A bijection between fractional trees and *d*-angulations

Marie Albenque and Dominique Poulalhon

LIX – CNRS

Young workshop in arithmetics and combinatorics - June, 22th 2011

Definition of planar maps

- Planar map = planar connected graph embedded properly in the sphere up to a direct homomorphism of the sphere
- Rooted planar map = an oriented edge is marked.
- with a planar embedding = the "outer face" is chosen.

Triangulations, quadrangualations, ...

Faces = connected components of the plane without the edges of the map. Triangulation, quadrangulation, pentagulation, d-angulation, ... = map whose faces are all of degree 3, 4, 5, d, ...

Girth = length of the shortest cycle.

From now on, only d-angulations of girth d.

Triangulations, quadrangualations, ...

Faces = connected components of the plane without the edges of the map. Triangulation, quadrangulation, pentagulation, d-angulation, ... = map whose faces are all of degree 3, 4, 5, d, ...

Girth = length of the shortest cycle.

From now on, only d-angulations of girth d.

Triangulations, quadrangualations, ...

Faces = connected components of the plane without the edges of the map. Triangulation, quadrangulation, pentagulation, d-angulation, ... = map whose faces are all of degree 3, 4, 5, d, ...

Girth = length of the shortest cycle.

From now on, only d-angulations of girth d.

Enumeration

One of the main question when studying some families of maps :

How many maps belong to this family ?

- Tutte '60s: recursive decomposition
- Matrix integrals: t'Hooft '74,Brézin, Itzykson, Parisi and Zuber '78,
- Representation of the symmetric group: Goulden and Jackson '87,
- Bijective approach with labeled trees: Cori-Vauquelin '81, Schaeffer '98, Bouttier, Di Francesco and Guitter '04, Bernardi, Chapuy, Fusy, Miermont,
- Bijective approach with blossoming trees: Schaeffer '98, Schaeffer and Bousquet-Mélou '00, Poulalhon and Schaeffer '05, Fusy, Poulalhon and Schaeffer '06.

Rooted simple triangulations

The number of rooted simple triangulations with 2n faces, 3n edges and n + 2 vertices is equal to:

$$\frac{2(4n-3)!}{n!(3n-1)!} = \frac{1}{n} \cdot \underbrace{\frac{2}{(4n-2)} \binom{4n-2}{n-1}}_{\text{number of blossoming trees with } n \text{ nodes}}$$

Blossoming tree = rooted plane tree where each node (= inner vertex) carries exactly two leaves.

Theorem (Poulalhon and Schaeffer '05)

There exists a one-to-one correspondence between the set of balanced plane trees with n nodes and two leaves adjacent to each node, and the set of rooted simple triangulations of size n.

Root of the tree is not involved in the local closure \Rightarrow the tree is balanced. *n* trees correspond to the same rooted triangulation.

Albenque & Poulalhon (LIX - CNRS)

Root of the tree is not involved in the local closure \Rightarrow the tree is balanced. *n* trees correspond to the same rooted triangulation.

Albenque & Poulalhon (LIX - CNRS)

Root of the tree is not involved in the local closure \Rightarrow the tree is balanced. *n* trees correspond to the same rooted triangulation.

Albenque & Poulalhon (LIX - CNRS)

Root of the tree is not involved in the local closure \Rightarrow the tree is balanced. *n* trees correspond to the same rooted triangulation.

Albenque & Poulalhon (LIX - CNRS)

Root of the tree is not involved in the local closure \Rightarrow the tree is balanced. *n* trees correspond to the same rooted triangulation.

Albenque & Poulalhon (LIX - CNRS)

Root of the tree is not involved in the local closure \Rightarrow the tree is balanced. *n* trees correspond to the same rooted triangulation.

Albenque & Poulalhon (LIX - CNRS)

Root of the tree is not involved in the local closure \Rightarrow the tree is balanced. *n* trees correspond to the same rooted triangulation.

Albenque & Poulalhon (LIX - CNRS)

Root of the tree is not involved in the local closure \Rightarrow the tree is balanced. *n* trees correspond to the same rooted triangulation.

Albenque & Poulalhon (LIX - CNRS)

Root of the tree is not involved in the local closure \Rightarrow the tree is balanced. *n* trees correspond to the same rooted triangulation.

Albenque & Poulalhon (LIX - CNRS)

Root of the tree is not involved in the local closure \Rightarrow the tree is balanced. *n* trees correspond to the same rooted triangulation.

Albenque & Poulalhon (LIX - CNRS)

Root of the tree is not involved in the local closure \Rightarrow the tree is balanced. *n* trees correspond to the same rooted triangulation.

How to describe the inverse construction ? with orientations.

Albenque & Poulalhon (LIX - CNRS)

Orientations

Orientation of a planar map = an orientation is given to each edge

We want to consider orientations where the outdegree of each vertex is prescribed \rightarrow general theory of α -orientation (Felsner).

For triangulations:

3-orientation = $\begin{cases} \operatorname{out}(v) = 3 & \text{for each } v \text{ not in the root face} \\ \operatorname{out}(v) = 0 & \text{otherwise.} \end{cases}$

Theorem (Schnyder '89, Felsner '04)

Each rooted triangulation of girth 3 admits a unique minimal 3-orientation, ie. a 3-orientation without counterclockwise cycle. Moreover there exists a directed path from any vertices to the root face : the orientation is accessible.

