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Growth series of braid monoid Resolution of Z Other types of monoids

First motivation = counting braids

braid diagram = a sequence of strand crossings.

Ots = 0st (S < t) = crossing of strands s and t, where strand s is
above strand t

braid diagram = word on the alphabet {0, ;}
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Figure: A braid diagram and the corresponding word
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Equivalent diagrams
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Equivalent diagrams
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01,4046 = 04,6016
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Equivalent diagrams

01,4046 =04601,6

Braid = equivalence class of diagrams.
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Presentation of the dual braid monoid.

The set of generators of M is :
S={ost=o0rspourl <s<t<n,}
with the following equivalence relations :

OstOuyv = Ouyv0Ost SIS <sgt<su<sv,

Ost Oty = OtyuOus SI § <5t <suU.
where <s = cyclic order Z/nZ defined by :

S<sS+1<s5+2<s...<ss5—1.



Growth series of braid monoid Resolution of 7 Other types of monoids

Presentation of the dual braid monoid.

The set of generators of M is :
S={ost=o0rspourl <s<t<n,}
with the following equivalence relations :

OstOuyv = Ouyv0Ost SIS <sgt<su<sv,

Ost Oty = OtyuOus SI § <5t <suU.
where <s = cyclic order Z/nZ defined by :
S<sS+1<s5+2<s...<ss5—1.

Length of a braid = |m|s
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How many braids ?

a, = number of braids of length k

Fo(t) = ath =ag + art + apt? -
k>0
Theorem (A., Nadeau ‘08)

The growth function of the dual braid monoid on n strands is :

n—1

(n— 1+ k)I(~t)*
Y= z% (n—1— k)IkI(k + 1)!
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Steps of the proofs

Computation of the growth function of the monoid

Involution
Y

Alternating generating series of lcm
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A few definition about lcm

o < m = there exists a diagram of m whose first letter is o

Definition
J C S is a clique if it admits a common multiple.
The set of cliques is denoted J
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is denoted M.
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A few definition about lcm

o < m = there exists a diagram of m whose first letter is o

Definition
J C S is a clique if it admits a common multiple.
The set of cliques is denoted J

If J € J, then a least common multiple (lcm) exists, is unique and
is denoted M.

We fix arbitrarily a linear ordering on S, and denote a clique as

J=o01...04, with o; < gjy1
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Theorem

(ZJEJ(il)MMJ)(ZmeMm) =1

Corollary (Bronfman '05, Kraamer '05)

The growth series of the monoid verifies then:

[ZJEJ(_I)M thJl] Flr) =1
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Our approach works for every monoid M which admits a
presentation with generators and relations and which is:

e atomic,
e left-cancellable : a,u,ve M, au=av=u=yv,

e if a subset of generators has a right common multiple then it
has a least common multiple.

[Bronfman, 00], [Krammer, 04]
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A large class of monoids

Our approach works for every monoid M which admits a
presentation with generators and relations and which is:

e atomic,
e left-cancellable : a,u,ve M, au=av=u=yv,

e if a subset of generators has a right common multiple then it
has a least common multiple.

[Bronfman, 00], [Krammer, 04]
Trace monoids, monoids, monoids, ...

To get the growth series from the involution, the relations must
besides preserve the length.
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(4,m)
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Proof of the inversion formula

(ZJEJ(—l)‘J‘MJ) >_,m= > (-)mm

(4;m)
V is an involution with only (1, 1) as fixed point :

V. JxM— JTxM
(J,m) — (J',m') with Mym = Mym' and |[JAJ| =1
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Proof of the inversion formula

(ZJEJ(—l)‘J‘MJ) >_,m= > (-)mm

(4;m)
V is an involution with only (1, 1) as fixed point :

V. JxM— JTxM
(J,m) — (J',m') with Mym = Mym' and |[JAJ| =1

om = max{c such that o0 < M;m}

(JU {om}, (MJU{om})_l - m) ifom & J

vhm = {(J\{am}, (Mp(omy) ™" My - m)  otherwise
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Proof of the inversion formula

(ZJEJ(_l)MMJ> (ZeMm) = Z (~)Hmym =1

(4;m)
V is an involution with only (1, 1) as fixed point :

V. JxM— JTxM
(J,m) — (J',m') with Mym = Mym' and |[JAJS| =1

om = max{c such that o < M;m}

(JU {om}, (MJU{om})_l . m) ifom & J

vhm = {(J\{am}, (Mp(omy) ™" My - m)  otherwise
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Computation of the alternating generating series of lcm

(M, <) = locally finite Poset
M&bius inversion formula : (- u(m)ym)(3>_-m) =1

Our inversion formula is a generalization of Rota's cross-cut
theorem.
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Computation of the alternating generating series of lcm

(M, <) = locally finite Poset
M&bius inversion formula : (- u(m)ym)(3>_-m) =1

Our inversion formula is a generalization of Rota's cross-cut
theorem.

Computation of the Mébius function :

e Use of NBB base with an appropriate order on S

e Combinatorial proof
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Common multiple of braids

Lem of {013,024 ,0513,059,067,0812,08,10,010,12 } ?

SESEESRANE

6 7 8 9 10 11 12 13
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Common multiple of braids

Lem of {013,024 ,0513,059,06,7,0812,0810,010,12 } ?

AT

6 7 10 11

. G

7 10 11
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Common multiple of braids

Lem of {013,024 ,0513,059,06,7,0812,08,10,010,12 } ?

