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1 Introduction
The aim of this chapter is to give an introduction to some recent work on the appli-
cation of game semantics to the study of programming languages.

An initial success for game semantics was its use in giving the first syntax-free
descriptions of the fully abstract model for the functional programming language
PCF [1, 14, 31].

One goal of semantics is to characterize the “universe of discourse” implicit
in a programming language or a logic. Thus for a typed, higher-order functional
programming language such as PCF, one may try to characterize “what it is to
be a PCF-definable functional”. Well established domain-theoretic models [12, 35]
provide sufficiently rich universes of functionals to interpret languages such as PCF,
but in fact they are too rich; they include functionals, even “finitary” ones (defined
over the booleans, say), which are not definable in PCF. Moreover, by a remarkable
recent result of Ralph Loader [25], this is not an accident; this result (technically the
undecidability of observation equivalence on finitary PCF) implies that no effective
characterization of which functionals are definable in PCF (even in finitary PCF)
can exist. Thus in particular a model containing all and only the PCF-definable
functionals cannot be effectively presentable.

However, rather than focussing on the functionals in extenso, we may instead
seek to characterize those computational processes which arise in computing the
functionals. For a sequential, deterministic language such as PCF (and most func-
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Figure 1: The syntactic square

tional languages) these processes should themselves be sequential and determinis-
tic. Indeed, “sequentiality” and “determinacy” are really properties of the processes,
rather than the functionals they compute, in the first place. However, obtaining an
exact characterization along these lines is not easy. One main problem is to avoid
unwanted uses of “intensionality”, whereby a process computing a functional
can observe properties of the process computing its argument , rather than only
the extensional properties of the function , and make its output depend on these
properties. For this reason, attempts by Kleene [16–23] in his work on higher-type
recursion theory, and by Berry and Curien [8] in their work on sequential algo-
rithms, failed to yield a characterization. Similarly, while there were encodings of
the -calculus into various process calculi such as the -calculus [29], there was no
characterization of which processes arose from these encodings.

The more refined tools provided by game semantics led to a solution of this
characterization problem, first in the case of the multiplicative fragment of linear
logic [4] and then for PCF [1, 14, 31]. Subsequently the first author mapped out
a programme of using game semantics to explore the space of programming lan-
guages, based on the idea of the “semantic cube”. In the present paper, which shall
confine our discussion to two dimensions—a semantic square.

Consider first the “syntactic square” of extended typed -calculi as shown in
Figure 1. The “origin” of this square is occupied by a purely functional language
(in this case, PCF). Each “axis” corresponds to the extension of the purely func-
tional language by some non-functional feature; those shown in Figure 1 are state
(imperative variables) and control operators. (Other possible “axes” include non-
determinism and concurrency.) Corresponding to this syntactic square, there is a
semantic square of various categories of games and strategies, as shown in Figure 2.
The origin of the semantic square is occupied by the category of highly constrained
strategies which correspond to the discipline of purely functional programming. The
constraints shown in Figure 2 are innocence (i) and bracketing (b). (These terms will
be defined later.) Each axis of the semantic square corresponds to the relaxation of
one of these constraints on strategies, leading to a larger category. Thus for example
is the category of well-bracketed but not necessarily innocent strategies. Remark-

ably, there is a precise correspondence between the syntactic and semantic squares,
as shown in a series of papers [3,5,7,24]. For example, relaxing the constraint of in-
nocence allows local state to be modelled, while relaxing bracketing allows control



Figure 2: The semantic square

operators to be modelled. Moreover, these increments in expressive power are exact,
as shown by factorization theorems. For example, every strategy in can be fac-
tored as the composition of (the strategy modelling) a memory cell and an innocent
strategy. This immediately reduces definability of PCF+state programs in to that
of PCF programs in , which was exactly the result obtained in [14,31]. Thus fac-
torization theorems allow the results originally obtained for PCF to be transferred to
a much richer class of languages incorporating non-functional features. Moreover,
as we go beyond the purely functional languages, Loader’s result no longer applies,
and indeed the game semantics models have been used in a number of cases to yield
the first (and still the only) effective constructions of the fully abstract model (see
e.g. [5]).

The main body of this paper gives a detailed introduction to these results onPCF
and its extensions with state and control. The current state of the art has taken mat-
ters considerably further, covering recursive types [27], call-by-value [6], and gen-
eral reference types [3]. Thus all the main features of languages such as Scheme [15]
and Core ML [30] have, in principle at least, been accounted for. Current work is
addressing a further range of features including concurrency, non-determinism, sub-
typing and control of interference.

2 Game Semantics: an informal introduction
Before proceeding to a detailed technical account in the next section, we will give
an informal presentation of the main ideas through examples, with the hope of con-
veying how close to programming intuitions the formal model is.

As the name suggests, game semantics models computation as the playing of a
certain kind of game, with two participants, called Player ( ) and Opponent ( ).
is to be thought of as representing the system under consideration, while repre-
sents the environment. In the case of programming languages, the system is a term
(a piece of program text) and the environment is the context in which the term is
used. This is the main point at which games models differ from other process mod-
els: the distinction between the actions of the system and those of its environment
is made explicit from the very beginning.

In the games we shall consider, always moves first—the environment sets
the system going—and thereafter the two players make moves alternately. What



these moves are, and when they may be played, are determined by the rules of each
particular game. Since in a programming language a type determines the kind of
computation which may take place, types will be modelled as games; a program
of type determines how the system behaves, so programs will be represented as
strategies for , that is, predetermined responses to the moves may make.

2.1 Modelling Values
In standard denotational semantics, values are atomic: a natural number is repre-
sented simply as . In game semantics, each number is modelled as a simple
interaction: the environment starts the computation with an initial move (a ques-
tion: “What is the number?”), and may respond by playing a natural number (an
answer to the question). So the game of natural numbers looks like this:

and the strategy for is “When plays , I will play .”

In diagrams such as the above, time flows downwards: here has begun by playing
, and at the next step has responded with , as the strategy dictates.

2.2 Functions
The interactions required to model functions are a little more complex. The view
taken in game semantics is that the environment of a function consumes the output
and provides the input, while the function itself consumes the input and produces
the output. The game is therefore formed from “two copies of ”, one
for input, one for output. In the output copy, may demand output by playing the
move and may provide it. In the input copy, the situation is reversed: may
demand input with the move . Thus the / role of moves in the input copy is
reversed. Plays of this game take the following form.

The play above is a particular run of the strategy modelling the successor function:



“When asks for output, I will ask for input; when provides input
, I will give output .”

It is important to notice that the play in each copy of (that is, each column of the
above diagram) is indeed a valid play of : it is not possible for to begin with the
third move shown above, supplying an input to the function immediately. Notice
also that non-strict functions can be modelled. Here is the strategy which returns
without ever investigating what its argument is.

These relatively simple ideas let us model all first-order functions. For example,
a play in the strategy for addition might look like this.

The same idea lets us form for any games and : take a copy of and a
copy of , “place them side by side” and reverse the / roles of the moves in .

2.3 Higher-order functions
The strategy for the function plays as follows.

Here plays the role of the function in the game as well as
demanding output from the rightmost . first asks for the output from ; when
asks for the first input to , supplies ; when asks for the second input,

supplies ; and when supplies as output from , copies this as the overall
output.



The choice of moves made by in the example above is by no means the only
one. For example, could ask for the arguments to in the other order, or could
neglect to ask for the arguments at all. But ’s strategy would be the same regard-
less: answer to the first input, to the second, and copy the output of as the
overall output.

