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Here, the resulting
surface is the sphere:
this is a planar map.

We will also encounter
maps on other closed

orientable surfaces: torus
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|V (m)|+ |F (m)| = 2 + |E(m)| − 2g(m)
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A map is a collection of polygons glued along their sides (with some technical conditions).

Maps – Definition(s)

Here, the resulting
surface is the sphere:
this is a planar map.

We will also encounter
maps on other closed

orientable surfaces: torus
of genus g, disks, ...

If all the polygons have p sides, the map is called a p-angulation

3-angulation = triangulation, 4-angulation = quadrangulation

Euler’s formula: for every map m,

|V (m)|+ |F (m)| = 2 + |E(m)| − 2g(m)
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Maps – Definition(s)

Planar map = planar graph + cyclic order of edges around each vertex.

A planar map is a proper embedding of a planar connected graph in the
2-dimensional sphere (considered up to orientation-preserving homeomorphisms).

This is the root corner

To avoid dealing with symmetries: maps are rooted (a corner is marked).

A map M defines a discrete metric space:

• points: set of vertices of M = V (M).

• distance: graph distance = dgr.



I - Bijective enumeration
of maps

II - Scaling limits of random
planar maps

III - Local limit of Ising-weighted
random triangulations



I - Bijective enumeration of maps
a tribute to blossoming bijections.
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Bijections with blossoming trees

A blossoming tree is a plane tree where vertices can carry opening stems or closing stems:

# closing stems = # opening stems

Via this construction, a planar map is canonically associated to a blossoming tree.

Can we reverse the construction ?
i.e. can we determine a canonical spanning tree ?

Yes...
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Enumeration of planar maps

In the 60’s, Tutte obtained closed enumerative formulas for many families of planar maps.

e.g. #
{

rooted planar maps with n edges
}

=
2 · 3n

n+ 2
Catalan(n) [Tutte 63]

#
{

plane trees with n vertices
}

= #
{

binary plane trees with n inner vertices
}

Combinatorial proof ? Bijection ?
Yes ! [Cori & Vauquelin 81], [Schaeffer 97, 98]

Blossoming bijection

[Schaeffer 97]

Map with n edges
4-valent map with
n vertices

4-valent blossoming
trees with n vertices

Radial construction

[Tutte 63]

As a corollary:
combinatorial proof of Tutte’s formula.
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Enumeration of planar maps: a dichotomy of bijections

Blossoming bijection

[Schaeffer 97]

4-valent blossoming
trees with n vertices

Radial construction

[Tutte 63]
Blossoming bijection

[Schaeffer 98]

Map with n edges
4-valent map with n vertices

well-labeled treequadrangulation with n faces

Tutte’s bijection

[Tutte 63]

duality

The Schaeffer bijection
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• Bipartite maps [Bousquet-Mélou, Schaeffer 02]

• Simple triangulations [Poulalhon, Schaeffer 05],
simple quadrangulations [Fusy 07]

• Eulerian maps [Schaeffer 97]

• General maps with prescribed vertices degree sequences
[Bouttier, Di Francesco, Guitter 02]

• Constellations [Bousquet-Mélou, Schaeffer 00]

(without loops nor multiple edges)

• Eulerian maps [Schaeffer 97]
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Blossoming bijections

• Bipartite maps [Bousquet-Mélou, Schaeffer 02]

• Simple triangulations [Poulalhon, Schaeffer 05],
simple quadrangulations [Fusy 07]

• Eulerian maps [Schaeffer 97]

• General maps with prescribed vertices degree sequences
[Bouttier, Di Francesco, Guitter 02]

• Constellations [Bousquet-Mélou, Schaeffer 00]

(without loops nor multiple edges)

Mobile type bijections

• Quadrangulations [Schaeffer 98]

• General maps with prescribed faces degree sequences
[Bouttier, di Francesco, Guitter 04] = BDG bijection

• Maps with sources and delays [Miermont 09],

[Bouttier, Fusy, Guitter 14 ]

• Extension to higher genus [Chapuy, Marcus, Schaeffer 09],

• Eulerian maps [Schaeffer 97]
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Can we unify all the blossoming bijections ?

