
TWO-DIMENSIONAL MODELS OF TYPE THEORY

RICHARD GARNER

Abstract. We describe a non-extensional variant of Martin-Löf type the-
ory which we call two-dimensional type theory, and equip it with a sound
and complete semantics valued in 2-categories.

1. Introduction

This is the second in a series of papers detailing the author’s investiga-
tions into the intensional type theory of Martin-Löf [22]. The first of these
papers, [10], investigated syntactic issues relating to its dependent product
types. The present paper is a contribution to its categorical semantics.

In [24], Seely proposed that the correct categorical models for extensional
Martin-Löf type theory should be locally cartesian closed categories: these be-
ing categories C with finite limits in which each of the functors f∗ : C/X → C/Y
induced by pulling back along a morphism f : Y → X has a right adjoint. The
idea is to think of each object X of a locally cartesian closed category C as
a closed type, each morphism as a term, and each object of the slice cat-
egory C/X as a type dependent upon X. Now substitution of terms in types
may be interpreted by pullback between the slices of C; dependent sum and
product types by left and right adjoints to pullback; and the equality type
on X by the diagonal morphism ∆: X → X × X in C/X × X. It was later
pointed out by Martin Hofmann [15] that this picture, whilst very appeal-
ing, is not wholly accurate, since in the syntax, the operation which to each
morphism of types f : Y → X assigns the corresponding substitution opera-
tion Type(X) → Type(Y ) is strictly functorial in f ; whilst in the semantics,
the corresponding assignation (f : Y → X) 7→ (f∗ : C/X → C/Y ) is rarely so.
Thus this notion of model is not sound for the syntax, and we are forced to
refine it slightly: essentially by equipping our locally cartesian closed category
with a split fibration T → C equivalent to its codomain fibration C2 → C.
Types over X are now interpreted as objects of the fibre category T (X); and
since T → C is a split fibration, the interpretation is sound for substitution.

The question of how the above should generalise from extensional to inten-
sional Martin-Löf type theory is a delicate one. It is possible to paraphrase
the syntax of intensional type theory in categorical language and arrive at a
notion of model—as done in [6] or [14], for example—but then we lose sight of
a key aspect of the extensional semantics, namely that dependent sums and
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products may be characterised universally, as left and right adjoints to sub-
stitution. To obtain a similar result for the intensional theory requires a more
refined sort of semantics. More specifically, we are thinking of a semantics
valued in higher-dimensional categories, motivated by work such as [2, 9, 16]
which identifies in intensional type theory certain higher-dimensional features.
The idea is that, in such a semantics, we should be able to characterise de-
pendent sums and products universally in terms of weak, higher-dimensional
adjoints to substitution.

Eventually we expect to be able to construct a sound and complete se-
mantics for intensional type theory valued in weak ω-categories. At the mo-
ment the theory of weak ω-categories1 is insufficiently well-developed for us to
describe this semantics: yet we can at least take steps towards it, by describ-
ing semantics valued in simpler kinds of higher-dimensional category. In this
paper, we describe such a semantics valued in 2-categories. The idea is that,
as well as objects representing types, and morphisms f : X → Y representing
terms, we have 2-cells α : f ⇒ g representing witnesses for the propositional
equality of terms f and g. Intuitively, the 2-categorical models we consider
provide a notion of two-dimensional locally cartesian closed category; though
bearing in mind the above concerns regarding the functoriality of substitution,
it is in fact a “split” notion of two-dimensional model which we will describe
here. Relating this to a notion of two-dimensional local cartesian closed cat-
egory will require a 2-categorical coherence result along the lines of [15], and
we defer this to a subsequent paper.

Our 2-categorical semantics is sound and complete neither for intensional
nor extensional type theory, but rather for an intermediate theory which we
call two-dimensional type theory. Recall that extensional type theory dis-
tinguishes itself from intensional type theory by its admission of an equality
reflection rule, which states that any two terms of type A which are pro-
positionally equal, are also definitionally equal. The two-dimensional type
theory that we will consider admits instances of the equality reflection rule
at just those types which are themselves identity types. The effect this has is
to collapse the higher-dimensional aspects of the intensional theory, but only
above dimension two: and it is this which allows a complete semantics in 2-
categories. The leading example of model for our semantics is Hoffmann and
Streicher’s groupoid model [16]: indeed, it plays the same fundamental role
for two-dimensional type theory as the Set-based model does for extensional
type theory. However, we expect there to be many more examples: on the cat-
egorical side, prestack and stack models, which will provide two-dimensional
analogues of the presheaf and sheaf models of extensional type theory; and
on the type-theoretic side, an E-groupoid model [1], which extends to two
dimensions the setoid model of extensional type theory [13]. Once again, the
task of describing these models will be deferred to a subsequent paper.

Our hope is that the semantics we describe in this paper here will provide
a useful guide in setting up more elaborate semantics for intensional type

1By which we mean weak ω-categories of the algebraic kind, whose composition is given
by chosen data rather than weak universal properties; it is these which will be necessary for
the interpretation of intensional type theory.
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theory: both of the ω-categorical kind outlined above, and of the homotopy-
theoretic kind espoused in [2]. Indeed, most of the problematic features
of these higher-dimensional semantics are fully alive in the two-dimensional
case—in particular, the rather subtle issues regarding stability of structure
under substitution—and the analysis we give of them here should prove useful
in understanding these more general situations.

The paper is set out as follows. In Section 2, we review the syntax of inten-
sional and extensional Martin-Löf type theory and describe our intermediate
two-dimensional theory, ML2. In Sections 3 and 4 we describe a 2-categorical
structure built from the syntax of ML2. Section 3 focuses on the non-logical
rules of ML2 together with the rules for identity types; and from these con-
structs a 2-category C of contexts and a two-dimensional fibration T → C

of types over contexts. This 2-fibration comes equipped with a comprehen-
sion 2-functor E : T → C2 which sends each type-in-context Γ ⊢ A type to
the corresponding dependent projection map (Γ, x : A) → Γ given by pro-
jecting away the last component. So far we have given nothing more than a
simple-minded extension of the one-dimensional semantics: the twist is that
each dependent projection in our 2-categorical model carries the structure of
a normal isofibration. This extra structure is the 2-categorical correlate of the
Leibnitz rule in dependent type theory. In Section 4, we extend our purview
to encompass the logical rules of ML2. These impose extra structure upon our
basic 2-categorical setup as follows. The identity types can be characterised
as arrow objects in the slices of our 2-category of contexts; whilst the unit
type, dependent sums and dependent products can all be expressed in terms
of a notion of weak 2-categorical adjointness which we call retract biadjunc-
tion. Where a plain adjunction concerns itself with isomorphisms of hom-sets
C(FX,Y ) ∼= D(X,GY ), a retract biadjunction instead requires retract equi-
valences of hom-categories C(FX,Y ) ≃ D(X,GY ). We find in particular
that dependent sums and products are respectively left and right retract bi-
adjoint to weakening. These syntactic investigations lead us to define a notion
of model for two-dimensional type theory, this being an arbitrary 2-fibration
T → C equipped with the structure outlined above. The results of Sections 3
and 4 can be summarised by saying that each type theory S extending ML2

admits a classifying model C(S). In Section 5, we provide a converse to this
result by showing that to each two-dimensional model C we can assign a two-
dimensional type theory S(C) which represents the model faithfully. We call
this type theory the internal language of C. Finally, we show that these two
constructions—classifying model and internal language—give rise to a func-
torial semantics in the sense of Lawvere: which is to say that they induce
an equivalence between suitably defined categories of two-dimensional type
theories, and of two-dimensional models.

2. Intensional, extensional and two-dimensional type theory

2.1. Intensional type theory. By intensional Martin-Löf type theory, we
mean the logical calculus set out in Part II of [22]. In this paper, we consider
only the core calculus MLI , with type-formers for dependent sums, dependent
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products, identity types and the unit type. We now summarise this calculus,
partly to fix notation and partly because there are few peculiarities which
are worth commenting on. The calculus has four basic forms of judgement:
A type (“A is a type”); a : A (“a is an element of the type A”); A = B type

(“A and B are definitionally equal types”); and a = b : A (“a and b are
definitionally equal elements of the type A”). These judgements may be made
either absolutely, or relative to a context Γ of assumptions, in which case we
write them as

Γ ⊢ A type, Γ ⊢ a : A, Γ ⊢ A = B type and Γ ⊢ a = b : A

respectively. Here, a context is a list Γ = (x1 : A1, x2 : A2, . . . , xn : An−1),
wherein each Ai is a type relative to the context (x1 : A1, . . . , xi−1 : Ai−1).
There are now some rather natural requirements for well-formed judgements:
in order to assert that a : A we must first know that A type; to assert that
A = B type we must first know that A type and B type; and so on. We specify
intensional Martin-Löf type theory as a collection of inference rules over these
forms of judgement. Firstly we have the equality rules, which assert that the
two judgement forms A = B type and a = b : A are congruences with respect to
all the other operations of the theory; then we have the structural rules, which
deal with weakening, contraction, exchange and substitution2; and finally, the
logical rules, which we list in Table 1. Note that we commit the usual abuse
of notation in leaving implicit an ambient context Γ common to the premisses
and conclusions of each rule. We also omit the rules expressing stability under
substitution in this ambient context.

We will find it convenient to use the following extended forms of the identity
elimination and computation rules:

x, y : A, p : IdA(x, y), ∆ ⊢ C(x, y, p) type

x : A, ∆[x, x, r(x)/x, y, p] ⊢ d(x) : C(x, x, r(x))

x, y : A, p : IdA(x, y), ∆ ⊢ Jd(x, y, p) : C(x, y, p)

x, y : A, p : IdA(x, y), ∆ ⊢ C(x, y, p) type

x : A, ∆[x, x, r(x)/x, y, p] ⊢ d(x) : C(x, x, r(x))

x : A, ∆[x, x, r(x)/x, y, p] ⊢ Jd(x, x, r(x)) = d(x) : C(x, x, r(x))

These rules may be derived from the elimination and computation rules in
Table 1 by using the Π-types to shift the additional contextual parameter ∆
onto the right-hand side of the turnstile.

2.1.1. Notation. We may omit from the premisses of a rule or deduction any
hypothesis which may be inferred from later hypotheses of that rule. Where
it improves clarity we may omit brackets in function applications, writing
hgfx in place of h(g(f(x))), for example. We may drop the subscript A in an
identity type IdA(a, b) where no confusion seems likely to occur. We may write
a sum type Σx : A.B(x) as Σ(A,B), a product type Πx : A.B(x) as Π(A,B),
and a λ-abstraction λx. f(x) as λ(f) (or using our applicative convention,
simply λf). It will occasionally be useful to perform lambda-abstraction at

2Note in particular that we take substitution to be a primitive, rather than a derived

operation: as done in [19], for instance.
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Dependent sum types

A type x : A ⊢ B(x) type

Σx : A.B(x) type
Σ-form;

a : A b : B(a)

〈a, b〉 : Σx : A.B(x)
Σ-intro;

z : Σx : A.B(x) ⊢ C(z) type

x : A, y : B(x) ⊢ d(x, y) : C(〈x, y〉)

z : Σx : A.B(x) ⊢ Ed(z) : C(z)
Σ-elim;

z : Σx : A.B(x) ⊢ C(z) type

x : A, y : B(x) ⊢ d(x, y) : C(〈x, y〉)

x : A, y : B(x) ⊢ Ed(〈x, y〉) = d(x, y) : C(〈x, y〉)
Σ-comp.

Unit type

1 type
1-form;

⋆ : 1
1-intro;

z : 1 ⊢ C(z) type d : C(⋆)

z : 1 ⊢ Ud(z) : C(z)
1-elim;

z : 1 ⊢ C(z) type d : C(⋆)

Ud(⋆) = d : C(⋆)
1-comp.

Identity types

A type a, b : A

IdA(a, b) type
Id-form;

A type a : A

r(a) : IdA(a, a)
Id-intro;

x, y : A, p : IdA(x, y) ⊢ C(x, y, p) type

x : A ⊢ d(x) : C(x, x, r(x))

x, y : A, p : IdA(x, y) ⊢ Jd(x, y, p) : C(x, y, p)
Id-elim;

x, y : A, p : IdA(x, y) ⊢ C(x, y, p) type

x : A ⊢ d(x) : C(x, x, r(x))

x : A ⊢ Jd(x, x, r(x)) = d(x) : C(x, x, r(x))
Id-comp.

Dependent product types

A type x : A ⊢ B(x) type

Πx : A.B(x) type
Π-form;

x : A ⊢ f(x) : B(x)

λx. f(x) : Πx : A.B(x)
Π-abs;

m : Πx : A.B(x)

y : A ⊢ m · y : B(y)
Π-app;

x : A ⊢ f(x) : B(x)

y : A ⊢
(

λx. f(x)
)

· y = f(y) : B(y)
Π-β.

Table 1. Logical rules of intensional Martin-Löf type theory (MLI)
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the meta-theoretic level, for instance writing [x] f(x) to denote a term f of
the form x : A ⊢ f(x) : B(x). We may write Γ ⊢ a ≈ b : A to indicate that
the type Γ ⊢ IdA(a, b) is inhabited, and say that a and b are propositionally
equal. We will also find it convenient to make use of vector notation in the
style of [5]. Given a context Γ = (x1 : A1, . . . , xn : An), we may abbreviate a
series of judgements:

⊢ a1 : A1, ⊢ a2 : A2(a1), . . . ⊢ an : An(a1, . . . , an−1),

as ⊢ a : Γ, where a := (a1, . . . , an), and say that a is a global element of Γ. We
may also use this notation to abbreviate sequences of hypothetical elements on
the left-hand side of the turnstile; so, for example, we may specify a dependent
type in context Γ as x : Γ ⊢ A(x) type. We will also make use of [5]’s notion
of telescope. Given Γ a context as before, this allows us to abbreviate the
series of judgements

x : Γ ⊢ B1(x) type,

x : Γ, y1 : B1 ⊢ B2(x, y1) type,

. . .

x : Γ, y1 : B1, . . . , ym−1 : Bm−1 ⊢ Bm(x, y1, . . . ym−1) type.

as x : Γ ⊢ ∆(x) ctxt, where ∆(x) := (y1 : B1(x), y2 : B2(x, y1), . . . ). We say
that ∆ is a context in context Γ, or a context dependent upon Γ, and refer to
contexts like ∆ as dependent contexts, and to those like Γ as closed contexts.
Given a dependent context x : Γ ⊢ ∆(x) ctxt, we may abbreviate the series
of judgements

x : Γ ⊢ f1(x) : B1(x)

. . .

x : Γ ⊢ fm(x) : Bm(x, f1(x), . . . , fm−1(x)),

as x : Γ ⊢ f(x) : ∆(x), and say that f is a dependent element of ∆. We
can similarly assign a meaning to the judgements x : Γ ⊢ ∆(x) = Θ(x) ctxt

and x : Γ ⊢ f(x) = g(x) : ∆(x), expressing the definitional equality of two
dependent contexts, and the definitional equality of two dependent elements
of a dependent context.

2.2. Extensional type theory. We obtain extensional Martin-Löf type the-
ory MLE by augmenting the intensional theory with the two equality reflection
rules:

a, b : A α : Id(a, b)

a = b : A

a, b : A α : Id(a, b)

α = r(a) : Id(a, b)

together with the rule of function extensionality :

m,n : Π(A,B) x : A ⊢ m · x = n · x

m = n : Π(A,B)
.

