
Joachim Kock

Notes on Polynomial Functors

Very preliminary version: 2009-08-05 23:56

PLEASE CHECK IF A NEWER VERSION IS AVAILABLE!
http://mat.uab.cat/~kock/cat/polynomial.html

PLEASE DO NOT WASTE PAPER WITH PRINTING!

http://mat.uab.cat/~kock/cat/polynomial.html

Joachim Kock
Departament de Matemàtiques
Universitat Autònoma de Barcelona
08193 Bellaterra (Barcelona)
SPAIN

e-mail: kock@mat.uab.cat

VERSION 2009-08-05 23:56
Available from http://mat.uab.cat/~kock

This text was written in alpha. It was typeset in LATEX in standard book style, with
mathpazo and fancyheadings. The figures were coded with the texdraw package,
written by Peter Kabal. The diagrams were set using the diagrams package of Paul
Taylor, and with XY-pic (Kristoffer Rose and Ross Moore).

mailto:kock@mat.uab.cat
http://mat.uab.cat/~kock

Preface

Warning. Despite the fancy book layout, these notes are in

V E R Y P R E L I M I N A R Y F O R M

In fact it is just a big heap of annotations.
Many sections are very sketchy, and on the other hand many proofs

and explanations are full of trivial and irrelevant details. There is a lot
of redundancy and bad organisation. There are whole sections that have
not been written yet, and things I want to explain that I don’t understand
yet. . . There may also be ERRORS here and there!

Feedback is most welcome.

There will be a real preface one day

I am especially indebted to André Joyal.
These notes started life as a transcript of long discussions between An-

dré Joyal and myself over the summer of 2004 in connection with [64].
With his usual generosity he guided me through the basic theory of poly-
nomial functors in a way that made me feel I was discovering it all by
myself. I was fascinated by the theory, and I felt very privileged for this
opportunity, and by writing down everything I learned (including many
details I filled in myself), I hoped to benefit others as well. Soon the subject
became one of my main research lines and these notes began to grow out
of proportions. The next phase of the manuscript was as a place to dump
basic stuff I needed to work out in relation to my research. At present it is
just a heap of annotations, and the reader is recommended to read rather
the three research papers that have seen the light in the interim: Polynomial
functors and opetopes [64] with Joyal, Batanin, and Mascari, Polynomial func-
tors and trees [63] (single-authored), and Polynomial functors and polynomial

[Rough draft, version 2009-08-05 23:56.] [Input file: polynomial.tex, 2009-08-05 23:56]

iv

monads [39] with Gambino. (I will gradually incorporate the material from
these papers into the notes in some form.)

Finally, a third aspect, which has been present all along, is the ambi-
tion that these notes can grow into something more unified — a book! I
would like to survey connections with and applications to combinatorics,
computer science, topology, and whatever else turns up. This will require
of course that I learn more about these connections and applications, and
I am

I have benefited from conversations and email correspondence with
Anders Kock, Clemens Berger, Ieke Moerdijk, Juan Climent Vidal, Mark
Weber, Martin Hyland, Michael Batanin, Nicola Gambino, Tom Fiore, Krzysztof
Kapulkin. . .

I am very thankful to Jesús Hernando Pérez Alcázar for organising my
mini-course on polynomial functors in Santa Marta, Colombia, in August
2009 — a perfect opportunity for me to synthesise some of this material.

Barcelona, August 2009 JOACHIM KOCK
kock@mat.uab.cat

[Rough draft, version 2009-08-05 23:56.] [Input file: polynomial.tex, 2009-08-05 23:56]

mailto:kock@mat.uab.cat

Contents

Preface iii

Introduction 1
Historical remarks . 4

I Polynomial functors in one variable 9
0.0 Prologue: natural numbers and finite sets 11

1 Basic theory of polynomials in one variable 17
1.1 Definition . 19
1.2 Examples . 24
1.3 Other viewpoints . 28
1.4 Basic operations on polynomials 30
1.5 Composition of polynomials (substitution) 34
1.6 Differential calculus . 40
1.7 Properties of polynomial functors 43

