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Abstract—We study analytical queries for two models
of Social Networks. Firstly, a datawarehouse which can be
analyzed along some OLAP schema and possible dimen-
sions, secondly a model of streaming data which need to
be transformed before they are analyzed. In the first case,
the linear influence model is generalized for each possible
dimensions and provides densities of influence types. In the
second case, we need to approximate the analytical queries
by sampling the data along some specific distributions.
For a model of analytical queries on graphs and their
approximations, we give examples of approximable and
non approximable queries. We introduce a measure to
quantify the information provided by various analyses
using both the Entropy of the answer to the query and
of the influence types. We illustrate the approach on
Facebook and Twitter data.

I. INTRODUCTION

Social Networks such as Facebook or Twitter pro-
vide many useful data which can be helpful to predict
real-world outcomes, properties of these networks as
in [7] or the dynamics of the network as in [9]. In
this paper we study analytical queries on a dataware-
house (Facebook model) and on Streaming data (Twitter
Model), relative to a Schema. We give a model for
the information value of these queries, based on the
Entropy. As an example of a datawarehouse, we ana-
lyze Facebook movie pages in order to predict movies
revenues as in [1], [10] but refine the analysis along
various dimensions such as Gender, Location, Types
of interactions. As an example of streaming data, we
analyze Twitter data on keywords and their Twitter
graphs.

For simplicity, we concentrate on OLAP (OnLine
Analytical Processing) queries whose answers can be
considered as distributions. The support is the domain
of the dimensions on which the values are greater than
some ¢, some percentage value such as 1%. We wish
to compare different analyses and associate a value to
each of them. The experience shows that some analyses
are more informative than others, and we are looking
for a formal model which generalizes the classical
Information Gain. We don’t consider the visualization
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techniques which play an important role for the quality
of the dashboards and only compare the information
associated with the distributions.

One classical way to analyze a datawarehouse is to
ask for OLAP queries defined on an OLAP schema.
A Web site may collect all the users’ data and load
them in a datawarehouse. It may provide an OLAP
schema which lists the possible dimensions and their
dependencies to analyse the data.

In [10], the analysis of Facebook movie pages is
used to predict the number of ticket sales of a movie,
using the Linear Influence Model [12] and then the
possible revenues of a movie. We refine this approach
by analyzing the Engagements, i.e. the possible Likes,
Shares, Comments users can generate on a Facebook
page, collected in a datawarehouse depending on the
profile of the users. An implicit schema provides possi-
ble dimensions such as Time, Gender, Location, Types
to analyze these data. We can measure the number of
Engagements per Gender and Time, or per Location and
Time, and many more elaborate queries.

We then define a formal model to quantify the value
of these analyses, to infer which analysis gives more
information. On the Facebook example, we deduce in
section 6 that the analysis per Location and Time is
more informative than the analysis per Gender and
Time.

A different model, followed by Twitter, is based on
streaming data. In this case, we can only approximately
answer these queries if we assume that we can’t store
all the data. A general problem is to bound the number
of local queries on XML streams as in [3], [6] to
test various properties. For the Streaming Property
Testing model introduced in [4], O(poly(logn/c))
local samples of the online XML stream with n nodes
allow to decide if an XML tree is valid or e—far
from an XML schema. The answers to OLAP queries,
viewed as a distribution, can be approximated with L
distance with similar techniques.



An ETL (Extract Transform Load) step transforms
the Json stream into an enriched structure. In Twitter’s
case, the Json tree is transformed into a graph. We then
enrich the graph with communities and query this new
structure along several dimensions. We define a class
of analytical queries for these graphs with communities
and provide two examples which illustrate the role of
the approximation, when we take online samples (nodes
of the graphs with their neighborhoods) with the degree
distribution or with the uniform distribution. Our main
results show that one natural analytical query A; is
approximable for the degree distribution, but not for
the uniform distribution, and conversely the query As
is approximable for the uniform distribution, but not
for the degree distribution. We argue that the classical
ETL procedure has to be extended. An ETCL (Extract,
Transform, Compress, Load) includes a structural com-
pression which uses specific samplings.