Higher-order functions in general use their arguments more than once. For ex-
ample, the strategy for function needs to play out two interactions
with its input :

The play on the left here is not a single run of but rather two such runs, one
after another. It is also possible for runs to be interleaved. For example,
plays thus:

Here ’s first action is to ask about the output of . When (played by ) asks
for input, again asks for output from , since the function in question supplies the
output of as input to the outermost call of . When now asks for input,
can supply . then plays some output , which represents the value , so
copies as the input to the first call of . The output then represents so
copies it as the overall output.

2.4 A difficulty
As we have seen, the play on the left hand side of a game may consist
of several plays of , interleaved in chunks of even length. If we represent these



interleaved sequences as we have been doing, using just the “underlying” sequences
of moves without regard to how the different chunks should be pasted together to
form individual plays of , then our model does not in fact carry enough information
to model higher-order functions correctly. To see this, it is unfortunately necessary
to consider an example of a rather high type, .

Consider the following -terms.

In the semantics outlined above, each of these determines the following strategy.

...

What is going on here? Let us consider each -move and ’s response in turn.

1. begins by asking for output. The output will be the result of applying to
an argument, so demands output from .

2. asks about its first input, which will be some function of type
. At this point could ask what input will provide, i.e. could

ask about ; but knows that the output of the function comes from , so
again requests output from .

3. Again, asks for its input, which will be some function . This
time asks for an input to a function of type which is itself an input
to . But is this the function or ? That is, is asking about or about ?
The final move here is ambiguous, because it could form part of either of two
runs of which are being interleaved. As a result, the terms

and are identified, which they should not be.

The solution to this problem is to disambiguate such moves by tying the various in-
terleaved runs together in an appropriate way. The path we take is to attach pointers
to moves: along with each move comes a pointer to a previous move, which de-
termines the copy of a sub-game to which the move belongs. The above examples



become:

...

for , and

...

for . Each request for input to an occurrence of function carries a pointer to the
move which demanded output from that occurrence. Pointers are also attached to
answers, pointing back to the question being answered, so that our earlier example

becomes:

2.5 Products
Another way of forming new types from old is to take products: the type
consists of pairs of elements, one of type and one of type . In game semantics
this is handled in a similar way to the function space constructor: the game
is a copy of and a copy of , side by side. When begins, he decides whether
to play in or in , and then plays a move there. From then on, a play of either
or is carried out. A strategy for therefore determines a strategy for

and one for , according to how begins, so indeed corresponds to an appropriate
pair of strategies. For instance, the strategy corresponding to the pair has the



following two plays:

Notice that in any given play, only one side of the product is investigated; so, if a
function of type wishes to use both components of the input, it must
interrogate its input twice. For example, the strategy for addition can be given this
type, becoming the following.

Here we have turned a strategy for into one for . The
same can be done for any strategy of type , and can of course be re-
versed as well: the familiar operation of (un)currying from functional programming
becomes a trivial realignment of moves in game semantics.

Let us also take the time to mention the nullary version of the product: the empty
game, which we write as . This game has no moves, so that the plays of
are the same as those of (hence strategies for and strategies for are the
same). Note also that there is no way to play a move in the game .

2.6 Interaction: composition of strategies
Game semantics is intended to provide a compositional interpretation of programs:
just as small programs can be put together to form large ones, so strategies can
be combined to form new strategies. The fundamental “glue” in traditional deno-
tational semantics is function application; for game semantics it is interaction of
strategies which gives us a notion of composition.

Consider the strategy for addition, with the type . In order to
compose this with the strategy , we let the two strategies
interact with one another. When plays a move in , we feed it as an -
move to ; conversely, when this strategy plays in , we feed this move



as an -move back to .

By hiding the action in the middle game, we obtain the strategy

representing the number as expected. So in game semantics, composition of func-
tions is modelled by CSP-style “parallel composition + hiding” [13].

Notice that in the above composition, the strategy for addition calls on the pair
twice; other strategies could have called upon it more than twice. In a compo-

sition such as this, the strategy on the left hand side may be called repeatedly. It is
a property of functional programs that no matter how often they are called and how
they are used in each call, they behave the same way each time. This property is a
consequence of the condition of innocence which we will impose on our strategies
when modelling functional programming.

2.7 Copycat strategies
For any game , there is a strategy on which responds to any -move in one
copy of by playing the same move in the other copy, where it will be a -move,
thanks to the reversal of roles. For example, in , we get the strategy which
represents the identity function.

We refer to such strategies as copycat strategies. The copycat strategy on each
is an identity for the composition defined above. For example, consider

composing the copycat strategy (on the left) with the strategy for (on the



right).
copycat

After hiding, we are left with exactly the same play in the outer games as we see in
the middle and right games, that is, the play of .

2.8 Imperative Languages: commands
The fundamental operations of imperative languages are commands. In game se-
mantics we take the view that commands inhabit a “unit type” or “void type”, as in
Standard ML or Java. The game is extremely simple:

This can be thought of as a kind of “scheduler interface”: the environment of a
command has the opportunity to schedule it by playing the move . When the
command is finished, it returns control to the environment by playing .

We can interpret the “do nothing” command very easily as the strategy
which responds to with immediately. The following strategy interprets
sequential composition.



This can be thought of as a scheduler: when activated, it first schedules its first
argument, and waits for that to complete before scheduling the second argument.
When that is complete, the whole sequential composition is complete.

2.9 Store
The interesting part of an imperative language is of course the store upon which the
commands operate. To interpret mutable variables, we will take an “object-oriented
view” as advocated by John Reynolds [34]. In this view, a variable is seen as an
object with two methods:

the “read method”, for dereferencing, giving rise to an operation of type
;

the “write method”, for assignment, giving an operation of type
.

We identify the type of variables with the product of the types of these methods,
setting

Now assignment and dereferencing are just the two projections, and we can interpret
a command x:=!x+1 as the strategy

(We use and in place of and in the assignment part, and
in place of in the dereferencing part, to emphasize that these moves initiate

assignments and dereferencing rather than arbitrary commands or natural number
expressions.)

The vital thing is to interpret the allocation of variables correctly, so that if
the variable in the above example has been bound to a genuine storage cell, the
various reads and writes made to it have the expected relationship. In general, a
term with a free variable will be interpreted as a strategy for , where
is the type of . We must interpret as a strategy for by “binding
to a memory cell”. With game semantics, this is easy! The strategy for will

play some moves in , and may also make repeated use of the part. The play



in the part will look something like this.

...

Of course there is nothing constraining the reads and writes to have the expected
relationship. However, there is an obvious strategy

which plays like a storage cell, always responding to a with the last value
written. Once we have this strategy, we can interpret by composition with

, so is

Two important properties of local variables are immediately captured by this inter-
pretation:

Locality Since the action in is hidden by the composition, the environment is
unaware of the existence and use of the local variable.

Irreversibility As interacts with , there is no way for to undo any writes
which it makes. Of course can return the value stored in the cell to be the
same as it has earlier been, but only by performing a new .

However, it is vital to the correct interpretation of variables that when composing
with , the behaviour of varies from one call to the next, depending

on what writes are made: each read or write constitutes a complete call of the
strategy, and of course any write affects subsequent reads. Such behaviour does not
arise in a functional program, and in fact means that violates the condition of
“innocence”.

A similar approach tomodelling variables has also been taken in process models,
for example by Milner in CCS [28].



2.10 Control operators
Let us consider a very simple control operator which allows early escapes from the
evaluation of functions. The constructor

has the property that

if calls its argument.
if returns without calling its argument.

Such an operator can be defined in Scheme or SML/NJ from , for example.
The corresponding strategy has the following two forms of play.

In computation there are “dangling questions” left when the initial question has
been answered—somethingwhich never happened in any of our previous examples.
In fact, this is symptomatic of the fact that this strategy violates the “bracketing
condition”.