2 Categories of polynomial functors in one variable 45
2.1 The category Set [X] of polynomial functors 46

Cartesian morphisms . 48
2.2 Sums, products . 54
2.3 Algebra of polynomial functors: categorification and Burnside semirings 56
2.4 Composition . 60
2.5 The subcategory Poly : only cartesian natural transformations 60

Products in Poly . 63
Differentiation in Poly . 65

[Rough draft, version 2009-08-05 23:56.] [Input file: polynomial.tex, 2009-08-05 23:56]

vi CONTENTS

3 Aside: Polynomial functors and negative sets 67

3.1 Negative sets . 67
3.2 The geometric series revisited 74
3.3 Moduli of punctured Riemann spheres 77

4 Algebras 81

4.1 Initial algebras, least fixpoints 81
Functoriality of least fixpoints 84

4.2 Natural numbers, free monoids 84
4.3 Tree structures as least fixpoints 89
4.4 Induction, well-founded trees 93
4.5 Transfinite induction . 95
4.6 Free-forgetful . 99

5 Polynomial monads and operads 105

5.1 Polynomial monads . 105
Cartesian monads . 105
The free monad on a polynomial endofunctor (one variable) 110
Examples . 112

5.2 Classical definition of operads 114
5.3 The monoidal category of collections 115
5.4 Finitary polynomial functors and collections 118

Equivalence of monoidal categories 120
5.5 The free operad on a collection 121
5.6 P-operads . 122

6 [Polynomial functors in computer science] 125

6.1 Data types . 125
Shapely types . 133

6.2 Program semantics . 135

7 [Species. . .] 139

7.1 Introduction to species and analytical functors 139
7.2 Polynomial functors and species 140

[Rough draft, version 2009-08-05 23:56.] [Input file: polynomial.tex, 2009-08-05 23:56]

CONTENTS vii

II Polynomial functors in many variables 141

8 Polynomials in many variables 143
8.1 Introductory discussion . 143
8.2 The pullback functor and its adjoints 146

Coherence . 155
8.3 Beck-Chevalley and distributivity 156
8.4 Further Beck-Chevalley gymnastics 165

The twelve ways of a square 165
The six ways of a pair of squares 167
One more lemma . 168

8.5 Composition . 170
Rewrite systems and coherence 175

8.6 Basic properties . 178
8.7 Examples . 180

The free-category functor on graphs with fixed object set . . 182

9 Examples 185
9.1 Linear functors (matrices) . 185
9.2 Finite polynomials: the Lawvere theory of comm. semirings 191

Lawvere theories . 192
Proof of Tambara’s theorem 197

9.3 Differential calculus of polynomial functors 200
Introduction . 200
Partial derivatives . 200
Homogeneous functors and Euler’s Lemma 201

9.4 Classical combinatorics . 206
9.5 Polynomial functors on collections and operads 209

The free-operad functor . 209
Linear differential operators are linear 210

9.6 Bell polynomials . 214

10 Categories and bicategories of polynomial functors 219
10.1 Natural transformations between polynomial functors . . . 219

Basic properties of PolyFun(I, J): sums and products 228
Misc . 228
Polyc(I, J): the cartesian fragment 229
Sums and products in Polyc(I, J) 229

[Rough draft, version 2009-08-05 23:56.] [Input file: polynomial.tex, 2009-08-05 23:56]

viii CONTENTS

10.2 Horizontal composition and the bicategory of polynomial functors230
Some preliminary exercises in the cartesian fragment 231
Horizontal composition of 2-cells 234

11 Double categories of polynomial functors 241
11.1 Summary . 241

Reminder on double categories 243
The double category of polynomial functors 244
Lifts . 250
old calculations . 251

11.2 Horizontal composition . 257
11.3 Cartesian . 260

Horizontal composition of cartesian 2-cells 261
Misc issues in the cartesian fragment 263
Surjection-injection factorisation in Poly 263
Sums and products in the variable-type categories 264
Coherence problems . 265

12 Trees (1) 267
12.1 Trees . 270
12.2 From trees to polynomial endofunctors 271

Examples of trees . 275
12.3 The category TEmb . 278
12.4 P-trees . 286

13 Polynomial monads 291
13.1 The free polynomial monad on a polynomial endofunctor . 291
13.2 Monads in the double category setting 295

relative . 299
13.3 Coloured operads and generalised operads 299
13.4 P-spans, P-multicategories, and P-operads 299

