# Bipolar orientations and blossoming trees 

Marie Albenque (CNRS, Paris)<br>Joint work with Dominique Poulalhon

Kolkom, November 17th 2012

Plane Maps.
A plane map is the embedding of a connected graph in the plane up to continuous deformations.


$$
\neq
$$



## Plane Maps.

A plane map is the embedding of a connected graph in the plane up to continuous deformations.


Faces $=$ connected components of the plane when the edge are removed

## Plane Maps.

A plane map is the embedding of a connected graph in the plane up to continuous deformations.


Faces $=$ connected components of the plane when the edge are removed Plane maps are rooted.

## Plane Maps.

A plane map is the embedding of a connected graph in the plane up to continuous deformations.


Faces $=$ connected components of the plane when the edge are removed Plane maps are rooted.

There is one special face which is infinite: the outer face.

## Plane Bipolar Orientations

A plane bipolar orientation is a plane map:

- endowed with an acyclic orientation,
- with a unique source vertex (without ingoing edges),
- with a unique sink vertex (without outgoing edges).



## Plane Bipolar Orientations

A plane bipolar orientation is a plane map:

- endowed with an acyclic orientation,
- with a unique source vertex (without ingoing edges),
- with a unique sink vertex (without outgoing edges).


Theorem : The number $\Theta_{i j}$ of bipolar orientations with $i+2$ vertices and $j+1$ faces is equal to:

$$
\Theta_{i j}=\frac{2(i+j)!(i+j+1)!(i+j+2)!}{i!(i+1)!(i+2)!j!(j+1)!(j+2)!}
$$

[Baxter '01]
[Fusy, Poulalhon, Schaeffer '09]
[Bonichon, Bousquet-Mélou, Fusy '10]
[Felsner, Fusy, Noy, Orden '11]

## Enumeration

One of the main question when studying some families of maps:

## How many maps belong to this family ?

- Recursive decomposition: Tutte '60s. Baxter '01
- Matrix integrals: t'Hooft '74,Brézin, Itzykson, Parisi and Zuber '78.
- Representation of the symmetric group: Goulden and Jackson '87.
- Bijective approach with labeled trees: Cori-Vauquelin '81, Schaeffer '98, Bouttier, Di Francesco and Guitter '04, Bernardi, Chapuy, Fusy, Miermont, ...
- Bijective approach with blossoming trees: Schaeffer '98, Schaeffer and Bousquet-Mélou '00, Poulalhon and Schaeffer '05, Fusy, Poulalhon and Schaeffer '06.


## Enumeration

One of the main question when studying some families of maps:
How many maps belong to this family ?

- Recursive decomposition: Tutte '60s. Baxter '01
- Matrix integrals: t'Hooft '74,Brézin, Itzykson, Parisi and Zuber '78.
- Representation of the symmetric group: Goulden and Jackson '87.
- Bijective approach with labeled trees: Cori-Vauquelin '81, Schaeffer '98, Bouttier, Di Francesco and Guitter '04, Bernardi, Chapuy, Fusy, Miermont, ...
- Bijective approach with blossoming trees: Schaeffer '98, Schaeffer and Bousquet-Mélou '00, Poulalhon and Schaeffer '05, Fusy, Poulalhon and Schaeffer '06.


## What is a blossoming tree ?

A blossoming tree is a plane tree where vertices can carry opening stems or closing stems, such that :
\# closing stems $=\#$ opening stems


## What is a blossoming tree ?

A blossoming tree is a plane tree where vertices can carry opening stems or closing stems, such that :
\# closing stems $=\#$ opening stems


## What is a blossoming tree ?

A blossoming tree is a plane tree where vertices can carry opening stems or closing stems, such that:
$\#$ closing stems $=\#$ opening stems


## What is a blossoming tree ?

A blossoming tree is a plane tree where vertices can carry opening stems or closing stems, such that:
$\#$ closing stems $=\#$ opening stems


## What is a blossoming tree ?

A blossoming tree is a plane tree where vertices can carry opening stems or closing stems, such that:
$\#$ closing stems $=\#$ opening stems


## What is a blossoming tree ?

A blossoming tree is a plane tree where vertices can carry opening stems or closing stems, such that :
\# closing stems $=\#$ opening stems


## What is a blossoming tree ?

A blossoming tree is a plane tree where vertices can carry opening stems or closing stems, such that :
\# closing stems $=\#$ opening stems


A plane map can be canonically associated to any blossoming tree by making all closures clockwise.