Via this construction, an oriented planar map is canonically associated to a blossoming tree.

Can we reverse the construction ?? Yes, by a generic bijective scheme:

Theorem: [A., Poulalhon 15] (generalization of results of [Bernardi ’07])
If a planar map M is endowed with a “nice orientation” of its edges, then
there exists a unique blossoming tree whose closure is M endowed with its
orientation.
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Theorem: [A., Poulalhon 15](generalization of previous results in [Bernardi ’07])
If a planar map M is endowed with a “nice orientation” of its edges, then there exists a
unique blossoming tree whose closure is M endowed with its orientation.

Often easier to “guess” the right orientations than the right families of trees.

Combined with the general theory of c-orientations [Propp 03] and/or α-orientations
[Felsner 04], this allows to retrieve all the bijections mentioned above and to obtain new
bijections for which no enumerative formulas are available (cf also [Bernardi, Fusy 12]).

Bijections with blossoming trees

Can we reverse the construction ?? Yes, by a generic bijective scheme:

Blossoming bijection for d-angulations of girth d with a boundary, [A., Poulalhon 15].

= length of the smallest cycle
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Theorem: [Tutte 63], bijective proof in [Schaeffer 97]
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∑
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{

planar maps
}
.

M = T 2(1− 4T ) where T unique formal power series defined by T = z + 3T 2Then:
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Blossoming bijections in higher genus

Theorem: [Tutte 63], bijective proof in [Schaeffer 97]

M(z) =
∑
m

z|E(m)|, where m ∈
{

planar maps
}
.

Theorem: [Bender, Canfield 91], first bijective proof in [Lepoutre 19+]

Then Mg is a rational function of T .

For any g ≥ 1, let Mg(z) =
∑
m

z|E(m)|, where m ∈
{

maps of genus g
}
.

M = T 2(1− 4T ) where T unique formal power series defined by T = z + 3T 2Then:

Idea of proof: Generalization of Schaeffer’s blossoming bijection to higher genus.

Careful analysis of the blossoming unicellular maps

Result not available with the “mobile-type” bijection of [Chapuy – Marcus – Schaeffer]



Theorem: [Tutte 63], bijective proof in [Schaeffer 97]
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Theorem: [Tutte 63], bijective proof in [Schaeffer 97]

M(z•, z◦) =
∑
m

z|V (m)|
• z|F (m)|

◦ , where m ∈
{

planar maps
}
.

Then M = T◦T•(1− 2T◦ − 2T•) where

{
T• = z• + T 2

• + 2T◦T•

T◦ = z◦ + T 2
◦ + 2T•T◦

Map with n edges
4-valent map with
n vertices

Radial construction
[Tutte 63]

Blossoming bijections in higher genus

Already for planar maps, this
result is not accessible with
mobile-type bijections.

Euler’s formula: |V (m)|+ |F (m)| = 2 + |E(m)| − 2g(m)



Theorem: [Tutte 63], bijective proof in [Schaeffer 97]

M(z•, z◦) =
∑
m

z|V (m)|
• z|F (m)|

◦ , where m ∈
{

planar maps
}
.

Then M = T◦T•(1− 2T◦ − 2T•) where

{
T• = z• + T 2

• + 2T◦T•

T◦ = z◦ + T 2
◦ + 2T•T◦

Blossoming bijections in higher genus

Theorem: [Bender, Canfield, Richmond 95], bijective proof in [A.,Lepoutre 20+]
For any g ≥ 1, let

Then Mg is a rational function of T• and T◦.

Mg(z•, z◦) =
∑
m

z|V (m)|
• z|F (m)|

◦ , where m ∈
{

maps of genus g
}
.

Idea of proof: Same bijection but different proof for the analysis of the unicellular
blossoming maps (gives also a simpler proof of the univariate case).

Euler’s formula: |V (m)|+ |F (m)| = 2 + |E(m)| − 2g(m)



II - Scaling limits of random maps

Global point of view
(scaling limit):

Simulation by T.Budd



Qn = {Quadrangulations of size n}
= n+ 2 vertices, n faces, 2n edges

Qn = Uniform random element of Qn

Simulation by T.Budd

Scaling limit of random quadrangulations
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Qn = Uniform random element of Qn

Simulation by T.Budd

When the size of the map goes to infinity, so does the
typical distance between two vertices.

