
Communication Complexity

Michel de Rougemont
IRIF-CNRS

Abstract

Introduction to Communication Complexity, a framework to better understand the
algorithmic computational complexity. We will use it to prove lower bounds for Testers
and Streaming algorithms.
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1 Introduction

In the classical setting for the complexity class IP , a Prover and a Verifier interact and the
goal is to have the simplest possible Verifier, whereas the Prover is arbitrary. In the classical
definition the Verifier is a BPP algorithm. In the PCP setting the Verifier fixes in advance
a possible long proof but the Verifier must be simple, in particular ask few queries. In the
new Communication Complexity setting, we want to minimize the number of bits exchanged
between the Prover and the Verifier, renamed Alice and Bob.

There are two parties: Alice and Bob. Each one knows a variable, x ∈ X for Alice,
and y ∈ Y for Bob. They want to compute a function f(x, y) and we are only interested
in the number of bits exchanged by the two players. Let us assume that x, y are of length
n. A protocol is a binary tree where each node is labeled A, i or B, j to indicate that Alice
sends xi to Bob or that Bob sends yj to Alice. If they compute new bits, we label them
xn+1, xn+2, .... for Alice and similarly for Bob.

The classical references are: the books [2, 4].

2 Deterministic protocols

A deterministic protocol is a sequence of bits sent by Alice and Bob. Alice sends the bit
xi and we start a decision tree: on the left branch xi = 0 and on the right branch xi = 1.
We continue with the next bit send by Alice or Bob, unless the value of the function f is
attached to the current node. Let P (x, y) be the output of the protocol and C(x, y) its cost,
i.e. the number of bits exchanged by the protocol P or the depth of the tree on input (x, y).

For each level of the tree, there is a function f(xi1 , ...xik , yi1 , ....yil , x, y) which depends
on the previous choices xi1 , ...xik of Alice and yi1 , ....yil of Bob and determines the choice of
Alice or Bob. On each leaf, there is the value of the function.

Definition 1 C(f) = MinP Maxx,y C(x, y)

Let M(f) be the matrix where the lines are the possible x, the columns are the possible
y and M(x, y) = f(x, y).

Examples: the equality function EQ(x, y), the Parity function P (x, y) for x, y ∈ {0, 1}n.
Suppose x, y ⊆ {1, 2, ...n}, the AV G(x, y) function computes the average value of the mul-
tiset x ∪ y, the MAX(x, y) function computes the maximum value of x and y.
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Figure 1: A deterministic protocol

2.1 Rectangles and fooling sets

Suppose we observe the bits exchanged between Alice and Bob, say z. What can we say
about the inputs (x, y) which give the same z ? We can view z as a path in the decision tree
and all inputs which follow the same path yield the same z.

A rectangle is a subset of X.Y which can bre written as A.B for A ⊆ X and B ⊆ Y .

Lemma 1 For every transcript z of a deterministic protocol P , the set of (x, y) which gen-
erate z is a rectangle.

Proof: By induction on the length of z. At the beginning the set of (x, y) is X.Y , a
rectangle. Assume the property true at depth d, i.e. the set of (x, y) at depth d is the
rectangle A.B. At depth d+ 1, suppose Alice transmits xi. Let A1 the subset of A such that
xi = 1, and symetrically let A0 the subset of A such that xi = 0. On the right branch the
set of (x, y) is A1.B and on the left branch the set of (x, y) is A0.B. Both are rectangles. �

Assume P is a correct protocol for a function f , and a rectangle along P is the rectangle
of a path in the decision tree.

Lemma 2 If P computes f , every rectangle along P is monochromatic in M(f).
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Proof: Along each rectangle the protocol gives the same value, which must be f(x, y). �

Theorem 1 Let f be a function such that every partition of M(f) into monochromatic
rectangles requires r rectangles. Then C(f) ≥ log r.

Proof: The number of leaves is greater then r hence the depth is greater than log r. �
A fooling set is a set S ⊆ X.Y such that there exists z and:

• for every (x, y) ∈ S, then f(x, y) = z,

• for two distinct pairs (x1, y1), (x2, y2) ∈ S, then either f(x1, y1) 6= z or f(x2, y2) 6= z

Lemma 3 If f has a fooling set S of size t, then C(f) ≥ log t.