What is a blossoming tree ?


A plane map can be canonically associated to any blossoming tree by making all closures clockwise.

If the tree is rooted and its edges oriented towards the root + closure edges oriented naturally
$\Rightarrow$ Accessible orientation of the map without ccw cycles.

What is a blossoming tree ?


A plane map can be canonically associated to any blossoming tree by making all closures clockwise.

If the tree is rooted and its edges oriented towards the root + closure edges oriented naturally
$\Rightarrow$ Accessible orientation of the map without ccw cycles.

Can we always find a blossoming tree from a plane map ?
Theorem : [A., Poulalhon]
If a plane map $M$ has a marked vertex $v$ is endowed with an orientation such that:

- there exists a directed path from any vertex to $v$,
- there is no counterclockwise cycle,
then there exists a unique blossoming tree rooted at $v$ whose closure is $M$ endowed with the same orientation.

Can we always find a blossoming tree from a plane map ?
Theorem : [A., Poulalhon]
If a plane map $M$ has a marked vertex $v$ is endowed with an orientation such that:

- there exists a directed path from any vertex to $v$,
- there is no counterclockwise cycle,
then there exists a unique blossoming tree rooted at $v$ whose closure is $M$ endowed with the same orientation.


Can we always find a blossoming tree from a plane map ?
Theorem : [A., Poulalhon]
If a plane map $M$ has a marked vertex $v$ is endowed with an orientation such that:

- there exists a directed path from any vertex to $v$,
- there is no counterclockwise cycle,
then there exists a unique blossoming tree rooted at $v$ whose closure is $M$ endowed with the same orientation.


Can we always find a blossoming tree from a plane map ?
Theorem: [A., Poulalhon]
If a plane map $M$ has a marked vertex $v$ is $\epsilon$ orientation such that :

- there exists a directed path from any ver
- there is no counterclockwise cycle,

Proof by induction on the number of faces + identification of closure edges ....
then there exists a unique blossoming tree rooted at $v$ whose closure is $M$ endowed with the same orientation.


Blossoming trees and bipolar orientations


Blossoming trees and bipolar orientations

marked vertex $\in$ outer face $\Rightarrow$ easy to compute the blossoming tree
[Bernardi '07]

Blossoming trees and bipolar orientations

marked vertex $\in$ outer face $\Rightarrow$ easy to compute the blossoming tree
[Bernardi '07]
Description/enumeration of these trees ?

## Blossoming trees and triplet of paths

$T_{\text {bip }}(i, j)=$ blossoming trees obtained after opening a bipolar orientation with $i+2$ vertices and $j+1$ faces

## Blossoming trees and triplet of paths

$T_{\text {bip }}(i, j)=$ blossoming trees obtained after opening a bipolar orientation with $i+2$ vertices and $j+1$ faces
$\xrightarrow[\text { Theorem }]{=}=\begin{aligned} & \text { blossoming trees which closes into a bipolar orientation } \\ & \text { with } i+2 \text { vertices and } j+1 \text { faces }\end{aligned}$

## Blossoming trees and triplet of paths

$T_{\text {bip }}(i, j)=$ blossoming trees obtained after opening a bipolar orientation with $i+2$ vertices and $j+1$ faces
$\xrightarrow[\text { Theorem }]{=}=\begin{aligned} & \text { blossoming trees which closes into a bipolar orientation } \\ & \text { with } i+2 \text { vertices and } j+1 \text { faces }\end{aligned}$

Proposition: [A., Poulalhon]
There exists a one-to-one correspondence between :

$$
T_{\text {bip }}(i, j) \text { and }
$$


triplet of non-intersecting paths with $i \varrho$ and $j \bullet$ and fixed first and final points

## Blossoming trees and triplet of paths

$T_{\text {bip }}(i, j)=$ blossoming trees obtained after opening a bipolar orientation with $i+2$ vertices and $j+1$ faces

