Combinatorial proof of the rationality scheme for maps in higher genus

Marie Albenque (CNRS, LIX, École Polytechnique) joint work with Mathias Lepoutre

JCB, February 2021

Maps - Definition(s)

A map is a collection of polygons glued along their sides (with some technical conditions).

Maps - Definition(s)

A map is a collection of polygons glued along their sides (with some technical conditions).

Here, the resulting surface is the sphere: this is a planar map.

Maps - Definition(s)

A map is a collection of polygons glued along their sides (with some technical conditions).

Here, the resulting surface is the sphere: this is a planar map.

We will also encounter maps on other closed orientable surfaces: torus of genus g, disk, ...

Maps - Definition(s)

A map is a collection of polygons glued along their sides (with some technical conditions).

Here, the resulting surface is the sphere: this is a planar map.

We will also encounter maps on other closed orientable surfaces: torus of genus g, disk, ...

Euler's formula: for every map m (on a closed surface without boundary),

Maps - Definition(s)

A map of genus g is a proper embedding of a connected graph in the torus with g holes (such that all its faces are homeomorphic to disks and considered up to orientation-preserving homeomorphisms).

Maps - Definition(s)

A map of genus g is a proper embedding of a connected graph in the torus with g holes (such that all its faces are homeomorphic to disks and considered up to orientation-preserving homeomorphisms).

$\operatorname{map}=$ graph + cyclic order of edges around each vertex.

Maps - Definition(s)

A map of genus g is a proper embedding of a connected graph in the torus with g holes (such that all its faces are homeomorphic to disks and considered up to orientation-preserving homeomorphisms).

map $=$ graph + cyclic order of edges around each vertex.
To avoid dealing with symmetries: maps are rooted (a corner is marked).

Enumeration of planar maps

In the 60's, Tutte obtained closed enumerative formulas for many families of planar maps.
e.g. $\#\{$ rooted planar maps with n edges $\}=\frac{2 \cdot 3^{n}}{n+2} C$ atalan $(n) \quad$ [Tutte 63]

$=\#\{$ binary plane trees with n inner vertices $\}$

Enumeration of planar maps

In the 60's, Tutte obtained closed enumerative formulas for many families of planar maps.

$$
\begin{array}{r}
\text { e.g. } \#\{\text { rooted planar maps with } n \text { edges }\}=\frac{2 \cdot 3^{n}}{n+2} \operatorname{Catalan}(n) \quad[\text { Tutte 63] } \\
=\#\{\text { binary plane trees with } n \text { inner vertices }\}
\end{array}
$$

Combinatorial proof ? Bijection ?

Yes! [Cori \& Vauquelin 81], [Schaeffer 97, 98]

Enumeration of planar maps

In the 60's, Tutte obtained closed enumerative formulas for many families of planar maps.

$$
\begin{aligned}
\text { e.g. } \#\{\text { rooted planar maps with } n \text { edges }\}=\frac{2 \cdot 3^{n}}{n+2} & \text { Catalan }(n) \quad \text { [Tutte 63] } \\
& =\#\{\text { binary plane trees with } n \text { inner vertices }\}
\end{aligned}
$$

Combinatorial proof ? Bijection ?

Yes! [Cori \& Vauquelin 81], [Schaeffer 97, 98]

Radial construction
[Tutte 63]

Enumeration of planar maps

In the 60's, Tutte obtained closed enumerative formulas for many families of planar maps.

$$
\begin{array}{r}
\text { e.g. \#\{rooted planar maps with } n \text { edges }\}=\frac{2 \cdot 3^{n}}{n+2} \text { Catalan }(n) \quad \text { [Tutte 63] } \\
=\#\{\text { binary plane trees with } n \text { inner vertices }\}
\end{array}
$$

Combinatorial proof ? Bijection ?

Yes! [Cori \& Vauquelin 81], [Schaeffer 97, 98]

Radial construction
[Tutte 63]

4-valent map with n vertices

Enumeration of planar maps

In the 60's, Tutte obtained closed enumerative formulas for many families of planar maps.

$$
\begin{aligned}
& \text { e.g. } \#\{\text { rooted planar maps with } n \text { edges }\}=\frac{2 \cdot 3^{n}}{n+2} \text { Catalan }(n) \quad \text { TTutte 63] } \\
&=\#\{\text { binary plane trees with } n \text { inner vertices }\}
\end{aligned}
$$

Combinatorial proof ? Bijection ?