Proof: Each monochromatic rectangle of S is of size at most 1, hence there are at least t
monochromatic rectangles and by theorem 1, C(f) ≥ log t. �

3 Randomized protocols

Alice and Bob access public or private coins rA and rB. The protocol is a tree which depends
on x, y, rA, rB. A protocol P computes with 0-error if:

IProbrA,rB [P (x, y) = f(x, y)] = 1

A protocol P computes with ε-error if:

IProbrA,rB [P (x, y) = f(x, y)] ≥ 1− ε

There several variations:

• One way communication or 2-ways,

• Private or public coins,

• One sided or two-sided errors.

The random choices rA and rB generate different communication costs (number of bits
exchanged). For a given (x, y), the worst-case cost on (x, y) is the maximum number of bits
exchanged over all choices of rA, rB. The worst-case cost is the maximum worst-case cost over
all choices of (x, y). One could also choose an average cost on (x, y) as the average number
of bits exchanged over all choices of rA, rB. The average cost is the maximum average cost
on (x, y) over all choices of (x, y).

• Rε(f) is the minimum worst case cost with error for protocols which computer with ε
error, i.e.

Rε(f) = MinP Maxx,y C(x, y)
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• R1
ε(f) is the minimum worst case cost with 1-sided error ε,

• Rpub
ε (f), R1 pub

ε (f) are the version with public coins.

The complexity class BPPcc is the class of problems such that Rε(f) ∈ O(poly(log n)).

3.1 Private vs. public coins

Consider the equality function EQ(x, y). With a public coin r, Alice computes x.r =
∑

i xi.ri,
Bob computes y.r =

∑
i xi.ri and Alice sends the result to Bob who compares the two results.

The result is 1 if the two results ar equal and 0 otherwise. If x = y then IProbr[P (x, y) =
f(x, y)] = 1. If x 6= y, then IProbr[P (x, y) = f(x, y)] = 1/2 and the error is 1/2. If we
repeat the test k times and accept if all the results coincide and reject otherwise, the error
probability decreases to (1/2)k.

With private coins, the previous protocol would require to communicate r. Another
protocol is as follows:

Let x = a be Alice’s input and y = b be Bob’s input. Let Let p be a prime number
n2 ≤ p ≤ 2.n2 and:

A(x) = a0 + a1.x+ .....an.x
n (p)

B(x) = b0 + b1.x+ .....bn.x
n (p)

be two polynomials of degree n − 1. Alice picks a random number t < p and sends t and
A(t) to Bob. Bob accepts (output is 1) if A(t) = B(t), otherwise Bob rejects (output is 0).
If x = y, it is correct. If x 6= y the error probability is when t is a root of A(t) − B(t) and
there are at most n− 1 roots. The error probability is (n− 1)/p ≤ (n− 1)/n2 ≤ 1/n.

3.2 Distributional Complexity

Let Dµ
ε (f) be the cost of the best deterministic protocol which gives the right answer to a

fraction at least 1− ε of the input (x, y) weighted by µ.

Dµ
ε (f) = MinP Maxx,y C(x, y)

for deterministic protocols such that IProbx,y∈µ[P (x, y) = f(x, y)] ≥ 1− ε.

Lemma 4 Rpub
ε (f) ≥Maxµ D

µ
ε (f).

Proof: Let P be a randomized public coin protocol which computes f with error at most
ε on all inputs (x, y). In particular for any µ:

IProbr.µ[P (x, y) = f(x, y)] ≥ 1− ε

Therefore there exists some fixed r′ and a deterministic Pr′ such that:

IProbµ[Pr′(x, y) = f(x, y)] ≥ 1− ε
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Then Rpub
ε (f) ≥ cost(Pr′) if cost(Pr′) is the cost weighted by µ, as Rpub

ε (f) considers the
worst-case cost. Notice that cost(Pr′) ≥Maxµ D

µ
ε (f), as a specific Pr′ has a cost larger than

the cost for of the optimal deterministic protocol on µ, hence Rpub
ε (f) ≥Maxµ D

µ
ε (f). �

We now consider the reverse inequality, which requires the use of the MinMax theorem.

3.2.1 Zero sum Games

A zero-sum game between two players is defined by a matrix A of dimension (n,m), when
the strategies of I are 1, 2, ...n and the strategies of II are 1, 2, ...m. The utility of player I
when he plays strategy i and player II plays strategies j, is A(i, j). Similarly the utility of
player II is B(i, j) and A + B = 0. The two players are opposed: the gain of one of the
player is the loss of the other.