The addition of these three rules yields a type theory which is intuitively
simpler, and more natural from the perspective of categorical models, but
proof-theoretically unpleasant: we lose the decidability of definitional equality
and the decidability of type-checking.
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2.3. Two-dimensional type theory. The type theory we investigate in this
paper lies between the intensional theory of §2.1 and the extensional theory
of §2.2. We denote it by ML2, and call it two-dimensional type theory, be-
cause as we will see, it has a natural semantics in two-dimensional categor-
ies. It is obtained by augmenting intensional type theory with the rules of
Tables 2 and 3. These provide restricted versions of the equality reflection
rules (Table 2) and the function extensionality rules (Table 3). To motivate
the rules in Table 2, we introduce the notion of a discrete type. We say that
Γ ⊢ A type is discrete if the judgements

Γ ⊢ a, b : A Γ ⊢ p : Id(a, b)

Γ ⊢ a = b : A
Id-refl1-A;

Γ ⊢ a, b : A Γ ⊢ p : Id(a, b)

Γ ⊢ p = r(a) : Id(a, b)
Id-refl2-A

are derivable. Thus the intensional theory says that no types need be discrete;
the extensional theory says that all types are discrete; and the two-dimensional
theory says that all identity types are discrete. Note that although two-
dimensional type theory suffers from the same proof-theoretic deficiencies of
the extensional theory, it does so in a less severe manner: indeed, only those
types of ML2 in whose construction the identity types have been used have
undecidable definitional equality. As we ascend to higher-dimensional variants
of type theory, this undecidability will be pushed further and further up the
hierarchy of constructible types; but it is only in the limit—which is intensional
type theory—that we regain decidability at all types.

The necessity of the rules in Table 3 will become clear when we reach §4.5.
We require them in order to obtain a satisfactory notion of two-dimensional
categorical model, in which dependent product formation is right adjoint to
substitution (in a suitably weak 2-categorical sense). The first of the rules in
Table 3 is a propositional version of the function extensionality principle of
§2.2; whilst the second and the third express coherence properties of the first.
To understand the third rule we must first explain the symbol ∗ appearing in
it. It is a definable constant which expresses that two propositionally equal
elements of a Π-type are pointwise propositionally equal. Explicitly, it satisfies
the following introduction and computation rules:

m,n : Π(A,B) p : Id(m,n) a : A

p ∗ a : Id(m · a, n · a)
∗-intro;

m : Π(A,B) a : A

r(m) ∗ a = r(m · a) : Id(m · a,m · a)
∗-comp;

and we may define it by Id-elimination, taking p ∗ a := J[x]r(x·a)(m,n, p).

3. Categorical models for ML2: structural aspects

The remainder of this paper will describe a notion of categorical semantics
for ML2. In this section and the following one, we define a syntactic category



8 RICHARD GARNER

a, b : A p, q : Id(a, b) α : Id(p, q)

p = q : Id(a, b)
Id-disc1;

a, b : A p, q : Id(a, b) α : Id(p, q)

α = r(p) : Id(p, q)
Id-disc2.

Table 2. Rules for discrete identity types

m,n : Π(A,B) x : A ⊢ p(x) : Id(m · x, n · x)

ext(m,n, p) : Id(m,n)
Π-ext;

m : Π(A,B)

ext(m,m, [x] r(m · x)) = r(m) : Id(m,m)
Π-ext-comp;

m,n : Π(A,B) x : A ⊢ p(x) : Id(m · x, n · x)

x : A ⊢ ext(m,n, p) ∗ x = p(x) : Id(m · x, n · x)
Π-ext-app.

Table 3. Rules for function extensionality

and enumerate its structure; whilst in §5, we consider an arbitrary category
endowed with this same structure, and derive from it a type theory incorpor-
ating the rules of ML2. This yields a semantics which is both complete and
sound. In this section, we define the basic syntactic category and look at the
structure induced on it by the non-logical rules of ML2. In the next section,
we consider the logical rules. As mentioned in the Introduction, the syntactic
category we define will in fact be a 2-category, whose objects will be (vectors
of) types; whose morphisms will be (vectors) of terms between those types;
and whose 2-cells will be (vectors of) identity proofs between these terms. The
various forms of 2-cell composition will be obtained using the identity elimin-
ation rules; whilst the rules for discrete identity types given in Table 2 ensure
that these compositions satisfy the 2-category axioms. For basic terminology
and notation relating to 2-categories we refer to [20].

3.1. One-dimensional semantics of type dependency. We begin by re-
calling the construction of a one-dimensional categorical structure from the
syntax of a dependent type theory. The presentation we have chosen fol-
lows [18] in its use of comprehension categories. There are various other, es-
sentially equivalent, presentations that we could have used: see [4, 6, 7, 17, 26]
for example. We use comprehension categories because they afford a straight-
forward passage to a two-dimensional structure.

So suppose given an arbitrary dependently-typed calculus S admitting the
same four basic judgement types and the same structural rules as the calcu-
lus MLI . We define its category of contexts CS to have as objects, contexts
Γ, ∆, . . . , in S, considered modulo α-conversion and definitional equality (so
we identify Γ and ∆ whenever ⊢ Γ = ∆ ctxt is derivable); and as morphisms
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Γ → ∆, judgements x : Γ ⊢ f(x) : ∆, considered modulo α-conversion and
definitional equality (so we identity f, g : Γ → ∆ whenever x : Γ ⊢ f(x) = g(x)
is derivable). To avoid further repetition, we introduce the convention that
any further categorical structures we define are should also be interpreted
modulo α-equivalence and definitional equality. The identity map on Γ is
given by x : Γ ⊢ x : Γ; whilst composition is given by substitution of terms.
Note that CS has a terminal object, given by the empty context ( ).

For each context Γ we now define the category TS(Γ) of types-in-context-Γ,
whose objects A are judgements x : Γ ⊢ A(x) type and whose morphisms
A → B are judgements x : Γ, y : A(x) ⊢ f(x, y) : B(x). Each morphism
f : Γ → ∆ of CS induces a functor TS(f) : TS(∆) → TS(Γ) which sends a type A
in context ∆ to the type f∗A in context Γ given by x : Γ ⊢ A(f(x)) type. The
assignation f 7→ TS(f) is itself functorial in f , and so we obtain an indexed
category TS(–) : Cop

S → Cat; which via the Grothendieck construction, we
may equally well view as a split fibration p : TS → CS. We refer to this as the
fibration of types over contexts. Explicitly, objects of TS are pairs (Γ, A) of
a context and a type in that context; whilst morphisms (Γ, A) → (∆, B) are
pairs (f, g) of a context morphism f : Γ → ∆ together with a judgement x :
Γ, y : A(x) ⊢ g(x, y) : B(f(x)). The chosen cartesian lifting of a morphism
f : Γ → ∆ at an object (∆, B) is given by (f, ι) : (Γ, f∗B) → (∆, B), where ι
denotes the judgement x : Γ, y : B(fx) ⊢ y : B(fx). Now, for each object
(Γ, A) of TS we have the extended context

(

x : Γ, y : A(x)
)

, which we denote
by Γ.A; and we also have the judgement x : Γ, y : A(x) ⊢ x : Γ, corresponding
to a context morphism πA : Γ.A → Γ which we call the dependent projection
associated to A. In fact, the assignation (Γ, A) 7→ πA provides the action on
objects of a functor E : TS → C2

S (where 2 denotes the arrow category 0 → 1),
whose action on maps sends the morphism (f, g) : (Γ, A) → (∆, B) of TS to
the morphism

(1)

Γ.A

πA

f.g
∆.B

πB

Γ
f

∆

of C2

S , where f.g denotes the judgement x : Γ, y : A ⊢ (f(x), g(x, y)) : ∆.B.
We can make two observations about this functor E. Firstly, it is fully faithful,
which says that every morphism h : Γ.A → ∆.B fitting into a square like
(1) is of the form f.g for a unique (f, g) : (Γ, A) → (∆, B). Secondly, for a
cartesian morphism (f, ι) : (Γ, f∗B) → (∆, B), the corresponding square (1)
is a pullback square. Indeed, given an arbitrary commutative square

Λ

h

k
∆.B

π∆

Γ
f

∆,
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commutativity forces k to be of the form z : Λ ⊢ (fhz, k′z) : ∆.B for some
z : Λ ⊢ k′(z) : B(fhz); and so the required factorisation Λ → Γ.f∗B is given
by the judgement z : Λ ⊢ (hz, k′z) : Γ.f∗B. We may abstract away from
the above situation as follows. We define a full split comprehension category
(cf. [18]) to be given by a category C with a specified terminal object, together
with a split fibration p : T → C and a full and faithful functor E : T → C2

rendering commutative the triangle

T

p

E
C2

cod

C,

and sending cartesian morphisms in T to pullback squares in C2. The pre-
ceding discussion shows that to any suitable dependent type theory S we may
associate a full split comprehension category C(S), which we will refer to as
the classifying comprehension category of S.

3.1.1. Notation. We extend the notation developed above to arbitrary compre-
hension categories (p : T → C, E : T → C2). Thus we write chosen cartesian
liftings as (f, ι) : (Γ, f∗B) → (∆, B), and write the image of (Γ, A) ∈ T un-
der E as πA : Γ.A → Γ. We will find it convenient to develop a little more
notation. Given Γ ∈ C and A ∈ T (Γ), we call a map a : Γ → Γ.A satisfying
πAa = idΓ a global section of A, and denote it by a ∈Γ A. Given further
a morphism f : ∆ → Γ of C, we write f∗a ∈∆ f∗A for the section of πf∗A
induced by the universal property of pullback in the following diagram:

(2)

∆ af

id
∆.f∗A

f.ι

πf∗B

Γ.A

πB

∆
f

Γ.

3.2. A 2-category of types. We will now extend the classifying comprehen-
sion category C(S) defined above to a classifying comprehension 2-category.
We will not need the full strength of two-dimensional type theory, ML2, for
this. Rather, for the rest of this section we fix an arbitrary dependently typed
theory S which admits the structural rules required in the previous subsection
together with the identity type rules from Table 1 and the discrete identity
rules of Table 2. Our first task will be to construct a 2-category of closed
types in S. We will do this by enriching the category TS( ) of closed types
with 2-cells derived from the 2-category of strict internal groupoids in S. A
strict internal groupoid in S is given by a closed type A0; a family A1(x, y) of
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types over x, y : A0; and operations of unit, composition and inverse:

x : A0 ⊢ idx : A1(x, x)

x, y, z : A0, p : A1(x, y), q : A1(y, z) ⊢ q ◦ p : A1(x, z),

x, y : A0, p : A1(x, y) ⊢ p−1 : A1(y, x),

which obey the usual five groupoid axioms up to definitional equality. For
instance, the left unit axiom requires that

x, y : A0, p : A1(x, y) ⊢ idy ◦ p = p : A1(x, y)

should hold. We will generally write that (A0, A1) is an internal groupoid
in S, leaving the remaining structure understood. Now an internal functor
F : (A0, A1) → (B0, B1) between internal groupoids is given by judgements

x : A0 ⊢ F0(x) : B0

x, y : A0, p : A1(x, y) ⊢ F1(p) : B1(F0x, F0y),

subject to two functoriality axioms (up to definitional equality again); whilst
an internal natural transformation α : F ⇒ G is given by a family of com-
ponents x : A0 ⊢ α(x) : B1(F0x,G0x) subject to the (definitional) naturality
axiom.

3.2.1. Proposition. The strict groupoids, functors and natural transforma-
tions internal to S form a 2-category Gpd(S) which is locally groupoidal, in
the sense that its every 2-cell is invertible.

Proof. Recall that for any category E , we can define a 2-category Gpd(E) of
groupoids internal to that category3. In particular, we have the 2-category
Gpd(CS) of groupoids internal to the category of contexts of S. Now, each
strict internal groupoid A in S gives rise to such an internal groupoid A′ in
CS whose object of objects is the context (x : A0) and whose object of morph-
isms is the context (x : A0, y : A0, p : A1(x, y)). We can check that internal
functors A → B in S correspond bijectively with internal functors A′ → B′

in CS; and that this correspondence extends to the natural transformations
between them. Thus we may take Gpd(S) to be the 2-category whose ob-
jects are strict internal groupoids in S, whose hom-categories are given by
Gpd(S)(A,B) := Gpd(CS)(A

′,B′), and whose remaining structure is inher-
ited from Gpd(CS). Note that every 2-cell of Gpd(CS) is invertible, so that
the same obtains for Gpd(S) �

Our method for obtaining the 2-category of closed types will be to construct
a functor TS( ) → Gpd(S), and to lift the 2-cell structure of Gpd(S) along it.

3.2.2. Proposition. To each closed type A in S we may assign a strict in-
ternal groupoid (A, IdA); and the assignation A 7→ (A, IdA) underlies a functor
TS( ) → Gpd(S).

Proof. The proof of this result is essentially due to [16]. We repeat it because
we will need the details. We first show that (A, IdA) has the structure of a

3One commonly requires the category E to have all finite limits, but this is inessential.
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strict internal groupoid. For identities, we take x : A ⊢ idx := r(x) : Id(x, x).
For composition, we require a judgement

x, y, z : A, p : Id(x, y), q : Id(y, z) ⊢ q ◦ p : Id(x, z);

and by Id-elimination on p, it suffices to define this when y = z and q = r(y),
for which we take r(y) ◦ p := p. Similarly, to give the judgement

x, y : A, p : Id(x, y) ⊢ p−1 : Id(y, x)

providing inverses, it suffices to consider the case x = y and p = r(x); for
which we take r(x)−1 = r(x). We must now check the five groupoid axioms.
The first unitality axiom idy ◦p = p follows from the Id-computation rule. For
the other unitality axiom, it suffices, by discrete identity types, to show that

x, y : A, p : Id(x, y) ⊢ p ◦ r(x) ≈ p : Id(x, y)

holds; and by Id-elimination, it suffices to do this in the case x = y and
p = r(x), for which we have that r(x) ◦ r(x) = r(x) as required. Likewise, for
the associativity axiom, it suffices to show that

w, x, y, z : A, p : Id(w, x), q : Id(x, y), s : Id(y, z)

⊢ s ◦ (q ◦ p) ≈ (s ◦ q) ◦ p : Id(w, z);

and again by Id-elimination, it suffices to do this when y = z and s = r(y),
when have that r(y)◦(q◦p) = q◦p = (r(y)◦q)◦p as required. The invertibility
axioms are similar. Suppose now that in addition to A we are given another
type B together with a judgement x : A ⊢ f(x) : B between them. We will
extend this to an internal functor (f, f •) : (A, IdA) → (B, IdB). We define the
action on hom-types

x, y : A, p : Id(x, y) ⊢ f •(p) : Id(fx, fy)

by Id-elimination on p: for when x = y and p = r(x), we may take f •(r(x)) :=
r(f(x)). We must now check the functoriality axioms. That (f, f •) preserves
identities follows from the Id-computation rule; whilst to to show that it pre-
serves binary composition, it suffices by discrete identity types to show that

x, y, z : A, p : Id(x, y), q : Id(y, z) ⊢ f •(q ◦ p) ≈ f •(q) ◦ f •(p) : Id(fx, fz)

holds; and this follows by Id-elimination on q, since when y = z and q =
r(y), we have that f •(r(y) ◦ p) = f •(p) = r(f(y)) ◦ f •(p) = f •(r(y)) ◦ f •(p)
as required. We must now check that the assignation f 7→ (f, f •) is itself
functorial. To show that it preserves identities, we must show that for any
closed type A,

x, y : A, p : Id(x, y) ⊢ (idA)•(p) = p : Id(x, y)

holds. By discrete identity types, it suffices to show this up to mere propos-
itional equality; and by Id-elimination, we need only do so in the case when
x = y and p = r(x), when we have that (idA)•(r(x)) = r(idA(x)) = r(x) as
required. To show that f 7→ (f, f •) respects composition, we must show that
for maps of closed types f : A → B and g : B → C, the judgement

x, y : A, p : Id(x, y) ⊢ (gf)•(p) = g•(f •(p)) : Id(gfx, gfy)
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holds. Again, it suffices to do this only up to propositional equality, and
this only in the case where x = y and p = r(x); whereupon we have that
(gf)•(r(x)) = r(g(f(x))) = g•(r(f(x)) = g•(f •(r(x)) as required. �

3.2.3. Corollary. The category TS( ) of closed types in S may be extended
to a locally groupoidal 2-category TS( ) whose 2-cells α : f ⇒ g : A → B are
judgements x : A ⊢ α(x) : IdB(fx, gx).

