Growth function for a class of monoids

Marie ALBENQUE and Philippe NADEAU

Formal Power Series and Algebraic Combinatorics

July, 24th 2009

First motivation $=$ counting braids

braid diagram $=$ a sequence of strand crossings.
$\sigma_{t, s}=\sigma_{s, t}(s<t)=$ crossing of strands s and t, where strand s is above strand t
braid diagram $=$ word on the alphabet $\left\{\sigma_{s, t}\right\}$

Figure: A braid diagram and the corresponding word

Equivalent diagrams

$\sigma_{1,4} \sigma_{4,6} \equiv \sigma_{4,6} \sigma_{1,6}$
Braid $=$ equivalence class of diagrams.

Equivalent diagrams

$\sigma_{1,4} \sigma_{4,6} \equiv \sigma_{4,6} \sigma_{1,6}$
Braid $=$ equivalence class of diagrams.

Equivalent diagrams

$\sigma_{1,4} \sigma_{4,6} \equiv \sigma_{4,6} \sigma_{1,6}$
Braid $=$ equivalence class of diagrams.

Equivalent diagrams

$\sigma_{1,4} \sigma_{4,6} \equiv \sigma_{4,6} \sigma_{1,6}$
Braid $=$ equivalence class of diagrams.

Equivalent diagrams

$\sigma_{1,4} \sigma_{4,6} \equiv \sigma_{4,6} \sigma_{1,6}$
Braid $=$ equivalence class of diagrams.

Equivalent diagrams

$\sigma_{1,4} \sigma_{4,6} \equiv \sigma_{4,6} \sigma_{1,6}$
Braid $=$ equivalence class of diagrams.

Equivalent diagrams

$$
\sigma_{1,4} \sigma_{4,6} \equiv \sigma_{4,6} \sigma_{1,6}
$$

Braid $=$ equivalence class of diagrams.

Equivalent diagrams

$$
\sigma_{1,4} \sigma_{4,6} \equiv \sigma_{4,6} \sigma_{1,6}
$$

Braid $=$ equivalence class of diagrams.

Presentation of the dual braid monoid.

The set of generators of M is:

$$
\mathcal{S}=\left\{\sigma_{s, t}=\sigma_{t, s} \text { pour } 1 \leq s<t \leq n,\right\}
$$

with the following equivalence relations
where $<_{s}=$ cyclic order $\mathbb{Z} / n \mathbb{Z}$ defined by

Length of a braid $=|m|_{\mathcal{S}}$

Presentation of the dual braid monoid.

The set of generators of M is :

$$
\mathcal{S}=\left\{\sigma_{s, t}=\sigma_{t, s} \text { pour } 1 \leq s<t \leq n,\right\}
$$

with the following equivalence relations :

$$
\begin{aligned}
\sigma_{s, t} \sigma_{u, v} & =\sigma_{u, v} \sigma_{s, t} \text { si } s<_{s} t<_{s} u<_{s} v \\
\sigma_{s, t} \sigma_{t, u} & =\sigma_{t, u} \sigma_{u, s} \text { si } s<_{s} t<_{s} u
\end{aligned}
$$

where $<_{s}=$ cyclic order $\mathbb{Z} / n \mathbb{Z}$ defined by :

$$
s<_{s} s+1<_{s} s+2<_{s} \ldots<_{s} s-1
$$

Presentation of the dual braid monoid.

The set of generators of M is :

$$
\mathcal{S}=\left\{\sigma_{s, t}=\sigma_{t, s} \text { pour } 1 \leq s<t \leq n,\right\}
$$

with the following equivalence relations:

$$
\begin{aligned}
\sigma_{s, t} \sigma_{u, v} & =\sigma_{u, v} \sigma_{s, t} \text { si } s<_{s} t<_{s} u<_{s} v \\
\sigma_{s, t} \sigma_{t, u} & =\sigma_{t, u} \sigma_{u, s} \text { si } s<_{s} t<_{s} u
\end{aligned}
$$

where $<_{s}=$ cyclic order $\mathbb{Z} / n \mathbb{Z}$ defined by :

$$
s<_{s} s+1<_{s} s+2<_{s} \ldots<_{s} s-1
$$

Length of a braid $=|m|_{\mathcal{S}}$

How many braids ?