Idea: ”scale” the map = length of edges decreases with the size of the map.
Goal: obtain a limiting (non-trivial) compact object

Scaling limit of random quadrangulations



Qn = {Quadrangulations of size n}
= n+ 2 vertices, n faces, 2n edges

Qn = Uniform random element of Qn

Simulation by T.Budd

When the size of the map goes to infinity, so does the
typical distance between two vertices.

Idea: ”scale” the map = length of edges decreases with the size of the map.
Goal: obtain a limiting (non-trivial) compact object

Motivations:

• Natural random discretization of a continuous surface.

• Construction of a 2-dim. analogue of the Brownian motion: The Brownian Map
[Miermont 13],[Le Gall 13].

• Link with Liouville Quantum Gravity,
[Duplantier, Sheffield 11], [Duplantier, Miller, Sheffield 14], [Miller, Sheffield 16,16,17]

Scaling limit of random quadrangulations



For quadrangulations : well understood

• The bijection of Schaeffer: quadrangulations ↔ labeled trees.
Labels in the trees = distances between the vertices and the root.

• distance between two random points ∼ n1/4 + law of the distance [Chassaing-Schaeffer ’04]

• cvgence of normalized quadrangulations + properties of the limit [Marckert-Mokkadem ’06],
[Le Gall ’07], [Le Gall, Paulin ’08] [Miermont ’08]

Hausdorff dimension = 4
topology of the limit = sphere

Scaling limit of uniform quadrangulations

Idea: ”scale” the map = length of edges decreases with the size of the map.
Goal: obtain a limiting (non-trivial) compact object

Theorem: [Miermont 13], [Le Gall 13]

Let (Qn) be a sequence of random quadrangulations of size n. Then:(
V (Qn),

(
9

8n

)1/4

dgr

)
The Brownian Map

(d)

topology of the limit = sphere

Gromov–Hausdorff
topology



Universality of the scaling limit

The Brownian map is a universal limiting object.Idea :

what if quadrangulations are replaced by
triangulations, maps, simple triangulations, ...?

All ”reasonable models” of maps (properly rescaled) are expected to converge towards it.



Universality of the scaling limit

The Brownian map is a universal limiting object.Idea :

what if quadrangulations are replaced by
triangulations, maps, simple triangulations, ...?

Theorem: [Le Gall 13]

Fix p ∈ {3} ∪ 2N, let (Mn) be a sequence of random p-angulations of size n. Then:(
V (Mn),

Cp
n1/4

dgr

)
The Brownian Map

(d)

Gromov–Hausdorff
topology

Theorem: [Le Gall 13]

Fix p ∈ {3} ∪ 2N, let (Mn) be a sequence of random p-angulations of size n. Then:(
V (Mn),

Cp
n1/4

dgr

)
The Brownian Map

(d)

Gromov–Hausdorff
topology

Replace Schaeffer’s bijection by the bijection of [Bouttier, Di Francesco, Guitter 04].

Since uniform quadrangulations are invariant by rerooting, the fact that they converge to
the Brownian map, implies that the Brownian map is invariant by rerooting.

Le Gall’s magic trick:

→ Use this invariance to prove the convergence of others models of maps.

All ”reasonable models” of maps (properly rescaled) are expected to converge towards it.

Idea of the proof:



Universality of the scaling limit

1. encode the maps by some labeled trees,

2. study the limits of the labeled trees,

3. interpret the distance in the maps by some function of the labeling of the tree.

To prove that another model of maps converges to the Brownian map:



Universality of the scaling limit

1. encode the maps by some labeled trees,

2. study the limits of the labeled trees,

3. interpret the distance in the maps by some function of the labeling of the tree.