Proposition: [A., Poulalhon]
There exists a one-to-one correspondence between :


$$
\longrightarrow \# T_{\mathrm{bip}}(i, j)=\Theta_{i j}=\frac{2(i+j)!(i+j+1)!(i+j+2)!}{i!(i+1)!(i+2)!j!(j+1)!(j+2)!}
$$

Trees of $T_{\text {bip }}$


## Trees of $T_{\text {bip }}$

- First son of the root $=$ only opening stems


Trees of $T_{\text {bip }}$


## Trees of $T_{\text {bip }}$

- First son of the root $=$ only opening stems

- Closures must not wrap the root
- Opening stem cannot close into its subtree


## Trees of $T_{\text {bip }}$

- First son of the root $=$ only opening stems

- Closures must not wrap the root
- Opening stem cannot close into its subtree
- Leaf of the tree $(\neq s)$ must carry one closing stem.


## Trees of $T_{\text {bip }}$

- First son of the root $=$ only opening stems
- Closures must not wrap the root
- Opening stem cannot close into its subtree
- Leaf of the tree $(\neq s)$ must carry one closing stem.

Encoding of the blossoming tree $=$ contour word $=$ word on $\{e, \bar{e}, b, \bar{b}\}$ s.t.:
$e, \bar{e}$ : first time, second time we see an edge
$b, \bar{b}$ : opening stem, closing stem.
$w=e b b b \bar{e} e e e \bar{b} \bar{e} e \bar{b} b b \bar{e} \bar{e} \bar{b} b \bar{e} e \bar{b} b \bar{e} \bar{b} e \bar{b} \bar{b} \bar{e}$

## Trees of $T_{\text {bip }}$

- First son of the root $=$ only opening stems

$$
\Rightarrow w=e b
$$

- Closures must not wrap the root
- Opening stem cannot close into its subtree
- Leaf of the tree $(\neq s)$ must carry one closing stem.

Encoding of the blossoming tree $=$ contour word $=$ word on $\{e, \bar{e}, b, \bar{b}\}$ s.t.:
$e, \bar{e}$ : first time, second time we see an edge
$b, \bar{b}$ : opening stem, closing stem.
$w=e b b b \bar{e} e e e \bar{b} \bar{e} e \bar{b} b b \bar{e} \bar{e} \bar{b} b \bar{e} e \bar{b} b \bar{e} \bar{b} e \bar{b} \bar{b} \bar{e}$

## Trees of $T_{\text {bip }}$

- First son of the root $=$ only opening stems


$$
\Rightarrow w=e b
$$

- Closures must not wrap the root

$$
\Rightarrow w[b, \bar{b}]=\text { Dyck word }
$$

- Opening stem cannot close into its subtree
- Leaf of the tree $(\neq s)$ must carry one closing stem.

Encoding of the blossoming tree $=$ contour word $=$ word on $\{e, \bar{e}, b, \bar{b}\}$ s.t.:
$e, \bar{e}$ : first time, second time we see an edge
$b, \bar{b}$ : opening stem, closing stem.
$w=e b b b \bar{e} e e e \bar{b} \bar{e} e \bar{b} b b \bar{e} \bar{e} \bar{b} b \bar{e} e \bar{b} b \bar{e} \bar{b} e \bar{b} \bar{b} \bar{e}$

## Trees of $T_{\text {bip }}$

- First son of the root $=$ only opening stems


$$
\Rightarrow w=e b
$$

- Closures must not wrap the root

$$
\Rightarrow w[b, \bar{b}]=\text { Dyck word }
$$

- Opening stem cannot close into its subtree
- Leaf of the tree $(\neq s)$ must carry one closing stem.