$a_{k}=$ number of braids of length k

$$
F_{n}(t)=\sum_{k \geq 0} a_{k} t^{k}=a_{0}+a_{1} t+a_{2} t^{2} \cdots
$$

Theorem (A., Nadeau '08)
The growth function of the dual braid monoid on n strands is :

$$
F_{n}(t)=\left[\sum_{k=0}^{n-1} \frac{(n-1+k)!(-t)^{k}}{(n-1-k)!k!(k+1)!}\right]^{-1}
$$

Steps of the proofs

Alternating generating series of Icm

A few definition about lcm

$\sigma \prec m=$ there exists a diagram of m whose first letter is σ

Definition

$J \subset \mathcal{S}$ is a clique if it admits a common multiple. The set of cliques is denoted \mathcal{J}

If $J \in \mathcal{J}$, then a least common multiple (1 cm) exists, is unique and is denoted M_{J}. We fix arbitrarily a linear ordering on S, and denote a clique as $J=\sigma_{1} \ldots \sigma_{n}$, with $\sigma_{i}<\sigma_{i+1}$

A few definition about lcm

$\sigma \prec m=$ there exists a diagram of m whose first letter is σ

Definition

$J \subset \mathcal{S}$ is a clique if it admits a common multiple. The set of cliques is denoted \mathcal{J}

If $J \in \mathcal{J}$, then a least common multiple (lcm) exists, is unique and is denoted M_{J}.

We fix arbitrarily a linear ordering on \mathcal{S}, and denote a clique as

A few definition about lcm

$\sigma \prec m=$ there exists a diagram of m whose first letter is σ

Definition

$J \subset \mathcal{S}$ is a clique if it admits a common multiple.
The set of cliques is denoted \mathcal{J}
If $J \in \mathcal{J}$, then a least common multiple (lcm) exists, is unique and is denoted M_{J}.

We fix arbitrarily a linear ordering on \mathcal{S}, and denote a clique as

$$
J=\sigma_{1} \ldots \sigma_{n}, \text { with } \sigma_{i}<\sigma_{i+1}
$$

Theorem

$$
\left(\sum_{J \in \mathcal{J}}(-1)^{|J|} M_{J}\right) \cdot\left(\sum_{m \in M} m\right)=1
$$

Corollary (Bronfman '05, Kraamer '05)

The growth series of the monoid verifies then:

$$
\left[\sum_{J \in \mathcal{J}}(-1)^{|J|} t^{\left|M_{J}\right|}\right] F(t)=1
$$

A large class of monoids

Our approach works for every monoid M which admits a presentation with generators and relations and which is:

A large class of monoids

Our approach works for every monoid M which admits a presentation with generators and relations and which is:

- atomic,
- left-cancellable : $a, u, v \in M, a u=a v \Rightarrow u=v$,
- if a subset of generators has a right common multiple then it has a least common multiple.
[Bronfman, 00], [Krammer, 04]
Trace monoids,
monoids,
monoids,
To get the growth series from the involution, the relations must besides preserve the length.

A large class of monoids

Our approach works for every monoid M which admits a presentation with generators and relations and which is:

- atomic,
- left-cancellable : $a, u, v \in M, a u=a v \Rightarrow u=v$,
- if a subset of generators has a right common multiple then it has a least common multiple.
[Bronfman, 00], [Krammer, 04]
Trace monoids, Garside monoids, Artin-Tits monoids, ...
To get the growth series from the involution, the relations must besides preserve the length.

A large class of monoids

Our approach works for every monoid M which admits a presentation with generators and relations and which is:

- atomic,
- left-cancellable : $a, u, v \in M, a u=a v \Rightarrow u=v$,
- if a subset of generators has a right common multiple then it has a least common multiple.
[Bronfman, 00], [Krammer, 04]
Trace monoids, Garside monoids, Artin-Tits monoids, ...
To get the growth series from the involution, the relations must besides preserve the length.