In the general case, we have several sources which
we have to integrate and we need to construct the
sketches which will be used to approximate analytic
queries. We clearly need a tool to compare the value
of the different analyses. In this paper we propose a
solution for one source and illustrate it for Facebook
and Twitter data.

In the second section, we set the framework of
OLAP queries and their approximation, and of the linear
Influence model. In the third section, we describe a
classical datawarehouse with an OLAP schema and the
Entropy based model to compare analytical queries. In
the fourth section, we describe streaming data and the
transformation as a graph with communities. In the fifth
section, we define our model of analytical queries on
such graphs and our main results. In the sixth section,
we describe our experiments on Facebook and Twitter.

II. PRELIMINARIES

We concentrate on simple OLAP queries for analytic
queries and their approximation on streaming data.
We then recall the Linear Influence Model [12] which
defines the Influence profile of users from the observed
measures. We want to combine both the information of
the analysis and of the profile to define a value of the

query.

A. OLAP queries

We follow the functional model associated with an
OLAP schema, i.e. the OLAP or star schema is a
tree where each node is a set of attributes, the root
is the set of all the attributes of the data warehouse
relation, and an edge exists if there is a functional
dependency between the attributes of the origin node
and the attributes of the extremity node, as in Figure
1. This model is usually used for relational data, where

[Location] [Gender] [ Type ]

\[\

[ Time ]

Object

Fig. 1. A simplified OLAP schema for Facebook.

atttributes are the columns and one table is considered
as the datawarehouse. It can also be extended to XML
trees, where nodes have labels and attributes. The mea-
sure is a specific node of the schema at depth 1 from
the root. The simple OLAP schema of Figure 1, where
the functional dependencies follow the edges up, will be
used for Facebook data. For each click on a Web page,
a tuple with the user’s information, the time, the type
of Engagement, i.e. Like, Share, Comment, is recorded
in a datawarehouse.

An OLAP query for a schema S is determined by: a
filter condition, a measure, the selection of dimensions
or classifiers, Cy,...C}, where each C; is a node of
the schema S, and an aggregation operator (COUNT,
SUM, AVG, ...). A filter is a condition which selects
a subset of the tuples of the datawarehouse (in the
relational model), and we assume for simplicity that
SUM is the Aggregation Operator. The answer to an
OLAP query is a multidimensional array, along the
dimensions C',...C}, and the measure M. Each tuple
C1, ..., Cp, m; of the answer is such that

- Zt:t.Clzcl,...t.Cp:cp t.M
;=
e t-M

We consider relative measures as answers to OLAP
queries, i.e. as a distribution and write Q% as the density
vector for the answer to () on dimension C' and on
datawarehouse I. Each component of Qé is written
QL_,, the relative density for the dimension C' = c.
Figures 8 and 9 are answers to 1-dimensional OLAP
query on Gender and Location respectively, given a filter
on a time interval.

B. Approximate answers to queries

Many queries can be efficiently approximated,
in particular analytical queries, using randomized
algorithms. There are different types of approximation,
depending on the queries:



e For boolean queries, we decide if the query
is true or e-far with high probability, as in
Property Testing [8],

e  For unary queries, we use the Hamming dis-
tance between sets,

e For OLAP queries (distributions), we use the
L, distance.

For streaming data, such as Json or XML streams
provided by Twitter, we need to approximate OLAP
queries, as we can’t store all the data. As in [3],
we approximate the distribution by constructing partial
sketches. An exact answer to the Gender query of Figure
8 might be {female : 80%,male : 20%}, and an
approximate answer might be {female : 82%, male :
18%} with a 4% error.