Yes! [Cori \& Vauquelin 81], [Schaeffer 97, 98]

Map with n edges

Radial construction
[Tutte 63]

4-valent map with n vertices

Enumeration of planar maps

In the 60's, Tutte obtained closed enumerative formulas for many families of planar maps.

$$
\begin{array}{r}
\text { e.g. \#\{rooted planar maps with } n \text { edges }\}=\frac{2 \cdot 3^{n}}{n+2} \operatorname{Catalan}(n) \quad[\text { Tutte 63] } \\
=\#\{\text { binary plane trees with } n \text { inner vertices }\}
\end{array}
$$

Combinatorial proof ? Bijection ?

Yes! [Cori \& Vauquelin 81], [Schaeffer 97, 98]

Radial construction
[Tutte 63]

4 -valent map with n vertices

Enumeration of planar maps

In the 60's, Tutte obtained closed enumerative formulas for many families of planar maps.

$$
\begin{array}{r}
\text { e.g. \#\{rooted planar maps with } n \text { edges }\}=\frac{2 \cdot 3^{n}}{n+2} \text { Catalan }(n) \quad \text { [Tutte 63] } \\
=\#\{\text { binary plane trees with } n \text { inner vertices }\}
\end{array}
$$

Combinatorial proof ? Bijection ?

Yes! [Cori \& Vauquelin 81], [Schaeffer 97, 98]

Map with n edges

4-valent map with n vertices

Enumeration of planar maps

In the 60's, Tutte obtained closed enumerative formulas for many families of planar maps.

$$
\begin{array}{r}
\text { e.g. } \#\{\text { rooted planar maps with } n \text { edges }\}=\frac{2 \cdot 3^{n}}{n+2} C \text { atalan }(n) \quad \text { [Tutte 63] } \\
\\
=\#\{\text { binary plane trees with } n \text { inner vertices }\}
\end{array}
$$

Combinatorial proof ? Bijection ?

Yes! [Cori \& Vauquelin 81], [Schaeffer 97, 98]

Map with n edges

$$
n \text { vertices }
$$

Enumeration of planar maps

In the 60's, Tutte obtained closed enumerative formulas for many families of planar maps.

$$
\begin{array}{r}
\text { e.g. } \#\{\text { rooted planar maps with } n \text { edges }\}=\frac{2 \cdot 3^{n}}{n+2} \text { Catalan }(n) \quad \text { [Tutte 63] } \\
=\#\{\text { binary plane trees with } n \text { inner vertices }\}
\end{array}
$$

Combinatorial proof ? Bijection ?

Yes! [Cori \& Vauquelin 81], [Schaeffer 97, 98]

Map with n edges

4-valent map with

$$
n \text { vertices }
$$

Enumeration of planar maps

In the 60 's, Tutte obtained closed enumerative formulas for many families of planar maps.

$$
\begin{array}{r}
\text { e.g. } \#\{\text { rooted planar maps with } n \text { edges }\}=\frac{2 \cdot 3^{n}}{n+2} \text { Catalan }(n) \quad \text { [Tutte 63] } \\
=\#\{\text { binary plane trees with } n \text { inner vertices }\}
\end{array}
$$

Combinatorial proof ? Bijection ?

Yes! [Cori \& Vauquelin 81], [Schaeffer 97, 98]

Map with n edges

4-valent map with n vertices

4-valent blossoming trees with n vertices

Enumeration of planar maps

In the 60 's, Tutte obtained closed enumerative formulas for many families of planar maps.

$$
\begin{array}{r}
\text { e.g. } \#\{\text { rooted planar maps with } n \text { edges }\}=\frac{2 \cdot 3^{n}}{n+2} \text { Catalan }(n) \quad \text { [Tutte 63] } \\
=\#\{\text { binary plane trees with } n \text { inner vertices }\}
\end{array}
$$

Combinatorial proof ? Bijection ?

