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Faces = connected components of the plane when the edge are removed
Plane maps are rooted.

There is one special face which is infinite: the outer face.



Plane Bipolar Orientations

A plane bipolar orientation is a plane map:
e endowed with an acyclic orientation,
e with a unique source vertex (without ingoing edges),
e with a unique sink vertex (without outgoing edges).
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n a unique sink vertex (without outgoing edges).

t

Theorem : The number ©;; of bipolar orientations
with 7 + 2 vertices and 5 + 1 faces is equal to:

200+ )G+ GG+ 5+ 2)!
GGG DG 2!

Baxter '01]

Fusy, Poulalhon, Schaeffer '09]
Bonichon, Bousquet-Mélou, Fusy "10]
Felsner, Fusy, Noy, Orden '11]




Enumeration
One of the main question when studying some families of maps:

How many maps belong to this family ?

e Recursive decomposition: Tutte '60s. Baxter '01
e Matrix integrals: t'Hooft '74,Brézin, Itzykson, Parisi and Zuber '78.
e Representation of the symmetric group: Goulden and Jackson '87.

e Bijective approach with labeled trees: Cori-Vauquelin ‘81, Schaeffer
'98, Bouttier, Di Francesco and Guitter '04, Bernardi, Chapuy, Fusy,
Miermont, ...

e Bijective approach with blossoming trees: Schaeffer '98, Schaeffer
and Bousquet-Mélou '00, Poulalhon and Schaeffer '05, Fusy, Poulalhon

and Schaeffer '06.
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Can we always find a blossoming tree from a plane map ?

Theorem : [A., Poulalhon]
If a plane map M has a marked vertex v is endowed with an
orientation such that :

e there exists a directed path from any vertex to v,

e there i1s no counterclockwise cycle,

then there exists a unique blossoming tree rooted at v whose closure
Is M endowed with the same orientation.
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Can we always find a blossoming tree from a plane map ?

Theorem : [A., Poulalhon]
If a plane map M has a marked vertex v is ¢
orientation such that :
e there exists a directed path from any ver
e there i1s no counterclockwise cycle,

Proof by induction on
the number of faces +

identification of closure
edges ....

then there exists a unique blossoming tree rooted at v whose closure
Is M endowed with the same orientation.
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Blossoming trees and bipolar orientations

Buectlon

marked vertex € outer face = easy to compute the blossoming tree

[Bernardi '07]
Description/enumeration of these trees ?
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Blossoming trees and triplet of paths

Thip(7,7) = blossoming trees obtained after opening a bipolar
orientation with ¢ + 2 vertices and 7 + 1 faces

Proposition: [A., Poulalhon]
There exists a one-to-one correspondence between :

triplet of non-intersecting paths

withz’I and j e—e

and fixed first and final points

. 204 (i4F+1) (4 +2)!
é#Tbip(ZvJ) = 0;; = i!(i(—|—137!)(73(—|—2§!j!(?7—(|-1)!](j+)2)!

Lindstrom-Gessel-Viennot Lemma
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Trees of Ty, and triple of paths

w = eb, wle, €] and w(b, b] = Dyck words,

w=...b...e...b..., w=e...e...b...€...
= wlé, b]
ebb
______ bbe

e wy = on the right/bottom of w;
e no vertical edge in common.

..............................................................

+ w3 = wle, b] = triple of paths !



Summary

Proposition: [A., Poulalhon]
There exists a one-to-one correspondence between :

triplet of non-intersecting paths

withiI and j e—e

and fixed first and final points

Corollary : The number ©;; of bipolar orientations
with 7 + 2 vertices and 5 4+ 1 faces is equal to:
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