Proof of the inversion formula

$$
\begin{aligned}
& \left(\sum_{J \in \mathcal{J}}(-1)^{|J|} M_{J}\right)\left(\sum_{\in M} m\right)=\sum_{(J, m)}(-1)^{|J|} M_{J} m=1 \\
& \psi \text { is an involution with only }(1,1) \text { as fixed point: } \\
& \psi: \mathcal{J} \times M \rightarrow \mathcal{J} \times M \\
& (J, m) \mapsto\left(J^{\prime}, m^{\prime}\right) \text { with } M_{J} m=M_{J} m^{\prime} \text { and }\left|J \Delta J^{\prime}\right|=1 \\
& \sigma_{m}=\max \left\{\sigma \text { such that } \sigma \not M_{J} m\right\} \\
& \psi(J, m)= \begin{cases}\left(J \cup\left\{\sigma_{m}\right\},\left(M_{J,\left\{\sigma_{m}\right\}}\right)^{-1}, m\right) & \text { if } \sigma_{m} \notin J \\
\left.\left(J \backslash \sigma_{m}\right\},\left(M_{J,\left\{\sigma_{m}\right\}}\right)^{-1} M_{J} \cdot m\right) & \text { otherwise }\end{cases}
\end{aligned}
$$

Proof of the inversion formula

$$
\left(\sum_{J \in \mathcal{J}}(-1)^{|J|} M_{J}\right)\left(\sum_{\in M} m\right)=\sum_{(J, m)}(-1)^{|J|} M_{J} m
$$

Ψ is an involution with only $(1,1)$ as fixed point :

$$
\begin{aligned}
& \Psi: \mathcal{J} \times M \rightarrow \mathcal{J} \times M \\
& \quad(J, m) \mapsto\left(J^{\prime}, m^{\prime}\right) \text { with } M_{J} m=M_{J^{\prime}} m^{\prime} \text { and }\left|J \Delta J^{\prime}\right|=1
\end{aligned}
$$

Proof of the inversion formula

$$
\left(\sum_{J \in \mathcal{J}}(-1)^{|J|} M_{J}\right)\left(\sum_{\in M} m\right)=\sum_{(J, m)}(-1)^{|J|} M_{J} m
$$

Ψ is an involution with only $(1,1)$ as fixed point :

$$
\begin{aligned}
& \Psi: \mathcal{J} \times M \rightarrow \mathcal{J} \times M \\
& \quad(J, m) \mapsto\left(J^{\prime}, m^{\prime}\right) \text { with } M_{J} m=M_{J^{\prime}} m^{\prime} \text { and }\left|J \Delta J^{\prime}\right|=1
\end{aligned}
$$

$$
\begin{gathered}
\sigma_{m}=\max \left\{\sigma \text { such that } \sigma \prec M_{J} m\right\} \\
\Psi(J, m)= \begin{cases}\left(J \cup\left\{\sigma_{m}\right\},\left(M_{J \cup\left\{\sigma_{m}\right\}}\right)^{-1} \cdot m\right) & \text { if } \sigma_{m} \notin J \\
\left(J \backslash\left\{\sigma_{m}\right\},\left(M_{J \backslash\left\{\sigma_{m}\right\}}\right)^{-1} M_{J} \cdot m\right) & \text { otherwise }\end{cases}
\end{gathered}
$$

Proof of the inversion formula

$$
\left(\sum_{J \in \mathcal{J}}(-1)^{|J|} M_{J}\right)\left(\sum_{\in M} m\right)=\sum_{(J, m)}(-1)^{|J|} M_{J} m=1
$$