Yes! [Cori \& Vauquelin 81], [Schaeffer 97, 98]

Map with n edges

4-valent map with n vertices

Bijections with blossoming trees

A blossoming tree is a plane tree where vertices can carry opening stems or closing stems:
\# closing stems $=\#$ opening stems

Bijections with blossoming trees

A blossoming tree is a plane tree where vertices can carry opening stems or closing stems:
$\#$ closing stems $=\#$ opening stems

Bijections with blossoming trees

A blossoming tree is a plane tree where vertices can carry opening stems or closing stems: $\#$ closing stems $=\#$ opening stems

Bijections with blossoming trees

A blossoming tree is a plane tree where vertices can carry opening stems or closing stems:
$\#$ closing stems $=\#$ opening stems

Bijections with blossoming trees

A blossoming tree is a plane tree where vertices can carry opening stems or closing stems:
$\#$ closing stems $=\#$ opening stems

Bijections with blossoming trees

A blossoming tree is a plane tree where vertices can carry opening stems or closing stems: $\#$ closing stems $=\#$ opening stems

Bijections with blossoming trees

A blossoming tree is a plane tree where vertices can carry opening stems or closing stems:
$\#$ closing stems $=\#$ opening stems

Bijections with blossoming trees

A blossoming tree is a plane tree where vertices can carry opening stems or closing stems: $\#$ closing stems $=\#$ opening stems

Via this construction, a planar map is canonically associated to a blossoming tree.

Bijections with blossoming trees

A blossoming tree is a plane tree where vertices can carry opening stems or closing stems: $\#$ closing stems $=\#$ opening stems

Via this construction, a planar map is canonically associated to a blossoming tree.
Can we reverse the construction ?
i.e. can we determine a canonical spanning tree ? and give a characterization of the possible trees ?

Bijections with blossoming trees

A blossoming tree is a plane tree where vertices can carry opening stems or closing stems: $\#$ closing stems $=\#$ opening stems

Via this construction, a planar map is canonically associated to a blossoming tree.
Can we reverse the construction ?
i.e. can we determine a canonical spanning tree ? and give a characterization of the possible trees ?

Yes...

Bijections with blossoming trees

A blossoming tree is a plane tree where vertices can carry opening stems or closing stems:

$$
\# \text { closing stems }=\# \text { opening stems }
$$

Via this construction, a planar map is canonically associated to a blossoming tree.
Can we reverse the construction ?
i.e. can we determine a canonical spanning tree ? and give a characterization of the possible trees ?

Yes...
Many works in: [Schaeffer, Bousquet-Mélou, Bouttier, Di Francesco, Guitter, Poulalhon, Fusy, Bernardi, A.]

Schaeffer's blossoming bijection

Blossoming bijection

Schaeffer's blossoming bijection

If the encountered edge is not a bridge, delete it ! Otherwise, continue!

Schaeffer's blossoming bijection

If the encountered edge is not a bridge, delete it !
Otherwise, continue!

Schaeffer's blossoming bijection

If the encountered edge is not a bridge, delete it !
Otherwise, continue!

Schaeffer's blossoming bijection

If the encountered edge is not a bridge, delete it !
Otherwise, continue!

Schaeffer's blossoming bijection

If the encountered edge is not a bridge, delete it !
Otherwise, continue!

Schaeffer's blossoming bijection

If the encountered edge is not a bridge, delete it !
Otherwise, continue!

Schaeffer's blossoming bijection

If the encountered edge is not a bridge, delete it !
Otherwise, continue!

Schaeffer's blossoming bijection

If the encountered edge is not a bridge, delete it !
Otherwise, continue!

Schaeffer's blossoming bijection

If the encountered edge is not a bridge, delete it !
Otherwise, continue!

Schaeffer's blossoming bijection

If the encountered edge is not a bridge, delete it !
Otherwise, continue!

Schaeffer's blossoming bijection

If the encountered edge is not a bridge, delete it !
Otherwise, continue!

Schaeffer's blossoming bijection

If the encountered edge is not a bridge, delete it !
Otherwise, continue!

Schaeffer's blossoming bijection

If the encountered edge is not a bridge, delete it !
Otherwise, continue!

Schaeffer's blossoming bijection

If the encountered edge is not a bridge, delete it !
Otherwise, continue!

Schaeffer's blossoming bijection

If the encountered edge is not a bridge, delete it !
Otherwise, continue!

Schaeffer's blossoming bijection

If the encountered edge is not a bridge, delete it !
Otherwise, continue!

Schaeffer's blossoming bijection

If the encountered edge is not a bridge, delete it !
Otherwise, continue!

Schaeffer's blossoming bijection

If the encountered edge is not a bridge, delete it !
Otherwise, continue!
Theorem: [Schaeffer 97]
This is a bijection between 4 -valent maps with n vertices and a family of blossoming 4 -valent plane trees with n vertices

Schaeffer's blossoming bijection

If the encountered edge is not a bridge, delete it !
Otherwise, continue!
Theorem: [Schaeffer 97]
This is a bijection between 4 -valent maps with n vertices and a family of blossoming 4 -valent plane trees with n vertices

Question:

Can we generalize it to 4-valent maps in higher genus?

