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Definition of planar maps

e Planar map = planar connected graph embedded properly in the
sphere up to a direct homomorphism of the sphere

e Rooted planar map = an oriented edge (e, €1) is marked, ey = root
vertex.
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Definition of planar maps

e Planar map = planar connected graph embedded properly in the
sphere up to a direct homomorphism of the sphere

e Rooted planar map = an oriented edge (e, €1) is marked, ey = root
vertex.

Map = Metric space with graph distance.



Stack-triangulations

oe

Maps and faces

Faces = connected components of the sphere without the edges or the
map.

Triangulation = map whose faces are all of degree 3.

Quadrangulation = map whose faces are all of degree 4.

() [ A A

Figure: Two quadrangulations and two triangulations
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Random Apollonian networks — Stack-triangulations

Stack-triangulations = triangulations obtained recursively:
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Random Apollonian networks — Stack-triangulations

Stack-triangulations = triangulations obtained recursively:

Aoy = (finite) set of stack-triangulations with 2k faces.
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Stack-triangulations vs Triangulations

{Stack-triangulations} C {Triangulations}
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Convergence of large random planar maps

e Large ? Number of vertices grows to infinity.
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Convergence of large random planar maps

e Large 7 Number of vertices grows to infinity.
e Random 7 Which law ?
e Convergence 7 Which notion of convergence ?
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Convergence of large random planar maps

e Large 7 Number of vertices grows to infinity.
e Random 7 Which law 7

o Convergence 7 Which notion of convergence ?

[Angel et Schramm, 03], [Chassaing et Schaeffer, 04],

[Bouttier, Di Francesco, Guitter, 04], [Chassaing et Durhuss, 06],
[Marckert et Mokkadem, 06], [Miermont, 06], [Marckert et Miermont,
07], [Le Gall, 07], [Le Gall et Paulin, 08], [Miermont et Weill, 08],
[Chapuy, 08], [Bouttier et Guitter, 08], [Le Gall, 08]
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Two probability distributions

Ny = set of stack-triangulations with 2k faces.
Two natural probability distributions on Ajy:

e the uniform law, denoted Uﬁ,

e the "historical” law, denoted QzAk . the probability of each map is
proportional to its number of histories.
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Two probability distributions

Ny = set of stack-triangulations with 2k faces.
Two natural probability distributions on Ajy:

e the uniform law, denoted Uﬁ,

e the "historical” law, denoted QZA,( . the probability of each map is
proportional to its number of histories.
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Two probability distributions

Ao, = set of stack-triangulations with 2k faces.
Two natural probability distributions on Ajy:

e the uniform law, denoted Uﬁ,

> >
> >

e the "historical” law, denoted QzAk . the probability of each map is
proportional to its number of histories.
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Two probability distributions

Ao, = set of stack-triangulations with 2k faces.
Two natural probability distributions on Ajy:

e the uniform law, denoted Uﬁ,

> >
> >

e the "historical” law, denoted QzAk . the probability of each map is
proportional to its number of histories.
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Two probability distributions

A = set of stack-triangulations with 2k faces.
Two natural probability distributions on Ajy:

e the uniform law, denoted [Uﬁ,

® ©

e the "historical” law, denoted ka . the probability of each map is
proportional to its number of histories.
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Results on random stack-triangulations

According to QQA,(,

e Degree of a vertex and expected value of the distance between two
vertices
[Zhou et al., 05], [Zhang et al., 06], [Zhang et al., 08]
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Results on random stack-triangulations

According to Q3,,

e Degree of a vertex and expected value of the distance between two
vertices
[Zhou et al., 05], [Zhang et al., 06], [Zhang et al., 08]

According to Uﬁ,
e Degree of a vertex [Darasse et Soria, 07]

o Expected value of the distance between two vertices
[Bodini, Darasse, Soria, 08]
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Stack Triangulations Quadrangulations

Uniform law Historical law uniform law

Which definition
of convergence ?
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Two notions of convergence : local convergence

Bn(r) = ball of radius r centered at the root of m.

Definition

Let m and m’ be two planar maps, the local distance between them is:

di(m,m') = inf{%ﬂ where B, (r) ~ B (r)},

Local convergence = Convergence of the balls centered at the root.



Stack-triangulations Convergence of planar maps Uniform law and normalized convergence Other types of convergence

0000

0000000000000 0

00000

Perpective

Stack-triangulations

uniform law historical law

Quadrangulations
uniform law

Local

convergence

Angel and
Schramm, 03

Chassaing and
Durhuss, 06




Stack-triangulations Convergence of planar maps Uniform law and normalized convergence Other types of convergence Perpective
0000 0000000000000 00000

Two notions of convergence : overall convergence

Number of vertices grows to infinity
= distance between to vertices grows to infinity.
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Two notions of convergence : overall convergence

Number of vertices grows to infinity
= distance between to vertices grows to infinity.