To prove that another model of maps converges to the Brownian map:

Theorem: [Addario–Berry, A. 20] For p ∈ 2N + 1, (Mn) = random p-angulations:(
V (Mn),

Cp
n1/4

dgr

)
The Brownian Map

(d)

Gromov–Hausdorff
topology

Difficulty: 2. The labeled trees obtained by the BDG bijection are not “nice”.
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1. encode the maps by some labeled trees,

2. study the limits of the labeled trees,

3. interpret the distance in the maps by some function of the labeling of the tree.

To prove that another model of maps converges to the Brownian map:

Theorem: [Addario–Berry, A. 20] For p ∈ 2N + 1, (Mn) = random p-angulations:(
V (Mn),

Cp
n1/4

dgr

)
The Brownian Map

(d)

Gromov–Hausdorff
topology

Theorem: [Addario–Berry, A. 15] Let (∆n) = random simple triangulations:(
V (∆n),

(
3

4n

)1/4

dgr

)
The Brownian Map

(d)

Gromov–Hausdorff
topology

Difficulty: 2. The labeled trees obtained by the BDG bijection are not “nice”.

Difficulty: 3. Track distances in blossoming bijections.
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T

i and j
= same vertex of T

Cn(i) = Cn(j)

= min
i≤k≤j

Cn(k)

⇔

Cn(2n · t) = contour process

(et)0≤t≤1= Brownian excursion

scaling limit (rescaled by n−1/2)

Te, [Aldous]
Continuum Random Tree
Te, [Aldous 91]
Continuum Random Tree

Simulations by I. Kortchemski
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Convergence of trees of labeled trees

2nd step : Brownian snake

1st step : the Brownian tree

(et, Zt) = Brownian snake

Simulations by I. Kortchemski

Theorem: [Janson, Marckert 04],[Miermont 08],...

Simulation by J. Bettinelli

For a sequence (Tn) of “nice” random labeled trees:

for the uniform topology of C([0, 1], R)2 ,

[Le Gall 93]

(
aCn(2nt)

n1/2
,
bZn(2nt)

n1/4

)
(et, Zt)

(d)

Conditional on Te, Z a centered Gaussian process
with Zρ = 0 and E[(Zs − Zt)2] = de(s, t).

Z ∼ Brownian motion on the tree



Convergence of trees of labeled trees

2nd step : Brownian snake

1st step : the Brownian tree

(et, Zt) = Brownian snake

Simulations by I. Kortchemski

Theorem: [Janson, Marckert 04],[Miermont 08],...

Simulation by J. Bettinelli

For a sequence (Tn) of “nice” random labeled trees:

for the uniform topology of C([0, 1], R)2 ,

Nice = typically Galton-Watson trees, with centered
increments of labels along edges.

[Le Gall 93]

(
aCn(2nt)

n1/2
,
bZn(2nt)

n1/4

)
(et, Zt)

(d)

Conditional on Te, Z a centered Gaussian process
with Zρ = 0 and E[(Zs − Zt)2] = de(s, t).

Z ∼ Brownian motion on the tree
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-1
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0

0-2

-2
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0.5-1.5

Illustration of the Bouttier – Di Francesco – Guitter bijection for a non-bipartite map.

Labeled tree obtained = 4-type Galton-Watson tree T + random label increments along edges.

Problem: For e an edge of T , E[label increments along e] 6= 0
i.e. the the label increments are not centered.

. . .e1
e2 ekA source of hope: ∑k

i=1 E[label increment along ei] = 0

⇒ Known results of convergence do not apply.



Convergence of odd-angulations

convergence in this setting (with even weaker “centering assumption”) but
requires monototype GW trees + bounded number of children.

[Marckert 07]

Theorem: [Addario–Berry, A. 20] For p ∈ 2N+ 1, (M
(p)
n ) = random p-angulations:

Let T
(p)
n = ΦBDG(M

(p)
n ), then :

for the uniform topology of C([0, 1], R)2 ,
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,
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)
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Convergence of odd-angulations

convergence in this setting (with even weaker “centering assumption”) but
requires monototype GW trees + bounded number of children.