C. Linear Influence Model

A Web site records the time of an interaction and
the users profiles. The simplest analysis is the number
of interactions in a time interval, an analysis over the
dimension time with a time interval as a filter, a unit
measure and COUNT as an operator. We may want to
infer the Influence of the users, as a Social Network dif-
fuses the information over the user’s friends. Given the
activity measure x(t) at time ¢, a useful view is to infer
an Influence profile I, (¢) for each user u, following the
linear model introduced in [12]. We will generalize this
approach by introducing Influence vectors for various
values of the dimensions, for example we will have
I(t, f) for female and I(t,m) for male and generally
I(t,ay,...a) for k dimensions and values a; for the
i-th dimension. We first review the global model.

Given a network, the influence of a node u, repre-
sented by the vector I,(t), measures the influence of
user u at time ¢. Let ¢ be some information, or some
web site on which we observe various Engagements.
The simplest form is the /ike of some users. Let x;(t) be
the number of such Engagements for web site i, A(7) be
the set of users who interacted with ¢, and ¢,, the time
when user u made the engagement. We model xz;(t)
and I,,(t) as vectors of dimension n and let be m users
engaged between ¢ and ¢ — tp at times £y, ...tp,.

zi(t) = Y L(t—ty)

u€cA(7)
We may represent these linear equations as:
X, =M.I

where X, is the observation vector for some finite
interval, the number of interactions (Engagements for
Facebook) of site ¢ at time ¢, M the (n,n.m) delay
matrix determined by the ¢;...t,;,’s, and I the unknown

influence vector (11, ...I,,)t. More precisely M (i,j) =
lifj=t1—(@—1)orj=n+ts— (i —1),..0r
j=(m-1).n+t, — (i—1) and O otherwise, for
1 =1,..n and 7 = 1...m.n. We have a classical inverse
problem for which many efficient solutions exist [2].
One may look for I such that:

Ming| X — M.I?

Efficient solutions can be found, using for example
the pseudo inverse M T, computed with an SVD decom-
position. Hence we look for the values I such that

e = Argming| X — M x I|?

In [10], the model is extended to project revenues,
with a simple linear regression. More sophisticated
learning models based on inverse problems [2] can be
used to infer a model from few measurements.

III. ANALYSIS ON DATAWAREHOUSES

When users interact with a Web page, they transfer
part of their identity, as their gender, their locations and
potentially much more information to the Web site. In
the case of Facebook pages, a user may Like, Share,
Comment and we will say that any of these actions is
an Engagement. To analyze these data, OLAP queries
on dimensions such as Time, Gender, Location,... can
be very useful as they differentiate the various profiles.

For each possible dimensions, we can measure the
number of Engagements for the different values of the
dimensions and stipulate that the influence vector I(t)
also depends on these values. Assume a dimension
Location with possible values {a,b,c}. We then write
x;(t+1,a) for the number of Engagements from users
with Location= a, and similarly for I,(¢,a), as the
influence of user v with Location= a.

A. LIM-based Models

In a linear model, we then write, for each a,b,c € L:

at+1a)= Y IL(t—tya)

u€A(3)
and similarly for b, c. In a compact form
Xo=M,.I,

and similarly for b and c. For the same time intervals,
we have 3 times more variables, and equations.

Let M the matrix, with M,, M}, M, as diagonal
sub matrices, and O elsewhere. In this case, we have
3 independent optimization problems of the type:

ea = Argming, | X, — M, * I,|*



and similarly for b, c.

The global error is then e = e, + e, + €., and in
general ¢ = ) _; e,. In the case of a uniform distri-
bution for the x,,xy, x., we get similar variables for
I, I, I. and the error e = 3.e,. When the distributions
are asymmetric, the error will decrease, and the model
will improve.