2.11 A semantic characterization of programming disciplines
We have seen that it is possible to interpret functional programs, programswith store
and programs with control operators using game semantics. However, we have also
noticed that the behaviour of functional programs obeys certain principles which
may be violated by programs written in more expressive languages. In fact, the
analysis provided by game semantics allows us to give an answer to the question

“What is it to be a functional computational process?”

The answer has three elements.

Determinacy In any given position, what the strategy does is uniquely determined.

Innocence What the strategy does is in fact determined by partial information
about the history—the local “functional context” of our subcomputation. In
particular, an innocent strategy cannot vary its behaviour from one call to the
next.

Bracketing Control flow follows a properly nested call-return discipline.

These are simple, local constraints on strategies. Remarkably, they suffice to char-
acterize our space of programming languages.



Constraints Language
D + I + B purely functional
D + I functional + control
D + B functional + store
D functional + store + control

2.12 Innocence
We conclude this informal introduction with an illustration of how innocence con-
strains strategies, in the form of the following non-innocent example. Consider the
program

(Here is used simply to force evaluation of in this
lazy language.) This program takes an argument , and evaluates , but records
the fact that uses its argument by means of a side-effect to . After returns, the
function returns if used its argument, and otherwise. (This behaviour is quite
similar to that of , but in this case must return a value if the overall function
is to return a value.)

The corresponding strategy has two plays of interest to us.

and

A strategy is innocent if its response at a given position depends only on the lo-
cal “functional context” of the position, rather than the entire history. This func-
tional context, called the view, is calculated by removingmoves surrounded by pairs

where is an -move.

So after the move in each of the diagrams above, the view is just : the
information about whether uses its argument or not is not part of the view. This
confirms the fact that no purely functional program has the behaviour of this imper-
ative program.



3 Categories of Games
We now begin a more technical development of the ideas outlined earlier by giving
formal definitions of the categories of games and strategies in which programming
languages are modelled. The definitions given here are taken from [27], but are
essentially adaptations of the original definitions given by Hyland and Ong [14],
taking into account the ideas of Abramsky, Jagadeesan and Malacaria [1], particu-
larly with regard to the linear type structure of the categories. Similar games, and in
fact the very samemodel of the languagePCF, were also discovered byNickau [31].

We shall describe eight different categories of games. The basic categories are
, which is (almost) a model of the fragment of intuitionistic linear
logic, and , a cartesian closed category built out of using the Girard translation
of intuitionistic logic into linear logic: [11]. The morphisms of
both these categories are strategies. By putting constraints of innocence and well-
bracketedness on strategies, we obtain various subcategories both of and of ,
leading to eight different categories, of which four are models of linear logic, the
other four being cartesian closed.

3.1 Arenas, views and legal positions
Definition An arena is specified by a structure where

is a set of moves;

is a labelling function which indicates whether
a move is by Opponent ( ) or Player ( ), and whether it is a question ( )
or an answer ( ). We write the set as ,
and use to mean followed by left projection, so that if

or . Define in a similar way. Finally, is
with the / part reversed, so that

and so on. If , we call an -move; otherwise, is a -move;

is a relation between (where is just a dummy symbol) and
, called enabling, which satisfies

(e1) ;
(e2) ;
(e3) .

The idea of the enabling relation is that when a game is played, a move can only
be made if a move has already been made to enable it. The enabler is special—it
says which moves are enabled at the outset. A move such that is called
initial. Conditions (e2) and (e3) say that answers are enabled by questions, and that
the protagonists always enable each other’s moves, never their own.



Given an arena, we are interested in sequences of moves of a certain kind. Be-
fore defining these, let us fix our notation for operations on sequences. If and are
sequences, we write for their concatenation. We also write for the sequence
with element appended. Sometimes we use the notation or when it aids
legibility. The empty sequence is written as , and denotes the prefix ordering on
sequences.

Definition A justified sequence in an arena is a sequence of moves of ,
together with an associated sequence of pointers: for each non-initial move in ,
there is a pointer to a move earlier in such that . We say that the move
justifies . Note that the first move in any justified sequence must be initial, since it
cannot possibly have a pointer to an earlier move attached to it; so by (e1), justified
sequences always start with an opponent question.

Given a justified sequence , define the player view and opponent view
of by induction on , as follows.

if is a -move.
if .

if is an -move.

if is an -move.
if is a -move.

Notice that the view of a justified sequence need not itself be justified: the appear-
ance of a move in the view does not guarantee the appearance of its justifier. This
will be rectified when we impose the visibility condition, to follow.

A justified sequence is legal, or is a legal position, if it also satisfies the fol-
lowing alternation and visibility conditions:

Players alternate: if then .

if where is a -move, then the justifier of occurs in .

if where is a non-initial -move, then the justifier of occurs in
.

We write for the set of legal positions of .

3.2 Games and strategies
Definition Let be a legal position of an arena and let be a move in . We
say that is hereditarily justified by an occurrence of a move in if the chain
of justification pointers leading back from ends at , i.e. is justified by some
move , which is in turn justified by and so on until some is justified by



an initial move . We write for the subsequence of containing all moves
hereditarily justified by . This notation is slightly ambiguous, because it confuses
the move with a particular occurrence of ; however, no difficulty will arise in
practice. We similarly define for a set of (occurrences of) initial moves in
to be the subsequence of consisting of all moves hereditarily justified by a move
of .

A game is specified by a structure where

is an arena.

is a non-empty, prefix-closed subset of , called the valid positions, and
satisfying

if and is a set of initial moves of then

3.2.1 Multiplicatives

Given games and , define new games and as follows.

for .

In the above, denotes the subsequence of consisting of all moves from ;
is analogous. The conflict with the previously introduced notation

should not cause any confusion.
The tensor unit is defined by .

3.2.2 Strategies

Definition A strategy for a game is a non-empty set of even-length positions
from , satisfying

(s1) .



(s2) , and the justifier of is the same as that of . In other
words, the justified sequences and are identical.

The identity strategy for a game is a strategy for defined by

even

We use subscripts to distinguish the two occurrences of , and write even to
mean that is an even-length prefix of .

All that does is to copy the move made by Opponent in one copy of to
the other copy of . The justifier for Player’s move is the copy of the justifier of
Opponent’s move. It is easy to check that this does indeed define a strategy.

3.2.3 Composition

The categories we will work in have games as objects and strategies as morphisms.
Therefore, given strategies and , we would like to com-
pose them to form a strategy . First, some auxiliary definitions are
necessary.

Definition Let be a sequence of moves from games , and together with
justification pointers from all moves except those initial in . Define to
be the subsequence of consisting of all moves from and ; if a pointer from
one of these points to a move of , delete that pointer. Similarly define .
We say that is an interaction sequence of , and if and

. The set of all such sequences is written as .
Suppose . A pointer from a -move must be to another -

move, and a pointer from an -move must be either to another -move, or to an
initial -move, , which in turn must have a pointer to an initial -move, . Define

to be the subsequence of consisting of all moves from and , except
that in the case outlined above, the pointer from is changed to point to .

becomes

Given strategies and , define to be

We are now ready to define the composite of two strategies.

Definition If and , define by



3.2.4 Constraining strategies

Two classes of strategies will be of special interest: the innocent ones and the well-
bracketed ones.

Definition Given positions , where has even length and
, there is a unique extension of by the move together with a justification

pointer in such a way that . Call this extension . The
a strategy is innocent if and only if it satisfies

In other words, the move and pointer played by an innocent strategy at a position
is determined by the -view .
A strategy is well-bracketed (or satisfies the bracketing condition) if and

only if for every with an answer, the justification pointers on have the
form

where the moves , , . . . and are all answers. That is to say, when gives
an answer, it is in answer to the most recent unanswered question in the view: we
call this the pending question. Note that moves are not required to satisfy this
condition.

