Asymptotic behaviour of large random stack-triangulations

Marie Albenque et Jean-François Marckert
LIAFA - LABRI

McGill University - February, 26th 2009

Outline

Stack-triangulations
Convergence of planar maps
Uniform law and normalized convergence

Other types of convergence

Perpectives

Definition of planar maps

- Planar map $=$ planar connected graph embedded properly in the sphere up to a direct homomorphism of the sphere
- Rooted planar map $=$ an oriented edge $\left(e_{0}, e_{1}\right)$ is marked, $e_{0}=$ root vertex.

Definition of planar maps

- Planar map $=$ planar connected graph embedded properly in the sphere up to a direct homomorphism of the sphere
- Rooted planar map $=$ an oriented edge $\left(e_{0}, e_{1}\right)$ is marked, $e_{0}=$ root vertex.

Map $=$ Metric space with graph distance.

Maps and faces

Faces $=$ connected components of the sphere without the edges or the map.
Triangulation $=$ map whose faces are all of degree 3 .
Quadrangulation $=$ map whose faces are all of degree 4.

Figure: Two quadrangulations and two triangulations

Random Apollonian networks - Stack-triangulations

Stack-triangulations $=$ triangulations obtained recursively:

$\Delta_{2 k}=$ (finite) set of stack-triangulations with $2 k$ faces.

Random Apollonian networks - Stack-triangulations

Stack-triangulations $=$ triangulations obtained recursively:

$\triangle_{2 k}=$ (finite) set of stack-triangulations with $2 k$ faces.

Random Apollonian networks - Stack-triangulations

Stack-triangulations $=$ triangulations obtained recursively:

$\Delta_{2 k}=$ (finite) set of stack-triangulations with $2 k$ faces.

Random Apollonian networks - Stack-triangulations

Stack-triangulations $=$ triangulations obtained recursively:

$\Delta_{2 k}=$ (finite) set of stack-triangulations with $2 k$ faces.

Random Apollonian networks - Stack-triangulations

Stack-triangulations $=$ triangulations obtained recursively:

$\Delta_{2 k}=$ (finite) set of stack-triangulations with $2 k$ faces.

Random Apollonian networks - Stack-triangulations

Stack-triangulations $=$ triangulations obtained recursively:

$\Delta_{2 k}=($ finite $)$ set of stack-triangulations with $2 k$ faces.

Stack-triangulations vs Triangulations

\{Stack-triangulations $\} \subsetneq$ \{Triangulations $\}$

Convergence of large random planar maps

- Large ? Number of vertices grows to infinity.
- Random ? Which law?
- Convergence ? Which notion of convergence ?
> [Angel et Schramm, 03], [Chassaing et Schaeffer, 04]
> [Bouttier, Di Francesco, Guitter, 04], [Chassaing et Durhuss, 06],
> [Marckert et Mokkadem, 06], [Miermont, 06], [Marckert et Miermont,
> 07], [Le Gall, 07], [Le Gall et Paulin, 08], [Miermont et Weill, 08],
> [Chapuy, 08], [Bouttier et Guitter, 08], [Le Gall, 08]

Convergence of large random planar maps

- Large ? Number of vertices grows to infinity.
- Random ? Which law ?
- Convergence ? Which notion of convergence ?

Convergence of large random planar maps

- Large ? Number of vertices grows to infinity.
- Random ? Which law ?
- Convergence ? Which notion of convergence ?

Convergence of large random planar maps

- Large ? Number of vertices grows to infinity.
- Random ? Which law ?
- Convergence ? Which notion of convergence ?
[Angel et Schramm, 03], [Chassaing et Schaeffer, 04], [Bouttier, Di Francesco, Guitter, 04], [Chassaing et Durhuss, 06],
[Marckert et Mokkadem, 06], [Miermont, 06], [Marckert et Miermont, 07], [Le Gall, 07], [Le Gall et Paulin, 08], [Miermont et Weill, 08], [Chapuy, 08], [Bouttier et Guitter, 08], [Le Gall, 08]

Two probability distributions

$\triangle_{2 k}=$ set of stack-triangulations with $2 k$ faces.
Two natural probability distributions on $\triangle_{2 k}$:

- the uniform law, denoted $\mathbb{U}_{2 k}^{\triangle}$,

- the "historical" law, denoted $\mathbb{Q}_{2 k}$: the probability of each map is proportional to its number of histories.