To study the overall behavior of the map,
we have to normalize it :

Length of an edge = dependent on the number of vertices.
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Stack-triangulations Quadrangulations
uniform law Historical law uniform law
Angel-Schramm, 03
Local
Chassaing-Durhuss, 06
convergence
Chassaing-Schaeffer, 04
Scaled Marckert-Mokkadem, 06
convergence Le Gall, 07
Le Gall-Paulin, 08
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Stack-triangulations Quadrangulations
uniform law Historical law uniform law
Angel-Schramm, 03
Local
Chassaing-Durhuss, 06
convergence
Chassaing-Schaeffer, 04
Scaled Marckert-Mokkadem, 06
convergence 7 Le Gall, 07
Le Gall-Paulin, 08
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The Theorem

Theorem (A.,Marckert '08)

Under the uniform law on N\,

(7'2e7 d2e)

( 2/11)\/3n_>

for the Gromov-Hausdorff topology on the set of compact metric spaces.
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The Theorem

Theorem (A.,Marckert '08)

Under the uniform law on N\,

Dmn
( 2/11)\/3,1—) ,]'2ead2€)

for the Gromov-Hausdorff topology on the set of compact metric spaces.

o (Te, dre) = Aldous’ Continuum Random Tree (CRT)
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The Theorem

Theorem (A.,Marckert '08)

Under the uniform law on N\,

Dmn
( 2/11)\/3,1—) ,]'2ead2€)

for the Gromov-Hausdorff topology on the set of compact metric spaces.

e Gromov-Hausdorff 7
o (T3, d2e) = Aldous' Continuum Random Tree (CRT)
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The Theorem

Theorem (A.,Marckert '08)

Under the uniform law on N\,

Dmn
( 2/11)\/3,1—) ,]'2ead2€)

for the Gromov-Hausdorff topology on the set of compact metric spaces.
e Gromov-Hausdorff 7

o (Te, dre) = Aldous’ Continuum Random Tree (CRT)
e 2/117
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Gromov-Hausdorff distance

Hausdorff distance between X and Y two compact sets of (E, d) :

du(X,Y) = max{sup inf d(x,y), sup inf d(x,y)}
xeX YEY yey xeX

Gromov-Hausdorff distance between two compact metric spaces E and F:

dGH(Ea F) = inf dH(d)(E)’w(F))

Infimum taken on :
o all the metric spaces M
e all the isometric embeddings ¢ : E — M ety : F — M.
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Gromov-Hausdorff distance

Hausdorff distance between X and Y two compact sets of (E, d) :

du(X,Y) = max{sup inf d(x,y), sup inf d(x,y)}
xeX YEY yey xeX

Gromov-Hausdorff distance between two compact metric spaces E and F:

dGH(Ea F) = inf dH(d)(E)’w(F))

Infimum taken on :
o all the metric spaces M
e all the isometric embeddings ¢ : E — M ety : F — M.

{isometric classes of compact metric spaces}
= complete and separable (= “polish” ) space.
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Triangulations and ternary trees
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Triangulations and ternary trees
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Triangulations and ternary trees
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Harris walk of a tree

C(t)
Q 3
w
O 2
%H Y
Q 1
W A
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Continuum Tree

f = function from [0, 1] onto R* such that f(0) = (1) = 0.

mg(s, t)
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Continuum Tree

f = function from [0, 1] onto R* such that f(0) = (1) = 0.

F(t) oo
fis) | N e -
me(s,t) [ ___ L R !
i i |
0 s s’ t 1

e s~ ' if and only if f(s) = f(s') = me(s,s’)
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Continuum Tree

f = function from [0, 1] onto R* such that f(0) = (1) = 0.

F(t) oo
fse) | N e e -
me(s,t) [ ___ L R !
i i |
0 s s’ t 1

e s~ ' if and only if f(s) = f(s') = me(s,s’)
e continuum tree = [0,1]/ ~
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Continuum Tree

f = function from [0, 1] onto R* such that f(0) = (1) = 0.

flt) Lo
f(s) | e
me(s,t) |/ . b A — !
| | |
0 s s’ t 1

e s~ ' if and only if f(s) = f(s') = me(s,s’)
e continuum tree = [0, 1]/ ~
o distance : df(s,t) = f(s) + f(t) — 2me(s, t)



Continuum Random Tree — CRT

A normalized brownian excursion e = (e;):c[o,1] is a brownian motion
conditioned to satisfy By = 0, B1 = 0 and B(t) > 0 for every t €]0, 1[.