3.2.5 Four categories of games

We now define four categories of games: , , and . The objects of all
these categories are games. A morphism from to in is a strategy
. The lluf subcategory has as morphisms only the innocent strategies; has

only the well-bracketed strategies; and has only the innocent and well-bracketed
strategies. In all cases, composition and identities are as described above.

Proposition 1 , , and are categories.

The content of this proposition is that composition of strategies is well-defined,
associative, has the copycat strategy as unit, and preserves innocence and well-
bracketedness. Proofs of these facts can be found in [1, 14, 27].

3.2.6 Monoidal structure

We have already given the object part of the tensor product. We now describe the
corresponding action on morphisms which makes tensor into a bifunctor and into
a symmetric monoidal category.

Given and , define by



We can now define natural isomorphisms , and with components
, and
given by the obvious copycat strategies—in each case the set of

moves of the domain game is isomorphic to the set of moves of the codomain game.
It is then trivial to verify the following.

Proposition 2 The structure described above makes into a symmetric monoidal
category. and are sub-symmetric monoidal categories of (that is, they are
subcategories which inherit a symmetric monoidal structure from that of ), and
is a sub-symmetric monoidal category of each of , and .

3.2.7 Closed structure

To make into a symmetric monoidal closed category, we need to show that each
functor has a (specified) right adjoint. Observe first that the only difference
between games and is in the tagging of moves in the
disjoint unions. Therefore

is a strategy for
is a strategy for

This structure gives us:

Proposition 3 is an autonomous (i.e. symmetric monoidal closed) category.
and are sub-autonomous categories of , and is a sub-autonomous category
of each of , and .

3.2.8 Products

Given games and , define a game as follows.

We can now define projections and by the obvious
copycat strategies. Given and , define
by



Proposition 4 is the product of and in each of the four categories ,
, and , with projections given by and .

It should be clear how this definition generalizes to give all products.

3.3 Exponential
Definition Given a game , define the game as follows.

for each initial move

3.3.1 Promotion

Given a map , we wish to define its promotion to be
a strategy which plays “several copies of ”. However, in general this cannot be
done because there is no way for to know how the many threads of dialogue in

should be grouped together to give dialogues in . There is a class
of games for which this can be done, however: the well-opened games.

Definition A game is well-opened iff for all with initial, .

In a well-opened game, initial moves can only happen at the first move, so there
is only ever a single thread of dialogue. Note that if is well-opened then so is

for any game , so while is not well-opened except in pathological
cases, the game is well-opened whenever is. We are going to construct
a cartesian closed category in which all games are well-opened and exponentials
(in the ordinary sense, not the linear logic one) are given by , so this
observation is important.

Given a map , define its promotion by

for all initial

Proposition 5 If and are well-opened games, and is a strategy for ,
then is a strategy for . If is innocent then so is ; if is well-
bracketed, so is .

3.3.2 Dereliction

For well-opened games , we can define to be the copycat strategy

even

Dereliction and promotion behave as expected where they are defined.



Proposition 6 Let , and be well-opened games, and let and
be strategies. Then

,

, and

.

We now note an important lemma.

Lemma 7 (Bang Lemma) If is well-opened and is innocent then
.

Proof First note that the set of -views of positions of is the same as
that of . It is straightforward to check that, when considered as a function
from -views to moves, any strategy is the same as , and a
strategy is the same as . These two observations together prove the
lemma.

3.3.3 Contraction

We define . For any , let be the set of
occurrences of initial moves in and be the set of occurrences of initial moves
in . Let and . Then define as

even

3.3.4 Exponential isomorphisms

These reduce to identities in the present setting:

3.4 Four cartesian closed categories of games
We can now define the cartesian closed category of games , and its three subcate-
gories , and . The category is defined as follows.

Objects Well-opened games
Morphisms Strategies for

For any well-opened game , the strategy is the identity map on
, and given morphisms and , that is to say strategies

and , we define the composite morphism to
be .



The subcategory has as its morphisms only the innocent strategies; has
only the well-bracketed strategies; and has only those strategies which are both
innocent and well-bracketed.

Products in all of these categories are constructed as in : set .
Moreover,

So we can define to be the game , giving cartesian closure. Given
a map we write for the map corresponding to
across this isomorphism, which we call currying.

Proposition 8 is a cartesian closed category, with sub-cccs and . The cate-
gory is a sub-ccc of each of , and .

The four cccs we have just defined of course form the four vertices of our “semantic
square”: corresponds to purely functional programming; to functional pro-
gramming with control operators; to an extension of functional programming
with local store; and to programs with both store and control operators.

3.4.1 Order enrichment

The strategies for a game are easily seen to form a directed-complete partial order
under the inclusion ordering, with least element and least upper bounds
given by unions. Moreover, composition, tensor, currying etc. are all continuous
with respect to this order. Applying this to the hom-objects , we obtain:

Proposition 9 is a cpo-enriched autonomous category. is a cpo-enriched carte-
sian closed category.

For any innocent strategy , define the view-function of to be the partial
function from -views to -moves defined by

(We are ignoring justification pointers here; strictly speaking the view function in-
cludes justification information.)

Proposition 10 The strategies for a game form a dI-domain; the compact strate-
gies are those with a finite set of positions. The same is true of the well-bracketed
strategies.

The innocent strategies for a game also form a dI-domain, with the compact
strategies being those with finite view-function. The same is true of the innocent
and well-bracketed strategies.



Note that an innocent strategy with finite view-function is not necessarily finite qua
set of positions—this was the point of introducing view-functions in the first place.
For example, by the Bang Lemma any innocent strategy for other than has an
infinite set of positions. Thus we shall speak of an innocent strategy with finite
view function being innocently compact i.e. compact in (and in
if it happens to be well-bracketed as well).

3.5 Intrinsic Preorder
Our full abstraction results will in fact hold not in or its subcategories, but in
quotients of these categories with respect to a certain preorder, which we now define.
Let be the game with a single question and one answer . There are only two
strategies for : and , which are clearly both innocent and
well-bracketed. Maps in the or its subcategories can be thought of
as tests on strategies for : a strategy passes the test if . The intrinsic
preorder for strategies on is defined as follows.

iff

So if passes every test passed by . Note that this defines four different
preorders, one on each of , , and , because there is a different range of
tests available in each of these categories. When necessary we will distinguish them
using subscripts: for example, the preorder at work in will be written .

It is straightforward to show the following.

Proposition 11 Let be one of , , and . The appropriate relation is a
preorder on each hom-set of , and the quotient of by is a poset-enriched
cartesian closed category.

4 The language PCF
The programming language PCF is a call-by-name functional language with a base
type of expressions denoting natural numbers and constants for arithmetic and re-
cursion. Its syntax is that of an applied simply-typed -calculus. Thus types, ranged
over by , , . . . , are given by the following grammar.

Terms, ranged over by , , . . . , are as follows.

Here ranges over an infinite collection of variables, and over the natural num-
bers. There are other variants of PCF: one could add a type of booleans and some



operations on them, for example, but here we make do with the single base type
.
Typing judgements take the form

where the variables appearing in the context are all distinct.
Let range over such contexts. The typing rules are as follows.

Variables

Functions

Arithmetic

Conditional and recursion

As usual binds in , and we identify terms up to renaming of bound
variables. We will often drop the type tags on and when it will not
cause confusion.

4.1 Operational semantics
The operational semantics of PCF is given in “big-step” style by means of a relation

, where ranges over closed terms (i.e. terms such that can be
derived) and ranges over canonical forms:

Since PCF is deterministic, this relation determines a partial function from closed
terms of type , that is, programs of PCF, to natural numbers. The relation is
defined below. We write for the capture-free substitution of term for
variable in the term .