Two probability distributions

$\triangle_{2 k}=$ set of stack-triangulations with $2 k$ faces.
Two natural probability distributions on $\triangle_{2 k}$:

- the uniform law, denoted $\mathbb{U}_{2 k}^{\triangle}$,

- the "historical" law, denoted $\mathbb{Q}_{2 k}$: the probability of each map is proportional to its number of histories.

Two probability distributions

$\triangle_{2 k}=$ set of stack-triangulations with $2 k$ faces.
Two natural probability distributions on $\triangle_{2 k}$:

- the uniform law, denoted $\mathbb{U}_{2 k}^{\triangle}$,

- the "historical" law, denoted $\mathbb{Q}_{2 k}$: the probability of each map is proportional to its number of histories.

Two probability distributions

$\triangle_{2 k}=$ set of stack-triangulations with $2 k$ faces.
Two natural probability distributions on $\triangle_{2 k}$:

- the uniform law, denoted $\mathbb{U}_{2 k}^{\triangle}$,

- the "historical" law, denoted $\mathbb{Q}_{2 k}$: the probability of each map is proportional to its number of histories.

Two probability distributions

$\triangle_{2 k}=$ set of stack-triangulations with $2 k$ faces.
Two natural probability distributions on $\triangle_{2 k}$:

- the uniform law, denoted $\mathbb{U}_{2 k}^{\triangle}$,

- the "historical" law, denoted $\mathbb{Q}_{2 k}$: the probability of each map is proportional to its number of histories.

Two probability distributions

$\triangle_{2 k}=$ set of stack-triangulations with $2 k$ faces.
Two natural probability distributions on $\triangle_{2 k}$:

- the uniform law, denoted $\mathbb{U}_{2 k}^{\triangle}$,

- the "historical" law, denoted $\mathbb{Q}_{2 k}$: the probability of each map is proportional to its number of histories.

Two probability distributions

$\triangle_{2 k}=$ set of stack-triangulations with $2 k$ faces.
Two natural probability distributions on $\triangle_{2 k}$:

- the uniform law, denoted $\mathbb{U}_{2 k}^{\triangle}$,

- the "historical" law, denoted $\mathbb{Q}_{2 k}^{\triangle}$: the probability of each map is proportional to its number of histories.

Results on random stack-triangulations

According to $\mathbb{Q}_{2 k}^{\triangle}$,

- Degree of a vertex and expected value of the distance between two vertices
[Zhou et al., 05], [Zhang et al., 06], [Zhang et al., 08]

According to $\mathbb{U}_{2 k}^{\triangle}$,

- Degree of a vertex [Darasse et Soria, 07]
- Expected value of the distance between two vertices [Bodini, Darasse, Soria, 08]

Results on random stack-triangulations

According to $\mathbb{Q}_{2 k}^{\triangle}$,

- Degree of a vertex and expected value of the distance between two vertices
[Zhou et al., 05], [Zhang et al., 06], [Zhang et al., 08]
According to $\mathbb{U}_{2 k}^{\triangle}$,
- Degree of a vertex [Darasse et Soria, 07]
- Expected value of the distance between two vertices [Bodini, Darasse, Soria, 08]

Stack Triangulations		Quadrangulations
uniform law		

Which definition of convergence?

Two notions of convergence : local convergence

$B_{m}(r)=$ ball of radius r centered at the root of m.

Definition

Let m and m^{\prime} be two planar maps, the local distance between them is:

$$
d_{L}\left(m, m^{\prime}\right)=\inf \left\{\frac{1}{1+r} \text { where } B_{m}(r) \sim B_{m^{\prime}}(r)\right\},
$$

Local convergence $=$ Convergence of the balls centered at the root.

