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Plane maps are rooted.

A plane map is the embedding of a connected graph in the plane
up to continuous deformations.

Plane Maps.

Faces = connected components of the plane when the edge are removed

There is one special face which is infinite: the outer face.
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Theorem : The number Θij of bipolar orientations
with i+ 2 vertices and j + 1 faces is equal to:

Θij =
2(i+ j)!(i+ j + 1)!(i+ j + 2)!

i!(i+ 1)!(i+ 2)!j!(j + 1)!(j + 2)!
.

[Baxter ’01]
[Fusy, Poulalhon, Schaeffer ’09]
[Bonichon, Bousquet-Mélou, Fusy ’10]
[Felsner, Fusy, Noy, Orden ’11]



Enumeration

One of the main question when studying some families of maps:

How many maps belong to this family ?

• Recursive decomposition: Tutte ’60s. Baxter ’01

• Matrix integrals: t’Hooft ’74,Brézin, Itzykson, Parisi and Zuber ’78.

• Representation of the symmetric group: Goulden and Jackson ’87.

• Bijective approach with labeled trees: Cori-Vauquelin ’81, Schaeffer
’98, Bouttier, Di Francesco and Guitter ’04, Bernardi, Chapuy, Fusy,
Miermont, ...

• Bijective approach with blossoming trees: Schaeffer ’98, Schaeffer
and Bousquet-Mélou ’00, Poulalhon and Schaeffer ’05, Fusy, Poulalhon
and Schaeffer ’06.
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Can we always find a blossoming tree from a plane map ?

Theorem : [A., Poulalhon]
If a plane map M has a marked vertex v is endowed with an
orientation such that :
• there exists a directed path from any vertex to v,
• there is no counterclockwise cycle,

then there exists a unique blossoming tree rooted at v whose closure
is M endowed with the same orientation.

Proof by induction on
the number of faces +
identification of closure
edges ....
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marked vertex ∈ outer face ⇒ easy to compute the blossoming tree

[Bernardi ’07]
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marked vertex ∈ outer face ⇒ easy to compute the blossoming tree

[Bernardi ’07]
Description/enumeration of these trees ?

Bijection
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Blossoming trees and triplet of paths

blossoming trees obtained after opening a bipolar
orientation with i+ 2 vertices and j + 1 faces

Tbip(i, j) =

Proposition: [A., Poulalhon]
There exists a one-to-one correspondence between :

Tbip(i, j) and

triplet of non-intersecting paths

with i and j

and fixed first and final points

Lindström-Gessel-Viennot Lemma

#Tbip(i, j) = Θij = 2(i+j)!(i+j+1)!(i+j+2)!
i!(i+1)!(i+2)!j!(j+1)!(j+2)!
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• First son of the root = only opening stems

• Closures must not wrap the root

• Opening stem cannot close into its subtree

• Leaf of the tree ( 6= s) must carry one closing stem.

Encoding of the blossoming tree = contour word = word on {e, ē, b, b̄} s.t.:

e, ē : first time, second time we see an edge

b, b̄ : opening stem, closing stem.

w = e b b b ē e e e b̄ ē e b̄ b b ē ē b̄ b ē e b̄ b ē b̄ e b̄ b̄ ē

⇒ w = eb

⇒ w[b, b̄] = Dyck word

⇒ w = e . . . e . . . b̄ . . . ē . . .

⇒ w = . . . b . . . ē . . . b̄ . . . ∃

∃
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+ w3 = w[ē, b] = triple of paths !



Summary

Proposition: [A., Poulalhon]
There exists a one-to-one correspondence between :
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Proposition: [Felsner ’04]
If a map M admits an α-orientation, then there exists a unique
α-orientation without ccw cycles.
If there exists one accessible α-orientation, all of them are accessible.

Our framework can be applied to many families of maps :
• Simple triangulations and quadrangulations
• Eulerian and general maps
• Non-separable maps
• Constellations
• Plane bipolar orientations
• d-angulations of girth d
• . . .

New bijections

Thank you !

New bijections

simpler proofs of
known bijections


