A bijection between fractional trees and d-angulations

Marie Albenque and Dominique Poulalhon
LIX - CNRS

Young workshop in arithmetics and combinatorics - June, 22th 2011

Definition of planar maps

- Planar map = planar connected graph embedded properly in the sphere up to a direct homomorphism of the sphere
- Rooted planar map $=$ an oriented edge is marked.
- with a planar embedding $=$ the "outer face" is chosen.

Triangulations, quadrangualations, ...

Faces $=$ connected components of the plane without the edges of the map.
Triangulation, quadrangulation, pentagulation, d-angulation, $\ldots=$ map whose faces are all of degree $3,4,5, d, \ldots$

Girth $=$ length of the shortest cycle.
From now on, only d-angulations of girth d

Triangulations, quadrangualations, ...

Faces $=$ connected components of the plane without the edges of the map.
Triangulation, quadrangulation, pentagulation, d-angulation, $\ldots=$ map whose faces are all of degree $3,4,5, d, \ldots$

Girth $=$ length of the shortest cycle.
From now on, only d-angulations of girth d

Triangulations, quadrangualations, ...

Faces $=$ connected components of the plane without the edges of the map.
Triangulation, quadrangulation, pentagulation, d-angulation, $\ldots=$ map whose faces are all of degree $3,4,5, d, \ldots$

Girth $=$ length of the shortest cycle.
From now on, only d-angulations of girth d.

Enumeration

One of the main question when studying some families of maps :

How many maps belong to this family ?

- Tutte '60s: recursive decomposition
- Matrix integrals: t'Hooft '74, Brézin, Itzykson, Parisi and Zuber '78,
- Representation of the symmetric group: Goulden and Jackson '87,
- Bijective approach with labeled trees: Cori-Vauquelin '81, Schaeffer '98, Bouttier, Di Francesco and Guitter '04, Bernardi, Chapuy, Fusy, Miermont,
- Bijective approach with blossoming trees: Schaeffer '98, Schaeffer and Bousquet-Mélou '00, Poulalhon and Schaeffer '05, Fusy, Poulalhon and Schaeffer '06.

Rooted simple triangulations

The number of rooted simple triangulations with $2 n$ faces, $3 n$ edges and $n+2$ vertices is equal to:

$$
\frac{2(4 n-3)!}{n!(3 n-1)!}=\frac{1}{n} \cdot \underbrace{\frac{2}{(4 n-2)}\binom{4 n-2}{n-1}}_{\begin{array}{c}
\text { number of blossoming trees } \\
\text { with } n \text { nodes }
\end{array}}
$$

Blossoming tree $=$ rooted plane tree where each node ($=$ inner vertex) carries exactly two leaves.

Theorem (Poulalhon and Schaeffer '05)

There exists a one-to-one correspondence between the set of balanced plane trees with n nodes and two leaves adjacent to each node, and the set of rooted simple triangulations of size n.

Closure of a blossoming tree

Root of the tree is not involved in the local closure \Rightarrow the tree is balanced.
n trees correspond to the same rooted triangulation

Closure of a blossoming tree

Root of the tree is not involved in the local closure \Rightarrow the tree is balanced.
n trees correspond to the same rooted triangulation

Closure of a blossoming tree

Root of the tree is not involved in the local closure \Rightarrow the tree is balanced.
n trees correspond to the same rooted triangulation

Closure of a blossoming tree

Root of the tree is not involved in the local closure \Rightarrow the tree is balanced.
n trees correspond to the same rooted triangulation

Closure of a blossoming tree

Root of the tree is not involved in the local closure \Rightarrow the tree is balanced.
n trees correspond to the same rooted triangulation

Closure of a blossoming tree

Root of the tree is not involved in the local closure \Rightarrow the tree is balanced.
n trees correspond to the same rooted triangulation

Closure of a blossoming tree

Root of the tree is not involved in the local closure \Rightarrow the tree is balanced.
n trees correspond to the same rooted triangulation

Closure of a blossoming tree

Root of the tree is not involved in the local closure \Rightarrow the tree is balanced.
n trees correspond to the same rooted triangulation

Closure of a blossoming tree

Root of the tree is not involved in the local closure \Rightarrow the tree is balanced.
n trees correspond to the same rooted triangulation

Closure of a blossoming tree

Root of the tree is not involved in the local closure \Rightarrow the tree is balanced.
n trees correspond to the same rooted triangulation

Closure of a blossoming tree

Root of the tree is not involved in the local closure \Rightarrow the tree is balanced. n trees correspond to the same rooted triangulation.

Closure of a blossoming tree

How to describe the inverse construction ? with orientations.

Orientations

Orientation of a planar map $=$ an orientation is given to each edge We want to consider orientations where the outdegree of each vertex is prescribed \rightarrow general theory of α-orientation (Felsner).