Rationality scheme in higher genus

Theorem: [Tutte 63], bijective proof in [Schaeffer 97]

$$
M(z)=\sum_{m} z^{|E(m)|}, \text { where } m \in\{\text { planar maps }\}
$$

Then: ${ }_{M}=\frac{1-4 T}{(1-3 T)^{2}} \quad$ where $\quad T=$ unique formal power series defined by $T=z+3 T^{2}$

Rationality scheme in higher genus

Theorem: [Tutte 63], bijective proof in [Schaeffer 97]

$$
M(z)=\sum_{m} z^{|E(m)|}, \text { where } m \in\{\text { planar maps }\}
$$

Then: ${ }_{M}=\frac{1-4 T}{(1-3 T)^{2}} \quad$ where $\quad T=$ unique formal power series defined by $T=z+3 T^{2}$

Theorem: [Bender, Canfield 91], first bijective proof in [Lepoutre 19]
For any $g \geq 1$, let $M_{g}(z)=\sum_{m} z^{|E(m)|}$, where $m \in\{$ maps of genus $g\}$.
Then M_{g} is a rational function of T.

Rationality scheme in higher genus

Theorem: [Tutte 63], bijective proof in [Schaeffer 97]

$$
M(z)=\sum_{m} z^{|E(m)|}, \text { where } m \in\{\text { planar maps }\}
$$

Then: $M=\frac{1-4 T}{(1-3 T)^{2}} \quad$ where $\quad T=$ unique formal power series defined by $T=z+3 T^{2}$

Theorem: [Bender, Canfield 91], first bijective proof in [Lepoutre 19]
For any $g \geq 1$, let $M_{g}(z)=\sum_{m} z^{|E(m)|}$, where $m \in\{$ maps of genus $g\}$.
Then M_{g} is a rational function of T.

Remark:

Result not available with the "mobile-type" bijection of [Chapuy - Marcus - Schaeffer]

Blossoming bijections in higher genus

Theorem: [Tutte 63], bijective proof in [Schaeffer 97]

$$
M\left(z_{\bullet}, z_{\circ}\right)=\sum_{m} z_{\bullet}^{|V(m)|} z_{\circ}^{|F(m)|}, \text { where } m \in\{\text { planar maps }\} .
$$

Then $\quad M=T_{\circ} T_{\bullet}\left(1-2 T_{\bullet}-2 T_{\bullet}\right) \quad$ where $\quad\left\{\begin{array}{l}T_{\bullet}=z_{\bullet}+T_{\bullet}^{2}+2 T_{\circ} T_{\bullet} \\ T_{\circ}=z_{\circ}+T_{\circ}^{2}+2 T_{\bullet} T_{\circ}\end{array}\right.$

Blossoming bijections in higher genus

Theorem: [Tutte 63], bijective proof in [Schaeffer 97]

$$
M\left(z_{\bullet}, z_{\circ}\right)=\sum_{m} z_{\bullet}^{|V(m)|} z_{\circ}^{|F(m)|}, \text { where } m \in\{\text { planar maps }\} .
$$

Then $\quad M=T_{\circ} T_{\bullet}\left(1-2 T_{\circ}-2 T_{\bullet}\right) \quad$ where $\quad \begin{cases}T_{\bullet} & =z_{\bullet}+T_{\bullet}^{2}+2 T_{\circ} T_{\bullet} \\ T_{\circ} & =z_{\circ}+T_{\circ}^{2}+2 T_{\bullet} T_{\circ}\end{cases}$

Euler's formula: $\quad|V(m)|+|F(m)|=2+|E(m)|-2 g(m)$

Blossoming bijections in higher genus

Theorem: [Tutte 63], bijective proof in [Schaeffer 97]

$$
M\left(z_{\bullet}, z_{0}\right)=\sum_{m} z_{\bullet}^{|V(m)|} z_{0}^{|F(m)|}, \text { where } m \in\{\text { planar maps }\} .
$$

Then $\quad M=T_{\circ} T_{\bullet}\left(1-2 T_{\circ}-2 T_{\bullet}\right) \quad$ where $\quad\left\{\begin{array}{l}T_{\bullet}=z_{\bullet}+T_{\bullet}^{2}+2 T_{\bullet} T_{\bullet} \\ T_{\circ}=z_{\circ}+T_{\circ}^{2}+2 T_{\bullet} T_{\circ}\end{array}\right.$

