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Planar Maps — Triangulations.

A planar map is the embedding of a connected graph in the
sphere up to continuous deformations.
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Triangulation = all faces are triangles.

Plane maps are rooted. Face that contains the root = outer face

Distance between two vertices = number of edges between them.
Planar map = Metric space




Planar Maps — Triangulations.

A planar map is the embedding of a connected graph in the
sphere up to continuous deformations.

Simple
Triangulation

&

Triangulation = all faces are triangles.

Simple map = no loops nor multiple edges



Model 4+ Motivation

Euler Formula : v+ f =2 +e¢
Triangulation : 2e = 3f

.Slmple. M., = {Simple triangulations of size n}
Triangulation = n + 2 vertices, 2n faces, 3n edges

M,, = Random element of M,,

What is the behavior of M,, when n goes to infinity ?

typical distances ? convergence towards a continuous object ?




Model 4+ Motivation

M, = {Simple triangulations of size n}
M,, = Random element of M,,

What is the behavior of M,, when n goes to infinity 7

typical distances ? convergence to a continuous object ?

One motivation : Circle-packing theorem

Each simple triangulation M has a unique (up to
Mobius transformations and reflections) circle
packing whose tangency graph is M.
|[Koebe-Andreev-Thurston]

Gives a canonical embedding of simple
triangulations in the sphere and possibly of their
limit.




Random circle packing

Random circle packing =
canonical embedding of
random simple triangulation in

the sphere.

Gives a way to define a
canonical embedding of their

limit 7

Team effort : code by Kenneth Stephenson, Eric
Fusy and our own.
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e [Chassaing, Schaeffer '04]

Typical distance is n'/# 4 convergence of the profile

e [Marckert, Mokkadem '06] :
1st Def of Brownian map + weak convergence of quadrangulations.
 [Miermont '12, Le Gall '12] :

Convergence towards the Brownian map
(quadrangulations + 2p-angulations and triangulations)

Idea : The Brownian map is a universal limiting object.
All " reasonable models” of maps (properly rescaled) are
expected to converge towards it.



Convergence of uniform quadrangulations

e [Chassaing, Schaeffer '04]

Typical distance is n

1/4 4+ convergence of the profile

* [Marckert, Mokkadem '06] :
1st Def of Brownian map + weak convergence of quadrangulations.
e [Miermont '12, Le Gall '12] :

Convergence towards the Brownian map
(quadrangulations + 2p-angulations and triangulations)

ldea :

Problem :

The Brownian map is a universal limitingghie
All " reasonable models” of maps (proper general maps
expected to converge towards it. NOT simple maps

These results relie on nice bijections between and labeled
trees [Schaeffer '98], [Bouttier-Di Francesco-Guitter '04].



The result

Theorem : [Addario-Berry, A.]
(M,,) = sequence of random simple triangulations, then:
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for the distance of Gromov-Hausdorff on the isometry classes of
compact metric spaces.
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The result

Theorem : [Addario-Berry, A.]
(M,,) = sequence of random simple triangulations, then:

(@) %) - @D

for the distance of -on the isometry classes of

compact metric spaces.

e same scaling n'/4 as for general maps
e distance between compact spaces.

e T he Brownian Map

Exactly the same kind of result as Le Gall and Miermont'’s.



Gromov-Hausdorff distance

Hausdorff distance between X and Y two compact sets of (F,d) :

dp(X,Y) = max{sup d(z,Y),sup d(y, X)}
reX yey
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Gromov-Hausdorff distance

Hausdorff distance between X and Y two compact sets of (F,d) :

dp(X,Y) = max{sup d(z,Y),sup d(y, X)}
reX yey

Gromov-Hausdorff distance btw two compact metric spaces E and F':
deu(E,F) = inf du(4(E), §(F))

Infimum taken on : e all the metric spaces M
e all the isometric embeddings ¢, : E, F' — M.