	Stack-triangulations		Quadrangulations uniform law
	uniform law	historical law	
Local			
convergence			Angel and Schramm, 03 Chassaing and Durhuss, 06
I			

Two notions of convergence : overall convergence

Number of vertices grows to infinity
\Rightarrow distance between to vertices grows to infinity.

Two notions of convergence : overall convergence

Number of vertices grows to infinity
\Rightarrow distance between to vertices grows to infinity.

To study the overall behavior of the map, we have to normalize it :
Length of an edge $=$ dependent on the number of vertices.

	Stack-triangulations		Quadrangulations uniform law
Local convergence	uniform law	Historical law	Angel-Schramm, 03 Chassaing-Durhuss, 06
			Chassaing-Schaeffer, 04 Marckert-Mokkadem, 06 Scaled convergence
		Le Gall, 07 Le Gall-Paulin, 08	

	Stack-triangulations		Quadrangulations uniform law
Local convergence	uniform law	Historical law	Angel-Schramm, 03 Chassaing-Durhuss, 06
Scaled convergence	$?$		Chassaing-Schaeffer, 04 Marckert-Mokkadem, 06 Le Gall, 07 Le Gall-Paulin, 08

The Theorem

Theorem (A.,Marckert '08)
Under the uniform law on $\triangle_{2 n}$,

$$
\left(m_{n}, \frac{D_{m_{n}}}{(2 / 11) \sqrt{3 n / 2}}\right) \xrightarrow[n]{(d)}\left(\mathcal{T}_{2 \mathrm{e}}, d_{2 \mathrm{e}}\right),
$$

for the Gromov-Hausdorff topology on the set of compact metric spaces.

- Gromov-Hausdorff ?
- $\left(\mathcal{T}_{2 \mathrm{e}}, d_{2 \mathrm{e}}\right)=$ Aldous' Continuum Random Tree (CRT)
- 2/11 ?

The Theorem

Theorem (A.,Marckert '08)
Under the uniform law on $\triangle_{2 n}$,

$$
\left(m_{n}, \frac{D_{m_{n}}}{(2 / 11) \sqrt{3 n / 2}}\right) \xrightarrow[n]{(d)}\left(\mathcal{T}_{2 \mathrm{e}}, d_{2 \mathrm{e}}\right),
$$

for the Gromov-Hausdorff topology on the set of compact metric spaces.

- Gromov-Hausdorff ?
- $\left(\mathcal{T}_{2 \mathrm{e}}, d_{2 \mathrm{e}}\right)=$ Aldous' Continuum Random Tree (CRT)
- 2/11 ?

The Theorem

Theorem (A.,Marckert '08)
Under the uniform law on $\triangle_{2 n}$,

$$
\left(m_{n}, \frac{D_{m_{n}}}{(2 / 11) \sqrt{3 n / 2}}\right) \xrightarrow[n]{(d)}\left(\mathcal{T}_{2 \mathrm{e}}, d_{2 \mathrm{e}}\right),
$$

for the Gromov-Hausdorff topology on the set of compact metric spaces.

- Gromov-Hausdorff ?
- $\left(\mathcal{T}_{2 \mathrm{e}}, d_{2 \mathrm{e}}\right)=$ Aldous' Continuum Random Tree (CRT)
- 2/11 ?

The Theorem

Theorem (A.,Marckert '08)
Under the uniform law on $\triangle_{2 n}$,

$$
\left(m_{n}, \frac{D_{m_{n}}}{(2 / 11) \sqrt{3 n / 2}}\right) \xrightarrow[n]{(d)}\left(\mathcal{T}_{2 \mathrm{e}}, d_{2 \mathrm{e}}\right),
$$

for the Gromov-Hausdorff topology on the set of compact metric spaces.

- Gromov-Hausdorff ?
- $\left(\mathcal{T}_{2 \mathrm{e}}, d_{2 \mathrm{e}}\right)=$ Aldous' Continuum Random Tree (CRT)
- $2 / 11$?