Ψ is an involution with only $(1,1)$ as fixed point :

$$
\begin{aligned}
& \Psi: \mathcal{J} \times M \rightarrow \mathcal{J} \times M \\
& \qquad(J, m) \mapsto\left(J^{\prime}, m^{\prime}\right) \text { with } M_{J} m=M_{J^{\prime}} m^{\prime} \text { and }\left|J \Delta J^{\prime}\right|=1
\end{aligned} \begin{gathered}
\sigma_{m}=\max \left\{\sigma \text { such that } \sigma \prec M_{J} m\right\} \\
\Psi(J, m)= \begin{cases}\left(J \cup\left\{\sigma_{m}\right\},\left(M_{J \cup\left\{\sigma_{m}\right\}}\right)^{-1} \cdot m\right) & \text { if } \sigma_{m} \notin J \\
\left(J \backslash\left\{\sigma_{m}\right\},\left(M_{J \backslash\left\{\sigma_{m}\right\}}\right)^{-1} M_{J} \cdot m\right) & \text { otherwise }\end{cases}
\end{gathered}
$$

Computation of the alternating generating series of Icm

$(M, \prec)=$ locally finite Poset
Möbius inversion formula : $\left(\sum \mu(m) m\right)\left(\sum m\right)=1$
Our inversion formula is a generalization of Rota's cross-cut theorem.

Computation of the Möbius function

- Use of NBB base with an appropriate order on S
- Combinatorial proof

Computation of the alternating generating series of Icm

$(M, \prec)=$ locally finite Poset
Möbius inversion formula : $\left(\sum \mu(m) m\right)\left(\sum m\right)=1$
Our inversion formula is a generalization of Rota's cross-cut theorem.

Computation of the Möbius function :

- Use of NBB base with an appropriate order on \mathcal{S} [Blass and Sagan, '96]
- Combinatorial proof

Common multiple of braids

Lcm of $\left\{\sigma_{1,3}, \sigma_{2,4}, \sigma_{5,13}, \sigma_{5,9}, \sigma_{6,7}, \sigma_{8,12}, \sigma_{8,10}, \sigma_{10,12}\right\} ?$

$$
M_{J}=\sigma_{1,4} \sigma_{4,3} \sigma_{2,3} \cdot \sigma_{5,13} \sigma_{13,12} \sigma_{12,10} \sigma_{10,9} \sigma_{9,8} \cdot \sigma_{7,6}
$$

Common multiple of braids

Lcm of $\left\{\sigma_{1,3}, \sigma_{2,4}, \sigma_{5,13}, \sigma_{5,9}, \sigma_{6,7}, \sigma_{8,12}, \sigma_{8,10}, \sigma_{10,12}\right\} ?$

Common multiple of braids

Lcm of $\left\{\sigma_{1,3}, \sigma_{2,4}, \sigma_{5,13}, \sigma_{5,9}, \sigma_{6,7}, \sigma_{8,12}, \sigma_{8,10}, \sigma_{10,12}\right\} ?$

$$
M_{J}=\sigma_{1,4} \sigma_{4,3} \sigma_{2,3} \cdot \sigma_{5,13} \sigma_{13,12} \sigma_{12,10} \sigma_{10,9} \sigma_{9,8} \cdot \sigma_{7,6}
$$

$\left|M_{J}\right|=$ number of vertices - number of parts $=13-4=9$.

Involution on the edge configurations

\Rightarrow Counting non-crossing alternating forests
Length of the Icm = number of edges of the forest

Involution on the edge configurations

\Rightarrow Counting non-crossing alternating forests
Length of the icm = number of edges of the forest

Involution on the edge configurations

\Rightarrow Counting non-crossing alternating forests
Length of the 'cm = number of edges of the forest

Involution on the edge configurations

\Rightarrow Counting non-crossing alternating forests
Length of the $\mathrm{Icm}=$ number of edges of the forest

Order compatible cliques

Definition

An order compatible (OC) clique is $\sigma_{1} \ldots \sigma_{n}$ such that:

$$
\sigma_{i}=\max \left\{\sigma \prec M_{\sigma_{1} \ldots \sigma_{i}}\right\}
$$

Theorem (Blass-Sagan, '96)

$$
\begin{gathered}
\mu(m)=\sum(-1)^{|J|} \text {, where } J \text { is an } O C \text { clique s.t. } M_{J}=m \\
\qquad \sigma_{i, j}<\sigma_{k, l} \Longleftrightarrow[i, j] \subsetneq[k, /],
\end{gathered}
$$

the OC-cliques are exactly the noncrossing alternating forests.

