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A map is a collection of polygons glued along their sides (with some technical conditions).

Maps – Definition(s)

Here, the resulting
surface is the sphere:
this is a planar map.

We will also encounter
maps on other closed

orientable surfaces: torus
of genus g, disk, ...

Euler’s formula: for every map m (on a closed surface without boundary),

|V (m)|+ |F (m)| = 2 + |E(m)| − 2g(m)

vertices faces edges genus
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Maps – Definition(s)

map = graph + cyclic order of edges around each vertex.

A map of genus g is a proper embedding of a connected graph in the torus
with g holes (such that all its faces are homeomorphic to disks and considered up

to orientation-preserving homeomorphisms).

This is the root corner

To avoid dealing with symmetries: maps are rooted (a corner is marked).
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Enumeration of planar maps

In the 60’s, Tutte obtained closed enumerative formulas for many families of planar maps.

e.g. #
{

rooted planar maps with n edges
}
=

2 · 3n

n+ 2
Catalan(n) [Tutte 63]

= #
{

binary plane trees with n inner vertices
}

Combinatorial proof ? Bijection ?
Yes ! [Cori & Vauquelin 81], [Schaeffer 97, 98]

Blossoming bijection

[Schaeffer 97]

Map with n edges
4-valent map with
n vertices

4-valent blossoming
trees with n vertices

Radial construction

[Tutte 63]

As a corollary:
combinatorial proof of Tutte’s formula.
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Bijections with blossoming trees

A blossoming tree is a plane tree where vertices can carry opening stems or closing stems:

# closing stems = # opening stems

Via this construction, a planar map is canonically associated to a blossoming tree.

Can we reverse the construction ?
i.e. can we determine a canonical spanning tree ?

and give a characterization of the possible trees ?

Yes...
Many works in: [Schaeffer, Bousquet-Mélou, Bouttier, Di Francesco, Guitter, Poulalhon,
Fusy, Bernardi, A.]
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[Schaeffer 97]

Schaeffer’s blossoming bijection

If the encountered edge is not a bridge, delete it !

Otherwise, continue !

Turning ccw

Theorem: [Schaeffer 97]
This is a bijection between 4-valent maps with n vertices and
a family of blossoming 4-valent plane trees with n vertices

Question:
Can we generalize it to 4-valent maps in higher genus ?
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Rationality scheme in higher genus

Theorem: [Tutte 63], bijective proof in [Schaeffer 97]

M(z) =
∑
m

z|E(m)|, where m ∈
{

planar maps
}
.

Theorem: [Bender, Canfield 91], first bijective proof in [Lepoutre 19]

Then Mg is a rational function of T .

For any g ≥ 1, let Mg(z) =
∑
m

z|E(m)|, where m ∈
{

maps of genus g
}
.

M =
1− 4T

(1− 3T )2
where T = unique formal power series defined by T = z + 3T 2

Then:

Result not available with the “mobile-type” bijection of [Chapuy – Marcus – Schaeffer]
Remark:
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Theorem: [Tutte 63], bijective proof in [Schaeffer 97]

M(z•, z◦) =
∑
m

z|V (m)|
• z|F (m)|

◦ , where m ∈
{

planar maps
}
.

Then M = T◦T•(1− 2T◦ − 2T•) where

{
T• = z• + T 2

• + 2T◦T•

T◦ = z◦ + T 2
◦ + 2T•T◦

Map with n edges
4-valent map with
n vertices

Radial construction
[Tutte 63]

Blossoming bijections in higher genus

Already for planar maps, this
result is not accessible with
mobile-type bijections.

Euler’s formula: |V (m)|+ |F (m)| = 2 + |E(m)| − 2g(m)



Theorem: [Tutte 63], bijective proof in [Schaeffer 97]

M(z•, z◦) =
∑
m

z|V (m)|
• z|F (m)|

◦ , where m ∈
{

planar maps
}
.

Then M = T◦T•(1− 2T◦ − 2T•) where

{
T• = z• + T 2

• + 2T◦T•

T◦ = z◦ + T 2
◦ + 2T•T◦

Blossoming bijections in higher genus

Theorem: [Bender, Canfield, Richmond 95], bijective proof in [A.,Lepoutre 20+]
For any g ≥ 1, let

Then Mg is a rational function of T• and T◦.

Mg(z•, z◦) =
∑
m

z|V (m)|
• z|F (m)|

◦ , where m ∈
{

maps of genus g
}
.

Euler’s formula: |V (m)|+ |F (m)| = 2 + |E(m)| − 2g(m)
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Reformulation of Schaeffer’s blossoming bijection

Aparte: dual of a tree-decorated map (= map endowed with a spanning tree).

Prop (folklore): This is a bijection for the set of tree-decorated maps.

