
AN INTRODUCTION
TO ORIENTATIONS ON MAPS

Marie Albenque (CNRS, LIX, École Polytechnique)

Mini-school on Random Maps and the Gaussian Free Field — ProbabLyon

2nd lecture — May, 16th 2017

Plan

Yesterday : Construction of orientations, existence, uniqueness

1 - Some definitions : maps, orientations.
2 - Existence of orientations
3 - Flip and flop : the lattice of orientations

1 - Couplings and spanning trees.

3 - Orientations and blossoming trees
2 - Schnyder woods and graph drawings.

Today : Applications : graph drawings, couplings, bijections

1 - Higher genus

3 - Scaling limits for maps with an orientation ?
2 - Scaling limits for simple triangulations.

Thursday : Why should you care ?

Spanning trees and orientations [Propp ’93]

A rooted plane map M

Spanning trees and orientations [Propp ’93]

A rooted plane map M

A spanning tree T

Spanning trees and orientations [Propp ’93]

A rooted plane map M

A spanning tree T

Goal : For a fixed M , what can we say
about the structure of spanning trees ?
Can we endow them with an orientation
structure ?

Spanning trees and orientations [Propp ’93]

A rooted plane map M

A spanning tree T

Goal : For a fixed M , what can we say
about the structure of spanning trees ?

Convention :

T ? = spanning tree of M?

Can we endow them with an orientation
structure ?

Spanning trees and orientations [Propp ’93]

A rooted plane map M

A spanning tree T

Goal : For a fixed M , what can we say
about the structure of spanning trees ?

Convention :

T ? = spanning tree of M?

Can we endow them with an orientation
structure ?

Spanning trees and orientations [Propp ’93]

A rooted plane map M

A spanning tree T

Goal : For a fixed M , what can we say
about the structure of spanning trees ?

Convention :

T ? = spanning tree of M?

Can we endow them with an orientation
structure ?

Spanning trees and orientations [Propp ’93]

A rooted plane map M

M̃ = completion of M
= superimposition of M and M?

Spanning trees and orientations [Propp ’93]

A rooted plane map M

A spanning tree T

Convention :

T ? = spanning tree of M?

M̃ = completion of M
= superimposition of M and M?

Spanning trees and orientations [Propp ’93]

A rooted plane map M

A spanning tree T

Convention :

T ? = spanning tree of M?

For a spanning tree T of M , we define
the αT -orientation of M̃ by :

αT () = αT () = 0
{
αT () = αT () = 1

αT () = 3

M̃ = completion of M
= superimposition of M and M?

Spanning trees and orientations [Propp ’93]

A rooted plane map M

A spanning tree T

Convention :

T ? = spanning tree of M?

For a spanning tree T of M , we define
the αT -orientation of M̃ by :

αT () = αT () = 0
{{

And reciprocally ?
αT () = αT () = 1

αT () = 3

M̃ = completion of M
= superimposition of M and M?

Spanning trees and orientations

Proposition : [Propp ’93, Felsner ’04]

The spanning trees of M are in bijection with the
αT -orientations of M̃ .

αT () = αT () = 0
{{
αT () = αT () = 1

αT () = 3

Spanning trees and orientations

Proposition : [Propp ’93, Felsner ’04]

The spanning trees of M are in bijection with the
αT -orientations of M̃ .

αT () = αT () = 0
{{
αT () = αT () = 1

αT () = 3
= deg()− 1

Spanning trees and orientations

Proposition : [Propp ’93, Felsner ’04]

The spanning trees of M are in bijection with the
αT -orientations of M̃ .

αT () = αT () = 0
{{
αT () = αT () = 1

αT () = 3

At each vertex , 2 possible configurations :

Spanning trees and orientations

Proposition : [Propp ’93, Felsner ’04]

The spanning trees of M are in bijection with the
αT -orientations of M̃ .