(a) (b) (c)

Fig. 2. Three different profiles of Influence: positive (+) in (a),
neutral in (b), negative (-) in (c)

B. A simple example

Consider the situation where the global analysis of
Engagements is a flat curve, but the analysis for Men
is decreasing, the analysis for Women is increasing, as
in Figure 3. We suppose 10 users regularly spaced in
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Fig. 3. Analysis of Engagements per Gender over time

time: users 1, 3, 5, 7, 9 are Men, users 2, 4, 6, 8,10
are Women. In this case, the analysis per Gender gives
clearly more information than the global analysis which
is entirely uniform.

If we solve the inverse linear problem for low-rank
vectors I(t), I(t,m) and I(t, f) we will obtain mostly
vectors of type neutral for (t), vectors of negative type
for I(¢,m) and vectors of positive type for I(¢, f).

One way to formalize the intuition that non uniform
distributions carry more information than uniform distri-
butions is to use Entropy based measures. We consider
both the Entropy of the measure (the curve xz(t) or
x(t, m)) and the Entropy of the I(t) or I(t,m), viewed
as a distribution. If the inverse problem gives 3 negative
and 2 neutral profiles out of the 5 users, the distribution
is {4 : 3/5,neutral : 2/5}.

C. Entropy and Information gain

There are many measures based on the Entropy to
compare distributions, the basic Entropy (Shannon or
Renyi), the relative Entropy and the Kullback-Liebler
divergence. We will make variations on the relative
Entropy.

For a Source S, i.e. a distribution, Ent(S) =
— Y ;pilogp;. Given a dimension A of the OLAP
Schema, the relative Entropy on the dimension A is

5,1
5

Ent(S|4) =Y

veEA

Ent(S,)

where ‘i’.’ll is the relative weight for v and Ent(S,)

is the Entropy of the relative source, i.e. when A
Ent(S,).

We view S, S,,, Sy as the 3 distributions for Figure
2, where S is the global source, i.e. x(t), and Sy,
(resp. Sy) is the source where Gender=males (resp.
Gender=females ), i.e. x(t,m) (resp. (¢, f) ).

In our simple example, Ent(S) = 1/10 as S is the
uniform distribution, whereas Ent(S,,) = Ent(Sy) =
log 5 — 3/10.log 3, as the distribution over 5 points for
S is given by the values {2/5,3/10,1/5,1/10,0}.
Then Ent(S|Gender) = log5—3/10.1log 3 =< log 10.
The Entropy decreased, and the Information Gain in-
creased.

When we solve the inverse linear problem over low-
rank vectors, assume we obtain a distribution of profiles
I over the gobal data, and I,,, over the male curve and
Iy over the female curve.

Let the Global relative Entropy sums the factors

Ent(S,) and Ent(I,), i.e.

|5, |
5]

GH(S|A) = >

veA

[Ent(S,) + Ent(1,)]

If A is the Gender property there are two v’s dis-
tributions, one for v = f and one for v = m. GH
averages the Entropy of the measures with the Entropy
of the predicted influences I and varies between 0
and some positive value. If there is no attribute, then
GH(S|) = [Ent(S) + Ent(I)).



Definition 1: The Gain of Information for the di-
mension A is the function

) 1
Gain(S|A) X GHSA)

This new function varies between 0 and 1. The
optimal value (maximal gain) is 1 when the Global
relative Entropies are 0, i.e. both Dirac distribu-
tions. This function generalizes for several dimension
Gain(S|A;,...A;) and it is then possible to compare
an analysis on one attribute to an analysis on several
attributes.

Gain on the simple example. In the previous ex-
ample let S, Sy, Sy be the 3 distributions corresponding
to Figure 3 and assume I, I,,, and Iy are Dirac distri-
butions (with a 0 entropy). Then GH(S|Gender) =
log5 — 3/10.1og 3 = 1.79, compared with GH(S|) =
log 10 = 3.32. We can then compare the two gains:
Gain(S|Gender) = 0.36 > Gain(S]) = 0.23, as we
would intuitively guess.