The players play mixed strategies x and y and the expected gain for I is:

xt.A.y =
∑
i,j

xi.A(i, j).yj

I tries to maximize his gain and II tries to minimize it. Hence x satisfies:

Maxx Miny x
t.A.y

Let yj be a pure strategy for II and let be t = Minyj x
t.A.y = Minj

∑
i xi.A(i, j).

Observe that t ≥Miny x
t.A.y as there are infinitely many possible y.

Let us show that t ≤Miny x
t.A.y. Observe that

xt.A.y =
∑
i,j

xi.A(i, j).yj =
∑
j

yj.
∑
i

xi.A(i, j) ≥
∑
j

yj.t = t

We conclude that Miny x
t.A.y = Minyj x

t.A.y = Minj
∑

i xi.A(i, j).
We can therefore find the best x with a linear program over the variables t, x1, ...xn.

Max t

t ≤
∑
i

xi.A(i, j), for j = 1, ....m

∑
i

xi = 1

We can argue similarly, if we start with the expressionMiny Maxx x
t.A.y = Miny Maxi y

t.At.xi,
which is the goal of player II.

Min z

z ≥
∑
j

yj.A
t(j, i), for i = 1, ....n
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∑
j

yj = 1

The gain of player II is just −z for the optimal z. These two programs are dual. By
duality:

Maxx Miny x
t.A.y = Miny Maxx x

t.A.y

The optimal value is called the value of the game. It is also a Nash equilibrium.
Examples of classical games such as Rock-Paper-Scissors- where n = m = 3 and the

matrix defining the gain of player I is:

A =

 0 −1 1
1 0 −1
−1 1 0


In this case the value of the game is 0 and the optimal strategy of I and II is:

x∗ = y∗ = (
1

3
,
1

3
,
1

3
)

Consider now the matrix

A =


−1 1 −1 1
−1 1 1 1
1 1 1 −1
−1 1 1 1
1 −1 1 1


In this case, the value is 0.33 for player I, hence −0.33 for player II. The optimal strategy

of player I is:

x∗ =


0, 0833
0, 1250
0, 3333
0, 1250
0, 3333


If we take the dual, the optimal strategy of player II is:

y∗ =


0, 3333335
0, 333333

0
0, 3333335


3.2.2 Protocols versus data

Consider the 0-sum game between 2 players. Player 1 is the protocol designer: his pure
strategies are the deterministic protocols exchanging c-bits. Player 2 chooses the input x, y.
We label the utility matrix M(P, (x, y)) by 1 if P (x, y) = f(x, y) and by −1 otherwise.
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Theorem 2
Rpub
ε (f) = Maxµ D

µ
ε (f)

Proof: Let us show that Rpub
ε (f) ≤Maxµ D

µ
ε (f). Let c = Maxµ D

µ
ε (f).

The mixed strategies of player 1 are the randomized strategies with public coins. The
mixed strategies of player 2 are the distributions µ on the inputs.

We assume Dµ
ε (f) ≤ c. In this setting:

MaxP Minµ M(x, y) ≥ 1− ε

By the Minimax theorem, we conclude that:

Minµ MaxP M(x, y) ≥ 1− ε

Consider the distribution which achieves the minimum. There is a deterministic proto-
col P which achieves the bound. A probabilistic protocol can only be better. Hence
Maxµ D

µ
ε (f) ≥ Rpub

ε (f). �

4 Lower bounds

There are at least 3 methods to show lower bounds on the Communication Complexity. Most
methods use the previous result and look for a distribution µ where Dµ

ε (f) is larger than
some bound.

• the Corruption bound method, where we look at ε−monochromatic rectangles. We
show that if there are large, they must be corrupted.

• the Discrepancy based method,

• the method based on the Information Complexity.

4.1 Lower bound on Disjointness via the corruption bounds

We describe an Ω(
√
n) lower bound, based on [1].

The distribution: uniform distribution on the
(
n√
n

)
binary words with

√
n bits at 1. We

consider almost monochromatic rectangles R = S × T , i.e.