αT () = αT () = 0
{{
αT () = αT () = 1

αT () = 3

At each vertex , 2 possible configurations :

Spanning trees and orientations

Proposition : [Propp ’93, Felsner ’04]

The spanning trees of M are in bijection with the
αT -orientations of M̃ .

|{blue edges}| = |V (M)| − 1
To prove that it is a tree, enough to prove that there is no cycles (exercise !).

αT () = αT () = 0
{{
αT () = αT () = 1

αT () = 3

At each vertex , 2 possible configurations :

Lattice structure on the set of spanning trees

αT () = αT () = 0
{{
αT () = αT () = 1

αT () = 3

Which cycles are essential ? Which edges are rigid ?

Lattice structure on the set of spanning trees

To make our life easier, assume that M is bridgeless.

Property :

The rigid edges are the edges incident to the root vertex.

αT () = αT () = 0
{{
αT () = αT () = 1

αT () = 3

Which cycles are essential ? Which edges are rigid ?

Lattice structure on the set of spanning trees

To make our life easier, assume that M is bridgeless.

Property :

The rigid edges are the edges incident to the root vertex.

αT () = αT () = 0
{{
αT () = αT () = 1

αT () = 3

?

Which cycles are essential ? Which edges are rigid ?

Lattice structure on the set of spanning trees

To make our life easier, assume that M is bridgeless.

Property :

The rigid edges are the edges incident to the root vertex.

αT () = αT () = 0
{{
αT () = αT () = 1

αT () = 3

?

Which cycles are essential ? Which edges are rigid ?

Lattice structure on the set of spanning trees

To make our life easier, assume that M is bridgeless.

Property :

The rigid edges are the edges incident to the root vertex.

αT () = αT () = 0
{{
αT () = αT () = 1

αT () = 3

?

Which cycles are essential ? Which edges are rigid ?

Lattice structure on the set of spanning trees

To make our life easier, assume that M is bridgeless.

Property :

The rigid edges are the edges incident to the root vertex.

αT () = αT () = 0
{{
αT () = αT () = 1

αT () = 3

?

Which cycles are essential ? Which edges are rigid ?

Lattice structure on the set of spanning trees

To make our life easier, assume that M is bridgeless.

Property :

The rigid edges are the edges incident to the root vertex.

αT () = αT () = 0
{{
αT () = αT () = 1

αT () = 3

Property :Property :

The essential cycles are the facial cycles of M̃ , without root vertices.

Which cycles are essential ? Which edges are rigid ?

Property :

The essential cycles are the facial cycles of M̃ , without root vertices.

Lattice structure on the set of spanning trees

Property :

The essential cycles are the facial cycles of M̃ , without root vertices.

v

Lattice structure on the set of spanning trees

Property :

The essential cycles are the facial cycles of M̃ , without root vertices.

v

Lattice structure on the set of spanning trees

Property :

The essential cycles are the facial cycles of M̃ , without root vertices.

v

Lattice structure on the set of spanning trees

Property :

The essential cycles are the facial cycles of M̃ , without root vertices.

FLIP

v

v

Lattice structure on the set of spanning trees

Example of a lattice

M

Applications :

Coupling from the past for
distributive lattices.

‘’easy” to sample a spanning tree
(Wilson’s algorithm), gives a way to
sample some perfect matchings
(a.k.a. dimer models) [Kenyon,
Propp, Wilson]

Schnyder woods

Simple triangulation endowed with a
3-orientation.

Schnyder woods

Simple triangulation endowed with a
3-orientation.

Schnyder woods

Simple triangulation endowed with a
3-orientation.

Consider the ‘’middle”-paths

Schnyder woods

Simple triangulation endowed with a
3-orientation.

Consider the ‘’middle”-paths

Schnyder woods

Simple triangulation endowed with a
3-orientation.

Consider the ‘’middle”-paths

Schnyder woods

Simple triangulation endowed with a
3-orientation.

Consider the ‘’middle”-paths

Schnyder woods

Simple triangulation endowed with a
3-orientation.

Consider the ‘’middle”-paths

Property :

The middle-paths are self-avoiding + the
3 middle paths starting at a given vertex
do not intersect one another.