[Marckert 07]

Theorem: [Addario–Berry, A. 20] For p ∈ 2N+ 1, (M
(p)
n ) = random p-angulations:

Let T
(p)
n = ΦBDG(M

(p)
n ), then :

for the uniform topology of C([0, 1], R)2 ,

(
apCn(2nt)

n1/2
,
bpZn(2nt)

n1/4

)
(et, Zt)

Strategy of proof: Randomly shuffle “our” trees to get a coupling with a “nice” model.

in our case [Miermont 08] is the nice model but it gives a general bootstrapping principle.

a cd
σu = (14)(23)

ad
cb b

u û
bc a

a
cb d σu = (14)(23)

d
uu û

. . .e1
e2 ek

A source of hope: ∑k
i=1 E[label increment along ei] = 0
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Convergence of simple triangulations

First step: blossoming bijection of [Poulalhon, Schaeffer 05] for simple triangulations.

0

0

1

0 1

0 0

1

• Encode the blossoming trees by labeled trees

Prove that the scaling limit of
trees is the Brownian snake.

local rule around
each vertex

Requires the bootstrapping principle !
}

• Prove that the labels of the tree give some distance information in the map



• Encode the blossoming trees by labeled trees
Prove that the scaling limit of
trees is the Brownian snake. u

starting from u,
ending at the root face

Convergence of simple triangulations

Problem: How to track distances in the map in the blossoming tree ?

• Prove that the labels of the tree give some distance
information in the map

→ Two key combinatorial observations:

Labels in the tree = length of leftmost path in the map

Leftmost paths are almost geodesic (up to o(n1/4) error term).

leftmost path:



• Encode the blossoming trees by labeled trees
Prove that the scaling limit of
trees is the Brownian snake. u

starting from u,
ending at the root face

Convergence of simple triangulations

Problem: How to track distances in the map in the blossoming tree ?

Theorem: [Addario–Berry, A. 15] Let (∆n) = random simple triangulations:(
V (∆n),

(
3

4n

)1/4

dgr

)
The Brownian Map

(d)

Gromov–Hausdorff
topology

Same ideas sucessfully applied to study simple maps [Bernardi, Collet, Fusy 14], simple
triangulations on the torus [Beffara, Huynh, Lévêque 20], simple triangulations with a
boundary [A., Holden, Sun 20]

• Prove that the labels of the tree give some distance
information in the map

→ Two key combinatorial observations:

Labels in the tree = length of leftmost path in the map

Leftmost paths are almost geodesic (up to o(n1/4) error term).

leftmost path:
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Simulation of
√

8
3

-LQG by T.Budd

γ ∈ (0, 2), γ-Liouville Quantum Gravity = measure on a surface [Duplantier, Sheffield 11].

Simulation of the Brownian map by T.Budd

[Duplantier, Miller, Sheffield 14]

[Miller, Sheffield 16+16+17]

[Duplantier, Miller, Sheffield 14]

[Miller, Sheffield 16+16+17]

Construction in the continuum.

A priori , there is no canonical way to embed a planar map in the sphere.

But, for simple triangulations:
the circle packing theorem
gives a canonical embedding.

(Unique up to Möbius transformations.)

in the discrete setting ?
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Motivation to study simple triangulations, but so far no results for random circle packings.



Link with Liouville Quantum Gravity

Simulation of
√

8
3

-LQG by T.Budd
Simulation of a large simple triangulation
embedded in the sphere by circle packing.

Software CirclePack by K.Stephenson.

Motivation to study simple triangulations, but so far no results for random circle packings.

However, [Holden, Sun 19] proved that uniform triangulations (without
multiple edges) embedded via the Cardy embedding converge towards√

8/3-LQG.
Proof is built on many results, among which [A., Holden, Sun ’20] : the scaling limit of
triangulations without multiple edges and with a boundary is the Brownian disk.



III - Local limit of Ising-weighted
random triangulations

Local point of view
(Benjamini-Schramm topology):

Simulation by I.Kortchemski
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Local point of view :
Look at neighborhoods of the root

The local topology (= Benjamini–Schramm topology)
on finite maps is induced by the distance:

where Br(m) = ball of radius r centered at the root vertex of m.
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′) =
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dloc(m,m
′) =
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Theorem [Angel – Schramm, ’03]
Let P∆

n = uniform distribution on triangulations of size n.