AT

6 7 10 11
7 10 11

My = 014043023 - 051301312 012,10 010,0 09,8 * 07,6

[M;| = number of vertices - number of parts = 13 - 4 = 9.
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Involution on the edge configurations

SERRESRANE

6 7 8 9 10 11 12 13
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Involution on the edge configurations

VAN

6 7 10 11 12
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Involution on the edge configurations
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Involution on the edge configurations

NN

7 10 11
10 11

= Counting non-crossing alternating forests

Length of the Ilcm = number of edges of the forest
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Order compatible cliques

Definition
An order compatible (OC) clique is 07 ... o, such that :

oi =max{c < My, o}

Theorem (Blass-Sagan, '96)

pu(m) = Z(—l)“', where J is an OC clique s.t. M; = m

oij < ok = [i,j] € [k 1],

the OC-cliques are exactly the noncrossing alternating forests.
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Steps of the proof

Computation of the growth function of the monoid

Involution
v
Alternating generating series of lcm
')
TR
__ Noncrossing alternating forests
//
7.
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Noncrossing alternating forests and unary-binary trees

A2 ln A

9 10 11 12 13
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Noncrossing alternating forests and unary-binary trees

KA ln A

9 10 11 12 13

AB 12 13

[Gelfand et al., 97]
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Noncrossing alternating forests and unary-binary trees

KA ln A

] 10 11 12 13

As 12 13

[Gelfand et al., 97]
Bijection between the noncrossing alternating forests with n
vertices and k edges and the unary binary trees with n+ k nodes, k

of which being binary.
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Steps of the proof

Computation of the growth function of the monoid

Involution

Alternating generating series of lcm

Noncrossing alternating forests

o EN j}(
Unary-binary trees



Growth series of braid monoid

Growth function of the dual braid monoid

Theorem (A., Nadeau ‘08)

The growth function of the dual braid monoid on n strands is :

Fa(t) = Z #{ braids of length n}t" = Z tlbl=n
beB;*

n—1

(n— 1+ k)I(~t)*
Y= kz_% (n—1— k)IkI(k + 1)!




Resolution of Z

Resolution of Z

e A :=7ZM : monoid algebra of M

e B :=7J : free module with basis J
B, :=ZJ, : submodule with basis 7, (cliques of size n)

e C, =B, ®7 A

Definition
dn: Cy — C,_1 is a A-module homomorphism defined by:

do(o1...0n®1) =301 (-1)"0y...6i...00 @8

01...0j...0n"

where MJI.53’,'. = MJ,‘U{O’,‘}'

Theorem
dis|—1

d
0 — G| - Cgjog 25" - 2,05 G=A-512
is a resolution of Z as an A-module (/.e. Im(d,) = Ker(dn—1)).
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Koszul Algebras

° (f,, := submodule of C, with bases OC cliques of size n

~ ~ d ~
0— Qs — %, Csjm1 o' eee B E M G=AST

is a resolution of Z as an A-module.



Resolution of Z

Koszul Algebras

e C, := submodule of C, with bases OC cliques of size n

~ d‘5|,1

0—>6\3| dis| B ooy 25 C1 Lé=A-57Z
is a resolution of Z as an A-module.

The coefficients of the matrices of the resolution for the OC cliques
are 957 = o; of length 1.

Theorem

The monoid algebra of the dual braid monoid of type A is a Koszul
algebra.
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Artin-Tits monoids

S is a finite set, Ml a symmetric matrix, with ms s € NU {oo} and
mss = 1.

The Artin-Tits monoid associated to S and M is:

M=(seS| sts.., = tst.., ifmgs# 00)
ms: terms  mg: terms
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Artin-Tits monoids

S is a finite set, Ml a symmetric matrix, with ms s € NU {oo} and
mss = 1.

The Artin-Tits monoid associated to S and M is:

M=(seS| sts.., = tst.., ifmgs# 00)
ms: terms  mg: terms

Coxeter groups associated to M: W = M/{s? = 1}
An Artin-Tits monoid is spherical iff its Coxeter group is finite.



Other types of monoids

Braid monoids

From the classification of finite Coxeter groups, the classical braid
monoids of type A, B and D are defined.

A(An) = <01, .o, 0n

0i0i+10; = 0i4+100j+1 >
oioj = ojoj if |i —j| > 2 '

o1 o1___ o1 o1 o1
N\ N\ Ve Vo
J— —_
— T A AN Y
- 7 L
- - 02 02 g2
g3 g3

n

Fa(t) = [Ha(0)] 71, Ha(t) = Y (~1)kttekD2g,
k=1
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Dual braid monoids:

W a Coxeter group :

T = New set of generators = { reflexions } = {wsw™!,s € S,w € W}

Definition of a dual structure [Birman Ko, Lee, '98] [Bessis, ‘03],
where the set of lcms is a lattice.
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Dual braid monoids:

W a Coxeter group :
T = New set of generators = { reflexions } = {wsw™!,s € S,w € W}

Definition of a dual structure [Birman Ko, Lee, '98] [Bessis, ‘03],
where the set of lcms is a lattice.

Lattice isomorphic to some lattice of non-crossing partitions.
e Type A
e Type B [Reiner, 97|
e Type D [Athanasiadis & Reiner,’04]
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Dual braids of type B

Noncrossing partition of type B :

e Partition of the set
{1,...,n,—1,...,—n}

e ¢, 7 in the same block = —i, —j also.
+

ST AN

1 2 3 45 6 7 8

Theorem

The monoid algebra of the dual braid monoid of type B is a Koszul
algebra.

FE(0) = (Sh_o () ()2t
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Thank you |
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