Schnyder woods

Simple triangulation endowed with a
3-orientation.

Consider the ‘’middle”-paths

Property :

The middle-paths are self-avoiding + the
3 middle paths starting at a given vertex
do not intersect one another.

Schnyder woods

Simple triangulation endowed with a
3-orientation.

Consider the ‘’middle”-paths

Property :

The middle-paths are self-avoiding + the
3 middle paths starting at a given vertex
do not intersect one another.

Schnyder woods

Simple triangulation endowed with a
3-orientation.

Consider the ‘’middle”-paths

Property :

The middle-paths are self-avoiding + the
3 middle paths starting at a given vertex
do not intersect one another.

Schnyder woods

Simple triangulation endowed with a
3-orientation.

Consider the ‘’middle”-paths

Property :

The middle-paths are self-avoiding + the
3 middle paths starting at a given vertex
do not intersect one another.

Schnyder woods

Simple triangulation endowed with a
3-orientation.

Consider the ‘’middle”-paths

Around each inner vertex :

Property :

The middle-paths are self-avoiding + the
3 middle paths starting at a given vertex
do not intersect one another.

Property :

The subset of edges of a given color is a
spanning tree of the inner vertices (+ one
outer vertex) of the triangulation.

This coloring is a
Schnyder wood.

[Schnyder ’89]

Application to straight-line drawing.

a1

a2

a3

Goal : Find a representation of the plane map in which all the edges are
straight lines and where the vertices lie on a grid.

Application to straight-line drawing.

a1

a2

a3

Goal : Find a representation of the plane map in which all the edges are
straight lines and where the vertices lie on a grid.

• Put the vertices a1, a2 et a3 at positions (0, 0), (0, |F (M)|),
(|F (M)|, 0).

a3

a2 a2

Application to straight-line drawing.

Algo :

a1
a1

a2

a3

v

Goal : Find a representation of the plane map in which all the edges are
straight lines and where the vertices lie on a grid.

• Put the vertices a1, a2 et a3 at positions (0, 0), (0, |F (M)|),
(|F (M)|, 0).

a3

a2 a2

Application to straight-line drawing.

Algo :

a1

• Put each inner vertex v at position (|F (R3(v))|, |F (R2(v))|).

a1

a2

a3

v

Goal : Find a representation of the plane map in which all the edges are
straight lines and where the vertices lie on a grid.

• Put the vertices a1, a2 et a3 at positions (0, 0), (0, |F (M)|),
(|F (M)|, 0).

a3

a2 a2

Application to straight-line drawing.

Algo :

a1

• Put each inner vertex v at position (|F (R3(v))|, |F (R2(v))|).

a1

a2

a3

v

R2(v)
⇒ |F (R2(v))| = 6

• Put the vertices a1, a2 et a3 at positions (0, 0), (0, |F (M)|),
(|F (M)|, 0).

a3

a2 a2

Application to straight-line drawing.

Algo :

a1

• Put each inner vertex v at position (|F (R3(v))|, |F (R2(v))|).

8

6

a1

a2

a3

v
v

R3(v)
⇒ |F (R3(v))| = 8

R2(v)
⇒ |F (R2(v))| = 6

• Put the vertices a1, a2 et a3 at positions (0, 0), (0, |F (M)|),
(|F (M)|, 0).

a3

a2 a2

Application to straight-line drawing.

Algo :

a1

• Put each inner vertex v at position (|F (R3(v))|, |F (R2(v))|).

8

6

a1

a2

a3

v
v

Why is it working ?

• Put the vertices a1, a2 et a3 at positions (0, 0), (0, |F (M)|),
(|F (M)|, 0).

a3

a2 a2

Application to straight-line drawing.

Algo :

a1

• Put each inner vertex v at position (|F (R3(v))|, |F (R2(v))|).

