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Plan

Yesterday : Construction of orientations, existence, uniqueness

1 - Some definitions : maps, orientations.
2 - Existence of orientations
3 - Flip and flop : the lattice of orientations

1 - Couplings and spanning trees.

3 - Orientations and blossoming trees
2 - Schnyder woods and graph drawings.

Today : Applications : graph drawings, couplings, bijections

1 - Higher genus

3 - Scaling limits for maps with an orientation ?
2 - Scaling limits for simple triangulations.

Thursday : Why should you care ?
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Spanning trees and orientations [Propp ’93]

A rooted plane map M

A spanning tree T

Convention :

T ? = spanning tree of M?

For a spanning tree T of M , we define
the αT -orientation of M̃ by :

αT ( ) = αT ( ) = 0
{{

And reciprocally ?
αT ( ) = αT ( ) = 1

αT ( ) = 3

M̃ = completion of M
= superimposition of M and M?
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Spanning trees and orientations

Proposition : [Propp ’93, Felsner ’04]

The spanning trees of M are in bijection with the
αT -orientations of M̃ .

|{blue edges}| = |V (M)| − 1
To prove that it is a tree, enough to prove that there is no cycles (exercise !).

αT ( ) = αT ( ) = 0
{{
αT ( ) = αT ( ) = 1

αT ( ) = 3

At each vertex , 2 possible configurations :
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Property :
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Property :

The essential cycles are the facial cycles of M̃ , without root vertices.

FLIP

v

v

Lattice structure on the set of spanning trees



Example of a lattice

M

Applications :

Coupling from the past for
distributive lattices.

‘’easy” to sample a spanning tree
(Wilson’s algorithm), gives a way to
sample some perfect matchings
(a.k.a. dimer models) [Kenyon,
Propp, Wilson]
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Schnyder woods

Simple triangulation endowed with a
3-orientation.

Consider the ‘’middle”-paths

Around each inner vertex :

Property :

The middle-paths are self-avoiding + the
3 middle paths starting at a given vertex
do not intersect one another.

Property :

The subset of edges of a given color is a
spanning tree of the inner vertices (+ one
outer vertex) of the triangulation.

This coloring is a
Schnyder wood.

[Schnyder ’89]
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• Put the vertices a1, a2 et a3 at positions (0, 0), (0, |F (M)|),
(|F (M)|, 0).

a3

a2 a2

Application to straight-line drawing.

Algo :

a1

• Put each inner vertex v at position (|F (R3(v))|, |F (R2(v))|).

a1

a2

a3

v

Theorem ([Schnyder ’89]) :

This algorithm produces a straightline drawing of the triangulation
where all the vertices belong to a grid of size |F (M)| × |F (M)|.
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What is a blossoming tree ?

A plane map can be canonically associated to any blossoming tree by
making all closures clockwise.

If the edges of the tree are oriented towards its root
+ closure edges oriented naturally

⇒ accessible orientation of the map without ccw cycles.



Can we always map a map to a blossoming tree ?

Let M be a rooted plane map endowed with an accessible and
minimal (= without ccw cycles) orientation.
Then, there exists a unique rooted blossoming tree whose closure is
M endowed with the same orientation.

Theorem [Bernardi ’07], [A., Poulalhon ’14+] :
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Can we always map a map to a blossoming tree ?

Let M be a rooted plane map endowed with an accessible and
minimal (= without ccw cycles) orientation.
Then, there exists a unique rooted blossoming tree whose closure is
M endowed with the same orientation.

Theorem [Bernardi ’07], [A., Poulalhon ’14+] :

Proof by induction on the number of faces +
identification of the closure edges . . .
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Canonical orientations

Each time a family of maps is characterized by the existence of some
accessible orientations, we can apply this construction.

4-regular maps

2 outgoing edges / vertex
2 ingoing edges / vertex

Simple triangulations

3 outgoing edges / inner vertex
1 outgoing edge / outer vertex

A triangulation is simple iff it admits an orientation such that :
each inner vertex has outdegree 3
each outer vertex has outdegree 1.

General bijection gives the result of [Poulalhon, Schaeffer ’05]
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• Study the family of blossoming trees.

Bijective method

• Select a family of maps

• Find a characterization by orientations

• Consider the unique orientation without ccw cycles.

• Apply the bijection.

Maps with even degree = Eulerian maps
Same in/outdegree

Trees with
same indegree/outdegree.
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Exercise

1) Prove (using bijections with blossoming trees) that the number of
rooted 4-regular maps with n vertices is :

Rn =
2

n + 2

3n

n + 1

(
2n

n

)
[Tutte, 62], [Schaeffer ’97]