Coloured operads . 313
Polynomial monads and coloured operads 314

14 Trees (2) 317
14.1 P-trees and free monads . 319

Examples of polynomial monads from trees 321
14.2 The category Tree . 323

[Rough draft, version 2009-08-05 23:56.] [Input file: polynomial.tex, 2009-08-05 23:56]

ix

14.3 Trees of trees, constellations, and the Baez-Dolan construction331

III Categorical polynomial functors 337
14.4 Introduction . 339

15 [Polynomial functors for slices of Cat] 341
Cat is not locally cartesian closed 341

15.1 Conduché fibrations . 343
15.2 Polynomial functors in Cat 351
15.3 The family functor . 353
15.4 Final functors and discrete fibrations 356

16 [Polynomial functors for presheaf categories] 357
16.1 Some prelims . 357

Kan extensions . 357
Categories of elements . 358
Nerves . 363
Generic morphisms . 365
Monads with arities . 369

16.2 Distributors and mixed fibrations 375
16.3 The free-category monad . 380

The free-multicategory monad 387
The free-coloured-operad monad 388

16.4 Local right adjoints . 389

17 [Generalised species and polynomial functors] 393

18 Appendices 395
A Pullbacks . 395

Index 409

[Rough draft, version 2009-08-05 23:56.] [Input file: polynomial.tex, 2009-08-05 23:56]

Introduction

0.0.1 Polynomial functors. A polynomial with natural-number coefficients
is a formal expression of the form

∑
n∈N

anXn an ∈ N,

like for example 4 + X3 + 7 X8. The notions involved—sums, products,
and exponentiation—make sense also in the category of sets. We write
A + B for the disjoint union of two sets A and B, and we write A × B for
their cartesian product. Finally we use the exponential notation XE for the
hom set Hom(E, X).1

Hence we can define a polynomial functor to be something like

Set −→ Set

X %−→ A + B×XN + C×XR

for some fixed sets A, B, C, N, R and a variable set X. A first idea would be
to look at sums ∑n∈N An × Xn, but it turns out to be very fruitful to forget
about finiteness and look more generally at expressions like

Set −→ Set

X %−→ ∑
b∈B

XEb , (1)

where (Eb | b ∈ B) is a family of sets, indexed by a set B.

1Since this notation is not very common outside category theory, let us explain why
this is in fact a accurate picture of what is going on: if X is a set with 5 elements and
E has 3 elements, then Hom(E, X) has 53 elements, as suggested by the notation XE.
Furthermore, if E = E1 + E1 (the disjoint union of sets E1 and E2), then Hom(E, X) is
naturally isomorphic to Hom(E1, X)×Hom(E2, X). In other words, XE1+E2 = XE1 ×XE2 .
(We will consistently use the equality sign for natural isomorphisms.)

[Rough draft, version 2009-08-05 23:56.] [Input file: intro.tex, 2009-08-04 13:20]

2 Contents

Now it turns out that many of the things you can do with good old
polynomials make sense also for polynomial functors: of course you can
add them and multiply them, but you can also substitute them into each
other or take derivative, and all these notions behave as expected. For
example there is a Leibniz rule and a chain rule.

0.0.2 Some expected new features. Compared to polynomials of num-
bers, polynomials of sets have many new features. Many of them were
to be expected just from the fact that sets are much righer than numbers:
between sets there are maps, which allows for a much richer algebra than
can exist for numbers. In particular, between two polynomial functors
there are natural transformations, an in particular a polynomial functor
can have the structure of a monad, which will be a major theme. An im-
portant special case of a map between sets is the notion of symmetry: this
leads to group theory, admittedly much richer than the theory of factorials!

0.0.3 Some unexpected new features. Next, it turns out that the categori-
cal level also has a lot of features that one might perhaps not have guessed
from the algebra of polynomial functions. One is the relationship with
recursively defined sets and data structures. For example, the set of nat-
ural numbers can be characterised as the least solution to the polynomial
equation of sets

X ∼= 1 + X ,

while the set of finite planar trees appears as least solution to the equation

X ∼= 1 + ∑
n∈N

Xn.