Gromov-Hausdorff distance

Hausdorff distance between X and Y two compact sets of (F,d) :

dp(X,Y) = max{sup d(z,Y),sup d(y, X)}
reX yey

Gromov-Hausdorff distance btw two compact metric spaces E and F':
deu(E,F) = inf du(4(E), §(F))

{isometry classes of compact metric spaces with GH distance}
= complete and separable (= “Polish” ) space.



The result

Theorem : [Addario-Berry, A.]
(M,,) = sequence of random simple triangulations, then:

3
(Mn, (— dMn) 9D (M, D),
4An

for the distance of Gromov-Hausdorff on the isometry classes of
compact metric spaces.

ldea of proof :
e encode the simple triangulations by some trees,
e study the limits of trees,
e interpret the distance in the maps by some function of the tree.



From blossoming trees to simple triangulations

plane tree:
plane map that is a tree

rooted plane tree:
one corner Is distinguished

2-blossoming tree:
planted plane tree such that each
vertex carries two leaves




From blossoming trees to simple triangulations

Given a planted 2-blossoming tree:

o If a leaf is followed by two internal edges,




From blossoming trees to simple triangulations

Given a planted 2-blossoming tree:
o If a leaf is followed by two internal edges,

e close it to make a triangle.




From blossoming trees to simple triangulations

Given a planted 2-blossoming tree:
o If a leaf is followed by two internal edges,

e close it to make a triangle.




From blossoming trees to simple triangulations

Given a planted 2-blossoming tree:
o If a leaf is followed by two internal edges,
e close it to make a triangle.

e and repeat !




From blossoming trees to simple triangulations

Given a planted 2-blossoming tree:
o If a leaf is followed by two internal edges,
e close it to make a triangle.
e and repeat ! ~

When finished two vertices have still
two leaves and others have one.

Tree balanced = root corner has two leaves




From blossoming trees to simple triangulations

Given a planted 2-blossoming tree:
o If a leaf is followed by two internal edges,
e close it to make a triangle.
e and repeat ! ~

When finished two vertices have still
two leaves and others have one.

Y
Tree balanced = root corner has two leaves
. . )
e label A and A*, the vertices with two leaves |
Y




From blossoming trees to simple triangulations

Given a planted 2-blossoming tree:
o If a leaf is followed by two internal edges,
e close it to make a triangle.

e and repeat ! C

When finished two vertices have still
two leaves and others have one.

Tree balanced = root corner has two leaves

e label A and A*, the vertices with two leaves |

e Add two new vertices in the outer face,




From blossoming trees to simple triangulations

Given a planted 2-blossoming tree:

o If a leaf is followed by two internal edges

e close it to make a triangle.
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From blossoming trees to simple triangulations

Given a planted 2-blossoming tree: il

o If a leaf is followed by two internal edges, . }
e close it to make a triangle.
e and repeat ! ,

When finished two vertices have still
two leaves and others have one.

Tree balanced = root corner has two leaves

e label A and A*, the vertices with two leaves !

e Add two new vertices in the outer face,

e Connect leaves to the vertex on their side,

e Connect B and C.

A




From blossoming trees to simple triangulations

its unique orientation such that :

A
e out(v) = 3 for v an inner vertex o
e out(A) =2, out(B) =1 and

out(C') =0

Simple triangulation endowed with -
®

|3

e no counterclockwise cycle “

A

>




From blossoming trees to simple triangulations

its unique orientation such that :

D
e out(v) = 3 for v an inner vertex o
e out(A) =2, out(B) =1 and

out(C') =0

. B
e no counterclockwise cycle
The orientations characterize simple
triangulations [Schnyder]

A

Simple triangulation endowed with -
®

>




From blossoming trees to simple triangulations

its unique orientation such that :

P
e out(v) = 3 for v an inner vertex O
e out(A) =2, out(B) =1 and
OUt(C) =0 »—
. B
e no counterclockwise cycle L
The orientations characterize simple
triangulations [Schnyder]