Gromov-Hausdorff distance

Hausdorff distance between X and Y two compact sets of (E, d) :

$$
d_{H}(X, Y)=\max \left\{\sup _{x \in X} \inf _{y \in Y} d(x, y), \sup _{y \in Y} \inf _{x \in X} d(x, y)\right\}
$$

Gromov-Hausdorff distance between two compact metric spaces E and F :

$$
d_{G H}(E, F)=\inf d_{H}(\phi(E), \psi(F))
$$

Infimum taken on :

- all the metric spaces M
- all the isometric embeddings $\phi: E \rightarrow M$ et $\psi: F \rightarrow M$.
\{isometric classes of compact metric spaces\}
= complete and separable (= "polish") space.

Gromov-Hausdorff distance

Hausdorff distance between X and Y two compact sets of (E, d) :

$$
d_{H}(X, Y)=\max \left\{\sup _{x \in X} \inf _{y \in Y} d(x, y), \sup _{y \in Y} \inf _{x \in X} d(x, y)\right\}
$$

Gromov-Hausdorff distance between two compact metric spaces E and F :

$$
d_{G H}(E, F)=\inf d_{H}(\phi(E), \psi(F))
$$

Infimum taken on :

- all the metric spaces M
- all the isometric embeddings $\phi: E \rightarrow M$ et $\psi: F \rightarrow M$.
\{isometric classes of compact metric spaces\}
= complete and separable (= "polish") space.

Gromov-Hausdorff distance

Hausdorff distance between X and Y two compact sets of (E, d) :

$$
d_{H}(X, Y)=\max \left\{\sup _{x \in X} \inf _{y \in Y} d(x, y), \sup _{y \in Y} \inf _{x \in X} d(x, y)\right\}
$$

Gromov-Hausdorff distance between two compact metric spaces E and F :

$$
d_{G H}(E, F)=\inf d_{H}(\phi(E), \psi(F))
$$

Infimum taken on :

- all the metric spaces M
- all the isometric embeddings $\phi: E \rightarrow M$ et $\psi: F \rightarrow M$.
\{isometric classes of compact metric spaces\}
$=$ complete and separable (= "polish") space.

Triangulations and ternary trees

Triangulations and ternary trees

Triangulations and ternary trees

Harris walk of a tree

Continuum Tree

$f=$ function from $[0,1]$ onto \mathbb{R}^{+}such that $f(0)=f(1)=0$.

- $s \sim s^{\prime}$ if and only if $f(s)=f\left(s^{\prime}\right)=m_{f}\left(s, s^{\prime}\right)$
- continuum tree $=[0,1] / \sim$
- distance : $d_{f}(s, t)=f(s)+f(t)-2 m_{f}(s, t)$

Continuum Tree

$f=$ function from $[0,1]$ onto \mathbb{R}^{+}such that $f(0)=f(1)=0$.

- $s \sim s^{\prime}$ if and only if $f(s)=f\left(s^{\prime}\right)=m_{f}\left(s, s^{\prime}\right)$
- continuum tree $=[0,1] / \sim$
- distance : $d_{f}(s, t)=f(s)+f(t)-2 m_{f}(s, t)$

Continuum Tree

$f=$ function from $[0,1]$ onto \mathbb{R}^{+}such that $f(0)=f(1)=0$.

- $s \sim s^{\prime}$ if and only if $f(s)=f\left(s^{\prime}\right)=m_{f}\left(s, s^{\prime}\right)$
- continuum tree $=[0,1] / \sim$
- distance : $d_{f}(s, t)=f(s)+f(t)-2 m_{f}(s, t)$

Continuum Tree

$f=$ function from $[0,1]$ onto \mathbb{R}^{+}such that $f(0)=f(1)=0$.