Proof. If we view TS( ) as a 2-category with only identity 2-cells, then the func-
tor of the previous proposition may be seen as a 2-functor TS( ) → Gpd(S).
We can factorise this 2-functor as a composite

TS( ) → TS( ) → Gpd(S),

whose first part is bijective on objects and 1-cells and whose second part
is fully faithful on 2-cells; and we now define TS( ) to be the intermediate
2-category in this factorisation. We must check that this definition agrees
with the description of TS( ) given above. Clearly this is so for the objects
and morphisms; whilst for the 2-cells, we must show that for any f, g : A → B,
each judgement x : A ⊢ α(x) : IdB(fx, gx) satisfies the axiom for an internal
natural transformation α : (f, f •) ⇒ (g, g•). By discrete identity types, this
amounts to validating the judgement

x, y : A, p : IdA(x, y) ⊢ g•(p) ◦ α(x) ≈ α(y) ◦ f •(p) : IdB(fx, gy);

and by Id-elimination on p, it suffices to do this in the case where x = y and
p = r(x): for which we have that g•(r(x)) ◦ α(x) = r(g(x)) ◦ α(x) = α(x) =
α(x) ◦ r(f(x)) = α(x) ◦ f •(r(x)), as required. �

3.2.4. Corollary. For any context Γ in S, the category TS(Γ) of types-in-
context-Γ may be extended to a locally groupoidal 2-category TS(Γ) wherein
2-cells α : f ⇒ g are judgements x : Γ, y : A ⊢ α(x, y) : IdB(f(x, y), g(x, y)).

Proof. We consider the slice theory S/Γ, whose closed types are the types of
S in context Γ. It is easy to see that S/Γ admits the same inference rules
as S—and in particular has discrete identity types—so that the result follows
upon identifying TS(Γ) with TS/Γ( ). �

3.3. A 2-category of contexts. In this section, we generalise the construc-
tion of the 2-category of closed types in order to construct a 2-category of
contexts. The method will be a direct transcription of the one used in the
previous section, but in order for it to make sense, we need to extend the
identity type constructor to a “meta-constructor” which operates on entire
contexts rather than single types.

3.3.1. Proposition. The following inference rules are definable in S.

Φ ctxt a, b : Φ

IdΦ(a, b) ctxt
Id-form’;

Φ ctxt a : Φ

r(a) : IdΦ(a, a)
Id-intro’;

x, y : Φ, p : IdΦ(x, y), ∆ ⊢ Θ(x, y, p) ctxt

x : Φ, ∆[x, x, r(x)/x, y, p] ⊢ d(x) : Θ(x, x, r(x))

x, y : Φ, p : IdΦ(x, y), ∆ ⊢ Jd(x, y, p) : Θ(x, y, p)
Id-elim’;
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x, y : Φ, p : IdΦ(x, y), ∆ ⊢ Θ(x, y, p) ctxt

x : Φ, ∆[x, x, r(x)/x, y, p] ⊢ d(x) : Θ(x, x, r(x))

x : Φ, ∆[x, x, r(x)/x, y, p] ⊢ Jd(x, x, r(x)) = d(x) : Θ(x, x, r(x))
Id-comp’.

In order to prove this result, we will make use of the following well-known
consequence of the identity type rules:

3.3.2. Proposition (The Leibnitz rule). Given A type and x : A ⊢ B(x) type

in S, the following rules are derivable:

a1, a2 : A p : Id(a1, a2) b2 : B(a2)

p∗(b2) : B(a1)
Id-subst;

a : A b : B(a)

r(a)∗(b) = b : B(a)
Id-subst-comp.

Proof. By Id-elimination on p, it suffices to derive the first rule in the case
where a1 = a2 and p = r(a1): in which case we can take r(a1)

∗(b) := b. The
second rule now follows from the Id-computation rule. �

The key idea behind the proof of Proposition 3.3.1 can be illustrated by
considering a context Φ = (x : A, y : B(x)) of length 2. The corresponding
identity context IdΦ will be given by

IdΦ

(

(x, y), (x′, y′)
)

:=
(

p : IdA(x, x′), q : IdB(x)(y, p∗y′)
)

.

We use substitution along the first component p to make the second com-
ponent q type-check. This can be seen as a type-theoretic analogue of the
Grothendieck construction for fibrations. Indeed, it is possible to show that
there is a propositional isomorphism between this identity context IdΦ and the
identity type IdΣ(A,B).

Proof of Proposition 3.3.1. The proof has two stages. First, we define the gen-
eralised Id-inference rules in the special case where the context Φ has length 1;
and then we use these to define them in the general case. We will reduce syn-
tactic clutter by proving our results only in the case where the postcontext
∆ is empty: the reader may readily supply the annotations for the general
case. For the first part of the proof, we suppose ourselves given a context
Φ = (x : A) of length 1. The inference rules Id-form’ and Id-intro’ for Φ are
just the usual Id-formation and Id-introduction rules for A. However, Id-elim’

corresponds to the following generalised elimination rule:

(3)
x, y : A, p : Id(x, y) ⊢ Θ(x, y, p) ctxt x : A ⊢ d(x) : Θ(x, x, r(x))

x, y : A, p : Id(x, y) ⊢ Jd(x, y, p) : Θ(x, y, p)

with Id-comp’ stating that Jd(a, a, r(a)) = d(a). We will define the elimination
rule by induction on the length n of the context Θ. When n = 0, this is trivial,
and when n = 1, we use the usual identity elimination rule. So suppose now
that we have defined the rule for all contexts Θ of length n, and consider a
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context x, y : A, p : Id(x, y) ⊢ Θ(x, y, p) ctxt of length n+1. Thus Θ is of the
form

Θ(x, y, p) = (u : Λ(x, y, p), v : D(x, y, p, u))

for some context Λ of length n and type D. It follows that to make a judgement
x : A ⊢ d(x) : Θ(x, x, r(x)) is equally well to make a pair of judgements

(4)
x : A ⊢ d1(x) : Λ(x, x, r(x))

x : A ⊢ d2(x) : D
(

x, x, r(x), d1(x)
)

.

By the inductive hypothesis, we may apply the elimination rule (3) for the
context Λ with eliminating family d1 to deduce the existence of a term

(5) x, y : A, p : Id(x, y) ⊢ Jd1(x, y, p) : Λ(x, y, p),

satisfying Jd1(x, x, r(x)) = d1(x). Now we consider the dependent type

(6) x, y : A, p : Id(x, y) ⊢ C(x, y, p) := D(x, y, p, Jd1(x, y, p)
)

type.

We have that C(x, x, r(x)) = D
(

x, x, r(x), Jd1(x, x, r(x))
)

= D
(

x, x, r(x), d1(x)
)

and so from (4) we can derive the judgement

(7) x : A ⊢ d2(x) : C
(

x, x, r(x)
)

.

Now applying the standard Id-elimination rule to (6) and (7) yields a judge-
ment

(8) x, y : A, p : Id(x, y) ⊢ Jd2(x, y, p) : D
(

x, y, p, Jd1(x, y, p)
)

satisfying Jd2(x, x, r(x)) = d2(x). But to give (5) and (8) is equally well to
give a dependent element x, y : A, p : Id(x, y) ⊢ Jd(x, y, p) : Θ(x, y, p); and
the respective computation rules for Jd1 and Jd2 now imply the computation
rule for Jd. This completes the first part of the proof.

We now construct the generalised inference rules for an arbitrary context Φ.
Once again the proof will be by induction, this time on the length of Φ. For the
base case, the only context of length 0 is ( ), the empty context. For this, we
take the identity context Id( ) also to be the empty context. The introduction
rule is vacuous, whilst the elimination rule requires us to provide, for each
closed context Θ and global element d : Θ, a global element Jd : Θ, satisfying
the computation rule Jd = d : Θ. Thus we simply take Jd := d and are done.
Suppose now that we have defined identity contexts for all contexts of length
n, and consider a context Φ =

(

x1 : Λ, x2 : D(x1)
)

of length n + 1. In order
to define IdΦ, we first apply the inductive hypothesis to Λ in order to define
its Leibnitz rule. Thus given x : Λ ⊢ Υ(x) ctxt, we may define a judgement

x, y : Λ, p : IdΛ(x, y), z : Υ(y) ⊢ p∗(z) : Υ(x),

satisfying r(x)∗(z) = z : Υ(x). The proof is as in Proposition 3.3.2. Now, to
give the formation rule for IdΦ is equally well to give a judgement

x1 : Λ, y1 : D(x1), x2 : Λ, y2 : D(x2) ⊢ IdΦ(x1, y1, x2, y2) ctxt,

which we do by setting

IdΦ(x1, y1, x2, y2) :=
(

p : IdΛ(x1, x2), q : IdD(x1)(y1, p
∗y2)

)

.
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Next, to define the introduction rule for IdΦ is equally well to give judgements

x : Λ, y : D(x) ⊢ r1(x, y) : IdΛ(x, x)

x : Λ, y : D(x) ⊢ r2(x, y) : IdD(x)

(

y, r1(x, y)∗(y)
)

which we do by setting r1(x, y) := r(x) and r2(x, y) := r(y), where for the
second of these we make use of the fact that IdD(x)

(

y, r(x)∗(y)
)

= IdD(x)(y, y).
In order to define the elimination rule for IdΦ, we first define a context de-
pendent on x1, x2 : Λ and p : IdΛ(x1, x2) by

∆(x1, x2, p) :=
(

y1 : D(x1), y2 : D(x2), q : IdD(x1)(y1, p
∗y2)

)

.

We may then write the premisses of the elimination rule for IdΦ as:

(9) x1, x2 : Λ, p : IdΛ(x1, x2), z : ∆(x1, x2, p) ⊢ Θ(x1, x2, p, z) ctxt

and

(10) x : Λ, y : D(x) ⊢ d(x, y) : Θ(x, x, r(x), y, y, r(y)).

We would like to apply the elimination rule for IdΛ (with postcontext ∆) to
equation (9). In order to do so, we need to exhibit a generating family

(11) x : Λ, z : ∆(x, x, r(x)) ⊢ d′(x, z) : Θ(x, x, r(x), z);

which is equivalently a family

x : Λ, y1, y2 : D(x), q : IdD(x)(y1, y2) ⊢ d′(x, y1, y2, q) : Θ(x, x, r(x), y1, y2, q)

since we have that r(x)∗(y2) = y2. But we may obtain such a family by ap-
plying the generalised elimination rule (3) for IdD(x) to the dependent context

x : Λ, y1, y2 : D(x), q : IdD(x)(y1, y2) ⊢ Θ(x, x, r(x), y1, y2, q) ctxt

with eliminating family (10). This yields a judgement (11) as required, whilst
the computation rule says that d′(x, y, y, r(y)) = d(x, y). Now applying the
elimination rule for IdΛ to (9) and (11) yields a judgement

x1, x2 : Λ, p : IdΛ(x1, x2), z : ∆(x1, x2, p) ⊢ Jd′(x1, x2, p, z) : Θ(x1, x2, p, z),

of the correct form to provide the conclusion of the elimination rule for IdΦ.
From the computation rule for IdΛ, this will satisfy Jd′(x, x, r(x), z) = d′(x, z),
and so in particular, we obtain that

Jd′(x, x, r(x), y, y, r(y)) = d′(x, y, y, r(y)) = d(x, y)

which gives us the computation rule for IdΦ. �

Using Proposition 3.3.1 we can now construct the 2-category of contexts
in S by mimicking the developments of §3.2. We first define a strict groupoid
context in S to be given by a context Γ0 together with a dependent family
x, y : Γ0 ⊢ Γ1(x, y) ctxt of hom-contexts, and operations of unit, composition
and inverse satisfying the groupoid axioms as before. It is still the case that
any groupoid context induces an internal groupoid object in the category
of contexts CS; and so with the obvious definition of functor and natural
transformation, we obtain a 2-category GpdCtxt(S) of groupoid contexts in
S. Following Proposition 3.2.2, we now define a functor CS → GpdCtxt(S)
sending Γ to (Γ, IdΓ). A small subtlety we must check in order for this to go
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through is that S has not only discrete identity types, but also discrete identity
contexts; and this follows by a straightforward induction on the length of a
context. Thereafter, the argument of Proposition 3.2.3 carries over to give:

3.3.3. Corollary. The category CS of contexts in S may be extended to a locally
groupoidal 2-category CS whose 2-cells α : f ⇒ g : Γ → ∆ are judgements
x : Γ ⊢ α(x) : Id∆(fx, gx).

We end this section with a simple observation:

3.3.4. Proposition. The 2-category CS has a 2-terminal object given by the
empty context ( ).

Proof. It is clear that every context Γ admits a unique morphism !: Γ → ( ),
which makes ( ) a terminal object. For it to be 2-terminal, we must also show
that for any 2-cell α : ! ⇒! : Γ → ( ) we have α = id!. But this follows because
we defined Id( ) := ( ) in the proof of Proposition 3.3.1. �

3.4. A 2-fibration of types over contexts. The next stage in our devel-
opment will be to extend the fibration of types over contexts to a 2-fibration
of types over contexts. In §3.1, we built the one-dimensional fibration by first
defining an indexed category of types over contexts, and then applying the
Grothendieck construction. In the two-dimensional case it turns out that the
indexed 2-category of types over contexts has a structure so elaborate (it is
given by a trihomomorphism TS(–) : C

coop
S → Gray) that it is that it is sig-

nificantly less work to construct the associated 2-fibration directly. We begin
by recalling from [12] the definition of 2-fibration. Of the several equivalent
formulations given there, the most convenient for our purposes is the following:

3.4.1. Definition. (cf. [12, Theorem 2.8]) Let E and B be 2-categories. We
say that a 2-functor p : E → B is a cloven 2-fibration if the following four
conditions are satisfied:

(i) The underlying ordinary functor of p is a cloven fibration of categories;
(ii) Each cartesian 1-cell f : y → z of E has the following two-dimensional

universal property: that whenever we are given a 2-cell α : g ⇒ h : x → z
of E together with a factorisation

p(α) = p(x)

k

l

γ p(y)
p(f)

p(z),

we may lift this to a unique factorisation

α = x

k′

l′

γ′ y
f

z

satisfying p(γ′) = γ.
(iii) For each x, y ∈ E, the induced functor px,y : E(x, y) → B(px, py) is a

cloven fibration of categories;
(iv) For each x, y, z ∈ E and f : x → y, the functor (–) · f : E(y, z) → E(x, z)

preserves cartesian liftings of 2-cells.
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We say further that a cloven 2-fibration is globally split if its underlying fibra-
tion of categories in (i) is a split fibration.

We will now show that the split fibration p : TS → CS of types over contexts
extends to a globally split 2-fibration p : TS → CS. The first step will be to
construct the total 2-category TS. Before doing this we prove a useful lemma.

3.4.2. Lemma. For a dependent projection πA : Γ.A → Γ of CS, its lifting to
an internal functor (πA, πA

•), as defined in Proposition 3.2.2, satisfies

(x, y), (x′, y′) : Γ.A, (p, q) : IdΓ.A

(

(x, y), (x′, y′)
)

⊢ πA
•(p, q) = p : IdΓ(x, x′).