8

6

a1

a2

a3

v
v

R2(v1) (R2(v)

Why is it working ?

v1

v1

R3(v1) (R3(v)

• Put the vertices a1, a2 et a3 at positions (0, 0), (0, |F (M)|),
(|F (M)|, 0).

a3

a2 a2

Application to straight-line drawing.

Algo :

a1

• Put each inner vertex v at position (|F (R3(v))|, |F (R2(v))|).

8

6

a1

a2

a3

v
v

R2(v1) (R2(v)

Why is it working ?

v1

v1

R3(v1) (R3(v)

• Put the vertices a1, a2 et a3 at positions (0, 0), (0, |F (M)|),
(|F (M)|, 0).

a3

a2 a2

Application to straight-line drawing.

Algo :

a1

• Put each inner vertex v at position (|F (R3(v))|, |F (R2(v))|).

8

6

a1

a2

a3

v
v

Why is it working ?

7

3 v1

v1

v2

v3 v3

v2

• Put the vertices a1, a2 et a3 at positions (0, 0), (0, |F (M)|),
(|F (M)|, 0).

a3

a2 a2

Application to straight-line drawing.

Algo :

a1

• Put each inner vertex v at position (|F (R3(v))|, |F (R2(v))|).

a1

a2

a3

v

Theorem ([Schnyder ’89]) :

This algorithm produces a straightline drawing of the triangulation
where all the vertices belong to a grid of size |F (M)| × |F (M)|.

1

2
3

A B

EC D

F

G

1

2

3

A
B

C D

F
G

1

E

Representation by homothetic triangles.

[Motivated by some ideas of Felsner]

Representation by homothetic triangles.

1

2
3

A B

EC D

F

G

1

2

3

A
B

C D

F
G

1

E

[Motivated by some ideas of Felsner]

Representation by homothetic triangles.

[Motivated by some ideas of Felsner]

B

C

D

F

G

E

1 2

4

6

5

3

A

H

I

J
K

L

M

1

2

3

4

5

6

A
B

D
E

F

G

H

I

L

M

C

J

B

C

D

F

G

E

1 2

4

6

5

3

A

H

I

J
K

L

M

Representation by homothetic triangles.

[Motivated by some ideas of Felsner]

Maps enumeration

4-regular maps

Simple triangulations (neither loops nor multiple edges)

Maps enumeration

4-regular maps

Simple triangulations (neither loops nor multiple edges)

Number of rooted 4-regular planar maps with n vertices :

Rn =
2

n + 2

3n

n + 1

(
2n

n

)
[Tutte, 62], [Schaeffer ’97]

Maps enumeration

4-regular maps

Simple triangulations (neither loops nor multiple edges)

Number of rooted 4-regular planar maps with n vertices :

Rn =
2

n + 2

3n

n + 1

(
2n

n

)
[Tutte, 62], [Schaeffer ’97]

Number of simple triangulations with n + 2 vertices :

∆n =
2 · (4n− 3)!

n!(3n− 1)!
[Tutte, 62],
[Poulalhon-Schaeffer ’05]

Maps enumeration

4-regular maps

Simple triangulations (neither loops nor multiple edges)

Number of rooted 4-regular planar maps with n vertices :

Rn =
2

n + 2

3n

n + 1

(
2n

n

)
[Tutte, 62], [Schaeffer ’97]

Number of simple triangulations with n + 2 vertices :

∆n =
2 · (4n− 3)!

n!(3n− 1)!
[Tutte, 62],
[Poulalhon-Schaeffer ’05]

Many methods to count maps :

Recursive decomposition [Tutte ’60s + ...], matrix integrals [t’Hooft ‘74 + ...]

Bijective proofs [Cori-Vauquelin-Schaeffer, Bouttier-diFrancesco-Guitter, Bernardi, Fusy,
Poulalhon, ...]

= bijections btw maps and labeled trees or btw maps and blossoming trees.