- $s \sim s^{\prime}$ if and only if $f(s)=f\left(s^{\prime}\right)=m_{f}\left(s, s^{\prime}\right)$
- continuum tree $=[0,1] / \sim$
- distance : $d_{f}(s, t)=f(s)+f(t)-2 m_{f}(s, t)$

Continuum Random Tree - CRT

A normalized brownian excursion $\mathbf{e}=\left(\mathbf{e}_{t}\right)_{t \in[0,1]}$ is a brownian motion conditioned to satisfy $\mathcal{B}_{0}=0, \mathcal{B}_{1}=0$ and $\mathcal{B}(t)>0$ for every $\left.t \in\right] 0,1[$.

CRT $=$ Tree obtained from a normalized brownian excursion.
It is denoted ($\mathcal{T}_{2 \mathrm{e}}, d_{2 \mathrm{e}}$).

Convergence towards the CRT

Uniform law on stack-triangulations with $2 n$ faces \Rightarrow uniform law $\mathbb{U}_{3 n-2}^{\text {ter }}$ on the set of ternary trees with $3 n-2$ nodes.

Proposition (Aldous)

Under $\mathbb{U}_{3 n+1}^{\mathrm{ter}}$, for the Gromov-Hausdorff topologogy :

$$
\left(T, \frac{d_{T}}{\sqrt{3 n / 2}}\right) \xrightarrow[n]{(d)}\left(\mathcal{T}_{2 \mathrm{e}}, d_{2 \mathrm{e}}\right)
$$

Triangulations and ternary trees

Triangulations and ternary trees

Triangulations and ternary trees

Bijection between trees and maps

Proposition

For any $K \geq 1$, there exists a bijection

$$
\begin{aligned}
\Psi_{K}^{\triangle}: \triangle_{2 K} & \longrightarrow \mathcal{T}_{3 K-2}^{\mathrm{ter}} \\
m & \longmapsto t:=\Psi_{K}^{\triangle}(m)
\end{aligned}
$$

such that:
(i) (a) Every internal node u of m corresponds bijectively to an internal node v of t. u^{\prime} denotes the image of u.
(b) Each leaf of t corresponds bijectively to a finite face of m.
(ii) For any internal node u of $m, \mid \Gamma\left(u^{\prime}\right)-d_{m}($ root, $u) \mid \leq 1$.
(ii') For any pair on internal nodes u and v of m

$$
\left|d_{m}(u, v)-\Gamma\left(u^{\prime}, v^{\prime}\right)\right| \leq 3 .
$$

Bijection between trees and maps

Proposition

For any $K \geq 1$, there exists a bijection

$$
\begin{aligned}
\Psi_{K}^{\triangle}: \triangle_{2 K} & \longrightarrow \mathcal{T}_{3 K-2}^{\mathrm{ter}} \\
m & \longmapsto t:=\Psi_{K}^{\triangle}(m)
\end{aligned}
$$

such that:
(i) (a) Every internal node u of m corresponds bijectively to an internal node v of t. u ' denotes the image of u.
(b) Each leaf of t corresponds bijectively to a finite face of m.
(ii) For any internal node u of $m, \mid \Gamma\left(u^{\prime}\right)-d_{m}($ root, $u) \mid \leq 1$.
(ii') For any pair on internal nodes u and v of m

$$
\left|d_{m}(u, v)-\Gamma\left(u^{\prime}, v^{\prime}\right)\right| \leq 3 .
$$

Neveu formalism

- A ternary tree $=$ set of words on the alphabet $\{1,2,3\}$.
- Vertex of the tree $=$ a word

Type of faces and nodes

If type $(u)=(i, j, k)$,

$$
\left\{\begin{array}{l}
\operatorname{type}(u 1)=\left(\begin{array}{ccc}
1+i \wedge j \wedge k, & j, & k \\
\operatorname{type}(u 2)=(& i, & 1+i \wedge j \wedge k, \\
\operatorname{type}(u 3)=(& i, & j,
\end{array}\right), \quad 1+i \wedge j \wedge k
\end{array}\right),
$$

