2 - For all A ( V (M), 0 ≤ demα(A) ≤ |Ecut[A]|.

Let M and α be such that :

then α is feasible.

Proof (by example) :
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Existence of orientations : sufficient conditions

Theorem :

1 -
∑
v α(v) = |E(M)|, i.e. demα(V ) = 0.

2 - For all A ( V (M), 0 ≤ demα(A) ≤ |Ecut[A]|.

Let M and α be such that :

then α is feasible.

0

• As long as ∃ A such that demα(A) = 0,
a) orient the edges of Ecut[A],

Proof (by example) :

2

2

1
1

1

As long as some edges are not oriented, do :

3
2
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2
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3
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Existence of orientations : sufficient conditions

Theorem :

1 -
∑
v α(v) = |E(M)|, i.e. demα(V ) = 0.

2 - For all A ( V (M), 0 ≤ demα(A) ≤ |Ecut[A]|.

Let M and α be such that :

then α is feasible.

0

• As long as ∃ A such that demα(A) = 0,
a) orient the edges of Ecut[A],

b) update α.

Proof (by example) :

2

2

1
1

1

As long as some edges are not oriented, do :
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2

31
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Existence of orientations : sufficient conditions

Theorem :

1 -
∑
v α(v) = |E(M)|, i.e. demα(V ) = 0.

2 - For all A ( V (M), 0 ≤ demα(A) ≤ |Ecut[A]|.

Let M and α be such that :

then α is feasible.

0

• As long as ∃ A such that demα(A) = 0,
a) orient the edges of Ecut[A],

b) update α.

Proof (by example) :

2

2

1
1

1

As long as some edges are not oriented, do :

13131
2

31

1

• Orient an edge arbitrarily



Existence of orientations : sufficient conditions

Theorem :

1 -
∑
v α(v) = |E(M)|, i.e. demα(V ) = 0.

2 - For all A ( V (M), 0 ≤ demα(A) ≤ |Ecut[A]|.

Let M and α be such that :

then α is feasible.

0

• As long as ∃ A such that demα(A) = 0,
a) orient the edges of Ecut[A],

b) update α.

Proof (by example) :

2

2

1
1

1

As long as some edges are not oriented, do :

1

+ update α.
• Orient an edge arbitrarily

31
2

31
0

1



Existence of orientations : sufficient conditions

Theorem :

1 -
∑
v α(v) = |E(M)|, i.e. demα(V ) = 0.

2 - For all A ( V (M), 0 ≤ demα(A) ≤ |Ecut[A]|.

Let M and α be such that :

then α is feasible.

0

• As long as ∃ A such that demα(A) = 0,
a) orient the edges of Ecut[A],

b) update α.

Proof (by example) :

2

2

1
1

1

As long as some edges are not oriented, do :

1

+ update α.
• Orient an edge arbitrarily

31

2

2

1
1

1
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Existence of orientations : sufficient conditions

Theorem :

1 -
∑
v α(v) = |E(M)|, i.e. demα(V ) = 0.

2 - For all A ( V (M), 0 ≤ demα(A) ≤ |Ecut[A]|.

Let M and α be such that :

then α is feasible.

0

• As long as ∃ A such that demα(A) = 0,
a) orient the edges of Ecut[A],

b) update α.

Proof (by example) :

2

2

1
1

1

As long as some edges are not oriented, do :

1

+ update α.
• Orient an edge arbitrarily

31

2

2

1
1

1

3100
221

31311300

110

0



Existence of orientations : sufficient conditions

Theorem :

1 -
∑
v α(v) = |E(M)|, i.e. demα(V ) = 0.

2 - For all A ( V (M), 0 ≤ demα(A) ≤ |Ecut[A]|.

Let M and α be such that :

then α is feasible.

0

• As long as ∃ A such that demα(A) = 0,
a) orient the edges of Ecut[A],

b) update α.

Proof (by example) :

As long as some edges are not oriented, do :

+ update α.
• Orient an edge arbitrarily

0
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0

0

0
0

0



Existence of orientations : sufficient conditions

Theorem :

1 -
∑
v α(v) = |E(M)|, i.e. demα(V ) = 0.

2 - For all A ( V (M), 0 ≤ demα(A) ≤ |Ecut[A]|.

Let M and α be such that :

then α is feasible.

0

• As long as ∃ A such that demα(A) = 0,
a) orient the edges of Ecut[A],

b) update α.