Canonical forms

Functions

Arithmetic

Conditional

Recursion

We write to indicate that for some . We can now define the observa-
tional preorder as follows. Given closed terms and of the same type, we write

iff for all contexts (i.e. PCF terms with a hole ) such that
and are well-formed closed terms of type , if then . (We
choose not to consider the observational preorder between open terms, although it
can be extended to that case straightforwardly.)

4.2 Denotational semantics
Our categories of games are cartesian closed, so they have all the structure required
to model the simply-typed -calculus. In this section we first review the interpreta-
tion of -calculus in a ccc and then go on to show how the constants of PCF can be
accommodated in the categories of games.

A type will be modelled as an object , and a well-typed open term
as a morphism



Given , we write for the product .
In particular, the semantics of the empty context is the terminal object , so closed
terms are modelled as maps .

Once the interpretation of the base type is fixed, the interpretation of other
types is defined by induction: .

Variables are interpreted using projections:

Abstraction is modelled by currying:

The interpretation of application makes use of the evaluationmap
obtained by uncurrying the identity on . If and
then

We shall now show how PCF can be interpreted in any of the cartesian closed
categories , , and . The interpretation of is the flat game of natural
numbers, defined as follows.

for each

Thus has a single initial question to which can respond by playing a natural
number. The strategies for are and for each number .
These strategies are all innocent and well-bracketed, so we have an interpretation of
the numeric constants in each of our cartesian closed categories.

The arithmetic operation is interpreted using the strategy depicted below.

This gives a map , so given , we set



The operation is handled similarly. As for the conditional, we use the strategy
whose two typical plays are shown below.

This strategy responds to the initial question by asking the question in the first .
If plays , the second is interrogated, and any response it copied to the output;
if responds with a non-zero number in the first , the third is interrogated
instead, and again any response is copied to the output. This strategy defines a map

, since . We can then interpret
as

To interpret recursively defined terms we use the fact that our categories
are cpo-enriched. The interpretation of a term determines a map

by uncurrying. We now define a chain of maps
as follows:

and set to be the least upper bound of this chain, that is, the least fixed point
of the operation taking a map to . Note in particular that

. We shall write for the term .
This completes our interpretation of PCF. The reader should check that all the

strategies used are well-bracketed and innocent, so the interpretation is valid in any
of our cccs.

4.3 Soundness and Adequacy
The aim of this section is to prove that for any closed terms and of type ,



Thus our models of PCF can be used to reason about the observational preorder.
The first step is a substitution lemma.

Lemma 12 If and are well-typed terms, then so is
and

Proof A straightforward induction, using naturality of currying and continuity of
composition for the second part.
We can now show that our denotational semantics respects the operational seman-
tics, that is, that the model is sound for evaluation.

Lemma 13 If then .
Proof Another induction, this time on the derivation of . We shall treat the
case of application. The rule in question is shown below.

By the inductive hypothesis, , and
. We now calculate as follows.

by Lemma 12

So for programs , we have . We now show that the
converse of this also holds: if then . We call such results computa-
tional adequacy. The proof uses Plotkin’s method of a computability predicate [33]
on terms, which we now define.

Definition

A closed term is computable if whenever it is the case
that .

A closed term is computable if is computable for
all computable .

An open term is computable if for all closed
computable , . . . , , the term
is computable.



Our goal is to show that all terms of PCF are computable. We shall first do this for
terms of a restricted language in which the only allowed use of the combinator is
in terms of the form ; that is, the terms are included in this sublanguage,
but no other use of is. We call this restricted language PCF .

Lemma 14 All terms of PCF are computable.
Proof A straightforward induction, using the fact that and that if

then for any .
We now lift this result to full PCF. Given a term of PCF, we
define a sequence of syntactic approximants to by

We now define the relation of syntactic approximation between terms, , as
follows.

plus rules expressing congruence of with respect to the term forming operations
of PCF. For example,

Lemma 15 If and then for some with .
Proof Induction on the derivation of .
For any PCF term and natural number , define to be the PCF term ob-
tained from by replacing each subterm of the form with . Note that

. The compositionality and continuity of our semantics now gives:

Lemma 16 For any term , .

We can finally prove that all PCF terms are computable.

Lemma 17 All terms of PCF are computable.
Proof It suffices to show that all closed terms of type are computable. Let

be such a term. By Lemma 16, where each is
computable by Lemma 14. If then for some , , and therefore

. But , so by Lemma 15. Hence is computable.
Soundness and adequacy together imply the inequational soundness result which is
our aim.

Proposition 18 If , and then .
Proof Suppose and for some context . Then by the
compositionality of our semantics, and by sound-
ness, so . But is computable, so . Hence .



4.4 Definability
Up to now our results have held equally for models of PCF in , , and . We
now concentrate on , with the aim of showing that

every compact element of the model in is of the form for some
term .

We shall not give all the details here, but will highlight the important points of the
proof. The interested reader should consult [1,14,26,27] for a fuller account, and [2]
for an axiomatization of the essential properties of and which are used.

In fact the claim above is not quite true for the version of PCF we have pre-
sented, because of its economical syntax. For example, there is no term of PCF
which denotes a ternary conditional strategy with typical plays as shown below.

To remedy this, we add to PCF -ary conditionals

with operational semantics as follows.

The denotation of such a term is given by the strategy outlined above. This is a
harmless extension of PCF because it is conservative with respect to the observa-
tional preorder: if and are terms such that for all -free contexts ,

, then the same is true for all contexts. This holds because a term



can be replaced by

which has the same operational semantics. We call the extended language PCF .

Exercise

1. Prove the above claim.

2. Prove that in the case .

In what follows we shall use the linear type structure of to analyse the model
of PCF in , so most of the time we are working in . We shall also frequently
identify a PCF type with the game which it denotes.

Proposition 19 Let , . . . , be PCF types and
an innocent, well-bracketed strategy with finite

view-function. There exists a term

of PCF such that .
Proof By induction on the size of the view-function of . In the base case,
so we can set . For the inductive step, there are two possible cases.

Either responds to the initial question with some answer , in which case
, or replies to the initial question

by asking the question in some . We shall now analyse this case in detail. The
idea is that corresponds to a statement, first investigating the argument which
supplies in the component, and then branching according to the response.
First let us uncurry , arriving at a strategy

We shall find a term such that , and the
required result follows by -abstracting . The strategy responds to the initial
with in . In the play which follows, some moves of will be justified by
this occurrence of . We can separate out all such moves into an extra copy of ,
simply by relabelling the moves in question, arriving at a strategy

which responds to the initial question with in this new copy of . Note the
linear type of the new : only one initial move is ever played there.

Now consider the odd-length sequences of moves of this game when plays
according to . Such a sequence begins , and the -view of the sequence either
contains an immediate answer to , or no answer to at all. In the former case, the
views take the form , and give rise to views of positions in the game



(We have simply deleted all play in the extra copy of the game .) Thus, for each
, the responses of at views give rise to an innocent strategy for the
game above. These are the strategies corresponding to the branches of the case
statement which will represent . The view function of each is smaller than that
of , so by the inductive hypothesis, for some term . Furthermore,
since the view function of is finite, there is some such that for any ,

.
Now consider the views in which is not answered. Since is well-

bracketed, is not answered either. Therefore the sequence consists entirely of
moves in , . . . , and the separate . If , these
moves must in fact be in the components. Relabelling moves, the sequence
can be construed as a play in the game

and the set of responses made by at such views gives rise to an innocent strategy
for this game. But , so by Lemma 7 and the
universal property of products, this strategy is the promotion of a strategy

Each is innocent and well-bracketed and has smaller view-function than , so
for some term by the inductive hypothesis. It can then be checked

that

4.5 Full Abstraction
We can now show that the category contains a fully abstract model of PCF.
In fact, there is some work to be done to show that is a model of PCF at all.
The reason is that although the cartesian closed structure and interpretations of the
base type, arithmetic constants and conditional of PCF all survive the quotient from
to , it is not knownwhether the quotiented category is cpo-enriched. We

must therefore take care in interpreting recursion. Given a term ,
we can form the chain of maps in in just the same way as the
chain is formed in . It is easy to show that , the equivalence class of
, and hence that the chain has a least upper bound given by . A category

in which such chains have least upper bounds which are preserved by composition
is called rational; for more information on rational categories, see [1, 27].