Orientations

Orientation of a planar map = an orientation is given to each edge

We want to consider orientations where the outdegree of each vertex is prescribed \rightarrow general theory of α -orientation (Felsner).

For triangulations:

3-orientation = $\begin{cases} \operatorname{out}(v) = 3 & \text{for each } v \text{ not in the root face} \\ \operatorname{out}(v) = 0 & \text{otherwise.} \end{cases}$

Theorem (Schnyder '89, Felsner '04)

Each rooted triangulation of girth 3 admits a unique minimal 3-orientation, ie. a 3-orientation without counterclockwise cycle. Moreover there exists a directed path from any vertices to the root face : the orientation is accessible.

Orientations

Orientation of a planar map = an orientation is given to each edge

We want to consider orientations where the outdegree of each vertex is prescribed \rightarrow general theory of α -orientation (Felsner).

For triangulations:

3-orientation = $\begin{cases} \operatorname{out}(v) = 3 & \text{for each } v \text{ not in the root face} \\ \operatorname{out}(v) = 0 & \text{otherwise.} \end{cases}$

Theorem (Schnyder '89, Felsner '04)

Each rooted triangulation of girth 3 admits a unique minimal 3-orientation, ie. a 3-orientation without counterclockwise cycle. Moreover there exists a directed path from any vertices to the root face : the orientation is accessible.

Theorem (Poulalhon and Schaeffer '98)

There exists a one-to-one correspondence between the set of balanced plane trees with n nodes and two leaves adjacent to each node, and the set of rooted simple triangulations of size n.

Albenque & Poulalhon (LIX - CNRS)

Theorem (Poulalhon and Schaeffer '98)

There exists a one-to-one correspondence between the set of balanced plane trees with n nodes and two leaves adjacent to each node, and the set of rooted simple triangulations of size n.

Albenque & Poulalhon (LIX - CNRS)

Theorem (Poulalhon and Schaeffer '98)

There exists a one-to-one correspondence between the set of balanced plane trees with n nodes and two leaves adjacent to each node, and the set of rooted simple triangulations of size n.

Albenque & Poulalhon (LIX - CNRS)

Theorem (Poulalhon and Schaeffer '98)

There exists a one-to-one correspondence between the set of balanced plane trees with n nodes and two leaves adjacent to each node, and the set of rooted simple triangulations of size n.

Albenque & Poulalhon (LIX - CNRS)

Theorem (Poulalhon and Schaeffer '98)

There exists a one-to-one correspondence between the set of balanced plane trees with n nodes and two leaves adjacent to each node, and the set of rooted simple triangulations of size n.

Albenque & Poulalhon (LIX - CNRS)

Theorem (Poulalhon and Schaeffer '98)

There exists a one-to-one correspondence between the set of balanced plane trees with n nodes and two leaves adjacent to each node, and the set of rooted simple triangulations of size n.

Albenque & Poulalhon (LIX - CNRS)

Theorem (Poulalhon and Schaeffer '98)

There exists a one-to-one correspondence between the set of balanced plane trees with n nodes and two leaves adjacent to each node, and the set of rooted simple triangulations of size n.

Albenque & Poulalhon (LIX - CNRS)

Theorem (Poulalhon and Schaeffer '98)

There exists a one-to-one correspondence between the set of balanced plane trees with n nodes and two leaves adjacent to each node, and the set of rooted simple triangulations of size n.

Albenque & Poulalhon (LIX - CNRS)

Theorem (Poulalhon and Schaeffer '98)

There exists a one-to-one correspondence between the set of balanced plane trees with n nodes and two leaves adjacent to each node, and the set of rooted simple triangulations of size n.

Albenque & Poulalhon (LIX - CNRS)

Theorem (Poulalhon and Schaeffer '98)

There exists a one-to-one correspondence between the set of balanced plane trees with n nodes and two leaves adjacent to each node, and the set of rooted simple triangulations of size n.

Albenque & Poulalhon (LIX - CNRS)

And for *d*-angulations ?

k-fractional orientation = orientation of the expended map where each edge is replaced by k copies.

$$j/k$$
-orientation =
$$\begin{cases} \operatorname{out}(v) = j & \text{for each } v \text{ not in the root face} \\ \operatorname{out}(v) = k & \text{otherwise.} \end{cases}$$

Theorem (Bernardi and Fusy '11)

Any rooted d-angulation of girth d admits a unique minimal $\frac{d}{d-2}$ -orientation such that the root face is a clockwise cycle. Moreover this orientation is accessible.

d-fractional trees

d-fractional tree = rooted plane tree where each edge carries a flow (possibly in two directions) such that:

- sum of the flows in the edge = d 2,
- for each node u, out(u) = d,
- for each leaf I, out(I) = 0,
- there exists a directed path from each node to the root.

 \rightarrow Trees not stable by rerooting, do not lead to nice combinatorial equalities.