Euler's formula: $\quad|V(m)|+|F(m)|=2+|E(m)|-2 g(m)$

Blossoming bijections in higher genus

Theorem: [Tutte 63], bijective proof in [Schaeffer 97]

$$
M\left(z_{\bullet}, z_{0}\right)=\sum_{m} z_{\bullet}^{|V(m)|} z_{0}^{|F(m)|}, \text { where } m \in\{\text { planar maps }\} .
$$

Then $\quad M=T_{\circ} T_{\bullet}\left(1-2 T_{\circ}-2 T_{\bullet}\right) \quad$ where $\quad\left\{\begin{array}{l}T_{\bullet}=z_{\bullet}+T_{\bullet}^{2}+2 T_{\circ} T_{\bullet} \\ T_{\circ}=z_{\circ}+T_{\circ}^{2}+2 T_{\bullet} T_{\circ}\end{array}\right.$

$$
\text { Euler's formula: } \quad|V(m)|+|F(m)|=2+|E(m)|-2 g(m)
$$

Already for planar maps, this result is not accessible with mobile-type bijections.

Blossoming bijections in higher genus

Theorem: [Tutte 63], bijective proof in [Schaeffer 97]

$$
M\left(z_{\bullet}, z_{\circ}\right)=\sum_{m} z_{\bullet}^{|V(m)|} z_{\circ}^{|F(m)|}, \text { where } m \in\{\text { planar maps }\} .
$$

Then $\quad M=T_{\circ} T_{\bullet}\left(1-2 T_{\circ}-2 T_{\bullet}\right) \quad$ where $\quad\left\{\begin{array}{l}T_{\bullet}=z_{\bullet}+T_{\bullet}^{2}+2 T_{\circ} T_{\bullet} \\ T_{\circ}=z_{\circ}+T_{\circ}^{2}+2 T_{\bullet} T_{\circ}\end{array}\right.$

$$
\text { Euler's formula: } \quad|V(m)|+|F(m)|=2+|E(m)|-2 g(m)
$$

Theorem: [Bender, Canfield, Richmond 95], bijective proof in [A.,Lepoutre 20+]
For any $g \geq 1$, let

$$
M_{g}\left(z_{\bullet}, z_{0}\right)=\sum_{m} z_{\bullet}^{|V(m)|} z_{0}^{|F(m)|}, \text { where } m \in\{\text { maps of genus } g\} .
$$

Then M_{g} is a rational function of T_{\bullet} and T_{0}.

Reformulation of Schaeffer's blossoming bijection

Aparte: dual of a tree-decorated map (= map endowed with a spanning tree).

Reformulation of Schaeffer's blossoming bijection

Aparte: dual of a tree-decorated map (= map endowed with a spanning tree).

Reformulation of Schaeffer's blossoming bijection

Aparte: dual of a tree-decorated map (= map endowed with a spanning tree).

Reformulation of Schaeffer's blossoming bijection

Aparte: dual of a tree-decorated map (= map endowed with a spanning tree).

Reformulation of Schaeffer's blossoming bijection

Aparte: dual of a tree-decorated map (= map endowed with a spanning tree).

Prop (folklore): This is a bijection for the set of tree-decorated maps.

Abuse of language : "dual of a tree" = corresponding spanning tree of the dual map

Reformulation of Schaeffer's blossoming bijection

Label the faces by their distance to the root face in the dual graph

Consider the "leftmost" breadth-first tree

Reformulation of Schaeffer's blossoming bijection

Label the faces by their distance to the root face in the dual graph

Consider the "leftmost" breadth-first tree

Reformulation of Schaeffer's blossoming bijection

Label the faces by their distance to the root face in the dual graph

Consider the "leftmost" breadth-first tree

Reformulation of Schaeffer's blossoming bijection

Reformulation of Schaeffer's blossoming bijection

Label the faces by their distance to the root face in the dual graph

Consider the "leftmost" breadth-first tree

Reformulation of Schaeffer's blossoming bijection

Label the faces by their distance to the root face in the dual graph

Consider the "leftmost" breadth-first tree

Reformulation of Schaeffer's blossoming bijection

Label the faces by their distance to the root face in the dual graph

Consider the "leftmost" breadth-first tree

Reformulation of Schaeffer's blossoming bijection

Label the faces by their distance to the root face in the dual graph

Consider the "leftmost" breadth-first tree

Reformulation of Schaeffer's blossoming bijection

Label the faces by their distance to the root face in the dual graph

Consider the "leftmost" breadth-first tree

Reformulation of Schaeffer's blossoming bijection

Label the faces by their distance to the root face in the dual graph
Consider the "leftmost" breadth-first tree

Reformulation of Schaeffer's blossoming bijection

Label the faces by their distance to the root face in the dual graph

Consider the "leftmost" breadth-first tree

Reformulation of Schaeffer's blossoming bijection

If the encountered edge is not a bridge, delete it !