IProbµ[Disjointness(x, y) = 0|(x, y) ∈ R] ≤ ε

and show that either |S| or |T | are small, i.e. less than

2−c.
√
n.

(
n√
n

)
8



Consequently, there are many almost monochromatic rectangles and by theorem 1, the com-
munication complexity is large.

We first prove some useful lemmas. Let:

S ′ = {x : x ∈ S, |x ∩ y| ≤ 2ε.|T |}

i.e. the x which intersect with at most 2ε.|T | of the y ∈ T . As S × T is ε-monochromatic,
|S ′| ≥ |S|/2.

Lemma 5 Assume S is large, then there exists x1, ....xk ∈ S ′ where k =
√
n/3 such that:

|xi ∩
⋃
j<i

xi| ≤
√
n/2

Proof: Each new xi brings at least
√
n/2 new points. Let us prove the property by in-

duction on i. Let zi =
⋃
j<i xi, which is of size less than

√
n/.
√
n/3 = n/3 and we selected

{x1, ....xi−1}. Let us evaluate how many x′s are such that |x∩zi| ≥
√
n/2, i.e. bad points. We

show that are only few and therefore we can always find a new xi which satisfies the condition.

We select j ≥
√
n/2 ∈ zi and

√
n− j 6∈ zi, hence the possible number of xi is less than:

√
n∑

j=
√
n/2

(
n/3

j

)
.

(
2n/3√
n− j

)

≤
√
n/2.

(
n/3√
n/2

)
.

(
2n/3√
n

)
≤
√
n/2.

(
2n/3√
n

)
≤
√
n/2.(2/3)

√
n

(
n√
n

)
≤ 2−c

√
n.

(
n√
n

)
, c = (log 3− log 2)/2. log 2

< |S|

Hence there is an xi such that |xi ∩
⋃
j<i xi| ≤

√
n/2. �

Let S ′′ be the set x1, ...xk and T ′′ = {y : x ∈ S ′′, |x ∩ y| ≤ 4ε.|S ′′|}. Each y intersect at
most 4ε fraction of S ′′.

Lemma 6 If S is large, then T is small
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Proof: Notice that T ′′ ≥ |T |/2, using the same averaging argument as for S ′. Let us bound
the size of T ′′. Each y does not intersect with at least (1− 4ε).k of the xi. The size of these
xi is greater than (1 − 4ε).k.

√
n/2 ≥ k.

√
n/3 = n/9. The number of possible y is then less

than: (
k

4ε.k

)(
8n/9√
n

)
=

( √
n/3

4ε.
√
n/3

)(
8n/9√
n

)
≤ 2−c

′√n.

(
n√
n

)
�

Theorem 3 There exists a distribution µ such that Dµ
ε (Disjointness) = Ω(

√
n).

Proof: Let µ be the distribution where x, y are choosen with
√
n elements uniformly among

n. All the ε-monochromatic rectangles have size smaller than 2−c.
√
n. |X|.|Y |. We need more

than 2c.
√
n of these rectangles and hence Dµ

ε (Disjointness) = log 2c.
√
n = Ω(

√
n). �

A more sophisticated µ [3] leads to the central result:

Theorem 4 There exists a distribution µ such that Dµ
ε (Disjointness) = Ω(n).

4.2 Lower bound via the Discrepancy

For a rectangle R and a distribution µ, let:

Discµ(R, f) = |Probµ[f(x, y) = 0 ∧ (x, y) ∈ R]− Probµ[f(x, y) = 1 ∧ (x, y) ∈ R]|

For a function f and a distribution µ, let:

Discµ(f) = MaxRDiscµ(R, f)

There is a direct link between Discµ(f) and Dµ
ε (f).

Lemma 7 For every f, µ, ε,

Dµ
1/2−ε(f) ≥ log(2ε/Discµ(f)

Proof: Consider a deterministic protocol π, with error 1/2− ε and communication cost c.