\Rightarrow Cyclic closure operation

d-fractional forest = simple rooted cycle of length d, on which are grafted d-fractional trees.

d-fractional trees

d-fractional tree = rooted plane tree where each edge carries a flow (possibly in two directions) such that:

- sum of the flows in the edge = d 2,
- for each node u, out(u) = d,
- for each leaf I, out(I) = 0,
- there exists a directed path from each node to the root.

 \rightarrow Trees not stable by rerooting, do not lead to nice combinatorial equalities.

\Rightarrow Cyclic closure operation

d-fractional forest = simple rooted cycle of length d, on which are grafted d-fractional trees.

Theorem

There exists a one-to-one constructive correspondence between d-fractional forests with n nodes and rooted d-angulations of girth d with n vertices.

Albenque & Poulalhon (LIX - CNRS)

Bijection for *d*-angulations

Madrid, June 22th 2011 11 / 14

Theorem

There exists a one-to-one constructive correspondence between d-fractional forests with n nodes and rooted d-angulations of girth d with n vertices.

Albenque & Poulalhon (LIX - CNRS)

Bijection for *d*-angulations

Madrid, June 22th 2011 11 / 14

Theorem

There exists a one-to-one constructive correspondence between d-fractional forests with n nodes and rooted d-angulations of girth d with n vertices.

Albenque & Poulalhon (LIX - CNRS)

Theorem

There exists a one-to-one constructive correspondence between d-fractional forests with n nodes and rooted d-angulations of girth d with n vertices.

Albenque & Poulalhon (LIX - CNRS)

Theorem

There exists a one-to-one constructive correspondence between d-fractional forests with n nodes and rooted d-angulations of girth d with n vertices.

Albenque & Poulalhon (LIX - CNRS)

Theorem

There exists a one-to-one constructive correspondence between d-fractional forests with n nodes and rooted d-angulations of girth d with n vertices.

Albenque & Poulalhon (LIX - CNRS)

Theorem

There exists a one-to-one constructive correspondence between d-fractional forests with n nodes and rooted d-angulations of girth d with n vertices.

Albenque & Poulalhon (LIX - CNRS)

Theorem

There exists a one-to-one constructive correspondence between d-fractional forests with n nodes and rooted d-angulations of girth d with n vertices.

Albenque & Poulalhon (LIX - CNRS)

Theorem

There exists a one-to-one constructive correspondence between d-fractional forests with n nodes and rooted d-angulations of girth d with n vertices.

Albenque & Poulalhon (LIX - CNRS)

Theorem

There exists a one-to-one constructive correspondence between d-fractional forests with n nodes and rooted d-angulations of girth d with n vertices.

Albenque & Poulalhon (LIX - CNRS)

Proof of the theorem

- Induction on the number of faces of *M*.
- There exists a saturated clockwise edge *e* on the outer face:
 - if $M \setminus e$ is still accessible: delete e.
 - Otherwise, there exists such a partition:

Proof of the theorem

- Induction on the number of faces of *M*.
- There exists a saturated clockwise edge e on the outer face:
 - if $M \setminus e$ is still accessible: delete e.
 - Otherwise, there exists such a partition:

Proof of the theorem

- Induction on the number of faces of *M*.
- There exists a saturated clockwise edge *e* on the outer face:
 - if $M \setminus e$ is still accessible: delete e.
 - Otherwise, there exists such a partition:

Generalization

"Theoretical proof" in quadratic time: relying on it, we can give a direct method to identify the closure edges.

- \Rightarrow Opening algorithm in linear time.
 - Method generalizes directly to *p*-gonal *d*-angulations (ie. map with faces of degree *d* but root face of degree *p*).
 - Enumerative consequences: recursive decomposition of the *d*-fractional trees
 ⇒ Equations for the generating series of *d*-angulations.

General framework to obtain a bijection between maps endowed with a minimal accessible orientation and blossoming trees.

 \Rightarrow Yield enumerative results when the blossoming trees can be enumerated.

Generalization

"Theoretical proof" in quadratic time: relying on it, we can give a direct method to identify the closure edges.

- \Rightarrow Opening algorithm in linear time.
 - Method generalizes directly to *p*-gonal *d*-angulations (ie. map with faces of degree *d* but root face of degree *p*).
 - Enumerative consequences: recursive decomposition of the *d*-fractional trees
 ⇒ Equations for the generating series of *d*-angulations.

General framework to obtain a bijection between maps endowed with a minimal accessible orientation and blossoming trees.

 \Rightarrow Yield enumerative results when the blossoming trees can be enumerated.

Generalization

"Theoretical proof" in quadratic time: relying on it, we can give a direct method to identify the closure edges.

- \Rightarrow Opening algorithm in linear time.
 - Method generalizes directly to *p*-gonal *d*-angulations (ie. map with faces of degree *d* but root face of degree *p*).
 - Enumerative consequences: recursive decomposition of the *d*-fractional trees
 ⇒ Equations for the generating series of *d*-angulations.

General framework to obtain a bijection between maps endowed with a minimal accessible orientation and blossoming trees.

 \Rightarrow Yield enumerative results when the blossoming trees can be enumerated.

That's all ... Thank you !