Proof (by example) :

As long as some edges are not oriented, do :

+ update α.
• Orient an edge arbitrarily

0

0

0
0

0

0
0

0

2

2

1
1

1

3
2

3
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a plane map M
a feasible α

What can we say about the α-orientations ?
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Set of α-orientations

2
3

3
1

1

1

a plane map M
a feasible α

What can we say about the α-orientations ?
}

1 - Rigid edges {
if there exists A such that

demα(A) = 0

demα(A) = |Ecut(A)|
or

the edges of Ecut(A) are rigid (= no choice for their orientation)



Set of α-orientations

2 - Cycles
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}



Set of α-orientations
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2

1
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2

2

1
1

1
23
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2

2

1
1

1
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The flip on an oriented cycle gives a new
α-orientation.

a plane map M
a feasible α

What can we say about the α-orientations ?
}
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2 - Cycles

2

2

1
1

1
23

3

α-orientations : O1 and O2

2

2

1
1

1
23

3

rigid edges in black

edges for which O1 6= O2

Property :

All vertices have even degree.
(i.e. it is a union of cycles)

a plane map M
a feasible α

What can we say about the α-orientations ?
}
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α-orientations : O1 and O2
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edges for which O1 6= O2

Theorem :

We can go from one α-orientation to another by a sequence of flips of
directed cycles.
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α-orientations : O1 and O2

2
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Theorem :

We can go from one α-orientation to another by a sequence of flips of
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a plane map M
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What can we say about the α-orientations ?
}



Essential cycles

On peut passer d’une α-orientation à une autre par retournement de
cycles orientés.
We can go from one α-orientation to another by a sequence of
successive flips of directed cycles.

A cycle C is essential iff :
• C is simple and chordless

• if Ecut[IC ] is rigid (IC = intérieur de C)

• ∃ an α-orientation in which C is a directed
cycle.
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2
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Theorem :
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successive flips of directed cycles.

A cycle C is essential iff :
• C is simple and chordless
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Essential cycles

On peut passer d’une α-orientation à une autre par retournement de
cycles orientés.
We can go from one α-orientation to another by a sequence of
successive flips of directed cycles.

A cycle C is essential iff :
• C is simple and chordless

• if Ecut[IC ] is rigid (IC = intérieur de C)

• ∃ an α-orientation in which C is a directed
cycle.

1
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3
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non-essential

Theorem :



Essential cycles

We can go from one α-orientation to another by a sequence of
successive flips of directed cycles.

A cycle C is essential iff :
• C is simple and chordless

• if Ecut[IC ] is rigid (IC = intérieur de C)

• ∃ an α-orientation in which C is a directed
cycle.

1
2

3
3

2

1

2
1

We can go from one α-orientation to another by a sequence of
successive flips of directed essential cycles (= flips/flops).

Theorem (Felsner ’04) :



Essential cycles
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(finding essential cycles = polynomial time)
- ‘’easy” to compute all α-orientations

Remarks :
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- Flipping a cw essential cycle into a ccw cycle
defines an ordering on the set of orientations.

(finding essential cycles = polynomial time)
- ‘’easy” to compute all α-orientations

Remarks :
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Theorem : (Felsner ’04)

Endowed with this ordering, the set
α-orientations is a lattice.
i.e. every pair of elements admits a lower
bound and an upper bound.

Corollary : There exists a unique
minimal element (resp. maximal) which
does not have any counterclockwise
(resp. clockwise) cycle.



2
3

3

1

1

2

3

2

1

2
3

3

2

1

2

2
3

3

1

2

3

2
3

3

2

1

3

3

1

1

2

3

2

1
2

1

2

3

3

1

1

2

1

2

2
3

3

1

2

3
2

Set of α-orientations

3
2

3

3
2

3

2

1
2

1

1

1

1
2

2

1

1

2
1

1

1

1

2

1

2

1

2

3

3

1

1
2

1

1

2

2

1

1

1
2

1

1
2

2
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An edge belongs at most to 2 essential cycles.
The interior of those cycles are disjoint.
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Theorem ⇔ There is no infinite sequence of flips.
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Summary

For a given plane map M and a function α : V (M)→ N, an
α-orientation is an orientation of the edges of M such that for
any vertex v, out(v) = α(v).

We can go from one α-orientation to another by flipping directed
cycles and even by flipping only essential directed cycles.

If there exists an α-orientation, α is feasible. Deciding whether α
is feasible or not is easy.

Flipping essential cycles gives a lattice structure. In particular,
there exists a unique α-orientation without counterclockwise
cycles and a unique one without clockwise cycles.
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Exercise : about simple triangulations

• Use Euler formula, to obtain an equation between the number of vertices
and edges in a triangulation.

Define α(v) = 3 for any inner vertex v, and α(v) = 1 otherwise.

• Is α feasible for any triangulation ?

• Give necessary and sufficient conditions for a triangulation to admit an
α-orientation.
• For such a triangulation, prove that it admits a unique α-orientation
without ccw cycles.

Let T be endowed with its minimal α-orientation. For e ∈ E(T ), let Pe be
the left most path started at e and stopped on the outer face.

• Prove that Pe is self avoiding.