UIPT = Uniform Infinite Planar Triangulation

P∆
n UIPT, for the local topology

(d)

= measure supported on infinite planar triangulations.
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n = uniform distribution on triangulations of size n.

UIPT = Uniform Infinite Planar Triangulation

P∆
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(d)

= measure supported on infinite planar triangulations.

Some properties of the UIPT:
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Theorem [Angel – Schramm, ’03]
Let P∆

n = uniform distribution on triangulations of size n.

UIPT = Uniform Infinite Planar Triangulation

P∆
n UIPT, for the local topology

(d)

= measure supported on infinite planar triangulations.

Some properties of the UIPT:

• Volume (nb. of vertices) and perimeters of balls known to some extent.

E [|Br(T∞)|] ∼ 2

7
r4

• Simple random Walk is recurrent [Gurel-Gurevich and Nachmias 13]

• The UIPT has almost surely one end [Angel – Schramm, 03]

[Angel 04, Curien – Le Gall 12]

Universality: we expect the same behavior for other “reasonable” models of maps.

In particular, we expect the volume growth to be 4.

(proved for quadrangulations [Krikun 05], simple triangulations [Angel 04])

Local limit of large uniformly random triangulations



Escaping universality: adding matter

First, Ising model on a finite deterministic planar triangulation T :

Spin configuration on T :

Ising model on T : take a random spin configuration with probability:

P (σ) ∝ eβJ
∑
v∼v′ 1{σ(v)=σ(v′)} β > 0: inverse temperature.

J = ±1: coupling constant.
h = 0: no magnetic field.

σ : V (T )→ {−1,+1} = { , }.
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First, Ising model on a finite deterministic planar triangulation T :

Spin configuration on T :

Ising model on T : take a random spin configuration with probability:

P (σ) ∝ eβJ
∑
v∼v′ 1{σ(v)=σ(v′)} β > 0: inverse temperature.

J = ±1: coupling constant.
h = 0: no magnetic field.

σ : V (T )→ {−1,+1} = { , }.

with m(σ) = number of monochromatic edges (ν = eβJ).

Combinatorial formulation: P (σ) ∝ νm(σ)

m(σ) = 5

Next step: Sample a triangulation of size n
together with a spin configuration,
with probability ∝ νm(T,σ). Zn = normalizing constant.
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Escaping universality: adding matter

First, Ising model on a finite deterministic planar triangulation T :

Spin configuration on T :

Ising model on T : take a random spin configuration with probability:

P (σ) ∝ eβJ
∑
v∼v′ 1{σ(v)=σ(v′)} β > 0: inverse temperature.

J = ±1: coupling constant.
h = 0: no magnetic field.

σ : V (T )→ {−1,+1} = { , }.

with m(σ) = number of monochromatic edges (ν = eβJ).

Combinatorial formulation: P (σ) ∝ νm(σ)

m(σ) = 5

Remark: This is a probability distribution on triangulations with spins. But, forgetting the
spins gives a probability a distribution on triangulations without spins different from the
uniform distribution.

Next step: Sample a triangulation of size n
together with a spin configuration,
with probability ∝ νm(T,σ). Zn = normalizing constant.

Pνn
(
{(T, σ)}

)
=
νm(T,σ)δ|e(T )|=3n

Zn
.Pνn

(
{(T, σ)}

)
=
νm(T,σ)δ|e(T )|=3n

Zn
.
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Counting exponent for undecorated maps:

where κ and ρ depend on the combinatorics of the model.

coeff [tn] of generating series of (undecorated) maps ∼ κρ−nn−5/2

(e.g.: triangulations, quadrangulations, general maps, simple maps,...)



Escaping universality: new asymptotic behavior

Theorem [Bernardi – Bousquet-Mélou 11]
For every ν > 0, Q(ν, t) is algebraic and satisfies

This suggests a different behavior of the underlying maps for ν = νc.

See also [Boulatov – Kazakov 1987], [Bousquet-Melou – Schaeffer 03]
and [Bouttier – Di Francesco – Guitter 04].

Counting exponent for undecorated maps:

where κ and ρ depend on the combinatorics of the model.

coeff [tn] of generating series of (undecorated) maps ∼ κρ−nn−5/2

(e.g.: triangulations, quadrangulations, general maps, simple maps,...)