Rather than dwelling on the issue of how the quotient gives rise to a model, we
shall go ahead and prove the following result.

Theorem 20 For any closed PCF terms and of the same type,



Proof First notice that in defining the intrinsic preorder, we could let the object
of tests be rather than , and say that passes test if , with the same
effect. The left-to-right direction of the theorem is now straightforward. Suppose

and that for some context . The term (where is
fresh) determines a map such that for all suitably
typed closed terms . We have , so since , we also have

. But is computable, so as required.
For the right-to-left direction, we prove the contrapositive. Suppose
. Then for some , and . The strategy

can be taken to be compact, and then by Proposition 19, for
some term . We therefore have and , so but
not , as required.

5 Idealized Algol
We now consider a simplified version of the language introduced by Reynolds
in [34], variants of which have come to be known as Idealized Algol (IA for short).
IdealizedAlgol is a block-structured imperative programming languagewith higher-
order procedures; otherwise put, it is an extension of PCF with the constructs of a
basic imperative language and block-allocated local variables. Our game semantics
of IA will therefore be an extension of that of PCF with suitable types and con-
stants. The main result of this section is that the category of well-bracketed but
not necessarily innocent strategies gives rise (after taking the quotient with respect
to the intrinsic preorder) to a fully abstract model of our variant of IA. Thus we see
that the addition of imperative constructs to PCF and the relaxation of innocence
are strongly related.

Idealized Algol is obtained by adding to PCF two base types: the type , for
commandswhich alter the state, and , for variableswhich store natural numbers.
We also add a constant , the “do nothing” command, and an operation
for sequential composition:

or

Intuitively, runs the command until it terminates and then behaves
like . Thus is the usual sequential composition of commands, while

allows expressions to have side-effects. This is perhaps the most important
difference between our language and that originally proposed by Reynolds, in which
a sharp distinction is drawn between commands, which affect the store but return
no interesting value, and expressions, which may not alter the store. It is possible to
give a fully abstract games model for the language without , but this requires
further sophistication in the model, which we do not wish to consider here; see [7].



We also have operations for writing to and reading from the store.

Variables are allocated using a binding operator :

or

In such a term, the variable is bound in .
The final constructor we add to our language requires some explanation. The

work of Reynolds and others (cf. [32]) takes the view that a variable is an “object”
with two methods: the write method, which takes a number as input and executes
a command to store that number, and the read method, which returns the number
stored in the variable. We therefore have

where is a type of acceptors or write-methods. An acceptor can be seen as a
(strict) function from expressions to commands: the acceptor for a variable takes a
number and executes the command to store in . To make this view of variables
explicit in the language, we add a constructor

Unlike the addition of the constructs to PCF in the previous section, adding
to the language does alter the observational preorder; the problem of finding

a fully abstract model for the language without remains open.

5.1 Operational semantics
The operational semantics of IA is given in terms of stores. Given a context

in which all variables have type (a -context), a -
store is a function from to natural numbers. We write
for the store identical to but that is mapped to ; this operation is used both to
update a -store and to extend a -store to a -store.

The only canonical form of type is , while the canonical forms of type
are variables and all terms of the form . We now define a relation

where is a term and a canonical form, with a -context
and and both -stores. Using the convention that a rule such as



is an abbreviation for

the rules for Idealized Algol are those for PCF together with the following.

Sequencing

Variables

mkvar

Blocks

Notice that the rule for assignment evaluates the expression part before the variable
part. This choice has been made to fit with the game semantics to follow. It is
not clear how to adapt the model to the other choice of operational semantics: the
problem of finding a fully abstract model for the other evaluation order remains
open!

For a closed term , we write if in the unique (empty) store, and
define the observational preorder just as for PCF, but using closed contexts of type

rather than . Notice that this choice of type makes no difference for this
language in which expressions may have side-effects; but in the restricted language
without the construct, this decision is vital.

5.2 Denotational semantics
We now show how to extend the semantics of PCF to obtain models of IA in and
. The extension requires strategies which are not innocent, so the categories and
cannot be used.



The type is interpreted as a two-move game, with a single initial move
enabling a single answer : aside from effects on the store, the only observa-
tion to be made of a command is its termination. For the type , we appeal to
Reynolds’s analysis

It therefore remains for us to give an interpretation of the type of acceptors. As
indicated earlier, an acceptor can be seen as a strict function from expressions to
commands. Such a function can alternatively be presented as a collection of com-
mands, one for each natural number. Thus we model as , the product of
countably many games. Renaming the moves to make them more suggestive,
the game for has an initial move for each natural number , and an
initial move . Each enables a single answer , while enables
an answer for each natural number. In a picture:

Notice the elegant duality between the read and write parts of this game. [This
interpretation of the type of acceptors is slightly different from that used in our
informal introduction, which was simply . Using this type would allow
non-strict acceptors, which are not present in IA, so full abstraction would fail.]

The interpretation of is the strategy which responds to with
immediately. Sequential composition is interpreted by the obvious strategy: in the
case of , it is as shown below.

Given our interpretation of , the denotations of assignment and dereferencing
should be clear:



Notice that the strategy for assignment moves in before , which is why the
expression part must be evaluated first in the corresponding operational semantics.
For , since , we use pairing together with the following
coercion from to :

All of the above strategies are innocent, and none of them takes any account of state:
they all just copy and manipulate data without “remembering” anything. All of the
work in modelling state is in fact done by the interpretation of , which is after
all the only source of stateful behaviour in the language.

5.2.1 Interpreting new

The denotation of in the games model is built from a “storage cell” strategy
. First thoughts suggest that should be a strategy for , since it is

supposed to be the interpretation of a locally allocated variable. The key aspect of
storage cells, however, is the way their contents persist from one use to the next, so
we in fact use the game , which can be thought of as a type of “reusable s”.

Plays in the game take the form:

with no causal relationship between the various values written and read. The strat-
egy just imposes the obvious storage cell behaviour: it responds to each move
of the form with , and responds to a with the last value writ-
ten, if any; if no value has yet been written, responds to with , since
our operational semantics initializes variables to zero. Other choices of operational
semantics could be reflected by different initializations of this strategy. For
emphasis, we shall sometimes write for this version of , and for
the version initialized to .

The strategy is well-defined and well-bracketed, but it is not
innocent, because after each move, the -view consists just of that , so
an innocent strategy could not hope to return the last value written into the cell.

Given a term (or ), with interpretation
we can interpret by



Remark Although we have made use of the linear category in defining our
model of IA, it should be emphasised that the model is in the cartesian closed cat-
egory (and in ). The underlying linear type structure is useful in analysing and
discussing the model, because it gives direct access to the map . It
would be possible to do without this extra expressivity, defining a map

in directly. We have chosen not to do so because the map is of
great use in the proof of soundness which follows.

5.3 Soundness and Adequacy
As for PCF, the first step on the way to a soundness result is to show that the model
respects the relation of the operational semantics. However, there is
a mismatch between the elements of this relation, which involve explicit stores
and , and the implicit way in which state is represented in the games model using
history-sensitivity of strategies. To bridge this gap, we massage the game semantics
a little to make states more explicit.