Type of faces and nodes

If type $(u)=(i, j, k)$,

Type of faces and nodes

If type $(u)=(i, j, k)$,

$$
\left\{\begin{array}{l}
\left.\operatorname{type}(u 1)=\left(\begin{array}{ccc}
1+i \wedge j \wedge k, & j, & k \\
\operatorname{type}(u 2)=(& i, & 1+i \wedge j \wedge k, \\
\operatorname{type}(u 3)=(& i, & j,
\end{array}\right), \begin{array}{l}
k
\end{array}\right),
\end{array}\right.
$$

A langage for distances

$\mathcal{L}_{1,2,3}=\left\{\right.$ words of $\{1,2,3\}^{\star}$ with at least one occurence of 1,2 and 3$\}$

$$
\Gamma(u)=\max \left\{k \text { such that } u=u_{1} \ldots u_{k}, u_{i} \in \mathcal{L}_{1,2,3} \text { for } i \in\{1,2,3\}\right\}
$$

$$
u=122132132212232
$$

Let $u=w \cdot u_{1} \ldots u_{k}$ et $v=w \cdot v_{1} \ldots v_{l}$ with $u_{1} \neq v_{1}$, we denote

$$
\Gamma(u, v)=\Gamma\left(u_{1} \ldots u_{k}\right)+\Gamma\left(v_{1} \ldots v_{l}\right)
$$

A langage for distances

$\mathcal{L}_{1,2,3}=\left\{\right.$ words of $\{1,2,3\}^{\star}$ with at least one occurence of 1,2 and 3$\}$
Let $u \in\{1,2,3\}^{\star}$,
$\Gamma(u)=\max \left\{k\right.$ such that $u=u_{1} \ldots u_{k}, u_{i} \in \mathcal{L}_{1,2,3}$ for $\left.i \in\{1,2,3\}\right\}$

$$
u=122132132212232
$$

Let $u=w \cdot u_{1} \ldots u_{k}$ et $v=w \cdot v_{1} \ldots v_{l}$ with $u_{1} \neq v_{1}$, we denote

$$
\Gamma(u, v)=\Gamma\left(u_{1} \ldots u_{k}\right)+\Gamma\left(v_{1} \ldots v_{l}\right)
$$

A langage for distances

$\mathcal{L}_{1,2,3}=\left\{\right.$ words of $\{1,2,3\}^{\star}$ with at least one occurence of 1,2 and 3$\}$
Let $u \in\{1,2,3\}^{\star}$,
$\Gamma(u)=\max \left\{k\right.$ such that $u=u_{1} \ldots u_{k}, u_{i} \in \mathcal{L}_{1,2,3}$ for $\left.i \in\{1,2,3\}\right\}$

$$
u=12213 \cdot 213 \cdot 2212232
$$

Let $u=w \cdot u_{1} \ldots u_{k}$ et $v=w \cdot v_{1} \ldots v_{l}$ with $u_{1} \neq v_{1}$, we denote

$$
\Gamma(u, v)=\Gamma\left(u_{1} \ldots u_{k}\right)+\Gamma\left(v_{1} \ldots v_{l}\right)
$$

A langage for distances

$\mathcal{L}_{1,2,3}=\left\{\right.$ words of $\{1,2,3\}^{\star}$ with at least one occurence of 1,2 and 3$\}$
Let $u \in\{1,2,3\}^{*}$,
$\Gamma(u)=\max \left\{k\right.$ such that $u=u_{1} \ldots u_{k}, u_{i} \in \mathcal{L}_{1,2,3}$ for $\left.i \in\{1,2,3\}\right\}$

$$
u=12213 \cdot 213 \cdot 2212232 \Rightarrow \Gamma(u)=3 . \Gamma(u)=3 .
$$

Let $u=w \cdot u_{1} \ldots u_{k}$ et $v=w \cdot v_{1} \ldots v_{l}$ with $u_{1} \neq v_{1}$, we denote

$$
\Gamma(u, v)=\Gamma\left(u_{1} \ldots u_{k}\right)+\Gamma\left(v_{1} \ldots v_{l}\right)
$$