Q(ν, t) =
∑
T∈Tf

∑
σ:V (T )→{−1,+1}

νm(T,σ)te(T ).

[t3n]Q(ν, t) ∼
n→∞

{
κ ρ−nνc n−7/3 if ν = νc = 1 + 1√

7
,

κ ρ−nν n−5/2 if ν 6= νc.

Generating series of Ising-weighted triangulations:



Local convergence of triangulations with spins

Theorem [A. – Ménard – Schaeffer, 21]

ν-IIPT = ν-Ising Infinite Planar Triangulation
= measure supported on infinite planar triangulations.

Pν ν-IIPT, for the local topology
(d)

Moreover, simple random walk is recurrent on the νc-IIPT.

Let Pνn = ν–Ising weighted probability distribution:
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Theorem [A. – Ménard – Schaeffer, 21]

ν-IIPT = ν-Ising Infinite Planar Triangulation
= measure supported on infinite planar triangulations.

Pν ν-IIPT, for the local topology
(d)

Moreover, simple random walk is recurrent on the νc-IIPT.

Let Pνn = ν–Ising weighted probability distribution:

Strategy of proof:

• Refinement of enumerative results
of [Bernardi, Bousquet-Mélou]
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For every ν > 0, for every ω ∈ {−1,+1}∗

[t3n]Zω(ν, t) ∼
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κ ρ−nν n−5/2 if ν 6= νc.

with Zω(ν, t) generating series of Ising-weighted
triangulations with boundary condition given by ω.



Local convergence of triangulations with spins

Theorem [A. – Ménard – Schaeffer, 21]

ν-IIPT = ν-Ising Infinite Planar Triangulation
= measure supported on infinite planar triangulations.

Pν ν-IIPT, for the local topology
(d)

Moreover, simple random walk is recurrent on the νc-IIPT.

Let Pνn = ν–Ising weighted probability distribution:

Strategy of proof:

• Refinement of enumerative results
of [Bernardi, Bousquet-Mélou]

Theorem [A. – Ménard – Schaeffer 21]
For every ν > 0, for every ω ∈ {−1,+1}∗

[t3n]Zω(ν, t) ∼
n→∞

{
κ ρ−nνc n−7/3 if ν = νc,

κ ρ−nν n−5/2 if ν 6= νc.

with Zω(ν, t) generating series of Ising-weighted
triangulations with boundary condition given by ω.

We use the blossoming bijection of [Bousquet-Mélou, Schaeffer 02] to prove that !



Local convergence of triangulations with spins

Theorem [A. – Ménard – Schaeffer, 21]

ν-IIPT = ν-Ising Infinite Planar Triangulation
= measure supported on infinite planar triangulations.

Pν ν-IIPT, for the local topology
(d)

Moreover, simple random walk is recurrent on the νc-IIPT.

Let Pνn = ν–Ising weighted probability distribution:

Strategy of proof:

• Refinement of enumerative results
of [Bernardi, Bousquet-Mélou]

Theorem [A. – Ménard – Schaeffer 21]
For every ν > 0, for every ω ∈ {−1,+1}∗

[t3n]Zω(ν, t) ∼
n→∞

{
κ ρ−nνc n−7/3 if ν = νc,

κ ρ−nν n−5/2 if ν 6= νc.

with Zω(ν, t) generating series of Ising-weighted
triangulations with boundary condition given by ω.

• Proof of the tightness: combinatorial proof by a double counting argument.



Perspectives

• Blossoming bijections in higher genus ? Other rationality schemes to investigate ?

• Track distances in blossoming bijections to study more constrained models.

e.g. scaling limit of planar graphs ?

• Extend bootstrapping principle for the convergence of trees to more general models.

e.g. α-stable trees ?

• Study of the clusters of the ν-IIPT, following [Bernardi,Curien,Miermont, 15]

• Bijections for the Ising model, blossoming bijection by [Bousquet-Mélou, Schaeffer 02].

Can we find a “mating-of-tree” type bijection ?

• Can we say anything about the growth volume of the ν-IIPT ?
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