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Plan

Yesterday : Construction of orientations, existence, uniqueness

1 - Some definitions : maps, orientations.
2 - Existence of orientations
3 - Flip and flop : the lattice of orientations

Today : Applications : graph drawings, couplings, bijections
1 - Couplings and spanning trees.
2 - Schnyder woods and graph drawings.
3 - Orientations and blossoming trees

Thursday : Why should you care?
1 - Higher genus
2 - Scaling limits for simple triangulations.
3 - Scaling limits for maps with an orientation ?
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A rooted plane map M

A spanning tree T’
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completion of M
superimposition of M and M™*

For a spanning tree T" of M, we define Convention 0-,(,'0 o\'E.—o
the a-orientation of M by :

ar(@) =ar(®@) =0

ar(o)=ar(@) =1
OéT( ):3

And reciprocally ?
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Spanning trees and orientations

Proposition : [Propp '93, Felsner '04] ar(©) =ar(®)=0

The spanning trees Qf M are In bijection with the ar(0)=ar(e@) =1
ap-orientations of M. ar(d) =3

At each vertex O, 2 possible configurations :

T

[{blue edges}| = |V(M)| —1
To prove that it is a tree, enough to prove that there is no cycles (exercise!).
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Lattice structure on the set of spanning trees

ar(©) =ar(®) =0 R
ar(0)=ar(@®)=1 :>\'*\O \é__o
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Which cycles are essential ? Which edges are rigid ?
To make our life easier, assume that M is bridgeless.

The rigid edges are the edges incident to the root vertex.

The essential cycles are the facial cycles of M, without root vertices.
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The essential cycles are the facial cycles of M, without root vertices.




Example of a lattice
.

Applications :

- el
Coupling from the past for | ‘ .0
distributive lattices.

“easy’ to sample a spanning tree
(Wilson's algorithm), gives a way to
sample some perfect matchings
(a.k.a. dimer models) [Kenyon,
Propp, Wilson]
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Schnyder woods

The middle-paths are self-avoiding + the
3 middle paths starting at a given vertex
do not intersect one another.

The subset of edges of a given color is a
spanning tree of the inner vertices (+ one
outer vertex) of the triangulation.

Simple triangulation endowed with a

3-orientation. This coloring Is a
Consider the "'middle”-paths SChnyder wood.

[Schnyder '89]
Around each inner vertex : %
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a2

e Put the vertices a1, as et ag at positions (0,0), (0, |F(M)|),
Algo : (|F(M)],0).

e Put each inner vertex v at position (|F(R3(v))|, |[F(Rz(v))l|).
Why is it working ?



Application to straight-line drawing.

as az

Theorem ([Schnyder '89]) :

This algorithm produces a straightline drawing of the triangulation
where all the vertices belong to a grid of size |F'(M)| x |F(M)|.
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[Motivated by some ideas of Felsner]
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What is a blossoming tree ?

A plane map can be canonically associated to any blossoming tree by
making all closures clockwise.

If the edges of the tree are oriented towards its root
+ closure edges oriented naturally
= accessible orientation of the map without ccw cycles.
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Can we always map a map to a blossoming tree?

Theorem [Bernardi '07], [A., Poulalhon '14+] :

Let M be a rooted plane map endowed with an accessible and

minimal (= without ccw cycles) orientation.
Then, there exists a unique rooted blossoming tree whose closure is

M endowed with the same orientation.

Proof by induction on the number of faces
identification of the closure edges . ..
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Canonical orientations

Each time a family of maps is characterized by the existence of some
accessible orientations, we can apply,this construction.
4-regular maps Simple triangulations

2 outgoing edges / vertex 3 outgoing edges / inner vertex
2 ingoing edges / vertex 1 outgoing edge / outer vertex

A triangulation is simple iff it admits an orientation such that :
each inner vertex has outdegree 3
each outer vertex has outdegree 1.

General bijection gives the result of [Poulalhon, Schaeffer '05]
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Bijective method

e Select a family of maps

e Find a characterization by orientations

e Consider the unique orientation without ccw cycles.
e Apply the bijection.

e Study the family of blossoming trees.

Maps with even degree = Eulerian maps Trees with
Same in/outdegree — same indegree/outdegree.
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Exercise

1) Prove (using bijections with blossoming trees) that the number of
rooted 4-regular maps with n vertices is :

R, =

2 3" [2n
n+2n+1\ n [Tutte, 62], [Schaeffer '97]