Otherwise, continue!
Consider the "leftmost" breadth-first tree

Claim: The dual of the leftmost breadth-first tree is the blossoming tree given by the first description of the bijection.

Caracterization of the blossoming trees

Caracterization of the blossoming trees

Caracterization of the blossoming trees

Caracterization of the blossoming trees

Caracterization of the blossoming trees

Caracterization of the blossoming trees

Caracterization of the blossoming trees

Caracterization of the blossoming trees

Caracterization of the blossoming trees

Caracterization of the blossoming trees

Good labeling of the corners:

$$
\begin{array}{ccc}
i+1 \\
i+1 \\
\varliminf & i+1 \varliminf_{i} i & i+1
\end{array}
$$

Caracterization of the blossoming trees

Good labeling of the corners:

$$
\begin{array}{ccc}
i+1 \\
i+1 \\
\varliminf_{i} & i+1 \rrbracket_{i} & i+1 \bigvee i
\end{array}
$$

Theorem: The blossoming trees are 4-valent trees, that can be endowed with a non-negative good labeling of their corners.

Caracterization and enumeration of the blossoming trees

Good labeling of the corners:

$$
\begin{array}{ccc}
i+1 \varliminf_{i} & i+1 \varliminf_{i} & i+1 \\
i
\end{array}
$$

Caracterization and enumeration of the blossoming trees

Good labeling of the corners:

Locally around a vertex of a 4-valent tree with a good labeling: 2 incoming edges and 2 outgoing edges :

Caracterization and enumeration of the blossoming trees

Good labeling of the corners:

$$
\begin{array}{ccc}
i+1 \varliminf_{i} & i+1 \rrbracket_{i} & i+1 \\
i+1
\end{array}
$$

Locally around a vertex of a 4-valent tree with a good labeling:
2 incoming edges and 2 outgoing edges:

$T(z)=$ generating series of trees enumerated by number of closing stems:

$$
T(z)=z+3 T(z)^{2} \quad \text { we retrieve the enumerative result of [Schaeffer] }
$$

In higher genus

Theorem [Lepoutre '19]:

4-valent bicolorable maps of genus g

4-valent blossoming unicellular maps of genus g, that can be endowed with a good non-negative labeling

In higher genus

Theorem [Lepoutre '19]:

4 -valent bicolorable maps of genus g
 bijection

4 -valent blossoming unicellular maps of genus g, that can be endowed with a good non-negative labeling

In higher genus

Theorem [Lepoutre '19]:

4-valent bicolorable maps of genus g

4 -valent blossoming unicellular maps of genus g, that can be endowed with a good non-negative labeling

In higher genus

Theorem [Lepoutre '19]:

4 -valent bicolorable maps of genus g

4 -valent blossoming unicellular maps of genus g, that can be endowed with a good non-negative labeling

In higher genus

Theorem [Lepoutre '19]:

4 -valent bicolorable maps of genus g

4 -valent blossoming unicellular maps of genus g, that can be endowed with a good non-negative labeling

Theorem [Lepoutre '19]:

4-valent bicolorable maps of genus g

4 -valent blossoming unicellular maps of genus g, that can be endowed with a good non-negative labeling

- Bicolorability comes from the radial construction

Bicolorable 4-valent map with n vertices

Theorem [Lepoutre '19]:

4 -valent bicolorable maps of genus g

4 -valent blossoming unicellular maps of genus g, that can be endowed with a good non-negative labeling

- Bicolorability comes from the radial construction

Bicolorable 4-valent map with n vertices

- Planar 4-valent maps are bicolorable, not true in general in higher genus.

Theorem [Lepoutre '19]:

4-valent bicolorable maps of genus g

4-valent blossoming unicellular maps of genus g, that can be endowed with a good non-negative labeling

Theorem [Lepoutre '19]:

4-valent bicolorable maps of genus g

4-valent blossoming unicellular maps of genus g, that can be endowed with a good non-negative labeling

Dual of a tree-decorated map in higher genus.