Maps enumeration

4-regular maps

Simple triangulations (neither loops nor multiple edges)

Number of rooted 4-regular planar maps with n vertices :

Rn =
2

n + 2

3n

n + 1

(
2n

n

)
[Tutte, 62], [Schaeffer ’97]

Number of simple triangulations with n + 2 vertices :

∆n =
2 · (4n− 3)!

n!(3n− 1)!
[Tutte, 62],
[Poulalhon-Schaeffer ’05]

Many methods to count maps :

Recursive decomposition [Tutte ’60s + ...], matrix integrals [t’Hooft ‘74 + ...]

Bijective proofs [Cori-Vauquelin-Schaeffer, Bouttier-diFrancesco-Guitter, Bernardi, Fusy,
Poulalhon, ...]

= bijections btw maps and labeled trees or btw maps and blossoming trees.

What is a blossoming tree ?

A blossoming tree is a plane tree whose vertices can carry opening
stems or closing stems (or both) such that :

opening stems = # closing stems

What is a blossoming tree ?

A blossoming tree is a plane tree whose vertices can carry opening
stems or closing stems (or both) such that :

opening stems = # closing stems

What is a blossoming tree ?

A blossoming tree is a plane tree whose vertices can carry opening
stems or closing stems (or both) such that :

opening stems = # closing stems

What is a blossoming tree ?

A blossoming tree is a plane tree whose vertices can carry opening
stems or closing stems (or both) such that :

opening stems = # closing stems

What is a blossoming tree ?

A blossoming tree is a plane tree whose vertices can carry opening
stems or closing stems (or both) such that :

opening stems = # closing stems

What is a blossoming tree ?

A blossoming tree is a plane tree whose vertices can carry opening
stems or closing stems (or both) such that :

opening stems = # closing stems

What is a blossoming tree ?

A blossoming tree is a plane tree whose vertices can carry opening
stems or closing stems (or both) such that :

opening stems = # closing stems

What is a blossoming tree ?

A blossoming tree is a plane tree whose vertices can carry opening
stems or closing stems (or both) such that :

opening stems = # closing stems

What is a blossoming tree ?

A blossoming tree is a plane tree whose vertices can carry opening
stems or closing stems (or both) such that :

opening stems = # closing stems

A plane map can canonically associated to any blossoming tree by
making all closures clockwise.

What is a blossoming tree ?

If the edges of the tree are oriented + closure edges oriented naturally
⇒ orientation of the map without ccw cycles.

A plane map can be canonically associated to any blossoming tree by
making all closures clockwise.

What is a blossoming tree ?

A plane map can be canonically associated to any blossoming tree by
making all closures clockwise.

If the edges of the tree are oriented towards its root
+ closure edges oriented naturally

⇒ accessible orientation of the map without ccw cycles.

Can we always map a map to a blossoming tree ?

Let M be a rooted plane map endowed with an accessible and
minimal (= without ccw cycles) orientation.
Then, there exists a unique rooted blossoming tree whose closure is
M endowed with the same orientation.

Theorem [Bernardi ’07], [A., Poulalhon ’14+] :

Can we always map a map to a blossoming tree ?

Let M be a rooted plane map endowed with an accessible and
minimal (= without ccw cycles) orientation.
Then, there exists a unique rooted blossoming tree whose closure is
M endowed with the same orientation.

Theorem [Bernardi ’07], [A., Poulalhon ’14+] :

Can we always map a map to a blossoming tree ?

Let M be a rooted plane map endowed with an accessible and
minimal (= without ccw cycles) orientation.
Then, there exists a unique rooted blossoming tree whose closure is
M endowed with the same orientation.

Theorem [Bernardi ’07], [A., Poulalhon ’14+] :

Can we always map a map to a blossoming tree ?

Let M be a rooted plane map endowed with an accessible and
minimal (= without ccw cycles) orientation.
Then, there exists a unique rooted blossoming tree whose closure is
M endowed with the same orientation.

Theorem [Bernardi ’07], [A., Poulalhon ’14+] :

Proof by induction on the number of faces +
identification of the closure edges . . .

Canonical orientations

Each time a family of maps is characterized by the existence of some
accessible orientations, we can apply this construction.