Abuse of language : “dual of a tree” = corresponding spanning tree of the dual map
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Reformulation of Schaeffer’s blossoming bijection

Consider the “leftmost” breadth-first tree

Claim: The dual of the leftmost breadth-first tree is the blossoming tree
given by the first description of the bijection.

0

1

1

2

If the encountered edge is
not a bridge, delete it !

Otherwise, continue !

Label the faces by their distance to
the root face in the dual graph

Consider the “leftmost” breadth-first tree

Turning ccw

2

1 1

1

1

3
2
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Theorem: The blossoming trees are 4-valent trees, that can be endowed
with a non-negative good labeling of their corners.
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Caracterization and enumeration of the blossoming trees

Good labeling of the corners:
ii+ 1

ii+ 1
ii+ 1 ii+ 1

Locally around a vertex of a 4-valent tree with a non-negative good labeling:

2 incoming edges and 2 outgoing edges :

or ori+1 i

i+2
i+1

i+ 1 i i+ 1 i

T (z) = z + 3T (z)2

T (z) = generating series of trees enumerated by number of closing stems:

we retrieve the enumerative result of [Schaeffer]
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• Bicolorability comes from
the radial construction

Map with n edges
Bicolorable 4-valent map with n vertices

Radial construction
[Tutte 63]

Theorem [Lepoutre ’19]:

4-valent bicolorable maps of genus g

bijection

4-valent blossoming unicellular maps of genus g,
that can be endowed with a good non-negative labeling

• Planar 4-valent maps are bicolorable,
not true in general in higher genus.
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Theorem [Lepoutre ’19]:

4-valent bicolorable maps of genus g

bijection

4-valent blossoming unicellular maps of genus g,
that can be endowed with a good non-negative labeling

Dual of a tree-decorated map in higher genus.

Prop (folklore): The dual of a tree-decorated map of genus g is a map
with a spanning unicellular map of genus g.
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that can be endowed with a good non-negative labeling

As in the planar case, the labeling is uniquely
determined by the opening/closing stems.
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bijection
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Theorem [Lepoutre ’19]:

4-valent bicolorable maps of genus g

bijection

4-valent blossoming unicellular maps of genus g,
that can be endowed with a good non-negative labeling

good labeling with respect to the orientation
obtained by orienting backwards the edges in
the contour of the unique face.
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As in the planar case, the labeling is uniquely
determined by the opening/closing stems.

1

On top of the local constraints around each vertex, the
fact that the labeling is good gives some compatibility
constraints for the edges of the non-contractible cycles.



In higher genus

Theorem [Lepoutre ’19]:

4-valent bicolorable maps of genus g

4-valent blossoming unicellular maps of genus g,
that can be endowed with a good non-negative labeling

bijection

How to enumerate these objects ?

How to prove the rationality schemes with this bijection?
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• tree containing
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2nd step:
reroot at

a “scheme stem”

numbers of such stems
depends on the shape of the

scheme.
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In higher genus: scheme reduction

Unicellular map = non-contractible cycles, the core + tree-like parts

1st step:
erase the trees

still a non-negative good labeling !

i.e.

• tree containing
the root by

• replace trees by
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0 0
0

0
1101 1

−10

0

0

0
110

0

2
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11
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0
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−1 −1

still a non-negative good labeling !

2nd step:
reroot at

a “scheme stem”

Ms(z) = gen. series of maps
that admit s as scheme.

numbers of such stems
depends on the shape of the

scheme.

Ms(z) = κs ·Rs(T (z))

then:

κs = cst which depends on s

Rs = blossoming cores that admit
s as scheme

after applying the radial construction +
Lepoutre’s bijection + erasing the trees !
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Back to the theorems

Theorem: [Bender, Canfield 91], first bijective proof in [Lepoutre 19]

Then Mg is a rational function of T , where:

For any g ≥ 1, let Mg(z) =
∑
m

z|E(m)|, where m ∈
{

maps of genus g
}
.

T = unique formal power series defined by T = z + 3T 2

For any s ∈ Sg, Rs is a rational function.

Mg(z) =
∑
s∈Sg

Ms(z) where Sg = {schemes of genus g}We have:

Theorem: [Lepoutre 19] (simpler proof in [A. Lepoutre 21+])“Enough” to prove that:

Since, for any fixed g, |Sg| <∞. In view of Ms(z) = κs ·Rs(T (z)),

Remark: an analogous statement does not hold for the bijection of [Chapuy – Marcus – Schaeffer]Remark: an analogous statement does not hold for the bijection of [Chapuy – Marcus – Schaeffer]

Kind of a miracle that it does work for this bijection.

But, this seems robust: extension to bivariate enumeration and to Eulerian k-angulations
(w.i.p with Castellvi and Fusy)



Thank you for your attention !
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In higher genus: labeled scheme
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