Steps of the proof

Noncrossing alternating forests and unary-binary trees

[Gelfand et al., 97]
Bijection between the noncrossing alternating forests with n vertices and k edges and the unary binary trees with $n+k$ nodes, k of which being binary.

Noncrossing alternating forests and unary-binary trees

[Gelfand et al., 97]
Bijection between the noncrossing alternating forests with n
vertices and k edges and the unary binary trees with $n+k$ nodes, k of which being binary.

Noncrossing alternating forests and unary-binary trees

[Gelfand et al., 97] Bijection between the noncrossing alternating forests with n vertices and k edges and the unary binary trees with $n+k$ nodes, k of which being binary.

Steps of the proof

Growth function of the dual braid monoid

Theorem (A., Nadeau '08)

The growth function of the dual braid monoid on n strands is :

$$
\begin{aligned}
& F_{n}(t)=\sum \#\{\text { braids of length } n\} t^{n}=\sum_{b \in B_{n}^{+\star}} t^{|b|_{\Sigma_{n}}} \\
& F_{n}(t)=\left[\sum_{k=0}^{n-1} \frac{(n-1+k)!(-t)^{k}}{(n-1-k)!k!(k+1)!}\right]^{-1} .
\end{aligned}
$$

Resolution of \mathbb{Z}

- $A:=\mathbb{Z} M$: monoid algebra of M
- $B:=\mathbb{Z} \mathcal{J}$: free module with basis \mathcal{J}
$B_{n}:=\mathbb{Z} \mathcal{J}_{n}$: submodule with basis \mathcal{J}_{n} (cliques of size n)
- $C_{n}:=B_{n} \otimes_{\mathbb{Z}} A$

Definition

$d_{n}: C_{n} \rightarrow C_{n-1}$ is a A-module homomorphism defined by:

$$
d_{n}\left(\sigma_{1} \ldots \sigma_{n} \otimes 1\right)=\sum_{i=1}^{n}(-1)^{n-i} \sigma_{1} \ldots \hat{\sigma}_{i} \ldots \sigma_{n} \otimes \delta_{\sigma_{1} \ldots \hat{\sigma}_{i} \ldots \sigma_{n}}^{\sigma_{i}}
$$

where $M_{J_{i}} \delta_{J_{i}}^{\sigma_{i}}=M_{J_{i} \cup\left\{\sigma_{i}\right\}}$.
Theorem
$0 \longrightarrow C_{|\mathcal{S}|} \xrightarrow{d_{|\mathcal{S}|}} C_{|\mathcal{S}|-1} \xrightarrow{d_{|\mathcal{S}|-1}} \cdots \cdots \xrightarrow{d_{2}} C_{1} \xrightarrow{d_{1}} C_{0}=A \xrightarrow{\epsilon} \mathbb{Z}$ is a resolution of \mathbb{Z} as an A-module (i.e. $\left.\operatorname{Im}\left(d_{n}\right)=\operatorname{Ker}\left(d_{n-1}\right)\right)$.

Koszul Algebras

- $\tilde{C}_{n}:=$ submodule of C_{n} with bases OC cliques of size n

$$
0 \longrightarrow \tilde{C}_{|\mathcal{S}|} \xrightarrow{d_{|\mathcal{S}|}} \tilde{C}_{|\mathcal{S}|-1} \xrightarrow{d_{|\mathcal{S}|-1}} \cdots \cdots \xrightarrow{d_{2}} \tilde{C}_{1} \xrightarrow{d_{1}} \tilde{C}_{0}=A \xrightarrow{\epsilon} \mathbb{Z}
$$

is a resolution of \mathbb{Z} as an A-module.
The coefficients of the matrices of the resolution for the OC cliques are $\delta_{J_{i}}^{\sigma_{i}}=\sigma_{i}$ of length 1 .

Theorem
The monoid algebra of the dual braid monoid of type A is a Koszul algebra.