Encoding of the blossoming tree $=$ contour word $=$ word on $\{e, \bar{e}, b, \bar{b}\}$ s.t.:
$e, \bar{e}$ : first time, second time we see an edge
$b, \bar{b}$ : opening stem, closing stem.
$w=e b b b \bar{e} e e e \bar{b} \bar{e} e \bar{b} b b \bar{e} \bar{e} \bar{b} b \bar{e} e \bar{b} b \bar{e} \bar{b} e \bar{b} \bar{b} \bar{e}$

Trees of $T_{\text {bip }}$ and triple of paths


$$
\begin{aligned}
& w=e b, \quad w[e, \bar{e}] \text { and } w[b, \bar{b}]=\text { Dyck words, } \\
& w=\ldots b \ldots \bar{e} \ldots \bar{b} \ldots, \quad w=e \ldots e \ldots \bar{b} \ldots \bar{e} \ldots
\end{aligned}
$$

$w=e b b b \bar{e} e e e \bar{b} \bar{e} e \bar{b} b b \bar{e} \bar{e} \bar{b} b \bar{e} e \bar{b} b \bar{e} \bar{b} e \bar{b} \bar{b} \bar{e}$

Trees of $T_{\text {bip }}$ and triple of paths


$$
\begin{aligned}
& w=e b, \quad w[e, \bar{e}] \text { and } w[b, \bar{b}]=\text { Dyck words, } \\
& w=\ldots b \ldots \bar{e} \ldots \bar{b} \ldots, \quad w=e \ldots e \ldots \bar{b} \ldots \bar{e} \ldots \\
& \mathbf{w}_{\mathbf{1}}:=\mathbf{w}[\mathbf{e}, \overline{\mathbf{b}}], \quad \mathbf{w}_{\mathbf{2}}:=\mathbf{w}[\overline{\mathbf{e}}, \overline{\mathbf{b}}]
\end{aligned}
$$

$$
w=e b b b \bar{e} e e e \bar{b} \bar{e} e \bar{b} b b \bar{e} \bar{e} \bar{b} b \bar{e} e \bar{b} b \bar{e} \bar{b} e \bar{b} \bar{b} \bar{e}
$$

Trees of $T_{\text {bip }}$ and triple of paths


$$
\begin{aligned}
& w=e b, \quad w[e, \bar{e}] \text { and } w[b, \bar{b}]=\text { Dyck words, } \\
& w=\ldots b \ldots \bar{e} \ldots \bar{b} \ldots, \quad w=e \ldots e \ldots \bar{b} \ldots \bar{e} \ldots
\end{aligned}
$$

$$
\mathrm{w}_{1}:=\mathrm{w}[\mathrm{e}, \overline{\mathbf{b}}], \quad \mathbf{w}_{\mathbf{2}}:=\mathrm{w}[\overline{\mathbf{e}}, \overline{\mathbf{b}}]
$$

$$
w_{1}=e e e e \bar{b} e \bar{b} \bar{b} e \bar{b} \bar{b} e \bar{b} \bar{b}
$$

$$
w_{2}=\bar{e} \bar{b} \bar{e} \bar{b} \bar{e} \bar{e} \bar{b} \bar{e} \bar{b} \bar{e} \bar{e} \bar{b} \bar{b} \bar{b} \bar{e}
$$


$w=e b b b \bar{e} e e e \bar{b} \bar{e} e \bar{b} b b \bar{e} \bar{e} \bar{b} b \bar{e} e \bar{b} b \bar{e} \bar{b} e \bar{b} \bar{b} \bar{e}$

## Trees of $T_{\text {bip }}$ and triple of paths



$$
\begin{aligned}
& w=e b, \quad w[e, \bar{e}] \text { and } w[b, \bar{b}]=\text { Dyck words, } \\
& w=\ldots b \ldots \bar{e} \ldots \bar{b} \ldots, \quad w=e \ldots e \ldots \bar{b} \ldots \bar{e} \ldots
\end{aligned}
$$

$$
\mathbf{w}_{1}:=\mathrm{w}[\mathrm{e}, \overline{\mathrm{~b}}], \quad \mathbf{w}_{\mathbf{2}}:=\mathrm{w}[\overline{\mathbf{e}}, \overline{\mathrm{~b}}]
$$

$$
w_{1}=e e e e \bar{b} e \bar{b} \bar{b} e \bar{b} \bar{b} e \bar{b} \bar{b}
$$

$$
w_{2}=\bar{e} \bar{b} \bar{e} \bar{b} \bar{e} \bar{e} \bar{b} \bar{e} \bar{b} \bar{e} \bar{b} \bar{b} \bar{b} \bar{b} \bar{e}
$$