This is about fixpoints for polynomial functors. This will be a major theme.
Also applications to theoretical computer science.

Second, throughout we use a graphical language, which in fact is the
crucial point in the close relationship with operads. That’s another major
theme, of course closely related.

Both these themes can be treated satisfactorily without too much cate-
gorical machinery, and we do so for pedagogical reasons.

0.0.4 Many-variables polynomials. However, to really get into these mat-
ters, it is necessary to study polynomial functors in many variable. We

[Rough draft, version 2009-08-05 23:56.] [Input file: intro.tex, 2009-08-04 13:20]

3

start that in Part II. At the same time we take the opportunity to upgrade
to a more categorical setting.

Here is what polynomial functors in many variables are: given for ex-
ample three variable sets X, Y, Z (i.e., a variable object in Set3), then a
polynomial functor could be something like

Set3 −→ Set2

(X, Y, Z) %−→ (A×XM×YN , X + B).

That is, in analogy with polynomial maps Nn → Nm there are functors
Set I → Set J , for some fixed set of variables I and J. But here is what we
will actually do:

A J-indexed family of polynomial functors in I-many variables has the
form

(Xi | i ∈ I) %→
(

∑
b∈Bj

∏
e∈Eb

Xs(e) | j ∈ J
)

, (2) equ:basicpol

where the indexing refers to the diagram of sets

I Es!!
f

"" B t "" J . (3) equ:basicconf

This expression reduces to (1) when I and J are singleton sets. The functor
specified in (2) is the composite of three functors: pullback along s, the
right adjoint to pullback along f , and the left adjoint to pullback along
t. The categorical properties of these basic types of functors allow us to
manipulate polynomial functors like (2) in terms of their representing di-
agrams (3); this is a key feature of the present approach to polynomial
functors.

(At this point we may as well take the step of abstraction of working in
an arbitrary locally cartesian closed category E . Even if the category E is
not the category of sets (and in applications to logic and computer science
Set is not typically a convenient model), the above formulae make sense
if interpreted in the internal language of the locally cartesian closed cate-
gory E , which takes the form of a dependent type theory. (For this, one
will perhaps need to assume that E is furthermore extensive — any topos
will be all right.) This interplay, which goes back to the seminal paper of
Seely [96], is an important aspect of the theory. A key feature of Martin-
Löf type theory are the wellfounded trees (or W-types) which allow for re-
cursive definitions and proofs by induction. Moerdijk and Palmgren [81]

[Rough draft, version 2009-08-05 23:56.] [Input file: intro.tex, 2009-08-04 13:20]

4 Contents

showed that the categorical counterpart of W-types are the initial algebras
for polynomial functors in one variable, and Gambino and Hyland [38]
extended this result to a correspondence between W-types in dependent
type theory and initial algebras for polynomial functors in many variables;
the passage to many variables also gives better closure properties. This in-
terplay allows on one hand the formalism of polynomial functors to pro-
vide a clean semantics to fundamental constructions in type theory, and
on the other hand, the internal language allows us to reason about ab-
stract polynomial functors as if we were in the category of sets, and often
the formulae look just like those for good-old polynomials of numbers.)

0.0.5 Trees. With the many-variable set-up we can define trees, and get
a better hold on recursive data types and relations with operads. Base
change is a key ingredient in the theory, and to handle it efficiently we as-
semble polynoial functors into a double category: the 2-cells in this double
category are simple diagrams connecting diagrams like (??). In this setting
we introduce a new formalism for trees: they are defined as polynomial
functors satisfying a few axioms. It may seem a bit out of proportions that
something relatively complicated as polynomial functors should serve to
define something as fundamental as trees. It is better to view it like this:
both trees and polynomial functors are defined in terms of diagrams of
shape (3), and the fact that they are defined by this same shape explains
why the relationship between them is so tight.