Koszul Algebras

- $\tilde{C}_{n}:=$ submodule of C_{n} with bases OC cliques of size n

$$
0 \longrightarrow \tilde{C}_{|\mathcal{S}|} \xrightarrow{d_{|\mathcal{S}|}} \tilde{C}_{|\mathcal{S}|-1} \xrightarrow{d_{|\mathcal{S}|-1}} \cdots \cdots \xrightarrow{d_{2}} \tilde{C}_{1} \xrightarrow{d_{1}} \tilde{C}_{0}=A \xrightarrow{\epsilon} \mathbb{Z}
$$

is a resolution of \mathbb{Z} as an A-module.
The coefficients of the matrices of the resolution for the OC cliques are $\delta_{J_{i}}^{\sigma_{i}}=\sigma_{i}$ of length 1.

Theorem

The monoid algebra of the dual braid monoid of type A is a Koszul algebra.

Artin-Tits monoids

\mathcal{S} is a finite set, \mathbb{M} a symmetric matrix, with $m_{s, t} \in \mathbb{N} \cup\{\infty\}$ and $m_{s, s}=1$.

The Artin-Tits monoid associated to \mathcal{S} and \mathbb{M} is:

$$
M=\langle s \in \mathcal{S}| \underbrace{s t s \ldots j}_{m_{s, t} \text { terms }}=\underbrace{t s t \ldots}_{m_{s, t} \text { terms }} \text { if } m_{s, t} \neq \infty\rangle
$$

Coxeter groups associated to M : $W=M /\left\{s^{2}=1\right\}$ An Artin-Tits monoid is spherical iff its Coxeter group is finite.

Artin-Tits monoids

\mathcal{S} is a finite set, \mathbb{M} a symmetric matrix, with $m_{s, t} \in \mathbb{N} \cup\{\infty\}$ and $m_{s, s}=1$.

The Artin-Tits monoid associated to \mathcal{S} and \mathbb{M} is:

$$
M=\langle s \in \mathcal{S}| \underbrace{s t s \ldots}_{m_{s, t} \text { terms }}=\underbrace{\text { tst } \ldots .}_{m_{s, t} \text { terms }} \text { if } m_{s, t} \neq \infty\rangle
$$

Coxeter groups associated to M : $W=M /\left\{s^{2}=1\right\}$ An Artin-Tits monoid is spherical iff its Coxeter group is finite.

Braid monoids

From the classification of finite Coxeter groups, the classical braid monoids of type A, B and D are defined.

$$
\mathcal{A}\left(A_{N}\right)=\left\langle\sigma_{1}, \ldots, \sigma_{n} \left\lvert\, \begin{array}{r}
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} \\
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} \text { if }|i-j| \geq 2
\end{array}\right.\right\rangle
$$

Dual braid monoids:

W a Coxeter group :
$T=$ New set of generators $=\{$ reflexions $\}=\left\{w s w^{-1}, s \in \mathcal{S}, w \in W\right\}$
Definition of a dual structure [Birman, Ko, Lee, '98], [Bessis, '03], where the set of Icms is a lattice.

Lattice isomorphic to some lattice of non-crossing partitions.

Dual braid monoids:

W a Coxeter group :
$T=$ New set of generators $=\{$ reflexions $\}=\left\{w s w^{-1}, s \in \mathcal{S}, w \in W\right\}$
Definition of a dual structure [Birman, Ko, Lee, '98], [Bessis, '03], where the set of Icms is a lattice.

Lattice isomorphic to some lattice of non-crossing partitions.

- Type A
- Type B [Reiner, '97]
- Type D [Athanasiadis \& Reiner,'04]

Dual braids of type B

Noncrossing partition of type B :

- Partition

the
set

$$
\{1, \ldots, n,-1, \ldots,-n\}
$$

- i, j in the same block $\Rightarrow-i,-j$ also.

Theorem

The monoid algebra of the dual braid monoid of type B is a Koszul algebra.

$$
F_{n}^{B}(t)=\left(\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{n+k-1}{k} t^{k}\right)^{-1}
$$

Thank you!