CRT = Tree obtained from a normalized brownian excursion.
It is denoted (7ze, doe)-
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Convergence towards the CRT

Uniform law on stack-triangulations with 2n faces
= uniform law U5J_, on the set of ternary trees with 3n — 2 nodes.

Proposition (Aldous)

Under U%yy ,, for the Gromov-Hausdorff topologogy :

7.9 ) 9 (g, o).
\V3n/2 ) n
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Triangulations and ternary trees
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Triangulations and ternary trees
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Triangulations and ternary trees




Uniform law and normalized convergence
(o] lelele]

Bijection between trees and maps
Proposition
For any K > 1, there exists a bijection
(TSN . ter
K - 2K 3K-2
m — ti= \Ilﬁ(m)
such that:
(7) (a) Every internal node u of m corresponds bijectively to an internal
node v of t. u’ denotes the image of u.
(b) Each leaf of t corresponds bijectively to a finite face of m.

(i) For any internal node u of m, |['(v") — dm(root, u)| < 1.
(ii") For any pair on internal nodes u and v of m

(i, v) = (', V)] < 3.



Uniform law and normalized convergence
(o] lelele]

Bijection between trees and maps
Proposition
For any K > 1, there exists a bijection

A ter
Vi Lok — T3>

m — ti= \Ilﬁ(m)

such that:

(7) (a) Every internal node u of m corresponds bijectively to an internal
node v of t. u’ denotes the image of u.

(b) Each leaf of t corresponds bijectively to a finite face of m.

(i) For any internal node u of m, |I'(u') — dp,(root, u)| < 1.

(ii") For any pair on internal nodes u and v of m

(i, v) = (', V)] < 3.

Who is " ?
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Neveu formalism

o A ternary tree = set of words on the alphabet {1,2,3}.

e Vertex of the tree = a word

332
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Type of faces and nodes

If type(u) = (i,/, k),

type(ul) =( 14+iAjAKk, J, k ),
type(u2) = ( i, 1+iNnjAk, k ),
type(u3) = ( i J, L+injnk )
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Type of faces and nodes

If type(u) = (i7j7 k)'

type(ul) = ( 14+iAjAKk, J, k ),
type(u2) = ( i 1+iNjAK, k ),
type(u3) = ( . Ji 1+injAk )
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Type of faces and nodes

N -

14+injnk
If type(u) = (i,J, k),
type(ul) = ( 1+iAjAKk, Js k ),
type(u2) = ( i, 1+iNnjAk, k ),

type(u3) = ( i, Js L+injnk )
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A langage for distances

L123 = { words of {1,2,3}* with at least one occurence of 1, 2 and 3}
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A langage for distances

L1233 = { words of {1,2,3}* with at least one occurence of 1, 2 and 3}
Let u € {1,2,3}*,

M(u) = max{k such that u = vy ... uk, u; € L13 for i € {1,2,3}}

u = 122132132212232
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A langage for distances

L1233 = { words of {1,2,3}* with at least one occurence of 1, 2 and 3}
Let u € {1,2,3}*,

M(u) = max{k such that u = vy ... uk, u; € L13 for i € {1,2,3}}

u=12213-213 - 2212232



Stack-triangulations Convergence of planar ma ps Uniform law and normalized convergence Other types of convergence Perpective
0000 0000000000000 00000

A langage for distances

L1233 = { words of {1,2,3}* with at least one occurence of 1, 2 and 3}
Let u € {1,2,3}*,

M(u) = max{k such that u = vy ... uk, u; € L13 for i € {1,2,3}}

u=12213-213-2212232 = T(u)=3.
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A langage for distances

L1233 = { words of {1,2,3}* with at least one occurence of 1, 2 and 3}
Let u € {1,2,3}*,

M(u) = max{k such that u = vy ... uk, u; € L13 for i € {1,2,3}}

u=12213.213-2212232 = T[(u)=3.

Letu=w-u...ux et v=w-vy...v, with u; # v1, we denote :

Mu,v)=T(ug...ux)+T(vi...v)
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Convergence of stack-triangulations

Lemma

Let (Xj)i>1 be a sequence of independant random variables uniformly
distributed on {1,2,3}. Let W,, be the word X; ... X, then

Fr(W,) (as.
% (as), A, where Ao =2/11
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Convergence of stack-triangulations

Lemma

Let (Xj)i>1 be a sequence of independant random variables uniformly
distributed on {1,2,3}. Let W,, be the word X; ... X, then

Fr(W,) (as.
% (as), A, where Ao =2/11

Distance in the map and in the tree:
|dm,, (u,v) =T (d,v')| <3
We show :

P(sup}dmn(u, v) — %d-rn(u', v’)| > n1/3) — 0

n—oo
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Convergence of scaled stack-triangulations

Theorem

Under the uniform law on A,

(d)
= TE7de
( rA\/W> 22 ze);

for Gromov-Hausdorff topology on the set of compact metric spaces.