Theorem [Lepoutre '19]:

4-valent bicolorable maps of genus g

4-valent blossoming unicellular maps of genus g, that can be endowed with a good non-negative labeling

Dual of a tree-decorated map in higher genus.

Theorem [Lepoutre '19]:

4-valent bicolorable maps of genus g

4-valent blossoming unicellular maps of genus g, that can be endowed with a good non-negative labeling

Dual of a tree-decorated map in higher genus.

Theorem [Lepoutre '19]:

4-valent bicolorable maps of genus g

4-valent blossoming unicellular maps of genus g, that can be endowed with a good non-negative labeling

Dual of a tree-decorated map in higher genus.

Theorem [Lepoutre '19]:

4-valent bicolorable maps of genus g

4-valent blossoming unicellular maps of genus g, that can be endowed with a good non-negative labeling

Dual of a tree-decorated map in higher genus.

Prop (folklore): The dual of a tree-decorated map of genus g is a map with a spanning unicellular map of genus g.

Theorem [Lepoutre '19]:

4-valent bicolorable maps of genus g
\downarrow bijection
4 -valent blossoming unicellular maps of genus g, that can be endowed with a good non-negative labeling

Theorem [Lepoutre '19]:

4-valent bicolorable maps of genus g
\downarrow bijection
4 -valent blossoming unicellular maps of genus g, that can be endowed with a good non-negative labeling

As in the planar case, the labeling is uniquely determined by the opening/closing stems.

Theorem [Lepoutre '19]:

4 -valent bicolorable maps of genus g
\downarrow bijection

4-valent blossoming unicellular maps of genus g, that can be endowed with a good non-negative labeling

As in the planar case, the labeling is uniquely determined by the opening/closing stems.

Theorem [Lepoutre '19]:

4-valent bicolorable maps of genus g
\downarrow bijection

4 -valent blossoming unicellular maps of genus g, that can be endowed with a good non-negative labeling

As in the planar case, the labeling is uniquely determined by the opening/closing stems.
good labeling with respect to the orientation obtained by orienting backwards the edges in the contour of the unique face.

Theorem [Lepoutre '19]:

4-valent bicolorable maps of genus g
\downarrow bijection

4 -valent blossoming unicellular maps of genus g, that can be endowed with a good non-negative labeling

As in the planar case, the labeling is uniquely determined by the opening/closing stems.
good labeling with respect to the orientation obtained by orienting backwards the edges in the contour of the unique face.

Theorem [Lepoutre '19]:

4-valent bicolorable maps of genus g

4-valent blossoming unicellular maps of genus g, that can be endowed with a good non-negative labeling

As in the planar case, the labeling is uniquely determined by the opening/closing stems.
good labeling with respect to the orientation obtained by orienting backwards the edges in the contour of the unique face.

On top of the local constraints around each vertex, the fact that the labeling is good gives some compatibility constraints for the edges of the non-contractible cycles.

In higher genus

Theorem [Lepoutre '19]:

4-valent bicolorable maps of genus g

4-valent blossoming unicellular maps of genus g, that can be endowed with a good non-negative labeling

How to enumerate these objects ?
How to prove the rationality schemes with this bijection?

In higher genus: scheme reduction

Unicellular map $=$ non-contractible cycles, the core + tree-like parts

In higher genus: scheme reduction

Unicellular map $=$ non-contractible cycles, the core + tree-like parts

In higher genus: scheme reduction

Unicellular map $=$ non-contractible cycles, the core + tree-like parts

still a non-negative good labeling!

In higher genus: scheme reduction

Unicellular map $=$ non-contractible cycles, the core + tree-like parts

still a non-negative good labeling!

> 2nd step:
> reroot at
> a "scheme stem"
> numbers of such stems depends on the shape of the scheme.

In higher genus: scheme reduction

Unicellular map $=$ non-contractible cycles, the core + tree-like parts

1st step: erase the trees
i.e.
- replace trees by γ
- tree containing the root by $\not \boldsymbol{y}^{0}$

still a non-negative good labeling!

2nd step:
reroot at
a "scheme stem"
numbers of such stems depends on the shape of the scheme.

In higher genus: scheme reduction

Unicellular map $=$ non-contractible cycles, the core + tree-like parts

1st step: erase the trees
i.e.
- replace trees by γ
- tree containing the root by $\not \boldsymbol{y}^{0}$

still a non-negative good labeling!