IV. SKETCHES ON STREAMING DATA

A fundamental operation on data sources is the
ETL (Extract Transform Load) paradigm which com-
bines Data Exchange and Transformations into Target
Schemas. Classes of analytical queries can then be
defined on the Target Schema, which generalizes the
OLAP Schema.

We add a crucial step in this paradigm, Structural
Compression, to enrich the Transformation step of the
ETL analysis. We sample the original structure with
some distribution and define a new structure which we
view as an approximate compression of the stream,
often called a sketch. We want to guarantee that the
analytical queries on the original structure are well
approximated by some other analytical queries on the
compressed structure. This compression is not the the
classical compression as in Lempel-Ziv which leads to
.zip files, but a structural compression which leads to a
different structure obtained with a randomized process.

In the general situation of multisources with differ-
ent schema, the construction of combined sketches and
of a global schema remains a fundamental problem. We
propose an approach on streaming data which may be
extended to cope with the Data Integration.

A. Json and XML trees

A Json or XML stream is a sequence of opening tags
followed by closing tags in a well parenthesis manner,
along a depth first representation of a tree. We wish
to approximately decide a property of the tree, without
storing all the tree, but with only two complementary
operations: taking samples and compressing the tree.

Property Testing is a framework for approximate
decision problems with a distance between structures
such as words or trees. We use the Edit distance on
labeled unranked ordered trees. Basic operations are
edges insertions, edge deletions, labels modifications at
a unit cost. The absolute distance between two trees
t,t' is the minimum size of a set of basic operations
which transform ¢ into . The relative distance 0 <
dist(t,t') < 2 is the absolute distance divided by the
largest size (number of nodes) of ¢,t’. Let a property P
of trees be a subset of trees. The distance of ¢ to P is
dist(t, P) = Minycp dist(t,t').

Given a parameter 0 < ¢ < 1, an e-tester [8] for a
property P decides if a structure satisfies the property
P or if it is e-far from satisfying the property P. A
property is testable if for all e, there exists an e-tester
whose time complexity is independent of the size of the
structure and only depends on ¢. If the time complexity
is O(poly(logn)) we say that the property is polylog
testable.

In [5] we showed that regular tree properties were
testable with the edit distance with moves, a distance
weaker than the classical edit distance and in [6],
we showed that regular tree properties were polylog
testable but not testable for the edit distance. It implies
that OLAP queries can be approximated with these
techniques [3] which can be summarized by two ideas:

e Reservoir sampling [11] maintains a uniform
distribution over k nodes on a stream must be
first generalized to handle weighted distribu-
tions online. Some local peaks are compressed
to new letters with a weight proportional to
the size of the peak, and samples must follow
such distributions. A dichotomy sampling on a
word consists of suffixes in geometrical pro-
gression. We need such a sampling along the
partial peaks of the stream, i.e. the paths of the
trees. For each suffix, we take samples with a
weighted distribution.

e  Balanced peaks of the trees must be compressed
as pairs of states.

B. Twitter Graph

Given a stream of Json trees, or tweets, we construct
the Twitter Graph of the stream, i.e. the graph G =
(V, E) with multiple edges E C V.V where V is the
set of tags (#x or Qy ) seen and for each tweet sent
by @y which contains tags #z ,Qz edges (Qy,#x)
and (Qy, @z) are generated in E. This graph can be
extended as a structure G = (V, E,d) where d is the
degree function (d: V — NN) which gives the number
of edges from a node v € V.



Fig. 4. Twitter graph with communities, colors of the nodes

Social Networks tools such as Gephi, transform a
Json stream, i.e. a tree, into a graph in an online manner.
New nodes and new edges appear online, and a key
point is that the graph has a specific structure. It is
connected, the degree distribution of the nodes follows a
power law and the graph satisfies many other properties.