Perpective
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Stack-triangulations Quadrangulations
uniform law historical law uniform law
Angel-Schramm. 03
Local
Chassaing-Durhuss, 06
convergence
cvg in law for Chassaing-Schaeffer, 04
Scaled tGor;gI]c());/}-/HausdorfF Marckert-Mokkadem, 06
convergence |towards CRT Le Gall, 07
normalization = Le Gall-Paulin, 08
vn
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Convergence of stack-triangulations according to Q%

Theorem (A.,Marckert '08)

Let M,, a stack-triangulation according to Qﬁ. Let k e N et vy,..., Vg,

k nodes M, chosen independently and uniformly amongst the internal
nodes of M,,, then:

(DMH(V:" vj)

3lMa logn

proba. 1
(i,))e{l,...,k}? T)( i#j)(i7j)€{1,4,,7k}z-
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Convergence of stack-triangulations according to Q%

Theorem (A.,Marckert '08)

Let M,, a stack-triangulation according to Qﬁ. Let k e N et vy,..., Vg,

k nodes M, chosen independently and uniformly amongst the internal
nodes of M,,, then:

<DMH(V:"VJ)>
3lMa logn () E{L o k)2

proba.
—_—
n

(lifj)(i,j)e{l,“.,k}z :

Study of the trees under the historical law = study of increasing trees
... [Broutin, Devroye, McLeish, de la Salle 08]
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Stack-triangulations Quadrangulations
uniform law historical law uniform law
Angel-Schramm. 03
Local
Chassaing-Durhuss, 06
convergence
cvg in law for cvg of Chassaing-Schaeffer, 04
Gromov-Hausdorff |fin-dim laws
Scaled Marckert-Mokkadem, 06
topology normalization =
convergence |towards CRT log n Le Gall, 07
normalization = Le Gall-Paulin, 08
vn
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Local convergence of stack-triangulations : Uniform law

Under US},
Theorem (A.,Marckert '08)

The sequence (Uﬁ,) weakly converges towards P%, for the topology of
local convergence,
where the support of P2 is a set of infinite stack-triangulations.

Ingredients :
e Local convergence of Galton-Watson trees towards a tree with a
unique infinite spine.

o Definition of an infinite planar map similar to the UIPT of Angel and
Schramm.
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Local convergence of stack-triangulations : Historical law

Degree of the root = number of white balls in an urn

e Initially : 2 white balls and 1 black ball

e matrix replacement : 2 1
“\0 3

[Flajolet, Dumas, Puyhaubert, 06]
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Local convergence of stack-triangulations : Historical law

Degree of the root = number of white balls in an urn

e Initially : 2 white balls and 1 black ball

e matrix replacement : 2 1
P o 3

[Flajolet, Dumas, Puyhaubert, 06]

= The degree of the root grows to infinity.

= No local convergence.



Stack-triangulations Convergence of planar maps Uniform law and normalized convergence Other types of convergence Perpective

0000

0000000000000 0

0ooo0e

Stack-triangulations

uniform law

historical law

Quadrangulations
uniform law

cvg in law to

Angel-Schramm. 03

a law supported No
Local e
by infinite convergence Chassaing-Durhuss, 06
convergence | triangulations
cvg in law for cvg of Chassaing-Schaeffer, 04
Gromov-Hausdorff [fin-dim laws
Scaled topolo Marckert-Mokkadem, 06
pology normalization =
convergence |towards CRT Le Gall, 07

normalization =

NG

log n

Le Gall-Paulin, 08
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Stack-quadrangulations

We managed to deal with a special case of stack-quadrangulations

D1 2 C 1 2 1 2 1 2 1 2

Y
Y
Y
Y
Y

but more general models resist. . .

Y
Y
Y
Y
Y
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Brownian Map

Convergence of scaled quadrangulations under the uniform law ?

[Chassaing et Schaeffer, 04], [Marckert et Mokkadem, 06], [Marckert et
Miermont, 07], [Le Gall, 07], [Le Gall et Paulin, 08]
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Brownian Map

Convergence of scaled quadrangulations under the uniform law ?

[Chassaing et Schaeffer, 04], [Marckert et Mokkadem, 06], [Marckert et
Miermont, 07], [Le Gall, 07], [Le Gall et Paulin, 08]

o Universality principle ? Convergence of all the “reasonable” models
to the same limit ?

e Which limit ? Brownian map...
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