2nd step:
reroot at
a "scheme stem"
numbers of such stems depends on the shape of the scheme.

In higher genus: scheme reduction

Unicellular map $=$ non-contractible cycles, the core + tree-like parts

$M_{\mathrm{s}}(z)=$ gen. series of maps that admit s as scheme.
after applying the radial construction + Lepoutre's bijection + erasing the trees !

then:

$$
M_{\mathrm{s}}(z)=\kappa_{\mathrm{s}} \cdot R_{s}(T(z))
$$

$R_{\mathrm{S}}=$ blossoming cores that admit s as scheme
$\kappa_{\mathrm{S}}=$ cst which depends on s

1st step: erase the trees
i.e.

- replace trees by ${ }^{\gamma}$
- tree containing the root by $\boldsymbol{y}^{\boldsymbol{T}}$

still a non-negative good labeling!

2nd step:

reroot at
a "scheme stem"
numbers of such stems depends on the shape of the scheme.

Back to the theorems

Theorem: [Bender, Canfield 91], first bijective proof in [Lepoutre 19]

For any $g \geq 1$, let $M_{g}(z)=\sum_{m} z^{|E(m)|}$, where $m \in\{$ maps of genus $g\}$.
Then M_{g} is a rational function of T, where:

$$
T=\text { unique formal power series defined by } T=z+3 T^{2}
$$

Back to the theorems

Theorem: [Bender, Canfield 91], first bijective proof in [Lepoutre 19]

For any $g \geq 1$, let $M_{g}(z)=\sum_{m} z^{|E(m)|}$, where $m \in\{$ maps of genus $g\}$.
Then M_{g} is a rational function of T, where:

$$
T=\text { unique formal power series defined by } T=z+3 T^{2}
$$

We have: $\quad M_{g}(z)=\sum_{\mathrm{s} \in \mathcal{S}_{g}} M_{\mathrm{s}}(z) \quad$ wh ϵ
Since, for any fixed $g,\left|\mathcal{S}_{g}\right|<\infty$. In view of $M_{\mathrm{s}}(z)=\kappa_{\mathrm{s}} \cdot R_{s}(T(z))$,

Back to the theorems

Theorem: [Bender, Canfield 91], first bijective proof in [Lepoutre 19]

For any $g \geq 1$, let $M_{g}(z)=\sum_{m} z^{|E(m)|}$, where $m \in\{$ maps of genus $g\}$.
Then M_{g} is a rational function of T, where:

$$
T=\text { unique formal power series defined by } T=z+3 T^{2}
$$

We have: $\quad M_{g}(z)=\sum_{\mathrm{s} \in \mathcal{S}_{g}} M_{\mathrm{s}}(z) \quad$ wh ϵ
Since, for any fixed $g,\left|\mathcal{S}_{g}\right|<\infty$. In view of $M_{\mathrm{s}}(z)=\kappa_{\mathrm{s}} \cdot R_{s}(T(z))$,
"Enough" to prove that:
Theorem: [Lepoutre 19] (simpler proof in [A. Lepoutre 21+]) For any $\mathrm{s} \in \mathcal{S}_{g}, R_{\mathrm{s}}$ is a rational function.

Back to the theorems

Theorem: [Bender, Canfield 91], first bijective proof in [Lepoutre 19]

For any $g \geq 1$, let $M_{g}(z)=\sum_{m} z^{|E(m)|}$, where $m \in\{$ maps of genus $g\}$.
Then M_{g} is a rational function of T, where:

$$
T=\text { unique formal power series defined by } T=z+3 T^{2}
$$

We have: $\quad M_{g}(z)=\sum_{\mathrm{s} \in \mathcal{S}_{g}} M_{\mathrm{s}}(z) \quad$ wh ϵ
Since, for any fixed $g,\left|\mathcal{S}_{g}\right|<\infty$. In view of $M_{\mathrm{s}}(z)=\kappa_{\mathrm{s}} \cdot R_{s}(T(z))$,
"Enough" to prove that:
Theorem: [Lepoutre 19] (simpler proof in [A. Lepoutre 21+]) For any $\mathrm{s} \in \mathcal{S}_{g}, R_{\mathrm{s}}$ is a rational function.

Remark: an analogous statement does not hold for the bijection of [Chapuy - Marcus - Schaeffer] Kind of a miracle that it does work for this bijection.
But, this seems robust: extension to bivariate enumeration and to Eulerian k-angulations

Thank you for your attention!

Schemes in higher genus

In higher genus: labeled scheme