Proof. By discrete identity types, it suffices to show that πA
•(p, q) ≈ p; and

by Id-elimination on Γ.A, we need only consider the case where x = x′, y = y′,
p = r(x) and q = r(y). But here, by definition of πA

•, we have πA
•(r(x), r(y)) =

r(πA(x, y)) = r(x) as required. �

3.4.3. Proposition. The category TS defined in §3.1 extends to a locally group-
oidal 2-category TS whose 2-cells (α, β) : (f, g) ⇒ (f ′, g′) : (Γ, A) → (∆, B) are
given by pairs of judgements

(12)
x : Γ ⊢ α(x) : Id∆(fx, f ′x)

x : Γ, y : A(x) ⊢ β(x, y) : IdB(fx)

(

g(x, y), α(x)∗(g′(x, y))
)

.

Proof. If we view TS as a 2-category with only identity 2-cells, then the functor
E : TS → C2

S defined in §3.1 may be viewed as a 2-functor TS → C2

S. We can
factorise this 2-functor as a composite

(13) TS → TS → C
2

S,

whose first part is bijective on objects and 1-cells and whose second part is
bijective on 2-cells. We claim that the intermediate 2-category is the TS of
the Proposition. Clearly it has the correct objects and 1-cells, whilst for the
2-cells, we must show that given maps (f, g), (f ′, g′) : (Λ, A) → (∆, B) of TS,
pairs of judgements as in (12) are in bijection with diagrams

(14)

Γ.A

πA

f.g

f ′.g′

γ ∆.B

πB

Γ

f

f ′

α ∆

in CS satisfying πBγ = απA. For a diagram like (14), the 2-cell γ : f.g ⇒ f ′.g′

corresponds—by the definition of Id∆.B given in Proposition 3.3.1—to a pair
of judgements

(15)
x : Γ, y : A(x) ⊢ γ1(x, y) : Id∆(fx, f ′x)

x : Γ, y : A(x) ⊢ γ2(x, y) : IdB(fx)

(

g(x, y), γ1(x, y)∗(g′(x, y))
)

,

whilst the equality πBγ = απA corresponds to the validity of the judgement

x : Γ, y : A(x) ⊢ α(x) = πB
•(γ(x, y)) : Id∆(fx, f ′x).



TWO-DIMENSIONAL MODELS OF TYPE THEORY 19

But by Lemma 3.4.2, we have πB
•(γ(x, y)) = γ1(x, y), so that α(x) = γ1(x, y),

and we may identify (15) with (12) upon taking β := γ2. �

3.4.4. Corollary. The fully faithful functor E : TS → C2

S of §3.1 extends to a
2-fully faithful (i.e., bijective on 1- and 2-cells) 2-functor E : TS → C2

S.

Proof. We take E to be the second half of the factorisation in (13). �

We now define p : TS → CS to be the composite of the 2-functor E of the
previous Proposition with the codomain 2-functor C2

S → CS; explicitly, p is the
2-functor sending (Γ, A) to Γ, (f, g) to f and (α, β) to α. We intend to show
that p is a (globally split) 2-fibration; and will do so by making using of two
further properties of the 2-functor E : TS → C2

S. The first of these generalises
directly the one-dimensional situation described in §3.1. Its proof is much less
straightforward than one might think.

3.4.5. Proposition. For each (∆, B) ∈ TS and f : Γ → ∆ in CS, the following
pullback square in CS is also a 2-pullback:

(16)

Γ.f∗B

πf∗B

f.ι
∆.B

πB

Γ
f

∆.

Proof. We begin by introducing a piece of local notation: for the duration of
this proof, we will write applications of the Leibnitz rule as

a1, a2 : A p : Id(a1, a2) b2 : B(a2)

substB(p, b2) : B(a1)
Id-subst.

We do this in order to make explicit the family B in which substitution is
occurring. Now, to say that (16) is not just a pullback but also a 2-pullback
is to say that, whenever we are given maps h, k : Λ → Γ.f∗B and 2-cells

(17)

Λ

πf∗Bh
α

πf∗Bk

(f.ι)h

β

(f.ι)k

∆.B

πB

Γ
f

∆

in CS satisfying fα = πBβ, we can find a unique 2-cell γ : h ⇒ k : Λ → Γ.f∗B
satisfying πf∗B ◦ γ = α and f.ι ◦ γ = β. In order to show this, we will first
need to understand how f.ι lifts to an internal functor

(f.ι, (f.ι)•) : (Γ.f∗B, IdΓ.f∗B) → (∆.B, Id∆.B).

So suppose given elements (x1, y1) and (x2, y2) : Γ.f∗B; now a typical element
(p, q) : IdΓ.f∗B

(

(x1, x2), (y1, y2)
)

is given by a pair of judgements

(18) p : IdΓ(x1, y1) and q : IdB(fx1)

(

x2, substf∗B(p, y2)
)

.
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This is sent by (f.ι)• to some element (u, v) : Id∆.B

(

(fx1, y1), (fy1, y2)
)

, which
is equally well a pair of judgements

(19) u : IdΓ(fx1, fy1) and v : IdB(fx1)

(

x2, substB(u, y2)
)

.

Since we have πB ◦ f.ι = f ◦ πf∗B, we have by Lemma 3.4.2 that

u = πB
•(u, v) = (πB ◦ f.ι)•(p, q) = (f ◦ πf∗B)•(p, q) = f •(p);

and so it remains only to describe v. We will do this by reduction to a special
case. Suppose that we have x2 = substf∗B(p, y2) and q = r(substf∗B(p, y2)).
We denote the corresponding v by

(20) θ(p, y2) : IdB(fx1)

(

substf∗B(p, y2), substB(f •(p), y2)
)

.

Note that in the case where x1 = y1 and p = r(x1), we have by Id-computation
that θ(r(x1), y2) = r(y2). We now use (20) to describe the general case. We
claim that given p and q as in (18), the corresponding v as in (19) satisfies

v = θ(p, y2) ◦ q : IdB(fx1)

(

x2, substB(f •(p), y2)
)

.

Now, by discrete Id-types, it suffices to show this up to propositional equality;
and by Id-elimination on Γ.f∗B, this only in the case where x1 = y1, p = r(x1),
x2 = y2 and q = r(x2). Here, by definition of (f.ι)• and Id-computation, we
have on the one hand that v = r(x2); but on the other that θ(r(x1), x2)◦r(x2) =
r(x2) ◦ r(x2) = r(x2) as required. This completes the proof of the claim.

We are now ready to show that (16) is a 2-pullback. So suppose given maps
h, k : Λ → Γ.f∗B and 2-cells α, β as in (17). To give h is to give judgements
x : Λ ⊢ h1(x) : Γ and x : Λ ⊢ h2(x) : B(fh1x)—and correspondingly for k—
whilst to give α and β as in (17) satisfying fα = πBβ is to give judgements

x : Λ ⊢ α(x) : IdΓ(h1x, k1x)

x : Λ ⊢ β1(x) : Id∆(fh1x, fk1x)

x : Λ ⊢ β2(x) : IdB(fh1x)(h2x, substB(β1x, k2x))

satisfying

x : Λ ⊢ f •(αx) = πB
•(β1x, β2x) : Id∆(fh1x, fk1x).

By Lemma 3.4.2, we have that πB
•(β1x, β2x) = β1(x); and so to give (17)

satisfying fα = πBβ is equally well to give a pair of judgements

x : Λ ⊢ α(x) : IdΓ(h1x, k1x)

and x : Λ ⊢ β2(x) : IdB(fh1x)(h2x, substB(f •αx, k2x)
)

.

From this we are required to find a unique 2-cell γ : h ⇒ k : Λ → Γ.f∗B
satisfying πf∗B ◦ γ = α and (f.ι) ◦ γ = β; which is equally well a pair of
judgements

x : Λ ⊢ γ1(x) : IdΓ(h1x, k1x)

and x : Λ ⊢ γ2(x) : IdB(fh1x)(h2x, substf∗B(γ1x, k2x)
)

satisfying (πf∗B)•(γ1x, γ2x) = α(x) and (f.ι)•(γ1x, γ2x) = (f •αx, β2x). Now
by Lemma 3.4.2, we have (πf∗B)•(γ1x, γ2x) = γ1(x), whence we must take
γ1 := α; whilst from our investigations above, we have

(f.ι)•(γ1x, γ2x) = (f.ι)•(αx, γ2x) =
(

f •(αx), θ(αx, k2x) ◦ γ2(x)
)
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which tells us that we must have γ2(x) := θ(αx, k2x)−1 ◦ β2(x). Uniqueness
of γ follows easily. �

The second property of E we consider has no one-dimensional analogue, as
it involves the inherently 2-categorical notion of isofibration:

3.4.6. Definition. Let K be a 2-category. A morphism p : X → Y in K is
said to be a cloven isofibration if for every invertible 2-cell

(21)

W
g

f

α

X

p

Y ,

we are given a choice of 1-cell sα : W → X and 2-cell σα : sα ⇒ g satisfying
p ◦ sα = f and p ◦ σα = α; and these choices are natural in W , in the sense
that given further k : W ′ → W , we have sαk = sα ◦ k and σαk = σα ◦ k. A
cloven isofibration is said to be normal if for any g : W → X, we have sidpg

= g
and σidpg

= idg.

3.4.7. Proposition. Every dependent projection πB : ∆.B → ∆ in CS may be
equipped with the structure of a normal isofibration.

Proof. Suppose given an invertible 2-cell

(22)

Γ
g

f

α

∆.B

πB

∆

of CS. We must find a 1-cell sα : Γ → ∆.B and 2-cell σα : sα ⇒ g satisfying
πB ◦ sα = f and πB ◦ σα = α. Now, to give a 2-cell as in (22) is equally well
to give judgements

x : Γ ⊢ f(x) : ∆, x : Γ ⊢ g1(x) : ∆,

x : Γ ⊢ g2(x) : B(g1x), x : Γ ⊢ α(x) : Id(fx, g1x).

So we may take sα : Γ → ∆.B to be given by the pair of judgements

(23) x : Γ ⊢ f(x) : ∆ and x : Γ ⊢ (αx)∗(g2x) : B(fx),

and take σα : sα ⇒ g to be given by the pair of judgements

(24)
x : Γ ⊢ α(x) : Id(fx, g1x)

x : Γ, y : A(x) ⊢ r
(

(αx)∗(g2x)
)

: Id
(

(αx)∗(g2x), (αx)∗(g2x)
)

.

Given further k : Λ → Γ, the equalities sαk = sα◦k and σαk = σα◦k correspond
precisely to the stability of (23) and (24) under substitution in x. Thus πB
is a cloven isofibration; and it remains to check normality. But when α is
an identity 2-cell we have f(x) = g1(x) and α(x) = r(g1(x)) and so by the
Leibnitz computation rule, (23) reduces to g and (24) to idg as required. �

We will refer to the isofibration structure described in Proposition 3.4.7 as
the canonical isofibration structure on a dependent projection.
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3.4.8. Remark. Proposition 3.4.7 provides a link between the 2-categorical
semantics of this paper and the homotopy-theoretic semantics espoused by
Awodey and Warren in [2]. The key idea of that paper is that a suitable en-
vironment for modelling intensional type theory should be a category equipped
with a weak factorisation system (L,R) (in the sense of [3]) whose right-hand
class of maps R is used to model dependent projections. Now, any finitely
complete 2-category carries a weak factorisation system (L,R) wherein R is
the class of normal isofibrations; it forms one half of what [8, §4] calls the “dual
of the natural model structure on a 2-category”. Thus our two-dimensional
semantics fits naturally into the framework outlined in [2].

This result can also be seen as a special case of a result obtained in the
paper [9]. The main result of this paper is that the classifying category of any
intensional type theory may be equipped with a weak factorisation system
whose right class of maps is generated by the dependent projections; and
it is shown (Lemma 13) that the maps in this right class are “type-theoretic
normal isofibrations”. Our Proposition 3.4.7 can be seen as a two-dimensional
collapse of this result.

Using Propositions 3.4.5 and 3.4.7, we may now show that:

3.4.9. Proposition. The 2-functor p : TS → CS is a globally split 2-fibration.

Proof. We check the four clauses in Definition 3.4.1. Clause (i) is immediate,
since the underlying ordinary functor of p : TS → CS is the split fibration
p : TS → CS. For clause (ii), it suffices to consider a chosen cartesian lifting
(f, ι) : (Γ, f∗B) → (∆, B) of TS. Taking advantage of the 2-fully faithfulness
of E : TS → C2

S, we may express the property we are to verify as follows: that
for each diagram

Λ.A

πA

h1

h2

β ∆.B

πB

Λ

g1

g2

α Γ
f

∆

in CS with πBβ = fαπA, there is a unique factorisation

β = Λ.A

h′1

h′2

β′ Γ.f∗B
f.ι

∆.B

with πf∗Bβ′ = βπA. But this follows without difficulty from the fact that
diagram (16) is a 2-pullback. For clause (iii) in the definition of 2-fibration,
we suppose given (Γ, A) and (∆, B) in TS and are required to show that the
functor TS

(

(Γ, A), (∆, B)
)

→ CS(Γ,∆) is a fibration. Using once more the
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2-fully faithfulness of E, it suffices to show that for each commutative square

Γ.A

πA

g.h
∆.B

πB

Γ g ∆

in CS and 2-cell α : f ⇒ g, we can find a 1-cell k : Γ.A → ∆.B and a 2-cell
β : k ⇒ g.h satisfying πBk = fπA and πBβ = απA. This follows using the
canonical isofibration structure of πB . Finally, for clause (iv), we must show
that each (–) · f : TS(y, z) → TS(x, z) preserves cartesian liftings of 2-cells. As
every 2-cell of TS is invertible, and hence cartesian, this is automatic. �

We end this section by considering the pullback stability of the canonical
isofibration structures of Proposition 3.4.7. To this end, consider a square
like (16). Both vertical arrows πB and πf∗B have their canonical isofibration
structures; but we also have a second isofibration structure on πf∗B, obtained
by pulling back the canonical structure of πB along f . A careful examination
of the proof of Proposition 3.4.7 reveals that these two structures on πf∗B
need not coincide. In other words, the canonical isofibration structures of
Proposition 3.4.7 are not necessarily stable by pullbacks.

We can obtain a positive result in this direction by considering a relativised
form of pullback stability. Suppose we are given ∆ ∈ CS, A ∈ TS(∆) and
B ∈ TS(∆.A). We can view the dependent projection πB : ∆.A.B → ∆.A not
only as a map of CS, but also as a map

(25)

∆.A.B

πAπB

πB

∆.A

πA

∆

of CS/∆. It is easy to see that the forgetful 2-functor CS/∆ → CS creates
normal isofibrations, so that (25) is canonically a normal isofibration in CS/∆.
Suppose we are now given a morphism f : Γ → ∆ of CS. By pulling back (25)
along f , we obtain the map

(26)

Γ.f∗A.f∗B

πf∗Aπf∗B

πf∗B

Γ.f∗A

πf∗A

Γ

of CS/Γ (note that we are abusing notation slightly here: we should write the
left-hand vertex as Γ.f∗A.(f.ι)∗B), and this now has two isofibration struc-
tures on it: the one induced by the canonical isofibration structure on πf∗B ,
and the one obtained by pulling back the isofibration structure of (25). The
following Proposition now tells us that these two isofibration structures on (26)
do coincide.
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3.4.10. Proposition. Suppose given ∆ ∈ CS, A ∈ TS(∆) and B ∈ TS(∆.A)
and f : Γ → ∆ as above. With reference to the 2-pullback square

(27)

Γ.f∗A.f∗B

πf∗B

f.ι.ι
∆.A.B

πB

Γ.f∗A
f.ι

∆.A,

the canonical isofibration structure on πf∗B qua map of CS/Γ agrees with the
pullback of the canonical isofibration structure on πB qua map of CS/∆.