Samples in graphs are classically of two types.
On sparse graphs, we take p random nodes and their
neighborhoods at distance k. On dense graphs, we take
the subgraph spanned by p random nodes. In Social
networks, part of the graph is dense and part is sparse,
so we take samples in both sense for some values of
k and p. The resulting subgraph is much smaller than
the original graph, typically of size poly(logn,logm)
if the graph has n nodes and m edges. The samples can
be taken with at least two specific distributions.

e  The degree distribution. Each node 7 € V is
taken with probability 577

e  The uniform distribution. Each node i € V is
taken with probability 1 if [V'| = n.

The first distribution requires an explicit representa-
tion of the degree function d, whereas the the second
distribution requires an explicit representation of the
domain. Both can be maintained online with a memory
O(n + m). In practical applications, we periodically
reset the graph and only store the samples.

C. Graph extensions

There are many classical extensions of social
graphs, such as communities which are subsets of the
nodes. A graph with community is a structure G =
(V,E,Uy,...Uk,d) where each U; C V represents the i-
th community and d is the degree function, as in Figure

4. In many models, the U; are disjoint and in this case
we use the structure GC = (V, E,C,d), graphs with
communities, where C' : V — N is the Community
function, ie. C(x) = ¢ iff U;(x), i.e. x is in the
community ¢. We set C'(x) = 0 if z is in no community.

Community detection is an approximate extension,
based on Mincut algorithms or other combinatorial
methods. The extended structure is therefore only ap-
proximate as many nodes may be incorrectly labeled.
The analytical queries will therefore be only approxi-
mate. The main difficulty is to maintain coherent com-
munities over long periods of time. If we analyze a new
graph every day, we have to identify the communities
at time ¢ from the communities at the previous time.

V. ANALYTICAL QUERIES ON STREAMING DATA

We wish to analyze the graphs with communities,
defined from streaming Json data, as in the previous
sections. Typical analytical queries on these structures
are:

e  A;: The most influential users, i.e. the nodes of
maximal degrees, in each of the communities.

e  A,: The distribution of sizes of the communi-
ties.

In this section we first define a class of analytical
queries on graphs and study their approximation. We
show that the first query A; can be approximated with
the degree distribution, whereas the second query A,
can be approximated with the uniform distribution. On
the other hand, the uniform distribution can’t approxi-
mate A; and the degree distribution can’t approximate
As.

A. Analytical queries on graphs

We first need to formalize the notion of an analytical
query on graphs with communities, i.e. structure GC' =
(V,E,C,d).

Definition 2: An analytical query on graphs with
communities GC' has three components:

e A first-order formula Q(x1,...xx) in the lan-
guage of GC, i.e. with relations =, E the edge
relation and the graphs of the functions C' and
d, i.e. the atomic formulas C'(z) = y and
d(z) =y,

e C(lassifiers, i.e. free variables of @,

e Aggregation operators: Max, Min, Sum,
Count,... applied to some of the free variables

of Q.



Let us say that the variables used as Classifiers or by
the Aggregation are bound. The free variables are the
variables of () which are not bound.

In a typical example Q(x,y, z) is a first-order for-
mula in the language of GC. We may classify on z and
apply on operator on y. In this case the answer fto the
query may be a set of x’s for each value of z or a set of
values y for each value of z. We may obtain a set or a
distribution depending on which Aggregation operator
we use. Consider the two previous queries.

The most influential users per community query A;
is defined by the following components:

e Qz,y,2): d(z)=yNC(z) =2
e  (lassifier: z,

e Aggregation Maz,{y}.

The answer is a set {(ug,0), (u1,1),...(u;,),...}
such that GC' = Q(uy,j,1) for u; € V and j is the
maximal degree of node u; for the community .

The distribution of sizes of communities query, As,
is defined by the components:

o Qx,2): C(z) ==z,
e C(lassifier: z,

e Aggregation Count(z).

The answer may be the set of pairs
{(30,0), (40,1), (20,3),(10,4)}, ie. {(j,i)} such
that GC = Q(u;,i) and j is the number of
such w;’s for a community ¢. If we take the
relative values, we may have the distribution
{(30%,0), (40%, 1), (20%, 2), (10%, 3)} for the 3
communities, and 30% in no community, as in Figure
5.