Canonical orientations

Each time a family of maps is characterized by the existence of some
accessible orientations, we can apply this construction.

4-regular maps

2 outgoing edges / vertex
2 ingoing edges / vertex

Canonical orientations

Each time a family of maps is characterized by the existence of some
accessible orientations, we can apply this construction.

4-regular maps

2 outgoing edges / vertex
2 ingoing edges / vertex

A map is 4-regular iff it admits an orientation such that each
vertex has outdegree 2 and indegree 2.

Apply the general bijection to recover the result of [Schaeffer ’97]

Canonical orientations

Each time a family of maps is characterized by the existence of some
accessible orientations, we can apply this construction.

4-regular maps

2 outgoing edges / vertex
2 ingoing edges / vertex

Simple triangulations

3 outgoing edges / inner vertex
1 outgoing edge / outer vertex

Canonical orientations

Each time a family of maps is characterized by the existence of some
accessible orientations, we can apply this construction.

4-regular maps

2 outgoing edges / vertex
2 ingoing edges / vertex

Simple triangulations

3 outgoing edges / inner vertex
1 outgoing edge / outer vertex

A triangulation is simple iff it admits an orientation such that :
each inner vertex has outdegree 3
each outer vertex has outdegree 1.

General bijection gives the result of [Poulalhon, Schaeffer ’05]

Bijective method

• Select a family of maps

Maps with even degree = Eulerian maps

Bijective method

• Select a family of maps

• Find a characterization by orientations

Maps with even degree = Eulerian maps
Same in/outdegree

Bijective method

• Select a family of maps

• Find a characterization by orientations

• Consider the unique orientation without ccw cycles.

Maps with even degree = Eulerian maps
Same in/outdegree

Bijective method

• Select a family of maps

• Find a characterization by orientations

• Consider the unique orientation without ccw cycles.

Maps with even degree = Eulerian maps
Same in/outdegree

Bijective method

• Select a family of maps

• Find a characterization by orientations

• Consider the unique orientation without ccw cycles.

Maps with even degree = Eulerian maps
Same in/outdegree

Bijective method

• Select a family of maps

• Find a characterization by orientations

• Consider the unique orientation without ccw cycles.

Maps with even degree = Eulerian maps
Same in/outdegree

Bijective method

• Select a family of maps

• Find a characterization by orientations

• Consider the unique orientation without ccw cycles.

Maps with even degree = Eulerian maps
Same in/outdegree

Bijective method

• Select a family of maps

• Find a characterization by orientations

• Consider the unique orientation without ccw cycles.

Maps with even degree = Eulerian maps
Same in/outdegree

Bijective method

• Select a family of maps

• Find a characterization by orientations

• Consider the unique orientation without ccw cycles.

• Apply the bijection.

Maps with even degree = Eulerian maps
Same in/outdegree

• Study the family of blossoming trees.

Bijective method

• Select a family of maps

• Find a characterization by orientations

• Consider the unique orientation without ccw cycles.

• Apply the bijection.

Maps with even degree = Eulerian maps
Same in/outdegree

Trees with
same indegree/outdegree.

References

Reference on the theory of α-orientations [Felsner ’04] (and also [Propp
’93]).

Application to straight-line drawing :

Spanning trees and couplings :

Bijections and orientations :
[Bernardi ’07] + [A.,Poulalhon ’15]

[Bernardi, Fusy ’12] : unification of existing bijections relying on orientations.

[Addario-Berry, A. +14] + [Bernardi, Collet, Fusy ’14] : tracking of distances.

[Propp ’93]

[Schnyder ’89]

[Bonichon, Felsner, Mosbah ’04] : refinement on Schnyder initial idea.

[Fusy’s PhD ’07]

[Kenyon, Propp, Wilson ’00] Thank you !

Exercise

1) Prove (using bijections with blossoming trees) that the number of
rooted 4-regular maps with n vertices is :

Rn =
2

n + 2

3n

n + 1

(
2n

n

)
[Tutte, 62], [Schaeffer ’97]