A langage for distances

$\mathcal{L}_{1,2,3}=\left\{\right.$ words of $\{1,2,3\}^{\star}$ with at least one occurence of 1,2 and 3$\}$
Let $u \in\{1,2,3\}^{\star}$,

$$
\begin{gathered}
\Gamma(u)=\max \left\{k \text { such that } u=u_{1} \ldots u_{k}, u_{i} \in \mathcal{L}_{1,2,3} \text { for } i \in\{1,2,3\}\right\} \\
u=12213 \cdot 213 \cdot 2212232 \Rightarrow \Gamma(u)=3 .
\end{gathered}
$$

Let $u=w \cdot u_{1} \ldots u_{k}$ et $v=w \cdot v_{1} \ldots v_{l}$ with $u_{1} \neq v_{1}$, we denote :

$$
\Gamma(u, v)=\Gamma\left(u_{1} \ldots u_{k}\right)+\Gamma\left(v_{1} \ldots v_{l}\right)
$$

Convergence of stack-triangulations

Lemma
Let $\left(X_{i}\right)_{i \geq 1}$ be a sequence of independant random variables uniformly distributed on $\{1,2,3\}$. Let W_{n} be the word $X_{1} \ldots X_{n}$ then

$$
\frac{\Gamma\left(W_{n}\right)}{n} \xrightarrow[n]{(\text { a.s. })} \Gamma_{\Delta}, \text { where } \Gamma_{\Delta}=2 / 11
$$

Distance in the map and in the tree:

We show

Convergence of stack-triangulations

Lemma

Let $\left(X_{i}\right)_{i \geq 1}$ be a sequence of independant random variables uniformly distributed on $\{1,2,3\}$. Let W_{n} be the word $X_{1} \ldots X_{n}$ then

$$
\frac{\Gamma\left(W_{n}\right)}{n} \xrightarrow[n]{(\text { a.s. })} \Gamma_{\Delta}, \text { where } \Gamma_{\Delta}=2 / 11
$$

Distance in the map and in the tree:

$$
\left|d_{m_{n}}(u, v)-\Gamma\left(u^{\prime}, v^{\prime}\right)\right| \leq 3
$$

We show :

$$
P\left(\sup \left|d_{m_{n}}(u, v)-\frac{2}{11} d_{T_{n}}\left(u^{\prime}, v^{\prime}\right)\right| \geq n^{1 / 3}\right) \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

Convergence of scaled stack-triangulations

Theorem

Under the uniform law on $\triangle_{2 n}$,

$$
\left(m_{n}, \frac{D_{m_{n}}}{\Gamma_{\triangle} \sqrt{3 n / 2}}\right) \xrightarrow[n]{(d)}\left(\mathcal{T}_{2 \mathrm{e}}, d_{2 \mathrm{e}}\right),
$$

for Gromov-Hausdorff topology on the set of compact metric spaces.

	Stack-triangulations		Quadrangulations Local convergence uniform law law
	historical law	Angel-Schramm. 03 Chassaing-Durhuss, 06	
Scaled convergence	cvg in law for Gromov-Hausdorff topology towards CRT normalization $=$ \sqrt{n}		Chassaing-Schaeffer, 04 Marckert-Mokkadem, 06 Le Gall, 07 Le Gall-Paulin, 08

Convergence of stack-triangulations according to \mathbb{Q}^{\triangle}

Theorem (A.,Marckert '08)

Let M_{n} a stack-triangulation according to $\mathbb{Q}_{2 n}^{\triangle}$. Let $k \in \mathbb{N}$ et $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$, k nodes M_{n} chosen independently and uniformly amongst the internal nodes of M_{n}, then:

$$
\left(\frac{D_{M_{n}}\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)}{3 \Gamma_{\triangle} \log n}\right)_{(i, j) \in\{1, \ldots, k\}^{2}} \xrightarrow[n]{\text { proba. }}\left(1_{i \neq j}\right)_{(i, j) \in\{1, \ldots, k\}^{2}}
$$

Study of the trees under the historical law $=$ study of increasing trees [Broutin, Devroye, McLeish, de la Salle 08]