For triangulations

Orientations

Orientation of a planar map $=$ an orientation is given to each edge
We want to consider orientations where the outdegree of each vertex is prescribed \rightarrow general theory of α-orientation (Felsner).

For triangulations:

$$
\text { 3-orientation }= \begin{cases}\operatorname{out}(v)=3 & \text { for each } v \text { not in the root face } \\ \operatorname{out}(v)=0 & \text { otherwise. }\end{cases}
$$

[^0]
Orientations

Orientation of a planar map $=$ an orientation is given to each edge
We want to consider orientations where the outdegree of each vertex is prescribed \rightarrow general theory of α-orientation (Felsner).

For triangulations:

$$
\text { 3-orientation }= \begin{cases}\operatorname{out}(v)=3 & \text { for each } v \text { not in the root face } \\ \operatorname{out}(v)=0 & \text { otherwise. }\end{cases}
$$

Theorem (Schnyder '89, Felsner '04)

Each rooted triangulation of girth 3 admits a unique minimal 3-orientation, ie. a 3-orientation without counterclockwise cycle.
Moreover there exists a directed path from any vertices to the root face : the orientation is accessible.

Inverse construction

Theorem (Poulalhon and Schaeffer '98)

There exisis a one-io-one correspondence beiween the set of balanced plane trees with n nodes and two leaves adjacent to each node, and the set of rooted simple triangulations of size n.

Inverse construction

Theorem (Poulalhon and Schaeffer '98)

There exisis a one-io-one correspondence beiween the set of balanced plane trees with n nodes and two leaves adjacent to each node, and the set of rooted simple triangulations of size n.

Inverse construction

Theorem (Poulalhon and Schaeffer '98)

There exisis a one-io-one correspondence between the set of balanced plane trees with n nodes and two leaves adjacent to each node, and the set of rooted simple triangulations of size n.

Inverse construction

Theorem (Poulalhon and Schaeffer '98)

There exisis a one-io-one correspondence between the set of balanced plane trees with n nodes and two leaves adjacent to each node, and the set of rooted simple triangulations of size n.

Inverse construction

Theorem (Poulalhon and Schaeffer '98)

There exisis a one-io-one correspondence between the set of balanced plane trees with n nodes and two leaves adjacent to each node, and the set of rooted simple triangulations of size n.

Inverse construction

Theorem (Poulalhon and Schaeffer '98)

There exisis a one-io-one correspondence between the set of balanced plane trees with n nodes and two leaves adjacent to each node, and the set of rooted simple triangulations of size n.

Inverse construction

Theorem (Poulalhon and Schaeffer '98)

There exisis a one-io-one correspondence beiween the set of balanced plane trees with n nodes and two leaves adjacent to each node, and the set of rooted simple triangulations of size n.

Inverse construction

> Theorem (Poulalhon and Schaeffer '98)
> There exists a one-to-one correspondence between the set of balanced plane trees with n nodes and two leaves adjacent to each node, and the set of rooted simple triangulations of size n.

Inverse construction

Theorem (Poulalhon and Schaeffer '98)
There exists a one-to-one corresnondence between the set of balanced plane trees with n nodes and two leaves adjacent to each node, and the set of rooted simple triangulations of size n.

Inverse construction

Theorem (Poulalhon and Schaeffer '98)

There exists a one-to-one correspondence between the set of balanced plane trees with n nodes and two leaves adjacent to each node, and the set of rooted simple triangulations of size n.

And for d-angulations ?

k-fractional orientation $=$ orientation of the expended map where each edge is replaced by k copies.

$$
j / k \text {-orientation }= \begin{cases}\operatorname{out}(v)=j & \text { for each } v \text { not in the root face } \\ \operatorname{out}(v)=k & \text { otherwise. }\end{cases}
$$

Theorem (Bernardi and Fusy '11)

Any rooted d-angulation of girth d admits a unique minimal $\frac{d}{d-2}$-orientation such that the root face is a clockwise cycle. Moreover this orientation is accessible.

d-fractional trees

d-fractional tree $=$ rooted plane tree where each edge carries a flow (possibly in two directions) such that:

- sum of the flows in the edge $=d-2$,
- for each node u, out $(u)=d$,
- for each leaf $I, \operatorname{out}(I)=0$,
- there exists a directed path from each node to the root.
\rightarrow Trees not stable by rerooting, do not lead to nice combinatorial equalities.
\Rightarrow Cyclic closure operation
d-fractional forest $=$ simple rooted cycle of length d, on which are grafted
d-fractional trees.

d-fractional trees

d-fractional tree $=$ rooted plane tree where each edge carries a flow (possibly in two directions) such that:

- sum of the flows in the edge $=d-2$,
- for each node u, out $(u)=d$,
- for each leaf I, out $(I)=0$,
- there exists a directed path from each node to the root.
\rightarrow Trees not stable by rerooting, do not lead to nice combinatorial equalities.
\Rightarrow Cyclic closure operation
d-fractional forest $=$ simple rooted cycle of length d, on which are grafted d-fractional trees.