0.0.6 Categorical polynomial functors — incorporation of symmetries.
In Part III, we start introducing symmetries into the polynomial functors.
This could be done just by looking at discrete fibrations over groupoids,
but we may as well develop the theory for general categories. The most
useful form of this theory is that of presheaf categories. Now the left and
right adjoints to the pullback functor are left and right Kan extension. This
leads to a very useful notion of analytical functor (but we still prefer to call
them polynomial, since they are still represented by diagrams like (3)).
Many monads whose algebras are various types of operads are analytical.

Historical remarks

‘Polynomial functor’ should mean categorification of the notion of ‘poly-
nomial function’. Depending on which properties of polynomial func-

[Rough draft, version 2009-08-05 23:56.] [Input file: intro.tex, 2009-08-04 13:20]

5

tions one takes as guideline for the categorification, different notions re-
sult which might deserve to be called polynomial functors, and in the lit-
erature the name is in use for many different notions. On the other hand,
since ‘polynomial’ is such a fundamental concept in mathematics, not sur-
prisingly also categorified versions of it have been discovered and found
use in many different contexts, and under different names.

The formalism of polynomial functors has proved useful in many areas
of mathematics, ranging from algebra [77], [65] and topology [20], [90]
to mathematical logic [43], [81] and theoretical computer science [52], [2],
[47].

The theory of polynomial functors developed in these notes does not
cover everything that has been called polynomial functor in the literature
— notably our viewpoint does not immediately apply to linear contexts —
but it is expressive enough to capture a wide range of situations in math-
ematics and computer science, and it provides a very convenient formal-
ism. The natural scope of this formalism is that of locally cartesian closed
categories, and in Part II we work in that settings. However, in Part I,
for pedagogical reasons we stick to the category of sets. Overall, we do
not include any finiteness condition in our definition of polynomial func-
tor, but of course there are features specific to finitary or finite polynomial
functors, and these will receive a special treatment.

Since the rough idea of ‘polynomial functor’ is so natural, it is not sur-
prising that it has been discovered many times independently, and used
to designate different notions. The first notions concerned the category
of vector spaces or abelian groups. The earliest is perhaps Eilenberg–Mac
Lane [33] back in the ‘50s. Their motivation is to calculate group homol-
ogy. They studied Ab -valued functors out of abelian categories preserving
the zero object. They introduce the ‘deviation’ of such a functor, which is
a sort of differential quotient, formally it is defined as a kernel of some
sort. A functor is additive (also called linear) precisely when the devia-
tion is zero. Otherwise, one can consider the deviation of the deviation,
obtaining what are known as cross effects. A functor is called polynomial
of degree n if the (n + 1) deviation is zero and the n deviation is non-zero.

Mention also Grothendieck (according to Joyal), Epstein–Dold. . .
Perhaps one can say polynomial functors were invented by Schur (with-

out the name). Polynomial functors play an important role also in the

[Rough draft, version 2009-08-05 23:56.] [Input file: intro.tex, 2009-08-04 13:20]

6 Contents

representation theory of symmetric groups [77, Ch.1, Appendix]. Within
that context, an endofunctor F of the category of finite dimensional vector
spaces is said to be polynomial if for any V, W, the map Hom(V, W) →
Hom(FV, FW) is a polynomial mapping (with respect to some and hence
any basis). The usage of polynomial functors on vector spaces usually in-
volve the actions of the symmetric groups and coincides with the linear
species of Joyal [55]. However, there is also an important development
of such symmetric polynomial functors on vector spaces over finite fields,
in which case there are many new subtleties, due to the fact that different
polynomials can define the same mappings in finite characteristics. There
is a more general notion of polynomial functor (the previous ones are then
called strict) which is related to the Steenrod algebra rather than with rep-
resentations of the symmetric groups. We refer to [90] for an overview of
the work in the area.

All these developments concern polynomial functors on vector spaces,
and their motivation is representation theory and homological algebra.