Given a -context and a -store , we define the
interpretation of to be a map

of (or ) consisting of a tuple of suitably initialized strategies:

We can now give an interpretation to a configuration where is a
term and is a -store, using the composition

Our soundness result will be that whenever we have
. However, the proof of this fact requires a slightly stronger inductive hy-

pothesis. For example if is some constant which does not depend on the store at
all, then for all stores ! If is used in a context which
makes use of the store after evaluating , the fact that evaluates to rather
than will be crucial, so we must reflect this in our inductive hypothesis.

Consider instead the strategy defined to be the map below.

The extra copy of provided by the contraction map serves to allow access to the
store from outside. We can now prove the following soundness result.

Lemma 21 Given a term and a -store such that , the
plays of which begin with a move of are identical to those
of .



Proof A straightforward induction on the derivation of . Some cases,
like that for application, follow for general reasons such as the comonoidal proper-
ties of contraction, whereas others involve examining the behaviour of strategies in
detail. For the case of the application rule

where and , we argue as follows. The map

is easily seen to be equal to

using the definition of and co-associativity of contraction. Therefore the
plays in beginning with a move in involve an interaction in which the
initial move in is copied by and two identity strategies to the initial move in

, thus beginning a play of . So these plays are determined by the
plays of which begin in . By the inductive hypothesis, these plays
are the same as those of . Therefore the plays of beginning
with a move in are the same as those of . But

by the substitution lemma, so the result follows by the inductive hypoth-
esis.

For the case of assignment to a variable,



we simply unpick the interaction involved in a play of begin-
ning with the move of . The strategy responds to this move by
interrogating , which by the inductive hypothesis begins a play identical to that
of . Some manipulation as in the case of application shows that the relevant
plays of are the same as those of . After the
answer has been supplied, play continues with in the part, and
again the inductive hypothesis and some manipulation shows that the relevant plays
are the same as those of . All that happens in this strategy is that

is played in the part fo the store, and then the initial is answered
with . Any further play in the component will be copied to and from the
newly updated store, so the relevant plays of are the same as
those of as required.

Let us finally consider the case of variable allocation.

It is straightforward to show that for any term , -store and natural
number , the map

is equal to



Instantiating with , this map is , so the relevant plays of this
strategy are the same as those of the first map above. By the inductive hypothesis,
these are the same as those of . Instantiating the diagram above
with and gives the result.

Corollary 22 If is such that then .

Again we wish to prove the converse of this result, and again we employ a com-
putability predicate. To define this, we consider what we shall call split terms, which
are judgements together with a partition of the con-
text into disjoint sets and , where is a -context
and is arbitrary. The idea is that the variables in are those which are bound
to storage cells. We will write such a split term as , even though
doing so may involve rearranging the order of variables in the original judgement.
Split terms with empty part are called semi-closed: intuitively, they contain no
unbound identifiers. We can now define a predicate of computability on split terms.

Definition

A semi-closed split term where is or is computable
iff whenever , it is the case that .

A semi-closed split term is computable iff the split terms
and are computable for all .

A semi-closed split term is computable iff for all
computable the split term is computable.

An open split term is computable iff for all
computable the split term
is computable.

Lemma 23 All split terms are computable.
Proof The proof is a simple adaptation of that for PCF, making use of the sound-
ness result proved above. We first show that all split terms of IA , that is, Idealized
Algol in which the only allowed uses of are in terms of the form , are com-
putable. This is done by induction on the structure of terms: for every possible
splitting of a term, the resulting split term is shown computable. The most interest-
ing case is that of a variable , which may be in the part of the context or
the part. In the latter case, we must simply show that is computable for
all computable , which is trivial. In the former case we must verify directly that
both and are computable, which follows from the definition
of the strategies interpreting these terms.

This result for IA is then extended to the whole of IA using syntactic approxi-
mants, just as in the proof of Lemma 17.



Again the soundness and adequacy results together give us an inequational sound-
ness theorem.

Proposition 24 For all closed IA terms and , if then .

5.4 Definability
We have seen that extending the games model of PCF to one of IA requires moving
from to to accommodate the non-innocent strategy . We shall now show
that in a certain sense, is a generic non-innocent strategy: all strategies in
or can be obtained from and strategies from or . More precisely, we
prove the following factorization theorem.

Proposition 25 Let be a strategy for a game with a countable set of moves,
such that whenever is an odd-length valid position and for
some move (and justification pointer), the sequence (where the justi-
fication pointer on is such that is the same as the sequence above).
Then there exists an innocent strategy such that

Moreover, if is compact, is innocently compact, and if is well-bracketed, so
is . Note that this is a weak orthogonality property in the sense of factorization
systems [9].
Proof The idea is that simulates using its view of the play in together with (a
code for) the full previous history of the play, which it keeps in the variable. Thus we
use state to encode history, a standard idea in automata theory; the interesting thing
here is that we find a point of contact betweenmachine simulations and factorization
systems.

Let the function be an injection from valid positions of to natural
numbers such that . Such a function must exist because has only
countably many moves. Note that the -view of a position in contains
the string . At each -move in , following a previous play , the strategy
behaves as follows:
If does not have a response at any position of with player view ,
has no response. Otherwise, it reads from the variable. Let .

If , has no response. Otherwise it writes back into the
variable, and then plays in .

Note that the assumption on together with the fact that is a valid strategy
ensures that is well-defined. It is clear that is innocent, and that the composite

, as required. Further, if is compact, it only has a response at a
finite number of positions . In this case, the strategy only has a response at a



finite number of views, so is innocently compact. It is also clear that if is well-
bracketed then must be so as well.

Lemma 26 Every game of the form where is a type of IA satisfies the
technical condition in the statement of the above Proposition.
Proof This follows from the fact that for any game , the valid positions are
exactly the legal positions containing at most one initial move. The proof of this
fact, which makes use of several technical lemmas from [27], can be found in [5].

We can also extend the definability result for PCF as follows.

Lemma 27 Every innocently-compact well-bracketed strategy at IA type is defin-
able.

The proof of this result is just an extension of the PCF case, Proposition 19. In
place of the statements, when a strategy interrogates a type, the
construct is used—note that its behaviour is exactly that of a “unary case statement”.
We also make use of to reduce the question of definability for strategies of
type to those of types and .

Exercise Write out the details of the above proof. Find an innocently-compact,
well-bracketed strategy which is not definable without , and one not definable
without .

We immediately obtain the following definability result.

Proposition 28 Every compact, well-bracketed strategy at IA type is definable.
Proof We shall just consider the case of a strategy . (The general
case just involves a little more messing around with types, currying, uncurrying and
decomposing into and using .) By Proposition 25, we can write
a curried version of as

where is innocently-compact and well-bracketed. By Proposition 28,
for some term . Hence

as required.
Full abstraction for the model in now follows exactly as in the case of PCF.

Theorem 29 For all closed terms and of IA,

6 PCF with control
Just as important as the issue of state in programming languages is that of control.
Almost all languages in use offer facilities for manipulating the flow of control, be



they goto statements and labels, exceptions and other error trapping mechanisms,
or the various call/cc and catch throw operators which appear in languages
with a functional core. All these constructs give the programmer the ability to pro-
gram non-local jumps which are not present in simple functional languages in the
style of PCF, or in Idealized Algol.

We will show in this section that the addition of a simple control operator to
PCF corresponds precisely to the violation of the bracketing condition on strategies,
just as the addition of state corresponds to the violation of innocence. The control
operator we add is a very simple construct, similar to that of [10], so our
extended language is (a minor variant of) the language called SPCF in that paper;
we will use the same name.