~

Fig. 5. Distribution of sizes of the communities (1,2,3). Label O is
for nodes with no community.

In general, the answer to an analytical query is
obtained by taking first the possible values on the
Classifier z. There are two cases:

e No free variables: the Aggregation function
returns for each value of the Classifier, a nu-
merical value. We can represent the answer to
the query as a distribution, by taking the relative
values. The answer of A, is a distribution.

e  Free variables: the Aggregation function returns
a value which depends on x. We can represent
the answer of the query as a function which
for each z gives a relation Q(z,y). The answer
of A; gives for each z an individual = and its
degree y.

B. Approximation of Analytical queries on graphs

For the query A, the result is a distribution as in
Figure 5 and we approximate it with the L; distance,
as in the case of the OLAP queries. For the query
A;, we obtain a set and the distance clearly depends
on the degree function d. Suppose the exact answer is
S = {(u07 0)7 (ulv 1)a (u2a 2)7 (’LL3, 3)} and we output
S = {(uo,0), (u}, 1), (u2,2), (us,3)}, i.e. a different
node u for the 1st community. If the degree of u; is
10 and the degree of w] is 8, we make an absolute error
of 2 and a relative error of 2/10.

The relative weighted error for A; is based on
weighted colored sets, where the weight of each element
is its degree. The relative distance between two colored
sets is the sum of the weights on the differences divided
by the total sum of the weights.

We say that an analytical query A is e-approximated
by an algorithm A if for every large enough graph G
with communities with n nodes, the relative distance
between A(G) and A(G) is less than €. We concentrate
on the number of samples used by the algorithm. In the
optimal case, it depends on ¢ only and we say that we
us e O(1) samples. In the general case, it depends on
¢ and on f(n) where n is the size of the structure and
f some function. We expect f to be sublinear, as logn
for example. If f is the identity, then we use the whole
structure, and the samples are useless.

C. General method for lower bounds

We want to show that some properties P can’t be
approximated from a sketch, random samples taken
from a specific distribution.

Lemma 1: If there are two structures which differ
on P, with have e-close sketches, then P can’t be &-
approximated using O(1) samples.

Proof: Consider a graph property P and two graphs
G; and G5 such that Gy = P and Gy = —P. As the



sketches of GG and G5 are e-close, any randomized
algorithms can’t distinguish them, hence the property
P can’t be e-approximated using O(1) samples. |

It suffices to find two graphs which differ on P with
close sketches, to conclude that the properties can’t be
e-approximated with O(1) samples.

D. Main results

We now present the main results concerning the two
queries A; and As.

Theorem 1: The analytical query A; can be &-
approximated with O(1/¢2?) samples with the degree
distribution but requires O(f(n)) samples with the
uniform distribution.

Samples with the degree distribution will most likely
take nodes of high degrees, hence make a small error
for the relative weighted error. Uniform samples can
be as far as possible from the points of high degree.
Consider two classical graphs: a circle C,,, i.e. n nodes
with edges linking nodes ¢ with 7 4+ 1 and node n with
node 1, and a star .S,, with node 1 linked with all the
other nodes. A formal argument uses directly lemma 1
applied to these graphs.

Proof: Let G; be the union of two circles C,,, one
for each community and G5 be the union of two stars
Sy, one for each community. If we sample according to
the degree, we will find a corrext approximate answer
with few samples (less than O(1/¢%)). If we sample
with the uniform distribution, the answer on Go will
be incorrect with high probability. The distribution of
the samples on G and G5 will be close and hence by
lemma 1, A; can’t be approximated with O(1) samples.

|

Theorem 2: The analytical query As can be e-
approximated with O(1/¢?) samples with the uniform
distribution but requires O(f(n)) samples with the
degree distribution.