Notions closer to the viewpoint of these notes surfaces gradually in the
1970s in the circle of ideas around algebraic theories, automata, and data
types. The observation that signatures for algebraic structure (or for data
types) define endofunctors and that the functorial properties of the latter
contain important information about the structures was explored by the
Prague school in the 1970s (see also Manes [78]), which is synthesised in
Adámek and Trnkova’s 1990 book Automata and algebras in categories [7].
Their works include conditions for existence of free algebras, existence of
minimal realisation of machines, characterisation of languages recognis-
able by finite automata, and stressed fixpoint theory throughout. Poly-
nomial functors form an important class of examples for these theories.
Meanwhile the 1986 book of Manes and Arbib [79], Algebraic approaches to
program semantics had become quite influential, and theoretical computer
scientists began to explore categorical approaches to data types. Input
came also from logic: Girard [43] studied polynomial functors under the
name normal functors from the point of view of lambda calculus, and a cate-
gorical account of his theory, including simplifications and generalisations
followed.

The objects in Set/N are also called signatures. (This terminology comes from logic:
each object is thought of as an abstract operation, and its image in N is its arity. The
language is the set of all formulae that can be written with these operations.) Possibly
this goes back to Philip Hall in the 1940s.

[Rough draft, version 2009-08-05 23:56.] [Input file: intro.tex, 2009-08-04 13:20]

7

There is also the notion of compositeur of Lazard [73]. A compositeur is something very
similar to an operad, and an analyseur is a compositeur with some sort of filtration. . .

Then there is the notion of clone (P. Hall), cf. Cohn’s book Universal Algebra [28] (p.126
and 132). This is a little bit different than an operad: the list of operations to graft on
top of the bottom operations are all required to be of the same arity n, and the resulting
operation will be of this arity again: it is namely required to take n inputs, duplicating
them and sticking them into the top operations in the appropriate slots(?).

The viewpoint central to these notes, that polynomial functors are rep-
resented by set maps, was discovered by Joyal in the 1980s, at the same
time he discovered analytical functors. Joyal informs that he was unaware
of Macdonald’s book [77] when he wrote Une théorie combinatoire des séries
formelles [54] in 1981, and became aware of it before Foncteurs analytiques et
espèces de structures [55] (1985) (which cites [77]).

Analytical functors can be seen as polynomial functors with symme-
tries. The theory of species and analytical functors became a foundation
for power series theory in combinatorics, see [54], [19]. Possibly, because of
the success of analytic functors and species, the simpler theory of polyno-
mial functors was never written down, and did not become mainstream.

Many results about polynomial functors are well known in other for-
mulations. Quote Diers [32], Lamarche [67], Carboni–Johnstone [25]. That’s
the notion of familial representability. Large parts of Leinster’s book [75]
are in fact concerned with polynomial functors and notably polynomial
monads, and implicitly establishes the relation with operad theory (of
which Joyal was aware).

The importance in type theory was discovered by Moerdijk and Palm-
gren [81].

Also in operad theory and higher category theory [64], [63] (and im-
plicitly in [11]).

Often the word ‘polynomial’ is also meant to imply finite degree, so as to ensure that
it restricts to a functor with finite sets as inputs and values. A natural generalisation is to
power series. The viewpoint taken here, which has been advogated by Joyal, is not to put
any finiteness condition at all, acknowledging the category of abstract sets as the basic
setting and allowing easy transfer to any topos, or indeed any locally cartesian closed
category. The finiteness that some people may associate with the word ‘polynomial’ is
just an artefact coming from the fact that only finite quantities can be expressed by num-
bers. The category of abstract sets was introduced by Cantor precisely as a framework
for infinite quantities, and on the ‘categorified’ level the category of abstract sets is the
natural basic setting for the polynomial idea.

So we take a rather liberal interpretation of what it means to be polynomial: for sums
and products we do not limit ourselves to binary or finite operations, but rather let them

[Rough draft, version 2009-08-05 23:56.] [Input file: intro.tex, 2009-08-04 13:20]

8 Contents

be defined, respectively, in terms of left and right adjoints of the basic pullback functor.
Hence we place ourselves in a locally cartesian closed category E : this means that for
every arrow f : E → B we dispose of three functors, the pullback functor f∗ : Set/B →
Set/E, a left adjoint f! , and a right adjoint f∗. By definition, a polynomial functor is one
isomorphic to any composite of these three kinds of functors between slices of E . By the
Beck-Chevalley conditions for these adjoint pairs and by the fact that the right adjoint
distributes over the left adjoint, every polynomial functor can then be brought on normal
form, which means that it is represented by a diagram of form