Proof. As in the proof of Proposition 3.4.5, we will use subst notation in
applications of the Leibnitz rule, in order to make clear the dependent family
in which substitution is taking place. Now, to prove the Proposition, it suffices
to show the following. Suppose give an invertible 2-cell

(28)

Λ
k

h

α

Γ.f∗A.f∗B

πf∗B

Γ.f∗A

of CS/Γ (i.e., one satisfying πf∗Aα = idπf∗Ah). Let us write α′ := f.ι ◦ α and

k′ := f.ι.ι ◦ k. Then we must show that

(29) sα′ = f.ι.ι ◦ sα : Λ → ∆.A.B and σα′ = f.ι.ι ◦ σα : sα′ ⇒ k′,

where we obtain (sα, σα) from the canonical isofibration structure on πf∗B ,
and (sα′ , σα′) from that on πB. So suppose given a 2-cell as in (28), with h, k
and α given as follows:

x : Λ ⊢ h(x) := (h1x, h2x) : Γ.f∗A

x : Λ ⊢ k(x) := (h1x, k2x, k3x) : Γ.f∗A.f∗B

and x : Λ ⊢ α(x) := (rh1x, α2x) : IdΓ.f∗A

(

(h1x, h2x), (h1x, k2x)
)

.

We first compute the pair (sα, σα). The map sα : Λ → Γ.f∗A.f∗B is given by

x : Λ ⊢
(

h1x, h2x, subst[u,v]B(fu,v)((rh1x, α2x), k3x)
)

: Γ.f∗A.f∗B;

which, by unfolding the inductive description of the Id-elimination rule given
in the proof of Proposition 3.3.1, is equal to

(30) x : Λ ⊢
(

h1x, h2x, subst[v]B(fh1x,v)(α2x, k3x)
)

: Γ.f∗A.f∗B.

The corresponding 2-cell σα : sα ⇒ k is now given by

(31) x : Λ ⊢
(

rh1x, α2x, r(subst[v]B(fh1x,v)(α2x, k3x))
)

: Id(sαx, kx).

Next we compute the pair (sα′ , σα′). By the proof of Proposition 3.4.5 we
have

α′(x) := (f.ι)•(rh1x, α2x)

= (f •rh1x, θ(rh1x, k2x) ◦ α2x)

= (rfh1x, r(k2x) ◦ α2x) = (rfh1x, α2x).
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Thus the morphism sα′ : Γ → ∆.A.B is given by

x : Λ ⊢
(

fh1x, h2x, subst[u,v]B(u,v)((rfh1x, α2x), k3x)
)

: ∆.A.B;

which, by unfolding the description of Id-elimination, is definitionally equal to

(32) x : Λ ⊢
(

fh1x, h2x, subst[v]B(fh1x,v)(α2x, k3x)
)

: ∆.A.B.

The corresponding 2-cell σα′ : sα′ ⇒ k′ is now given by

(33) x : Λ ⊢
(

rfh1x, α2x, r(subst[v]B(fh1x,v)(α2x, k3x))
)

: Id(sα′x, k′x).

It remains to verify the equalities in (29). The first equality follows imme-
diately from inspection of (30) and (32). For the second, we will need a
calculation. Suppose given (x, y, s) and (x, z, t) : Λ.f∗A.f∗B together with
identity proofs p : Id(y, z) and q : Id(s, subst[v]B(fx,v)(p, t)). We claim that:

(34) (f.ι.ι)•(r(x), p, q) = (r(fx), p, q) : Id∆.A.B

(

(fx, y, s), (fx, z, t)
)

.

By discrete identity types, it suffices to prove this up to propositional equality;
and by applying Id-elimination twice, first on p and then on q, it suffices for
this to show that, given (x, y, s) : Γ.f∗A.f∗B, we have

(f.ι.ι)•(rx, ry, rk) ≈ (rfx, ry, rk) : Id∆.A.B

(

(fx, y, s), (fx, y, s)
)

.

But this follows by the Id-computation rule and the definition of (f.ι.ι)•. Thus
we have (34) as claimed. We now use this to affirm the second equality in (29).
Given x : Λ, we have that:

(f.ι.ι ◦ σα)(x) = (f.ι.ι)•
(

rh1x, α2x, r(subst[v]B(fh1x,v)(α2x, k3x))
)

=
(

rfh1x, α2x, r(subst[v]B(fh1x,v)(α2x, k3x))
)

= σf.ι◦α(x) = σα′(x). �

3.4.11. Remark. Although somewhat technical, the previous Proposition is ab-
solutely crucial for obtaining a sound notion of two-dimensional model. One of
the key issues in giving higher-dimensional and homotopy-theoretic semantics
for intensional type theory will be finding an appropriate counterpart of this
Proposition.

3.5. Comprehension 2-categories. We may abstract away from the syn-
tactic investigations of the preceding sections as follows. We define a full
split comprehension 2-category C to be given by the following data: a locally
groupoidal 2-category C with a specified 2-terminal object; a globally split
2-fibration p : T → C, with T also locally groupoidal; and a 2-fully faithful
2-functor E : T → C2 rendering commutative the triangle

T

p

E
C2

cod

C.

Moreover, the 2-functor E should send cartesian morphisms in T to 2-pullback
squares in C; should send each object of T to a normal isofibration in C; and
should satisfy the stability conditions of Proposition 3.4.10. The preceding de-
velopments show that we may associate a full split comprehension 2-category
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to each dependent type theory S satisfying the rules for identity types in
Table 1 and the discreteness rules of Table 2. We denote this comprehension
2-category by C(S), and call it the classifying comprehension 2-category of S.

4. Categorical models for ML2: logical aspects

4.1. Identity types. In this section, we will examine the structure induced
on the syntactic comprehension 2-category of the previous section by the lo-
gical rules of two-dimensional type theory. Once again we consider a fixed
dependently typed calculus S which we now suppose to admit all of the rules
in Tables 1, 2 and 3. We begin by investigating the identity types. Given
how deeply intertwined these have been with the construction of the syntactic
comprehension 2-category, it is perhaps unsurprising that their characterisa-
tion is rather intrinsic. It will be given in terms of the 2-categorical notion
of arrow object. Given a 2-category K, an arrow object for X ∈ K is given
by an object Y ∈ K such that 1-cells into Y correspond naturally to 2-cells
into X. That is, we have an isomorphism of categories

(35) K(A,Y ) ∼= K(A,X)2,

2-natural in A. In particular, under the bijection (35), the identity map
idY : Y → Y corresponds to a 2-cell

Y

s

t

κ X;

and 2-naturality of (35) says that any other such 2-cell into X factors uniquely
through κ. We now introduce a small abuse of notation. Given Γ ∈ CS and
A ∈ TS(Γ), we write Γ.A.A for the context

(

x : Γ, y : A(x), z : A(x)
)

—this
rather than the more correct Γ.A.π∗

AA—and write π1 and π2 for the context
morphisms Γ.A.A → Γ.A projecting onto the first or second copy of A.

4.1.1. Proposition. For every context Γ and type Γ ⊢ A type in S, the context
Γ.A.A.IdA, together with the projections π1πIdA

, π2πIdA
: Γ.A.A.IdA → Γ.A, can

be made into an arrow object for Γ.A in the slice 2-category CS/Γ.

Proof. Let us write s := π1πIdA
and t := π2πIdA

. We are to find a 2-cell

(36)

Γ.A.A.IdA

π

s

t

κ Γ.A

πA

Γ
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in CS which is over Γ in the sense that πAs = πAt = π and πAκ = idπ, and
such that any other 2-cell

(37)
Λ

h

f

g

α Γ.A

πA

Γ

over Γ factors through κ via a unique morphism ᾱ : Λ → Γ.A.A.IdA. The
universal property of κ also has a two-dimensional aspect. Suppose we are
given a commutative diagram

(38)

f
β

α

f ′

α′

g
γ g′

of 1- and 2-cells Λ → Γ.A over Γ. Then we should be able to find a unique
2-cell δ : ᾱ ⇒ ᾱ′ : Λ → Γ.A.A.IdA with β = sδ and γ = tδ. We begin by
defining κ as in (36). For this we are required to give a judgement

x : Γ, y, z : A(x), p : Id(y, z) ⊢ κ(x, y, z, p) : Id(y, z);

which we do by taking κ(x, y, z, p) := p. We now verify the universal property
of κ. Suppose given an α as in (37): then the commutativity conditions
πAf = πAg = h mean that f and g correspond to judgements

x : Λ ⊢ f(x) : A(hx) and x : Λ ⊢ g(x) : A(hx),

whereupon—by Lemma 3.4.2—the condition πAα = idh allows us to view
α as a judgement x : Λ ⊢ α(x) : Id(fx, gx). We now define a morphism
ᾱ : Λ → Γ.A.A.IdA by x : Λ ⊢ (hx, fx, gx, αx) : Γ.A.A.IdA. It is immediate
from the definition of κ that κᾱ = α, and moreover that if κm = α for some
m : Λ → Γ.A.A.IdA then we have ᾱ = m. It still remains to verify the two-
dimensional universal property of κ. So suppose given 1- and 2-cells as in (38).
We are required to define a 2-cell δ : ᾱ ⇒ ᾱ′ : Λ → Γ.A.A.IdA satisfying sδ = β
and tδ = γ. In order to satisfy these last two requirements, δ, if it exists, must
be given by a judgement

x : Λ ⊢ (rhx, βx, γx, δ4x) : IdΓ.A.A.IdA

(

(hx, fx, gx, αx), (hx, f ′x, g′x, α′x)
)

for some x : Λ ⊢ δ4(x) : IdId(fx,gx)

(

αx, (βx, γx)∗(α′x)
)

. By discrete identity
types, this is only possible if in fact α(x) = (βx, γx)∗(α′x), whereupon we can
take δ4(x) = r(αx). We claim that in fact (βx, γx)∗(α′x) = (γx)−1◦(α′x◦βx),
so that we will be done if we can show that α(x) = (γx)−1 ◦ (α′x ◦ βx): and
this follows from the equation γα = α′β using the groupoid laws for IdA. It
remains only to prove the claim, which follows from the more general result
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that

x : Γ, y, z, y′, z′ : A(x), p : Id(y, y′), q : Id(z, z′), s : Id(y′, z′)

⊢ (p, q)∗(s) = q−1 ◦ (s ◦ p) : Id(y, z).

By discrete identity types, it suffices to prove this up to propositional equality;
and by Id-elimination on p and q, it suffices to consider the case where y = y′,
z = z′, p = r(y) and q = r(z), where we have that (r(y), r(z))∗(s) = s =
r(z)−1 ◦ (s ◦ r(y)) as required. �

4.1.2. Proposition (Stability for identity types). Let Γ, ∆ be contexts in S,
let f : Γ → ∆ be a context morphism, and let x : ∆ ⊢ B(x) type. Then the
comparison morphism

Γ.f∗B.f∗B.(f.ι.ι)∗(IdB) → Γ.f∗B.f∗B.Idf∗B

induced by the universal property of Idf∗B is an identity.

Proof. Immediate from the stability of identity types under substitution. �

4.2. Digression on 2-categorical adjoints. Our characterisation of the re-
maining type constructors of ML2 will be given in terms of weak 2-categorical
adjoints. We therefore break off at this point in order to give a brief sum-
mary of the 2-categorical notions necessary for this characterisation. Let K

be a 2-category. By a retract equivalence in K, we mean a pair of objects
x, y ∈ K, a pair of morphisms i : x → y and p : y → x satisfying pi = idx,
and an invertible 2-cell θ : idy ⇒ ip satisfying θi = idi and pθ = idp. In these
circumstances, we may call i an injective equivalence—with the understand-
ing that the extra data (p, θ) is provided as part of this assertion—or call p a
surjective equivalence (with the same understanding). Given now a 2-functor
U : K → L and an object x ∈ L, we define a retract bireflection of x along
U to be an object Fx ∈ K and morphism ηx : x → UFx such that for each
y ∈ K, the functor

K(Fx, y)
UF x,y
−−−−→ L(UFx,Uy)

(–)◦ηx
−−−−→ L(x,Uy)

is a surjective equivalence of categories. By a left retract biadjoint F for U , we
mean a choice for every x ∈ L of a retract bireflection Fx of x along U . Note
that if F is a left retract biadjoint for U , then the assignation x 7→ Fx will not
in general extend to a 2-functor F : L → K; rather, it gives a pseudo-functor,
which preserves identities and composition only up to invertible 2-cells. Like-
wise, the maps ηx : x → UFx do not provide components of a 2-natural trans-
formation η : idL ⇒ UF but merely of a pseudo-natural transformation, whose
naturality squares commute only up to invertible 2-cells. We could give a
definition of left retract biadjoint in terms of a pseudo-functor K → L and
unit and counit transformations η and ǫ satisfying weakened versions of the
triangle laws (see [25, Section 1] for the details); but the above description is
both simpler and, as we will see, closer to the type theory. In fact, the above
definitions admit a further simplification, using the observation that the sur-
jective equivalences of categories are precisely those functors F : C → D which
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are fully faithful and whose object function obF : ob C → obD is a split
epimorphism:

4.2.1. Proposition. To give a retract bireflection of x ∈ L along U : K → L

is to give an object Fx ∈ K and map ηx : x → UFx, together with, for each
f : x → Uy in L, a choice of map f̄ : Fx → y in K satisfying Uf̄ ◦ ηx = f ;
all subject to the requirement that, for every h, k : Fx → y in K and every
α : Uh ◦ ηx ⇒ Uk ◦ ηx in L, there is a unique ᾱ : h ⇒ k with Uᾱ ◦ ηx = α.

Given a 2-functor U : K → L and x ∈ L as before, we have the dual notion
of retract bicoreflection of x along U : this being given by an object Gx ∈ K,
together with a morphism ǫx : UGx → x such that for each y ∈ K, the functor

K(y,Gx)
Uy,Gx
−−−−→ L(Uy,UGx)

ǫx◦(–)
−−−−→ L(Uy, x)

is a surjective (not injective!) equivalence of categories. Now a right retract
biadjoint for U is of course given by a choice for every x ∈ L of a retract
bicoreflection along U . As before, we have an elementary characterisation of
retract bicoreflections:

4.2.2. Proposition. To give a retract bicoreflection of x ∈ L along U : K → L

is to give an object Gx ∈ K and map ǫx : UGx → x, together with, for each
f : Uy → x in L, a choice of map f̄ : y → Gx in K satisfying ǫx ◦ Uf̄ = f ;
all subject to the requirement that, for every h, k : y → Gx in K and every
α : ǫx ◦ Uh ⇒ ǫx ◦ Uk in L, there is a unique ᾱ : h ⇒ k with ǫx ◦ Uᾱ = α.

4.3. Unit types. Our first application of the 2-categorical adjoint notions
developed above will be to the unit types of S—which we recall is an arbitrary
dependent type theory admitting all the rules listed in Tables 1, 2 and 3. In
the following result, we denote by E(Γ): TS(Γ) → CS/Γ the 2-functor obtained
by restricting E : TS → CS to the fibre over Γ ∈ CS.

4.3.1. Proposition. For each context Γ of S, the object 1Γ ∈ TS(Γ) given by
Γ ⊢ 1 type provides a retract bireflection of idΓ : Γ → Γ along the 2-functor
E(Γ): TS(Γ) → CS/Γ.