Probµ[π(x, y) = f(x, y)] ≥ 1/2 + ε

Probµ[π(x, y) 6= f(x, y)] ≥ 1/2− ε
Hence:

Probµ[π(x, y) = f(x, y)]− Probµ[π(x, y) 6= f(x, y)] ≥ 2ε

For all the leaves l of the protocol, corresponding to a rectangle Rl:

=
∑
l

Probµ[π(x, y) = f(x, y) ∧ (x, y) ∈ Rl]− Probµ[π(x, y) 6= f(x, y) ∧ (x, y) ∈ Rl]2ε
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On each leave, there is either 0, i.e. π(x, y) = 0 or 1, i.e. π(x, y) = 1. Hence:

Probµ[π(x, y) = f(x, y) ∧ (x, y) ∈ Rl]− Probµ[π(x, y) 6= f(x, y) ∧ (x, y) ∈ Rl] =

|Probµ[f(x, y) = 0 ∧ (x, y) ∈ Rl]− Probµ[f(x, y) = 1 ∧ (x, y) ∈ Rl]|
There are at most 2c leaves if Dµ

1/2−ε(f) = c. Hence:

2c.Discµ(f) ≥ 2ε

c ≥ log(2ε/Discµ(f)

�
Let us apply the method to show an Ω(n) lower bound for the function IP (x, y) =

∑
i xi.yi.

Lemma 8 DISCuniform(IP ) ≤ 2−n/2

Proof: Let H be the matrix such that H(x, y) = 1 if IP (x, y) = 0 and H(x, y) = −1 if
IP (x, y) = 1. Notice that H.H t = 2n.I, i.e. is the identity matrix multiplied by 2n.

Let us show that H.H t(x, y) = 2n if x = y, otherwise H.H t(x, y) =
∑

zH(x, z).H t(z, y) =
0. H(x, z) is 1 for half of the z′s and H(x, z) is −1 for the other half.

∑
zH(x, z).H t(z, y) =∑

zH(x, z).H(y, z), and H(x, z) = H(y, z) for half of the z′s and H(x, z) 6= H(y, z) for the
other half.

We compare
∑

i xi.zi with
∑

i yi.zi. Suppose x, y differ in positions j1, j2: just consider
the 4 possibilities where zj1 = 0 or 1, and zj2 = 0 or 1. For zj1 = zj2 , then

∑
i xi.zi =

∑
i yi.zi

and H(x, z) = H(y, z). For zj1 6= zj2 , then
∑

i xi.zi 6=
∑

i yi.zi and H(x, z) 6= H(y, z). There
are as many z in each case.

Observe that the Froebinius norm ||H|| =
√

2n. For a rectangle S.T , let 1S (resp. 1T ) be
the characteristic vector of S (resp. T ). For the uniform distribution, observe that:

DISCuniform(S.T, IP ) =
|
∑

x∈S,y∈T H(x, y)|
22n

=
|1S.H(x, y).1T |

22n

As |S| ≤ 2n, ||S|| ≤
√

2n By the property of the norm,

|1S.H(x, y).1T | ≤ ||1S||.||H(x, y)||.||1T || =
√

23n

Hence:

DISCuniform(IP ) = MaxS,T ≤ DISCuniform(S.T, IP ) ≤
√

23n

22n
= 2−n/2

�

Corollary 1 Duniform
1/2−ε (IP ) ≥ n/2− log(1/ε) and Rpub

ε (IP ) ≥ n/2− log(2/ε)
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Proof: By lemma 7
Duniform

1/2−ε (f) ≥ log(2ε/Discuniform(f)

By lemma 8, DISCuniform(IP ) ≤ 2−n/2, hence

Duniform
1/2−ε (IP ) ≥ log(2ε/Discuniform(IP ) ≥ n/2 + log(2ε)

Rpub
ε (IP ) ≥ Duniform

ε (f) ≥ n/2− log(2/ε)

�

4.3 Lower bound via the Information Complexity

5 Reductions

In the classical setting, problem A reduces to problem B, writen A ≤ B if there is a function
f such that x ∈ A iff f(x) ∈ B. in the communication complexity setting (x, y) ∈ A iff there
is an algorithm for Alice (or Bob) which decides if (f(x), f(y)) ∈ B.

• INDEX ≤ DISJOINTNESS

INDEX (x, i) = xi and DISJOINTNESS(x, y) = 1 if ∀ixi 6= yi.

Alice has an n-bit vector and Bob has a position i (log n bits) and the output is xi.
Let f(x) = x and f(i) = ei the word with a 1 in position i and 0 elsewhere. If
INDEX (x, i) = 1 then DISJOINTNESS(f(x), f(i)) = 0 and if INDEX (x, i) = 0 then
DISJOINTNESS(f(x), f(i)) = 1.
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