Simple triangulation endowed with -
O
®

Given the orientation the blossoming
tree is the leftmost spanning tree of A

the map (after removing B and C). A



From blossoming trees to simple triangulations

Proposition: [Poulalhon, Schaeffer '07]

The closure operation is a bijection
between balanced 2-blossoming
trees and simple triangulations.
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e Give the root corner label 2.
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Same bijection with corner labels

Aside: Tree is balanced <
all labels > 2
+root corner incident to two stems
Closure: Merge each leaf with the first
subsequent corner with a smaller label.




From blossoming trees to labeled trees

label of a vertex =
minimum label of its corners

In the following:
Labels gives approximate
distances to the root in the map

A &



From blossoming trees to labeled trees




From blossoming trees to labeled trees

Generic vertex

e Can retrieve the blossoming tree
from the labeled tree.

o Labeled tree = GW trees +
random displacements on edges uniform on

{(_17—17“'7_170707°"707171'”’1)}'

almost the setting of [Janson-Marckert] and [Marckert-Miermont] but
r.v are not "locally centered” = symmetrization required
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Convergence of labeled trees

Theorem : [Addario-Berry, A.]
For a sequence of simple random triangulations (M, ), the contour
and label process of the associated labeled tree satisfie:

—1/2 4 ~1/4 7 ) (d)-
(372 Claay. (nf3) ™ Zry)

Contour and label processes of a labeled tree

v and j = same vertex of T’

iff C..(3) = Cn(j) = min C, (k)

i<k<j

»

t ]
T » C! (or C,) = contour process

If T is a labeled tree, (C,(7), Z,(i)) = contour and label processes



Brownian snake (¢;, Z;)o<i<1
1st step : the Brownian tree [Aldous]
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)
T » (1 (or C,) = contour process




Brownian snake (¢;, Z;)o<i<1
1st step : the Brownian tree [Aldous]

¢ and 7 = same vertex of T’

iff Cr.(i) = Cn(§) = min C, (k)

i<k<j

)
T » (1 (or C,) = contour process

(et)o<t<1= Brownian excursion




Brownian snake (e, Z;)p<i<1
1st step : the Brownian tree [Aldous]

¢ and 7 = same vertex of T’

iff Cr.(i) = Cn(§) = min C, (k)

i<k<j

» . .
l J
T » (1 (or C,) = contour process
T. = (e¢)o<t<1= Brownian excursion
de(u,v) = €y + €y — 2ming<s<y €5
Te = [0,1]/ ~e

- u ~e v iff de(u,v) =0

U
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2nd step : Brownian labels

Conditional on 7., Z a centered Gaussian process with Z, = 0 and
El(Zs — Z)?] = de(s,1)
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Brownian snake (¢;, Z;)o<i<1
1st step : the Brownian tree [Aldous]

de(u,v) = €y + €, — 2min,<s<y €5
Te = [07 1]/ ~e
u ~e v iff de(u,v) =0

Sl

U (V)
2nd step : Brownian labels

Conditional on 7., Z a centered Gaussian process with Z, = 0 and
El(Zs — Z)?] = de(s,1)
/Z ~ Brownian motion on the tree

Theorem : [Addario-Berry, A.]

_ _ ~ d
((372) 1/20LntJ7 (4n/3) 1/4Z|_ntj) (_Q (6t7 Zt)OStSla

0<t<1 m—o0
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= convergence result known NO| A

But modification too
important to derive some
properties of first model.
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Idea of proof :

Start with one of “our” tree and apply a random permutation at each vertex
New tree satisfies the assumptions of 01 ol /o 1 OO
[Marckert-Miermont] | 0
= convergence result known
5 Nl A N\J /1
But modification too >
—1 0

important to derive some

properties of first model.

Solution: e consider subtree T'(k) spanned by k random vertices
e permute displacements and edges only outside (T').
e permute only displacements on (7).