Proof. The unit of the bireflection ηΓ : Γ → Γ.1Γ (over Γ) is given by the
judgement x : Γ ⊢ ⋆ : 1. Given now a morphism f : Γ → Γ.A over Γ—
which is equally well a judgement x : Γ ⊢ f(x) : A(x)—we obtain a fac-
torisation f̄ : Γ.1Γ → Γ.A over Γ by 1-elimination, taking f̄ to be the term
x : Γ, z : 1 ⊢ Uf(x)(z) : A(x). That this satisies f̄ηΓ = f is now precisely the
computation rule x : Γ ⊢ Uf(x)(⋆) = f(x). It remains to check that for maps
h, k : Γ.1 → Γ.A over Γ, every 2-cell α : hηΓ ⇒ kηΓ over Γ is of the form ᾱηΓ

for a unique ᾱ : h ⇒ k. Now, to give h, k and α is to give judgements

x : Γ, z : 1 ⊢ h(x, z) : A(x)

x : Γ, z : 1 ⊢ k(x, z) : A(x)

x : Γ ⊢ α(x) : Id
(

h(x, ⋆), k(x, ⋆)
)

;

from which we must determine x : Γ, z : 1 ⊢ ᾱ(x, z) : Id
(

h(x, z), k(x, z)
)

. We
do this by 1-elimination, taking ᾱ(x, z) := Uα(x)(z). The equality ᾱηΓ = α
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now follows from the 1-computation rule. It remains to check uniqueness
of ᾱ. So suppose we are given x : Γ, z : 1 ⊢ β(x, z) : Id

(

h(x, z), k(x, z)
)

satisfying β(x, ⋆) = α(x). We must show that β(x, z) = ᾱ(x, z). By discrete
identity types, it suffices to show this up to propositional equality; and by
1-elimination, this only in the case where z = ⋆, for which we have that
β(x, ⋆) = α(x) = ᾱ(x, ⋆) as required. �

4.3.2. Proposition (Stability for unit types). For each k : Γ → ∆ in C, we
have k∗(1∆) = 1Γ; we have ηΓ = k∗(η∆) : Γ → Γ.1Γ; and for each f : ∆ →

∆.B over ∆, have k∗(f̄) = k∗(f) : Γ.1Γ → Γ.k∗B.

Proof. By the stability of unit types under substitution. �

4.3.3. Remark. Note carefully what the previous result does not say: it does
not say that for a context morphism k : Γ → ∆, the comparison map 1Γ →
k∗1∆ of TS(Γ) is an identity; indeed, this map will in general only be iso-
morphic to the identity, since it corresponds to the judgement x : Γ, z : 1 ⊢
U⋆(z) : 1.

4.4. Dependent sum types. We next consider the dependent sum types.

4.4.1. Proposition. For each context Γ and type Γ ⊢ A type of S, the
2-functor ∆A := TS(πA) : TS(Γ) → TS(Γ.A) has a left retract biadjoint ΣA.

Proof. We must provide, for each B ∈ TS(Γ.A) a retract bireflection ΣA(B)
of B along ∆A. So we take ΣA(B) ∈ TS(Γ) to be given by the judgement
Γ ⊢ Σ(A,B) type (where for readability we suppress explicit mention of de-
pendencies on the variables in Γ); and the unit map η : B → ∆AΣA(B) of
TS(Γ.A) to be given by the judgement Γ, y : A, z : B(y) ⊢ 〈y, z〉 : Σ(A,B).
Now given a type C ∈ TS(Γ) and a map f : B → ∆AC of TS(Γ.A), we must
provide a morphism f̄ : ΣA(B) → C of TS(C) satisfying ∆A(f̄) ◦ η = f . But
to give f is to give a judgement Γ, y : A, z : B(y) ⊢ f(y, z) : C, whilst
to give f̄ is to give a judgement Γ, s : Σ(A,B) ⊢ f̄(s) : C. Thus by using
Σ-elimination we may define f̄(s) := Ef (s). The equality ∆A(f̄) ◦ η = f fol-
lows by the Σ-computation rule. It remains to show, given two morphisms
h, k : ΣA(B) → D in TS(Γ), that each 2-cell α : ∆A(h)◦η ⇒ ∆A(k)◦η is of the
form ∆A(ᾱ)◦η for a unique ᾱ : h ⇒ k. This follows by an argument analogous
to that given in the proof of Proposition 4.3.1. �

Whilst Proposition 4.4.1 is very natural from a categorical perspective,
it fails to capture the full strength of the elimination rule for dependent
products4. For this we need the following result:

4.4.2. Proposition. Suppose given a context Γ in S and types Γ ⊢ A type

and Γ, x : A ⊢ B(x) type in S, and consider the morphism

Γ.A.B
i

πB

Γ.ΣA(B)

πΣA(B)

Γ.A πA
Γ

4Even though it requires the full strength of that elimination rule in its proof.
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in C2

S corresponding to the unit morphism η : B → ∆AΣA(B) in TS(Γ.A). The
map i appearing in this diagram is an injective equivalence in CS/Γ.

Proof. We construct a pseudoinverse retraction for i over Γ as follows. The
map p : Γ.ΣA(B) → Γ.A.B over Γ is given by the projections out of the sum:

Γ, s : Σ(A,B) ⊢ s.1 : A

Γ, s : Σ(A,B) ⊢ s.2 : B(s.1)

(where again, we suppress explicit mention of the dependency on Γ). We
define these by Σ-elimination on s, the first being given by s.1 := E[y,z]y(s)
and the second by s.2 := E[y,z]z(s). The equality pi = idΓ.A.B follows from the
Σ-computation rule. We must now give a 2-cell θ : idΓ.ΣA(B) ⇒ ip; which
is equally well a judgement Γ, s : Σ(A,B) ⊢ θ(s) : Id(s, 〈s.1, s.2〉). By
Σ-elimination on s, it suffices to define θ when s = 〈y, z〉; whereupon we have
〈s.1, s.2〉 = 〈〈y, z〉.1, 〈y, z〉.2〉 = 〈y, z〉 so that we can take θ(〈y, z〉) = r(〈y, z〉).
The equality θi = idi now follows by the Σ-computation rule; and it remains
only to verify that pθ = idp. Now, pθ corresponds to the judgement

Γ, s : Σ(A,B) ⊢ p•(θ(s)) : IdΓ.A.B

(

(s.1, s.2), (s.1, s.2)
)

;

and we must show that in fact p•(θ(s)) = r(p(s)). By discrete identity types,
it suffices to show this up to propositional equality; and by Σ-elimination,
this only when s = 〈y, z〉. But we calculate that p•(θ(〈y, z〉)) = p•(r(〈y, z〉)) =
r(p(〈y, z〉)) as required. �

4.4.3. Proposition (Stability for dependent sums). Given k : Γ → Λ in CS,
A ∈ T(Λ) and B ∈ T(Λ.A), we have that k∗(ΣA(B)) = Σk∗A(k∗B); that
k∗(ηA,B) = ηk∗A,k∗B; and for each f : B → ∆AC in TS(Λ.A), that k∗f̄ =

k∗f : Σk∗A(k∗B) → k∗C. Moreover, reindexing along k sends the injective
equivalence structure on iA,B to the injective equivalence structure on ik∗A,k∗B.

Proof. By the stability of dependent sum types under substitution. �

4.5. Dependent product types. Finally, we turn to the categorical char-
acterisation of dependent product types in S.

4.5.1. Proposition. For each context Γ and type Γ ⊢ A type of S, the weak-
ening 2-functor ∆A : TS(Γ) → TS(Γ.A) has a right retract biadjoint ΠA.

Proof. Once again, we suppress explicit mention of dependencies on the vari-
ables in Γ. We must provide, for each B ∈ TS(Γ.A) a retract bicoreflection
ΠA(B) of B along ∆A. For this we take ΠA(B) ∈ TS(Γ) to be given by
the judgement Γ ⊢ Π(A,B) type; and the counit map ǫ : ∆AΠA(B) → B of
TS(Γ.A) to be given by the judgement Γ, m : Π(A,B), y : A ⊢ m · y : B(y).
Now given a type C ∈ TS(Γ) and a map f : ∆AC → B of TS(Γ.A), we are re-
quired to provide a morphism f̄ : C → ΠA(B) of TS(C) satisfying ǫ ◦∆A(f̄) =
f . So if f is the judgement Γ, y : C, z : A ⊢ f(y, z) : B(y), we take f̄ to be
the judgement Γ, y : C ⊢ λz. f(y, z) : Π(A,B). The equality ǫ ◦ ∆A(f̄) = f
follows by the β-rule.

It remains to show, given two morphisms h, k : D → ΠA(B) in TS(Γ), that
each 2-cell α : ǫ ◦ ∆A(h) ⇒ ǫ ◦ ∆A(k) can be written in the form ǫ ◦ ∆A(ᾱ)
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for a unique ᾱ : h ⇒ k. It is here that we will make crucial use of function
extensionality. So, to give h, k and α is to give judgements Γ, C ⊢ h : Π(A,B);
Γ, C ⊢ k : Π(A,B); and Γ, C, z : A ⊢ α(z) : Id(h · z, k · z) (where we now sup-
press explicit mention of the dependency on C) and so we may define the 2-
cell ᾱ : h ⇒ k by applying the rule Π-ext of Table 3 to obtain the judgement
Γ, C ⊢ ext(h, k, α) : Id(h, k). We must now check that ǫ ◦ ∆A(ᾱ) = α. Recall
from §2.3 the operation

m,n : Π(A,B) p : Id(m,n) a : A

p ∗ a : Id(m · a, n · a)

given by p ∗ a := J[x]r(x·a)(m,n, p). It is easy to see that ∗ is just the lifting of
ǫ to identity types; so that ǫ ◦ ∆A(ᾱ) corresponds to the judgement

Γ, C, z : A ⊢ ext(h, k, α) ∗ z : Id(h · z, k · z).

But by the rule Π-ext-app of Table 3, we have that ext(h, k, α) ∗ z = α(z) as
required. It remains to check uniqueness of ᾱ. So suppose that we are given
Γ, C ⊢ β : Id(h, k) satisfying β ∗ z = α(z): we must show that β = ᾱ. Now,
because β ∗ z = α(z) = ᾱ ∗ z, we have that

Γ, C, z : A ⊢ ext
(

h, k, [z]β ∗ z
)

= ext
(

h, k, [z] ᾱ ∗ z
)

: Id(h, k).

Thus we will be done if we can show that

Γ, C, m, n : Π(A,B), k : Id(m,n) ⊢ ext(m,n, [z] k ∗ z) = k : Id(m,n)

holds. By discrete identity types, it suffices to do this up to propositional
equality; and by Id-elimination, this only in the case where m = n and
k = r(m), so that we will be done if we can show that

Γ, C, m : Π(A,B) ⊢ ext(m,m, [z] r(m · z)) ≈ r(m) : Id(m,m)

holds. But this follows immediately from the rule Π-ext-comp. �

4.5.2. Proposition (Stability for dependent products). Given k : Γ → Λ in
CS, A ∈ T(Λ) and B ∈ T(Λ.A), we have that k∗(ΠA(B)) = Πk∗A(k∗B); that
k∗(ǫA,B) = ǫk∗A,k∗B; and for each f : ∆AC → B in TS(Λ.A), that k∗f̄ =

k∗f : k∗C → Πk∗A(k∗B).

Proof. By the stability of dependent product types under substitution. �

4.6. Models of two-dimensional type theory. We now abstract away
from the preceding results as follows.

4.6.1. Definition. Let there be given a full split comprehension 2-category
C = (p : T → C, E : C → T2), in the sense of §3.5. Then:

• We say that C has equality if, for every Γ ∈ C and A ∈ T(Γ), there is
an object IdA ∈ T(Γ.A.A) such that Γ.A.A.IdA, together with its two
projections onto Γ.A, underlies an arrow object for Γ.A in C/Γ; and
these arrow objects satisfy the stability properties of Proposition 4.1.2.

• We say that C has units if, for every Γ ∈ C, the map idΓ : Γ → Γ
admits a retract bireflection 1Γ along E(Γ): T(Γ) → CS/Γ; and these
bireflections satisfy the stability properties of Proposition 4.3.2.
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• We say that C has sums if, for every Γ ∈ C and A ∈ T(Γ), the 2-functor
∆A := T (πA) : T (Γ) → T(Γ.A) admits a retract left biadjoint ΣA; and
these biadjoints satisfy the conditions of Proposition 4.4.2 and the
stability properties of Proposition 4.4.3.

• We say that C has products if, for every Γ ∈ C and A ∈ T(Γ),
the 2-functor ∆A : T (Γ) → T(Γ.A) admits a retract right biadjoint
ΠA; and these biadjoints satisfy the stability properties of Proposi-
tion 4.5.2.

• We say that C is a model of two-dimensional type theory if it has
equality, units, sums and products.

Thus, the results of this section can be summarised by saying that, for
any dependent type theory S satisfying the rules of Tables 1, 2 and 3, the
classifying comprehension 2-category C(S) is a model of two-dimensional type
theory.

5. The internal language of a two-dimensional model

5.1. 2-categorical lifting properties. In this Section, we prove a converse
to the results of the previous two Sections. Given a model C of two-dimensional
type theory, we will construct from it a dependent type theory S(C) admitting
the rules of Tables 1, 2 and 3. We call this type theory the internal language
of C. The key to doing this will be to give semantic analogues in C of each of
the logical rules of ML2. In giving analogues of the elimination rules, we will
make use of the 2-categorical lifting property described in Proposition 5.1.1
below. This is again very much in the spirit of [2], since this is really a result
about the weak factorisation system (injective equivalences, normal isofibra-
tions) described in Remark 3.4.8: or rather, about an algebraic presentation
of this weak factorisation system in the style of [11].

5.1.1. Proposition. Suppose given a 2-category K and a square

(39)

A
f

i

C

p

B g D

where i carries the structure of an injective equivalence (cf. §4.2) and p that of
a normal isofibration (cf. Definition 3.4.6). From this data we can determine
a canonical diagonal filler j : B → C satisfying pj = g and ji = f .

Proof. The injective equivalence structure on i is given by a morphism k : B → A
satisfying ki = idA and an invertible 2-cell θ : idB ⇒ ik satisfying θi = idi and
kθ = idk. Thus we have an invertible 2-cell

B
fk

g

gθ

C

p

D,
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and so from the isofibration structure on p we obtain a map j := sgθ : B → C
satisfying pj = g. It remains to show that ji = f . By the definition of
isofibration, we have ji = sgθ ◦ i = sgθi; and since sgθi = sg(idi) = sidgi

= sidpf
,

we deduce by normality that ji = sidpf
= f as required. �

We now show that the liftings of the previous Proposition are stable under
pullback in a suitable sense. Note that in order for this to make sense, it
is crucial that Proposition 5.1.1 gives us a choice of filler for each diagram
like (39).

5.1.2. Proposition. Suppose given a morphism h : X → Y in a 2-category K,
together with a diagram like (39) in the slice K/Y . Suppose that we are able
to form the 2-pullback of this diagram along h, yielding a diagram

(40)

h∗A
h∗f

h∗i

h∗C

h∗p

h∗B
h∗g

h∗D

in K/X. Then the pullback of the canonical filler for (39) along h is equal to
the canonical filler for (40), where the injective equivalence structure on h∗i
and the isofibration structure on h∗p are those induced by pullback.

Proof. Let us first make clear what the induced structures on h∗i and h∗p
look like. The injective equivalence data for h∗i is simply given by applying
h∗ to the corresponding data for i. The normal isofibration structure on h∗p
is given as follows. Let us write h! : K/X → K/Y for the 2-functor given by
postcomposition with h. For any V ∈ K/Y whose 2-pullback h∗V along h
exists, we have 2-natural bijections of categories

(41) K/Y (h!U, V ) ∼= K/X(U, h∗V ).