I ← E → B → J

The functor is then the composite

Set/I s∗
→ Set/E

p∗→ Set/B
s!→ Set/J

and polynomial functors can be characterised as those isomorphic to one of this form.
The theory of polynomial functors, as presented here, is about manipulating polynomial
functors in terms of their representing diagrams, in analogy to the characteristic feature
of polynomial functions, that they can be manipulated in terms of their exponents and
coefficients. At the risk of being presumptuous we like to compare this with the use of
coordinates in linear algebra or in geometry. Since we are at one higher categorical level,
it is not a question of reducing computations to manipulations with numbers, but rather
about reduction to combinatorics. The importance of polynomial functors as a means
to bring out the combinatorics was perhaps first noticed in [64], which used polyno-
mial functors to establish the first purely combinatorial characterisation of the opetopes,
the shapes underlying several approaches to higher category theory [75], starting with
Baez-Dolan [11]. Throughout we shall use a graphical language of trees to reason with
polynomial functors. This is not a whim: it will be justified in Chapter ??, where we’ll see
that there is a deep relationship between polynomial functors and trees.

[Rough draft, version 2009-08-05 23:56.] [Input file: intro.tex, 2009-08-04 13:20]

Part I

Polynomial functors in one
variable

[Rough draft, version 2009-08-05 23:56.] [Input file: intro.tex, 2009-08-04 13:20]

0.0 Prologue: natural numbers and finite sets 11

0.0 Prologue: natural numbers and finite sets

THIS SEEMS TO BE AN INTRODUCTION TO SOMETHING ELSE.
Large parts of mathematics are concerned with reduction of geometry

and topology to algebra, associating to geometrical objects various invari-
ants that can be used to distinguish and compare the objects, up to some
notion of equivalence depending on the context. However, to the man on
the street, often only the reduced layer is visible, and math is conceived
to be about algebraic manipulations with numbers (and occasionally an
unknown X, a variable representing a number) — the conceptual back-
ground for the numbers is often lost.

It is instructive to revert this reduction process and try to look behind
the numbers. Such an investigation can lead to conceptual explanations of
‘facts of life’, and reveal what is natural and what is not. This insight can
guide our treatment of other mathematical problems.

0.0.1 Counting. The simplest invariant is the cardinality of a finite set:N

: FinSet −→ N

X %−→ #X

Theorem. Two finite sets are isomorphic if and only if they have the same cardi-
nality.

Really, this theorem is not much more than a tautology, because you
could rightfully say that it contains only the defining property of the nat-
ural numbers. Baez and Dolan [12] tells the wonderful story about how
shepherds invented the natural numbers as a device for comparing the
size of two herds without having to line up the sheep in an explicit bijec-
tion (especially hard if the two herds you are comparing are the one of
today with the one of yesterday, to see if everybody’s there).

As algebraic geometers we may want to state the result in a slightly
different manner, which is very useful:

Theorem-Definition. The moduli problem of classifying finite sets up to iso-
morphism admits a fine moduli space, which we denote by N.

A family of finite sets is just a set map p : E → B with finite fibres (then
the fibres Eb : = p−1(b) are the members of the family). The base set B is
not required to be finite.

[Rough draft, version 2009-08-05 23:56.] [Input file: intro.tex, 2009-08-04 13:20]

12

To say N is a fine moduli space means that it carries a universal family
u : N′ → N: for any family of finite sets p : E → B, there is a unique map
κ : B → N (called the classifying map), such that the family p is a pullback
along κ of the universal family:

E
κ′ ! N′

B

p
"

κ
! N

u
"

(Note that κ′ is not unique, cf. 2.1.9!) Now the invariant # is described like
this: to a finite set S associate the image under the classifying map of the
trivial family S → 1.

Let us exhibit a universal family:2 it is just a map of sets u : N′ → N
whose fibre over n is a finite set with n elements. We set n := {0, 1, . . . , n−
1}. One concrete description of the universal family is this:

N′ = ∑
n∈N

n = {(n, i) ∈ N×N | i < n}.