We add to PCF a family of control operators called . The typing rule is
as follows.

This operation binds in .
Using allows early exit from expressions. Intuitively, when the term
tries to evaluate variable , the term immediately

terminates, returning . Should terminate with some without using any of
the , returns .

6.1 Operational semantics
Unfortunately, the big-step style of operational semantics we have used so far is
not informative enough to allow us to extend it to SPCF. We therefore use a small-
step style of semantics. We shall also make use of the notion of evaluation context.
Intuitively, an evaluation context is a context in which the single hole is “in the
place which will be evaluated next”. Formally, evaluation contexts are defined by
the following grammar.

Hand in hand with evaluation contexts goes the notion of of redex. A redex is a term
in which a computation step is about to happen; redexes are defined below.

where in the last case, the occurrence of in is assumed free.

Lemma 30 Any term of SPCF is either a canonical form or can be written uniquely
as , where is an evaluation context and is either a free variable or a redex.
Proof An easy induction over the structure of terms.



We now give the operational semantics in two stages. First we say how redexes
reduce.

Again, in the last rule we assume the occurrence of in the hole of is free.
We now define the reduction of arbitrary terms by:

Note that this operational semantics reduces open terms as well as closed terms. For
a closed term , we write if where is in canonical form. (Here

denotes the reflexive transitive closure of .)

Exercise Show that for PCF terms, the relation defined here coincides with
that of Section 4.1.

6.2 Denotational semantics
We now extend the game semantics of PCF to SPCF by giving strategies interpret-
ing the constructs. These strategies are innocent but not well-bracketed, so
we obtain models of SPCF in and .

We shall just describe the strategy used to interpret



, by giving its typical plays, which are shown below.

In fact these three plays are all the maximal views of the strategy . Given an
SPCF term whose interpretation is a map

in or , by currying and composing with we obtain
:

6.3 Soundness and Adequacy
We now set about the business of showing that our model of SPCF is sound and
adequate, as we have done for PCF and IA before. First a technical lemma which
essentially says that evaluation contexts are strict with respect to any term which
may fill the hole.

Lemma 31 For any term , the strategy

responds to the initial question of with the initial question of .
Proof A simple induction over the structure of evaluation contexts.

We can now prove a soundness result.

Lemma 32 For any SPCF term , if then .
Proof We shall just show that for any redex , if then . The
rest follows from the compositionality of our semantics. For all redexes apart from
those of , the required result holds for the same reasons that the PCF model
is sound, so we shall not go into further detail. The first reduction



can be checked straightforwardly. For the second reduction,

we use Lemma 31, which tells us that the map

responds to the initial question in with that of . It is then straightforward to
check that .
This Lemma implies that if then . As usual we require
adequacy, that is, the converse of this result, and as usual a computability argument
is employed. The proof we shall give differs from those for PCF and IA, and is
adapted from that found in [10].

Let SPCF be the restricted subset of SPCF in which the only allowed terms
of the form are the terms. As usual we shall prove our result first for
SPCF before extending it to full SPCF. Our predicate of computability is defined
as follows.

Definition

A (possibly open) term is computable iff either ,
for some free variable , or .

A (possibly open) term is computable iff is computable
for all computable .

Notice that this definition does not involve the semantics at all; however, it is not so
different from the other definitions, because Lemma 31 implies that .

Lemma 33 If and is computable, then is computable.
Proof By induction on type. The case of is trivial. In the case

, we must show that is computable for all computable .
Since , we know that for some evaluation context and redex
, and that and . But then , and is an

evaluation context, so . We know is computable, so
by the inductive hypothesis, is computable.
We can now prove the main lemma for adequacy.

Lemma 34 For any term of SPCF and any com-
putable (and possibly open) , . . . , , is
computable.
Proof By induction on the structure of . The cases of variables, numerals and
the term are all trivial. Those of , and are all similar, so we give
the argument for as an illustration.

If then , and is com-
putable, by the inductive hypothesis. One of the following therefore holds.



, in which case .

, in which case .

, in which case .

In the first case, we are done. In the second and third cases, we just need to observe
that is an evaluation context, so we are done.

The case of application follows directly from the inductive hypothesis. For ab-
straction, when , we have . Letting be
any computable term of the right type, we must show that is com-
putable. But which is computable by the in-
ductive hypothesis, and an appeal to Lemma 33 gives the required result.

Finally, we consider the case . Now
and we know is computable by the

inductive hypothesis. Again there are three cases: reduces either to
, for some free variable , or . In the first and third of these cases,

is immediately seen to be computable. In the sec-
ond case, if is not one of the , we have

and is free, so since
is an evaluation context, we are done. Finally, if is some , then

completing the proof.

Corollary 35 All terms of SPCF are computable.
Proof It is clear that variables are computable, so given any term

of SPCF , the term is computable by the above
Lemma. But this term is the same as .

We lift this result to full SPCF using the notion of syntactic approximant as
before. This time, the important lemma is the following.

Lemma 36 If and is not of the form , then if , there
exists an such that and .
Proof Induction on the derivation of . In the case of a reduction

we need to show that if then for some ; but this is
straightforward.



Proposition 37 If is a program and then .
Proof If , it cannot be the case that since
and evaluation contexts are strict. If is a term of SPCF , then by Lemma 34,

for some , so . For an arbitrary term , as usual we have

where is with all subterms replaced by ; recall that . For
some , we have , so by the argument above. Then by Lemma 36,
we also have .

Proposition 38 If for closed SPCF terms and , then .

6.4 Definability
We can now prove definability for the model of SPCF in the category . As was
the case for IA, the proof makes use of a factorization theorem which removes
violations of the bracketing condition from an arbitrary compact innocent strategy.
The technique behind this factorization is due to Laird [24].

Lemma 39 Let be an SPCF type and an innocently-compact strategy.
There exists a natural number and an innocently-compact, well-bracketed strategy

such that , where is the strategy used in the interpretation of ,
viewed as a map

Proof The strategy “factors out” all violations of the bracketing condition from
. Suppose one of the plays of is of the form

where the answer is a -move violating the bracketing condition. Choose
large enough that any answer may give to this is smaller than . The idea behind



the factorization to remove this violation is suggested by the following diagram.

... play as

... play as

... play as

The strategy plays exactly as would play in , until plays the question ,
whereupon asks the question on the left hand side. If is playing according
to , the next move will be as shown. Now switches back to and continues
playing as would play, until would give the answer to . At this point asks
the question in , justified by the previously played by . If is playing
according to , the response is to play , answering . Now can copy this
answer to , answering without violating the bracketing condition, because of the
intervening pair of moves

Since is intended to be an innocent strategy, we must add to it some behaviours
for the case when does not play according to . Whenever answers with
some , copies this answer to , answering . If answers the question ,
has no response. Playing according to this strategy, after an -move in , the -
view is always a -view of a position in reachable by , with the two moves

inserted after if it appears in this view. The strategy responds at any
such view with the move that would have played. It is straightforward to check
that is a well-defined, innocently-compact strategy and that there are strictly fewer
views in which violate the bracketing condition than there are in . It is also clear
that . To complete the proof we simply apply the above factorization
repeatedly to remove all violations of the bracketing condition.

Just as in the case of IA, this factorization leads to definability and full abstrac-
tion.

Proposition 40 Let be an innocently-compact map
in , where the and are types of SPCF. There exists an SPCF term

such that .
Proof By Lemma 39, there exists an innocently-compact well-bracketed strategy



such that is a suitably curried version of . If we then curry the type on the
domain of so that it is a PCF type, then by Proposition 19,

Then

where has type .
As before, this definability result leads to full abstraction in the category which
results from quotienting with respect to the intrinsic preorder.

Theorem 41 For closed SPCF terms and of the same type,
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