In particular, we have bijections between diagrams of the following two forms:

(42)

W
g

f

α

h∗C

h∗p

h∗D

↔

h!W
ḡ

f̄

ᾱ

C

p

D.

So given an α as on the left of (42), we obtain a lifting for it by first transposing
to obtain a 2-cell ᾱ as on the right of (42). We then apply the isofibration
structure of p to obtain sᾱ : h!W → C and σᾱ : sᾱ ⇒ ḡ; and finally, we
transpose back using (41) to obtain sα : W → h∗C and σα : sα ⇒ g. Now,
consider the case where α in (42) is itself of the form h∗β for some β : u ⇒
pv : W → D in K/Y . When this is so, the corresponding ᾱ is, by naturality,
equal to β ◦ ǫW , where ǫW : h!h

∗W → W is the transpose of idh∗W under the
bijection (41). It follows from the definition of isofibration that sᾱ = sβ◦ǫW =
sβ ◦ ǫW and likewise σᾱ = σβ ◦ ǫW ; whereupon transposing under (41) and
using naturality, we have sh∗β = h∗(sβ) and σh∗β = h∗(σβ). Now, according to
Proposition 5.1.1, the canonical filler for (40) is given by s(h∗g)(h∗θ) = sh∗(gθ);
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and by the above argument this is equal to h∗(sgθ), which is precisely the
pullback along h of the canonical filler for (39), as required. �

5.2. Identity types. For the rest of the section, we fix a model of two-
dimensional type theory C. We are going to give semantic analogues of each
of the logical constructors of ML2 in C. We start with the identity types.

5.2.1. Formation rule. Given Γ ∈ C and A ∈ T(Γ), we define the semantic
identity type on A to be the object IdA ∈ T(Γ.A.A) whose existence is assured
by Definition 4.6.1.

5.2.2. Introduction rule. We recall that the object Γ.A.A.IdA ∈ C, together
with the maps s := π1πIdA

and t := π2πIdA
: Γ.A.A.IdA → Γ.A, is an arrow

object for Γ.A in C/Γ. As in Proposition 4.1.1, we write κ : s ⇒ t for the
corresponding universal 2-cell. Applying universality of κ to the 2-cell

Γ.A

πA

id

id

id Γ.A

πA

Γ

in C/Γ, we obtain a morphism rA : Γ.A → Γ.A.A.IdA which factorises the
diagonal: we have πIdA

rA = δA : Γ.A → Γ.A.A. We call this rA the semantic
introduction rule for IdA.

5.2.3. Elimination and computation rules. With reference to Table 1, we re-
quire semantic analogues of the premisses C and d of the rule Id-elim. These
are given by an object C ∈ T(Γ.A.A.IdA) and a map d : Γ.A → Γ.A.A.IdA.C
of C making the following diagram commute:

(43)

Γ.A
d

rA

Γ.A.A.IdA.C

πC

Γ.A.A.IdA
id

Γ.A.A.IdA.

To give a semantic analogue of the conclusion Jd, satisfying the analogue of
the computation rule, amounts to giving a filler Jd : Γ.A.A.IdA → Γ.A.A.IdA.C
making both sides of (43) commute. Now, by Proposition 3.4.7, πC is a
normal isofibration in C/Γ; so that if we can show that rA is an injective
equivalence in C/Γ, then we may obtain the required filler Jd by an application
of Proposition 5.1.1. To show that rA is an injective equivalence in C/Γ, we
must first give a retraction of rA over Γ. We take this to be t : Γ.A.A.IdA →
Γ.A (though we could equally well have chosen s); and we have that trA =
idΓ.A as required. Next we need a 2-cell θ : id ⇒ rAt over Γ satisfying θrA =
idrA and tθ = idt. For this, we consider the following diagram of 1- and 2-cells
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Γ.A.A.IdA → Γ.A:

s
κ

κ

srAt

idt

t
idt

trAt.

Because trA = srA = idΓ.A, this diagram is commutative: and so by the
two-dimensional aspect of the universal property of Γ.A.A.IdA, is induced by
a 2-cell θ : id ⇒ rAt over Γ satisfying sθ = κ and tθ = idt. It remains to
verify that θrA = idrA . By the uniqueness part of the universal property
of Γ.A.A.IdA, it suffices to show that κ ◦ θrA = κ ◦ idrA . But here we have
κθ = κ(rAt) ◦ sθ = idt ◦ κ = κ and so κ ◦ θrA = κrA = κ ◦ idrA as required.

5.2.4. Stability rules. We now verify that the semantic identity rules given
above are stable under semantic substitution. So suppose given f : ∆ → Γ
in C together with A ∈ T(Γ). We must verify three things. First we must
show that reindexing Γ.A.A.IdA along f yields ∆.f∗A.f∗A.Idf∗A. This follows
immediately from the stability requirements of Proposition 4.1.2. Next, we
must show that the semantic introduction rule rf∗A is the reindexing along f
of rA. This follows from the fact that arrow object structure on Idf∗A is the
reindexing of that on IdA along f . Finally, we must show that applications of
the semantic elimination rule are stable under substitution. So suppose given
a diagram like (43). If we view this as a diagram in C/Γ, then we can reindex
it along f to yield a diagram

(44)

∆.f∗A
f∗d

rf∗A

∆.f∗A.f∗A.Idf∗A.Cf

πCf

∆.f∗A.f∗A.Idf∗A
id

∆.f∗A.f∗A.Idf∗A

in C/∆. We must show that pulling back the assigned filler for (43) along f
yields the assigned filler for (44). Now, by the stability properties of Proposi-
tion 3.4.10, we know that the isofibration structure on πCf qua map of C/∆ is
the one induced by pulling back along f the isofibration structure of πC qua
map of C/Γ. Moreover, by the stability of the arrow object structure of IdA,
the injective equivalence structure on rf∗A is the one induced by pulling back
that of rA along f . The result now follows by applying Proposition 5.1.2.

5.2.5. Remark. Because Γ.A.A.IdA is an arrow object in C/Γ.A, we will in
what follows pass back and forward without comment between morphisms
h : Λ → Γ.A.A.IdA and 2-cells γ : sh ⇒ th : Λ → Γ.A over Γ.

5.2.6. Discrete identity rules. We now show that the semantic identity rules
given above satisfy the semantic equivalents of the rules in Table 2. So suppose
given Γ ∈ C and A ∈ T(Γ) as before. The semantic analogues of the premisses
of the rules in Table 2 are a pair of morphisms a, b : Γ → Γ.A of C over Γ,
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together with a 2-cell

Γ

p

q

α Γ.A.A.IdA

satisfying sp = sq = a, sα = ida, tp = tq = b and tα = idb. We must show
that under these circumstances we have p = q and α = idp. So consider the
following diagram of 1- and 2-cells Γ → Γ.A:

sp sα

κp

sq

κq

tp
tα

tq.

It is commutative, with both sides equal to κα : sp ⇒ tq; but since sα = ida
and tα = idb, we deduce that κα = κp = κq : a ⇒ b. By the uniqueness
part of the universal property of κ, this entails that p = q : Γ → Γ.A.A.IdA.
Moreover, we have κα = κp = κidp, and so again by the uniqueness part of
the universal property of κ, we deduce that α = idp as required.

5.3. Unit types. We now give semantic analogues in our model C of the unit
type rules.

5.3.1. Formation rule. Given Γ ∈ C, we define the semantic unit type at Γ to
be the object 1Γ ∈ T(Γ) whose existence is assured by Definition 4.6.1.

5.3.2. Introduction rule. Recall that 1Γ is a retract bireflection of idΓ : Γ → Γ
along the 2-functor E(Γ): T(Γ) → C/Γ; so in particular, we have a unit map
uΓ : Γ → Γ.1Γ over Γ, and we call this the semantic introduction rule for 1Γ.

5.3.3. Elimination and computation rules. Suppose given C ∈ T(Γ.1Γ) and a
map d : Γ → Γ.1Γ.C of C fitting into a commutative diagram

Γ
d

u

Γ.1Γ.C

πC

Γ.1Γ
id

Γ.1Γ.

The semantic elimination rule will assign to this data a filler U : Γ.1Γ →
Γ.1Γ.C making both triangles commute. Because πC is an isofibration in C/Γ,
it suffices to show that uΓ is a injective equivalence in C/Γ, since then we obtain
the desired filler by Proposition 5.1.1. First we must give a retraction for uΓ

over Γ. We take this to be k := π1Γ
: Γ.1Γ → Γ, which satisfies kuΓ = idΓ

as required. We now give a 2-cell θ : idΓ.1Γ
⇒ uΓk satisfying θuΓ = iduΓ

and
kθ = idk. By the two-dimensional aspect of the universal property of 1Γ,
every 2-cell α : idΓ.1Γ

◦ uΓ ⇒ uΓk ◦ uΓ is of the form ᾱ ◦ uΓ for a unique 2-cell
ᾱ : idΓ.1Γ

⇒ uΓk. But because idΓ.1Γ
◦uΓ = iduΓ

= uΓ ◦ idΓ = uΓkuΓ, we have

in particular the 2-cell θ := iduΓ
: idΓ.1Γ

⇒ uΓk; which by definition satisfies
θuΓ = iduΓ

. That it also satisfies kθ = idk follows from the fact that θ is a
2-cell of C/Γ.
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5.3.4. Stability rules. We must show that the semantic unit rules are stable
under semantic substitution. This follows by an argument entirely analogous
to that of §5.2.4, but using the stability properties of Proposition 4.3.2 rather
than Proposition 4.1.2.

5.4. Sum types. We now give semantic analogues in C of the rules for the
sum types. Here matters are particularly simple.

5.4.1. Formation rule. Given Γ ∈ C, A ∈ T(Γ) and B ∈ T(Γ.A), we define the
semantic sum type of A and B to be the object ΣA(B) ∈ T(Γ) whose existence
is assured by Definition 4.6.1.

5.4.2. Introduction rule. ΣA(B) is a retract bireflection of B ∈ T(Γ.A) along
the 2-functor T(πA) : T(Γ) → T(Γ.A); and so, as in Proposition 4.4.2, we
obtain from the unit of this bireflection a map i : Γ.A.B → Γ.ΣA(B) of C/Γ.
We declare this map to be the semantic introduction rule for ΣA(B).

5.4.3. Elimination and computation rules. We consider C ∈ T(Γ.ΣA(B)) and
a map d : Γ.A.B → Γ.ΣA(B).C of C fitting into a commutative diagram

Γ.A.B
d

i

Γ.ΣA(B).C

πC

Γ.ΣA(B)
id

Γ.ΣA(B).

To give the semantic elimination rule satisfying the semantic computation
rule is now to give a filler E : Γ.ΣA(B) → Γ.ΣA(B).C making both triangles
commute. We know that πC is an isofibration in C/Γ, whilst Definition 4.6.1
assures us that i is an injective equivalence in C/Γ: thus we obtain the desired
filler by applying Proposition 5.1.1.

5.4.4. Stability rules. We must show that the semantic rules for dependent
sums are stable under semantic substitution. Again, this follows by an argu-
ment analogous to that of §5.2.4, this time using the stability properties of
Proposition 4.4.3.

5.5. Product types. Finally, we give semantic analogues in C of the rules for
the product types. As in the one-dimensional case, there is a slight mismatch
here between the syntax and the semantics. This means that, in addition
to the right biadjoints to weakening, we will also need to make use of the
semantic unit types of §5.3. See [18] for a fuller discussion of this point.

5.5.1. Formation rule. For Γ ∈ C, A ∈ T(Γ) and B ∈ T(Γ.A), we define the
semantic product type of A and B to be the object ΠA(B) ∈ T(Γ) whose
existence is assured by Definition 4.6.1.

5.5.2. Application rule. ΠA(B) is a retract bicoreflection of B ∈ T(Γ.A) along
∆A := T(πA) : T(Γ) → T(Γ.A). The counit of this bicoreflection is a morphism
ǫ : ∆AΠA(B) → B of T(Γ.A). We define the semantic application rule for
ΠA(B) to be the corresponding morphism ǫ : Γ.A.ΠA(B) → Γ.A.B of C/Γ.A.
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5.5.3. Abstraction and β-rules. For this, we suppose given, as in the premiss of
the abstraction rule, a morphism f : Γ.A → Γ.A.B over Γ.A. We are required
to produce from this a map λ(f) : Γ → Γ.ΠA(B) over Γ; which, in order for
the β-rule to hold, should satisfy ǫ ◦ ∆A(λ(f)) = f . So consider the unit
type 1Γ.A ∈ T(Γ.A). Applying its universal property to f : Γ.A → Γ.A.B
yields a morphism f : Γ.A.1Γ.A → Γ.A.B over Γ.A satisfying f ◦ uΓ.A = f .
We can view f as a morphism 1Γ.A → B of T(Γ.A); which by the stability
of unit types under substitution is equally well a morphism f : ∆A1Γ → B
of T(Γ.A). Applying the universal property of ΠA(B) to this, we obtain a

morphism f : 1Γ → ΠA(B) of T(Γ) satisfying ǫ ◦ ∆A(f) = f . This is equally
well a morphism Γ.1Γ → Γ.ΠA(B) over Γ, so we can now define the map

λ(f) : Γ → Γ.ΠA(B) over Γ to be λ(f) := f ◦ uΓ. It remains to show that we
have ǫ ◦ ∆A(λ(f)) = f ; for which we calculate that

ǫ ◦ ∆A(λ(f)) = ǫ ◦
(

∆A(f) ◦ ∆A(uΓ)
)

= f ◦ uΓ.A = f

as required. Here we have used the fact that, by stability of unit types under
substitution, we have ∆A(uΓ) = uΓ.A.

5.5.4. Function extensionality rules. We now give semantic analogues of the
rules of Table 3. For the first rule Π-ext, we suppose given morphisms
m,n : Γ → Γ.ΠA(B) over Γ, together with a 2-cell

p : ǫ ◦ ∆A(m) ⇒ ǫ ◦ ∆A(n) : Γ.A → Γ.A.B

over Γ.A. We must produce from this a 2-cell ext(p) : m ⇒ n. First we apply
the universal property of the unit type 1Γ to m and n to obtain morphisms
m,n : Γ.1Γ → Γ.ΠA(B) over Γ. These satisfy m = m ◦uΓ and n = n ◦uΓ, and
so we can view p as a 2-cell

p : ǫ ◦ ∆A(m) ◦ uΓ.A ⇒ ǫ ◦ ∆A(n) ◦ uΓ.A : Γ.A → Γ.A.B,

where again we use stability of unit types under pullback to derive that
∆A(uΓ) = uΓ.A. By the two-dimensional aspect of the universal property
of 1Γ.A, we have p = p ◦ uΓ.A for a unique 2-cell

p : ǫ ◦ ∆A(m) ⇒ ǫ ◦ ∆A(n) : Γ.A.1Γ.A → Γ.A.B.

Now, by the two-dimensional aspect of the universal property of ΠA(B), we
have that p = ǫ ◦ ∆A(p) for a unique p : m ⇒ n. We now define the 2-cell
ext(p) to be given by p ◦ uΓ : m ⇒ n.