On the contrary, uniform samples approximate the size
of the communities, using a simple Chernoff bound.
Samples with the degree distribution will not correctly
estimate the sizes of the communities, using an argu-
ment similar to the one used in theorem 1.

E. The value of analytical queries

If the answer of the analytical query is a distribution,
we can use the relativized entropy Ent(S,) for some
values of the classifiers, i.e.

|5, |
5]

GH(S|A) =

vEA

[Ent(5y))]

Let the Gain of Information for the dimension A be
the function

Gain(S|A) = !

1+ GH(S|A)

so that this new function varies between 0 and 1. The
optimal value (maximal gain) is 1 when the relative
Entropy is 0, i.e. a Dirac distribution.

In our example, the answer of As is a distribution.
We can compute Gain(As) = Gain(Q|A) with A as
a community attribute, and compare it to the gain of
another query. If the case of A;, whose answer is a set,
the model does not apply. It needs to be extended.

VI. EXPERIMENTS

We conducted two experiments, one for Facebook
and one for Twitter. The first analysis follows the
classical OLAP queries whereas the second one follows
the model of graphs with communities.

A. Facebook

With the Nodexl package and its Social Net-
work Importer, we selected the Facebook fan page
of the Paddington movie for the French mar-
ket (https://www.facebook.com/PaddingtonFrance) and
a specific time window. Nodexl transmits the Json data
which can be analyzed by the Gephi package as a graph
and by the Qlik package for the OLAP analysis.

The OLAP schema is given in Figure 1. The first
analysis uses both the Time and Type dimensions, given
in Figure 7 as different curves.

We want to correlate these data, with the ticket sales
on the same time interval.

Number of Tickets sales
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Fig. 6.
interval.

Total number of tickets, hence revenues on the same time

Figure 6 gives the projected number of tickets, hence
the revenues. The linear model can be built with these
data and will provide a better prediction tool, adapted
to the different dimensions.
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Fig. 7. Total Engagements, decomposed as likes (blue line),
comments (green line), shares (grey line) and total (dark grey line),
in Facebook.

The main observation is the increase of shares and
the decrease of likes at 1/3 of the time scale.

Figure 8 gives the analysis per Gender wheras Figure
9 gives the analysis per Country. The modelisation
of section 3 using the Gain function concludes that
Gain(S|Gender) < Gain(S|Country), i.e. the analy-
sis per country gives more information than the analysis
per Gender.

B. Twitter

We analyzed the Json stream with the Naoyun con-
nector on keywords such #LVMH (luxury brand) and
used Gephi to obtain a graph with communities such as
the one described in Figure 4. The communities partition
the users in different segments and a challenging task
is to follow these partitions in time.

A normalized query language is needed to analyze
this structure and to implement the correct sampling
strategies.

VII. CONCLUSION

We considered two models of Social Networks,
inspired by Facebook and Twitter and proposed a model
of value for a class of analytical queries. In this work,
we don’t take the visualization paradigm into account,
in order to concentrate on the value of distributions.

The first model is a classical datawarehouse with an
OLAP schema. We used the linear influence model, and
analyzed the influence vector of users for each value
of the dimensions. We introduced an Entropy based
method to quantify the value of these OLAP analyses,

Gender distribution

= Male = Female

Fig. 8. Analysis per Gender (male, female), in Facebook.

combining the Entropy of the answer distribution, with
the Entropy of the distribution of the Influence vectors.

Our main contribution is a framework which extends
this approach to streaming data. In Twitter, the Json
trees are transformed into graphs and then extended
into graphs with communities. We extend the classical
ETL (Extract Transform Load) step with a structural
compression used to efficiently approximate analytical
queries. We defined a class of analytical queries for
these graphs and gave examples of approximable and
non-approximable queries. When the answer of the
analytical query is a distribution, the Entropy-based
model can be applied.
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Fig. 9. Analysis per Country, in Facebook.
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