Convergence of stack-triangulations according to \mathbb{Q}^{\triangle}

Theorem (A.,Marckert '08)

Let M_{n} a stack-triangulation according to $\mathbb{Q}_{2 n}^{\triangle}$. Let $k \in \mathbb{N}$ et $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$, k nodes M_{n} chosen independently and uniformly amongst the internal nodes of M_{n}, then:

$$
\left(\frac{D_{M_{n}}\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)}{3 \Gamma_{\triangle} \log n}\right)_{(i, j) \in\{1, \ldots, k\}^{2}} \xrightarrow[n]{\text { proba. }}\left(1_{i \neq j}\right)_{(i, j) \in\{1, \ldots, k\}^{2}}
$$

Study of the trees under the historical law = study of increasing trees
... [Broutin, Devroye, McLeish, de la Salle 08]

	Stack-triangulations		Quadrangulations uniform law
	uniform law	historical law	
Local convergence			Angel-Schramm. 03 Chassaing-Durhuss, 06
Scaled convergence	cvg in law for Gromov-Hausdorff topology towards CRT normalization $=$ \sqrt{n}	cvg of fin-dim laws normalization $=$ $\log n$	Chassaing-Schaeffer, 04 Marckert-Mokkadem, 06 Le Gall, 07 Le Gall-Paulin, 08

Local convergence of stack-triangulations: Uniform law

Under $\mathbb{U}_{2 n}^{\triangle}$:
Theorem (A.,Marckert '08)
The sequence $\left(\mathbb{U}_{2 n}^{\triangle}\right)$ weakly converges towards P_{∞}^{\triangle}, for the topology of local convergence, where the support of P_{∞}^{\triangle} is a set of infinite stack-triangulations.

Ingredients :

- Local convergence of Galton-Watson trees towards a tree with a unique infinite spine.
- Definition of an infinite planar map similar to the UIPT of Angel and Schramm.

Local convergence of stack-triangulations: Historical law

Degree of the root $=$ number of white balls in an urn

- Initially : 2 white balls and 1 black ball
- matrix replacement : $\left(\begin{array}{ll}2 & 1 \\ 0 & 3\end{array}\right)$
[Flajolet, Dumas, Puyhaubert, 06]
\Rightarrow The degree of the root grows to infinity.
\Rightarrow No local convergence.

Local convergence of stack-triangulations: Historical law

Degree of the root $=$ number of white balls in an urn

- Initially : 2 white balls and 1 black ball
- matrix replacement : $\left(\begin{array}{ll}2 & 1 \\ 0 & 3\end{array}\right)$
[Flajolet, Dumas, Puyhaubert, 06]
\Rightarrow The degree of the root grows to infinity.
\Rightarrow No local convergence.

	Stack-triangulations		Quadrangulations uniform law
Local convergence	cvg in law to a law supported by infinite triangulations	No convergence	Angel-Schramm. 03 Chassaing-Durhuss, 06
Scaled			
convergence	cvg in law for Gromov-Hausdorff topology towards CRT normalization $=$ \sqrt{n}	cvg of fin-dim laws normalization $=$ log n	Marckert-Mokkadem, 06 Le Gall, 07 Le Gall-Paulin, 08

Stack-quadrangulations

We managed to deal with a special case of stack-quadrangulations

but more general models resist. . .

Brownian Map

Convergence of scaled quadrangulations under the uniform law ?
[Chassaing et Schaeffer, 04], [Marckert et Mokkadem, 06], [Marckert et Miermont, 07], [Le Gall, 07], [Le Gall et Paulin, 08]

- Universality principle? Convergence of all the "reasonable" models to the same limit?
- Which limit ? Brownian map...

Brownian Map

Convergence of scaled quadrangulations under the uniform law ?
[Chassaing et Schaeffer, 04], [Marckert et Mokkadem, 06], [Marckert et
Miermont, 07], [Le Gall, 07], [Le Gall et Paulin, 08]

- Universality principle ? Convergence of all the "reasonable" models to the same limit?
- Which limit ? Brownian map...

Thank you!