Closure of a d-fractional forest

[^1]
Closure of a d-fractional forest

[^2]
Closure of a d-fractional forest

[^3]
Closure of a d-fractional forest

[^4]
Closure of a d-fractional forest

[^5]
Closure of a d-fractional forest

[^6]
Closure of a d-fractional forest

[^7]
Closure of a d-fractional forest

[^8]
Closure of a d-fractional forest

[^9]
Closure of a d-fractional forest

Theorem

There exists a one-to-one constructive correspondence between d-fractional forests with n nodes and rooted d-angulations of girth d with n vertices.

Proof of the theorem

- Induction on the number of faces of M.
- There exists a saturated clockwise edge e on the outer face:
(1) if $M \backslash e$ is still accessible: delete e.
(2) otherwise, there exists such a partition:

Proof of the theorem

- Induction on the number of faces of M.
- There exists a saturated clockwise edge e on the outer face:
(1) if $M \backslash e$ is still accessible: delete e.
(2) otherwise, there exists such a partition:

Proof of the theorem

- Induction on the number of faces of M.
- There exists a saturated clockwise edge e on the outer face:
(1) if $M \backslash e$ is still accessible: delete e.
(2) otherwise, there exists such a partition:

Generalization

"Theoretical proof" in quadratic time: relying on it, we can give a direct method to identify the closure edges.
\Rightarrow Opening algorithm in linear time.

- Method generalizes directly to p-gonal d-angulations (ie. map with faces of degree d but root face of degree p).
- Enumerative consequences: recursive decomposition of the d-fractional trees \Rightarrow Equations for the generating series of d-angulations.

General framework to obtain a bijection between maps endowed with a minimal accessible orientation and blossoming trees.
\Rightarrow Yield enumerative results when the blossoming trees can be enumerated.

Generalization

"Theoretical proof" in quadratic time: relying on it, we can give a direct method to identify the closure edges.
\Rightarrow Opening algorithm in linear time.

- Method generalizes directly to p-gonal d-angulations (ie. map with faces of degree d but root face of degree p).
- Enumerative consequences: recursive decomposition of the d-fractional trees \Rightarrow Equations for the generating series of d-angulations.

General framework to obtain a bijection between maps endowed with a minimal accessible orientation and blossoming trees.
\Rightarrow Yield enumerative results when the blossoming trees can be enumerated.

Generalization

"Theoretical proof" in quadratic time: relying on it, we can give a direct method to identify the closure edges.
\Rightarrow Opening algorithm in linear time.

- Method generalizes directly to p-gonal d-angulations (ie. map with faces of degree d but root face of degree p).
- Enumerative consequences: recursive decomposition of the d-fractional trees \Rightarrow Equations for the generating series of d-angulations.

General framework to obtain a bijection between maps endowed with a minimal accessible orientation and blossoming trees.
\Rightarrow Yield enumerative results when the blossoming trees can be enumerated.

That's all ... Thank you !

[^0]: Theorem (Schnyder '89, Felsner '04)
 Each rooted triangulation of girth 3 admits a unique minimal 3-orientation, ie. a 3-orientation without counterclockwise cycle.
 Moreover there exists a directed path from any vertices to the root face : the orientation is accessible.

[^1]: Theorem
 There exists a one-to-one constructive correspondence between d-fractional forests with n nodes and rooted d-angulations of girth d with n vertices.

[^2]: Theorem
 There exists a one-to-one constructive correspondence between d-fractional forests with n nodes and rooted d-angulations of girth d with n vertices.

[^3]: Theorem
 There exists a one-to-one constructive correspondence between d-fractional forests with n nodes and rooted d-angulations of girth d with n vertices.

[^4]: Theorem
 There exists a one-to-one constructive correspondence between d-fractional forests with n nodes and rooted d-angulations of girth d with n vertices.

[^5]: Theorem
 There exists a one-to-one constructive correspondence between d-fractional forests with n nodes and rooted d-angulations of girth d with n vertices.

[^6]: Theorem
 There exists a one-to-one constructive correspondence between d-fractional forests with n nodes and rooted d-angulations of girth d with n vertices.

[^7]: Theorem
 There exists a one-to-one constructive correspondence between d-fractional forests with n nodes and rooted d-angulations of girth d with n vertices.

[^8]: Theorem
 There exists a one-to-one constructive correspondence between d-fractional forests with n nodes and rooted d-angulations of girth d with n vertices.

[^9]: Theorem
 There exists a one-to-one constructive correspondence between d-fractional forests with n nodes and rooted d-angulations of girth d with n vertices.