In order for ext to satisfy the analogue of the rule Π-ext-comp, we must
show that when m = n and p = idǫ◦∆A(m), we have ext(p) = idm. It suffices

for this to show that (with the above notation) p = idm : m ⇒ m; which,
by applying successively the universal properties of ΠA(B) and 1Γ.A, follows
from the fact that ǫ ◦ ∆A(p) ◦ uΓ.A = p is an identity 2-cell. Finally, we
must verify that ext satisfies the analogue of the rule Π-ext-app. Recall
from §4.5 that the operation ∗ appearing in Π-ext-app is simply the lifting of
ǫ : Γ.A.ΠA(B) → Γ.A.B to identity types. From this it follows that we must
verify that ǫ ◦ ∆A(ext(p)) = p : ǫ ◦ ∆A(m) ⇒ ǫ ◦ ∆A(n). We calculate that
ǫ ◦ ∆A(ext(p)) = ǫ ◦

(

∆A(p) ◦ ∆A(uΓ)
)

= p ◦ uΓ.A = p as required.
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5.5.5. Stability rules. We must now show that the semantic rules for depend-
ent products are stable under semantic substitution. This follows by an argu-
ment analogous to that of §5.2.4; though this time we do not need the stability
properties of isofibrations (Proposition 3.4.10) at all; instead, we need those
for products (Proposition 4.5.2) and also those for units (Proposition 4.3.2).

5.6. The internal language. We now define the type theory S(C) associated
to our two-dimensional model C. It is obtained by recursively extending ML2

with additional inference rules. These inference rules are “axiom” rules with
no premisses, and so may be specified by giving only their conclusion. First
we have rules introducing new types:

• For each A ∈ T(1) we add a judgement ⊢ A type.
• For each A ∈ T(1), B ∈ T(1.A) we add a judgement x : A ⊢ B(x) type.
• And so on.

Then we have rules introducing new terms:

• For each A ∈ T(1), a ∈1 A, we add a judgement ⊢ a : A.
• For each A ∈ T(1), B ∈ T(1.A), b ∈1.A B, we add x : A ⊢ b(x) : B(x).
• And so on.

Here, we use the convention for global sections developed in Notation 3.1.1.
Next we have rules identifying the syntactic notions of substitution, weakening,
contraction and exchange with their semantic counterparts in C. We give the
case of substitution as a representative sample. First we deal with substitution
in types:

• For each A ∈ T(1), B ∈ T(1.A), a ∈1 1.A, we add ⊢ B(a) = a∗B type.
• For each A ∈ T(1), B ∈ T(1.A), C ∈ T(1.A.B), b ∈1.A B, we add

x : A ⊢ C(x, b(x)) = b∗C type.
• For each A ∈ T(1), B ∈ T(1.A), C ∈ T(1.A.B), map a ∈1 A, we add

y : B(a) ⊢ C(a, y) = (a.ι)∗C type.
• And so on.

And now substitution in terms:

• For each A ∈ T(1), B ∈ T(1.A), a ∈1 A, b ∈1.A B, we add a judgement
⊢ b(a) = a∗b : B(a).

• For each A ∈ T(1), B ∈ T(1.A), C ∈ T(1.A.B), b ∈1.A B, c ∈1.A.B C,
we add x : A ⊢ c(x, b(x)) = b∗c : C(x, c(x)).

• For each A ∈ T(1), B ∈ T(1.A), C ∈ T(1.A.B), a ∈1 A, c ∈1.A.B C,

we add y : B(a) ⊢ c(a, y) = (a.ι)∗c : C(a, y).
• And so on.

Finally, we have rules identifying each of the logical rules of ML2 with its
semantic counterpart in C. We give only the case of the identity types; the
remainder follow the same pattern. First we have the formation rules.

• For each A ∈ T(1), we add x, y : A ⊢ IdA(x, y) = IdA(x, y) type.
• For each A ∈ T(1), B ∈ T(1.A), we add

x : A, y, z : B(x) ⊢ IdB(x)(y, z) = IdB(x, y, z) type.

• And so on.
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Next we have the introduction rule. We observe that for A ∈ T(Γ), the
semantic introduction rule rA : Γ → Γ.A.A.IdA over Γ can be viewed as a global
section rA ∈Γ δ∗A(IdA), where δA : Γ.A → Γ.A.A is the diagonal morphism.
Thus we may add the following rules:

• For each A ∈ T(1), we add x : A ⊢ r(x) = rA(x) : IdA(x, x).
• For each A ∈ T(1), B ∈ T(1.A), we add

x : A, y : B(x) ⊢ r(y) = rB(x, y) : IdB(x)(y, y).

• And so on.

Finally we come to the identity computation rule.

• For each A ∈ T(1), C ∈ T(1.A.A.IdA) and d : 1.A → 1.A.A.IdA.C as
in (43) (which is equally well a global section d ∈1.A r∗AC), we add

x, y : A, p : IdA(x, y) ⊢ Jd(x, y, p) = Jd(x, y, p) : C(x, y, p).

• And so on.

Now, in order for the internal language we have set up to be of any use, we
require its types and terms to denote unique elements of the model C. The
next Proposition tells us that this is the case.

5.6.1. Proposition (Soundness). For any B,C ∈ T(1.A1.A2 . . . An), if the
judgement

x : A1.A2 . . . An ⊢ B(x) = C(x) type

is derivable, then B = C. Likewise, for global sections b, c ∈1.A1...An B, if the
judgement

x : A1.A2 . . . An ⊢ b(x) = c(x) : B(x)

is derivable, then b = c.

Proof. By induction on the derivation of the judgement in question, it suffices
to show that the semantic counterpart of each syntactic equality rules is satis-
fied. For the non-logical equality rules, this is standard (though delicate), and
we refer the reader to [14] or [23] for the details (note that we make essential
use of the fact that the underlying 1-fibration of T → C is split). The other
cases we must consider are the computation rules of Tables 1, 2 or 3, and
the rules expressing stability of the logical operations under substitution; and
each of these has been dealt with in the preceding sections. �

5.6.2. Remark. Observe that the internal language S(C) does not give us access
to all of the model C: it only allows us to talk about objects of the base 2-
category C which have the form 1.A0 . . . An (where 1 is the given 2-terminal
object). There are two ways around this. We can modify the syntax of our
type theory so that contexts and context morphisms are primitive, rather than
derived, notions. Then each object or morphism of C corresponds directly to
a context or context morphism of S(C). Alternatively, we can keep our type
theory the same, and instead work with relative internal languages. Given
Γ ∈ C, the relative internal language SΓ(C) is the type theory whose closed
types are objects of T(Γ), with dependent types being objects of T(Γ.A),
T(Γ.A.B) and so on. Moreover, because each morphism Γ → ∆ of C induces
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an interpretation (in the sense of §5.7 below) S∆(C) → SΓ(C), we obtain what
is in an obvious sense a “C-indexed type theory”5.

5.7. Functorial aspects. In Sections 3 and 4, we constructed from each
type theory S incorporating ML2 a two-dimensional model C(S); whilst in the
preceding parts of the present Section, we have constructed from each two-
dimensional model C a type theory S(C) incorporating ML2. It is natural to
ask whether these assignations give rise to a functorial semantics in the spirit
of Lawvere [21]. That is, can we define a syntactic category of type theories
and a semantic category of models for which the above assignations underlie
an equivalence of categories? We finish the paper by sketching an answer to
this question.

We first define a syntactic category Th. Its objects are the generalised
algebraic theories [4] over ML2. These are defined inductively by the following
three clauses. Each object of Th is a sequent calculus; ML2 ∈ Th; and if
S ∈ Th, then so is any extension of S. Here, an extension of S is given
by adjoining a set of inference rules each of which has no premisses and a
conclusion J which obeys the following requirements. If J is of the form
Γ ⊢ A type then A must be fresh for S and Γ must be a well-formed context of
S; if J is of the form Γ ⊢ a : A then a must be fresh for S and Γ ⊢ A type must
be derivable in S; if J is of the form Γ ⊢ A = B type then Γ ⊢ A type and
Γ ⊢ B type must be derivable in S; and finally if J is of the form Γ ⊢ a = b : A
then Γ ⊢ a : A and Γ ⊢ b : A must be derivable in S. Note that the assignation
C 7→ S(C) sends each two-dimensional model to a GAT over ML2.

The morphisms of Th are equivalence classes of interpretations. Given
S,T ∈ Th, an interpretation F : S → T is a function F taking derivable
judgements of S to derivable judgements of T, subject to the following re-
quirements. Each F (A type) should have the form FA type; each F (a : A)
should have the form Fa : FA; each F (A = B type) should have the form
FA = FB type; and each F (a = b : A) should have the form Fa = Fb : FA.
Moreover, if we suppose F (Γ ⊢ A type) has the form FΓ ⊢ FA type, then each
F (Γ, x : A ⊢ B(x) type) should have the form FΓ, x : FA ⊢ FB(x) type; each
F (Γ, x : A ⊢ b(x) : B(x)) should have the form FΓ, x : FA ⊢ Fb(x) : FB(x);
and similarly for the two equality judgement forms. Finally we require that
F should commute with all the inference rules of ML2. We give the case of
the rule of Id-formation for illustration. Suppose given a derivable judgement
Γ ⊢ A type in S. We write its image under F as FΓ ⊢ FA type, and the image
of Γ, x, y : A ⊢ IdA(x, y) type as FΓ, x, y : FA ⊢ F IdA(x, y) type. Now the
following judgement should be derivable in T:

FΓ, x, y : FA ⊢ IdFA(x, y) = F IdA(x, y) type.

The equivalence relation we impose on interpretations identifies F,G : S → T
if they differ only up to definitional equality in the obvious sense. It is now

5A finer analysis shows that this is really a two-dimensional indexing. That is, we have
a trihomomorphism C

coop
→ Th, where Th is a suitably-defined Gray-category of two-

dimensional theories.
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straightforward to show that GATs and equivalence classes of interpretations
form a category Th.

5.7.1. Remark. Using the above notion of interpretation, we can now say what
it means to give an interpretation of a GAT T in a two-dimensional model C:
namely, to give an interpretation (in the above sense) T → S(C). It is easy to
check that this accords with the intuitive syntactic notion we would give.

We now define a semantic category Mod. Its objects are models of two-
dimensional type theory as in Definition 4.6.1. A morphism F : C → C′ is
given by a pair of 2-functors F1 : C → C′ and F2 : T → T′ rendering commut-
ative the following squares:

T
F2

p

T′

p′

C
F1

C′

and

T
F2

E

T′

E′

C2

F1
2

(C′)2

and preserving all the additional structure on the nose. It is now straightfor-
ward to show that:

5.7.2. Proposition. The assignations S 7→ C(S) and C 7→ S(C) underlie
functors C(–) : Th → Mod and S(–) : Mod → Th.

However, these functors do not give rise to an equivalence of categories.
There are two reasons for this. The first is straightforward. Observe that
any two-dimensional model in the image of C(–) has the property that each
object Γ ∈ C is of the form 1.A1 . . . An for a unique (possibly empty) sequence
of objects A1 ∈ T(1), . . . , An ∈ T(1.A1 . . . An−1). This is the “tree condition”
of [4]. Clearly not every two-dimensional model has this property, so that if we
are to obtain an equivalence, we must first cut down to the full sub-2-category
Modtr ⊂ Mod on those which do. The second reason we do not obtain
an equivalence is more subtle. In order for Th ≃ Modtr to hold, we must
certainly have for each S ∈ Th that S(C(S)) ∼= S. However, this turns out not
to be the case: we run into problems with the terms witnessing the elimination
rules. As an illustration, we will show that ML2 ≇ S(C(ML2)). Because the
object ML2 is initial in Th, there is a unique morphism F : ML2 → S(C(ML2)):
and so it suffices to show that F is not surjective. First observe that by
1-elimination we can derive a judgement

(45) z : 1 ⊢ U⋆(z) : 1

in ML2. Next note that the judgements of S(C(ML2)) are simply equivalence
classes of judgements of ML2 with respect to definitional equality; and so by
passing to the quotient, we obtain from (45) a judgement

(46) z : [1] ⊢ [U⋆](z) : [1]

of S(C(ML2)). The crucial point is that (46) does not coincide with the value
of F at the judgement (45). This latter can be described as follows. First
we derive a term z : 1 ⊢ φ(z) : Id1(z, ⋆) in ML2 by 1-elimination, taking
φ(z) := Ur(⋆)(z). Now by the description of the semantic unit types given
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in §5.3, we see that applying F to (45) yields (up to definitional equality) the
following judgement in S(C(ML2)):

(47) z : [1] ⊢ [φ(z)∗(⋆)] : [1].

Now, if (47) were definitionally equal to (46), then we would also have that
z : 1 ⊢ U⋆(z) = φ(z)∗(⋆) : 1 in ML2, and this is not the case. Hence F applied
to (45) does not yield (46), from which it follows by induction over derivable
judgements of ML2 that (46) cannot lie in the image of F : ML2 → S(C(ML2)).

There are several ways in which we can resolve this issue. The first is for
us to change our notion of model so that it accords more closely with the
type theory. This is unsatisfactory, as we have then reverted to a categorical
paraphrasing of type theoretic syntax. A second alternative is to change our
notion of type theory so that it accords more closely with the categorical
model. This involves removing the elimination rules altogether, and instead
taking the Leibnitz rule, together with the injective equivalence structures on
the introduction terms, as primitives. This is unsatisfactory for a more subtle
reason. Whilst it may be reasonably straightforward to give this alternative
presentation for two-dimensional type theory, we would find as we moved
towards full intensional type theory that it would require a more and more
intricate set of rules expressing appropriate coherence properties of our new
primitives. The elegant simplicity of intensional type theory would be lost
completely.

A third solution, and our preferred one, is to equip our categories of the-
ories and of models with more generous notions of morphism. On the syn-
tactic side, we define a category Thψ with as objects GATs over ML2 and
as maps F : S → T pseudo-interpretations, whose definition generalises that
of an interpretation by dropping the requirement that F should preserve each
of the following rules up to definitional equality: 1-elim, Id-elim, Σ-elim,
and Π-abs.6 This is by no means the most general definition of pseudo-
interpretation we could give, but it will suffice for our purposes. On the
semantic side we define a category Modψ whose objects are two-dimensional
models, and whose maps F : C → C′ are pseudo-morphisms. These are ob-
tained by relaxing in the definition of morphism of models the requirement
that the following structure should be preserved: the normal isofibration struc-
tures on dependent projections πA; the injective equivalence structures on the
maps i : Γ.A.B → Γ.ΣA(B) associated to dependent sums; and the assigna-
tions f 7→ f on 1-cells associated to the unit types, dependent sums, and
dependent products. As before, we write (Modψ)tr for the full subcategory
of Modψ on those models satisfying the tree condition. It is easy to see that
C(–) and S(–) extend to functors Thψ → (Modψ)tr and (Modψ)tr → Thψ
respectively, but now we have that:

5.7.3. Proposition. The functors C(–) and S(–) induce an equivalence of
categories (Modψ)tr ≃ Thψ.

6One may think that we need to add conditions requiring these rules to be preserved up
to propositional equality. However, such conditions are already derivable, so this would be
superfluous.
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Proof. It is quite straightforward to show that S(–) is fully faithful, and so it
remains to show that for each S ∈ Thψ we have an isomorphism S ∼= S(C(S))
in Thψ, and that these are natural in S. But the judgements of S(C(S)) are
precisely equivalence classes of judgments of S modulo definitional equality;
and so we obtain mutually inverse assignations between the judgements of the
former and those of the latter, and it is easy to see that these mutually inverse
assignations are in fact pseudo-interpretations, yielding a natural isomorphism
S ∼= S(C(S)) in Thψ as required. �
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8. Nicola Gambino, Homotopy limits for 2-categories, Mathematical Proceedings of the

Cambridge Philosophical Society (2008), To appear.
9. Nicola Gambino and Richard Garner, The identity type weak factorisation system, The-

oretical Computer Science (2008), To appear.
10. Richard Garner, On the strength of dependent products in the type theory of Martin-Löf,
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