$w=e b b b \bar{e} e e e \bar{b} \bar{e} e \bar{b} b b \bar{e} \bar{e} \bar{b} b \bar{e} e \bar{b} b \bar{e} \bar{b} e \bar{b} \bar{b} \bar{e}$

## Trees of $T_{\text {bip }}$ and triple of paths

$$
\begin{aligned}
& w=e b, \quad w[e, \bar{e}] \text { and } w[b, \bar{b}]=\text { Dyck words, } \\
& w=\ldots b \ldots \bar{e} \ldots \bar{b} \ldots, \quad w=e \ldots e \ldots \bar{b} \ldots \bar{e} \ldots
\end{aligned}
$$



$$
w=e b b b \bar{e} e e e \bar{b} \bar{e} e \bar{b} b b \bar{e} \bar{e} \bar{b} b \bar{e} e e \bar{b} b \bar{e} \bar{b} e e \bar{b} \bar{b} \bar{e}
$$

## Trees of $T_{\text {bip }}$ and triple of paths

$$
\begin{aligned}
& w=e b, \quad w[e, \bar{e}] \text { and } w[b, \bar{b}]=\text { Dyck words, } \\
& w=\ldots b \ldots \bar{e} \ldots \bar{b} \ldots, \quad w=e \ldots e \ldots \bar{b} \ldots \bar{e} \ldots
\end{aligned}
$$


$+w_{3}=w[\bar{e}, b]=$ triple of paths !

## Summary

Proposition: [A., Poulalhon]
There exists a one-to-one correspondence between :

$$
T_{\text {bip }}(i, j) \text { and }
$$


triplet of non-intersecting paths with $i \varrho$ and $j \multimap$ and fixed first and final points

Corollary: The number $\Theta_{i j}$ of bipolar orientations with $i+2$ vertices and $j+1$ faces is equal to:

$$
\Theta_{i j}=\frac{2(i+j)!(i+j+1)!(i+j+2)!}{i!(i+1)!(i+2)!j!(j+1)!(j+2)!} .
$$

## General framework ?

Theorem requires accessible orientation without ccw cycles :
Too much too ask ?
NO!
Map $M$ fixed + function $\alpha: V(M) \rightarrow \mathbb{N}$,
$\alpha$-orientation $=$ orientation of the edges such that $\forall v \in V(M)$, out $(v)=\alpha(v)$.

## General framework ?

Theorem requires accessible orientation without ccw cycles :
Too much too ask ?
NO!
Map $M$ fixed + function $\alpha: V(M) \rightarrow \mathbb{N}$,
$\alpha$-orientation $=$ orientation of the edges such that $\forall v \in V(M)$, out $(v)=\alpha(v)$.

## Proposition: [Felsner '04]

If a map $M$ admits an $\alpha$-orientation, then there exists a unique $\alpha$-orientation without ccw cycles.
If there exists one accessible $\alpha$-orientation, all of them are accessible.

## General framework ?

## Proposition: [Felsner '04]

If a map $M$ admits an $\alpha$-orientation, then there exists a unique $\alpha$-orientation without ccw cycles.
If there exists one accessible $\alpha$-orientation, all of them are accessible.

Our framework can be applied to many families of maps :

- Simple triangulations and quadrangulations
- Eulerian and general maps
- Non-separable maps
- Constellations


## General framework ?

Proposition: [Felsner '04]
If a map $M$ admits an $\alpha$-orientation, then there exists a unique $\alpha$-orientation without ccw cycles.
If there exists one accessible $\alpha$-orientation, all of them are accessible.

Our framework can be applied to many families of maps :

- Simple triangulations and quadrangulations
- Eulerian and general maps
- Non-separable maps
- Constellations
- Plane bipolar orientations
- $d$-angulations of girth $d$


## General framework ?

Proposition: [Felsner '04]
If a map $M$ admits an $\alpha$-orientation, then there exists a unique $\alpha$-orientation without cr...
If there exists one - 'วn, all of them are accessible.

Our framewc Thank you! families of maps:

- Simple tr.
- Eulerian ar.
- Non-separable .
- Constellations
- Plane bipolar orientations
- $d$-angulations of girth $d$