Gives a coupling between “our” model and the fully permuted model:
sufficient control to prove convergence for the true model.



Distances in simple triangulations

M,, = simple triangulation
(CLntJ : ZLntJ) — contour and label process of the associated tree

Z|nt) = distance in the map between vertex " [nt]" and the root.

Theorem : [Addario-Berry, A.]
M,,= random simple triangulation, then for all € > 0:

P( Sup { ZLntJ _ZLntJ } > 5711/4) — 0.
0<t<1

i.e. the label process of the tree gives the distance to the
root in the map.
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First observation : In the tree, the labels of two adjacent vertices
differ by at most 1. What can go wrong with closures 7
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LMP are almost geodesic

Euler Formula :
|E(Tq)‘ — S‘V(Tq)‘ —3— (gp "‘gq)

3-orientation + LMP :
’E(Tq)‘ > S‘V(Tq)‘ o 2gq — 2

— lg > {p + 1

Leftmost path
Another path: can it be shorter ?
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A A
! !
A A
gp gq ép
Y. LY
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LMP are almost geodesic

Leftmost path
Another path: can it be shorter 7 YES ... but not too often

A Bad configuration =
? too many windings around the LMP

But w.h.p a winding cannot be too short.

— w.h.p the number of windings is o(n'/4).



LMP are almost geodesic

Leftmost path

Another path: can it be shorter 7 YES ... but not too often
A Bad configuration =
? too many windings around the LMP

But w.h.p a winding cannot be too short.

— w.h.p the number of windings is o(n'/4).

Proposition:

For e > 0, let A,, . be the event that there exists
w € M, such that L, (u) > dus (u,root) + en'/*.

Then under the uniform law on M,,, for all € > 0:

P(A,c) — 0.
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Distances are tight

L,—2
Lu,v

L . .
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Distances are tight

Lu,fu = min{L;,u < s < v}

Blue path = path of length L, + L, — 2Zum + 2

Since (n™1/4Z 1) converges = (d,,) tight



The result for the last time

Theorem : [Addario-Berry, A.]
(M,,) = sequence of random simple triangulations, then:

(o () ) D

for the distance of Gromov-Hausdorff on the isometry classes of
compact metric spaces.

The Brownian Map 7?7
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U ~e v iff de(u,v) =0

=

Uu (%

Conditional on 7, Z a centered Gaussian process with Z, =10 and
E((Zs — Z1)%] = dc(s, 1) Z ~ Brownian motion on the tree

Do(s,t):ZSJth—Qmax( inf Z,. inf Zu), s,t € 0,1].
s<u<t t<u<s

k—1

D*(a,b) = inf{ZDo(ai,aHl) : k > 1,& — a1,4a92,...,0k—-1,0r — b} ]
1=1



The Brownian map
de(u,v) = €y + €, — 2ming<s<y, €

Te =10,1]/ ~c
U ~e v iff de(u,v) =0

=

Uu (%

Conditional on 7, Z a centered Gaussian process with Z, =10 and
E((Zs — Z1)%] = dc(s, 1) Z ~ Brownian motion on the tree

Do(s,t):ZSJth—Qmax( inf Z,. inf Zu), s,t € 0,1].

s<u<t t<u<s
k—1
D*(a,b) — inf { ZDO(CLZ’,CLH_l) : k > 1,& — a1,4a92,...,0k—-1,0r — b} ]
1=1

Then M = (T./ ~p«, D*) is the Brownian map.



Perspectives

Same approach works also for simple quadrangulations.

Can it be generalized to other families of maps 7

e Generic bijection between blossoming trees and maps [Bernardi, Fusy]
[A.,Poulalhon].
Can we say something about distances 7

e Convergence of Hurwitz maps: bijection also with blossoming trees
[Duchi, Poulalhon, Schaeffer].

Can we say something about the embedding of the Brownian map in the
sphere via circle packing ?
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