Then N′ → N is simply the projection (n, i) %→ n:

N′

↓

N 0 1 2 3 4

0.0.2 Commutative semirings and distributive categories. In N we have
the arithmetic operations of addition and multiplication, and these satisfy
a list of familiar rules, which amount to saying that (N, +, 0,×, 1) is a com-
mutative semiring — that’s like a commutative ring, but without requiring
the existence of additive inverses.

Looking back, these operations are in fact defined in terms of operations
existing on the level of finite sets: for example, the natural number a + b
is defined as the cardinality of the disjoint union of A and B, where A is a

2Perhaps this should not be called a universal family, in view of the non-uniqueness
of κ′. It is a universal family in the sense that it represents the functor which to a given
set B associates the set of isomorphism classes of families of finite sets of B.

[Rough draft, version 2009-08-05 23:56.] [Input file: intro.tex, 2009-08-04 13:20]

0.0 Prologue: natural numbers and finite sets 13

set of cardinality a and B is a set of cardinality b. Similarly, multiplication
is defined in terms of the cartesian product of finite sets. This makes sense
because disjoint union and cartesian product are functorial constructions,
so if you replace A or B by isomorphic sets you get an isomorphic result.
Furthermore, disjoint union and cartesian product of sets are characterised
by universal properties (see for example [12]), which in turn imply that as-
sociativity as well as commutativity hold (up to canonical isomorphism),
and hence explain these laws for the natural numbers. Note also that (up
to canonical isomorphism) the empty set 0 (the initial set) is neutral for
disjoint union, and the singleton set 1 (the terminal set) is neutral for the
cartesian product.

The main theme of this exposition is to lift arithmetics from natural
numbers to finite sets, and in fact we will use arbitrary sets. To make
this lifted arithmetics look as familiar as possible, we write A + B for the
disjoint union of sets A and B, and ∑b∈B Eb for the disjoint union of a
family of sets (Eb | b ∈ B) indexed by a (possibly infinite) set B. (And as
usual we write × for the binary cartesian product and ∏ for an arbitrary,
possibly infinite, product.)

0.0.3 Distributive category and Burnside semiring. The construction of
the semiring N from FinSet has a natural generalisation which is useful:
by definition, a distributive category is a category D where finite sums and
finite products exist (in particular there is an initial object and a terminal
object) and the distributive law holds, i.e. the natural morphism

A × X + A × Y −→ A × (X + Y) (4) distr

is an isomorphism.3 The set of isomorphism classes of D inherits from D

the structure of a commutative semiring, called the Burnside semiring of D .
So we can summarise our findings so far by saying that

N is the Burnside semiring of FinSet.

In 2.3.4 we shall see that the polynomial semiring N[X] is the Burnside
semiring of the category FinSet [X] of finite polynomial functors, and in
Section 3 we shall have a short look at the mythical negative sets whose
Burnside semiring would be Z.

3We ought to require also that A × ∅ + ∅, but I seem to recall that Cocket has shown
that this condition is automatic from the first one! – perhaps in [26].

[Rough draft, version 2009-08-05 23:56.] [Input file: intro.tex, 2009-08-04 13:20]

14

0.0.4 Exponentiation and distributivity. The categories FinSet and Set
sport an extra operation which is crucial: exponentiation. Given two sets
X and E, we set

XE := HomSet(E, X).

Note that if #X = x and #E = e, then #(XE) = xe, which justifies the
notation. (In fact, it would be more precise to say that exponentiation in N
is defined by this equation.) Note also the natural isomorphisms

XE1+E2 = XE1 × XE2 , (X1 × X2)
E = XE

1 × XE
2 ,

which are immediate consequences of the universal properties of disjoint
union and cartesian product, respectively. Here and throughout we use
the equality sign for natural isomorphisms. This effectively explain these
laws for exponentiation in N.

Exponentiation is right adjoint to multiplication:

A × E −→ X
A −→ XE

This fact implies distributivity: the inverse to (4) comes about like this:

A × (X + Y) −→ A×X + A×Y

X + Y −→ (A×X + A×Y)A

X → (A×X + A×Y)A, Y → (A×X + A×Y)A

A × X → A×X + A×Y, A × Y → A×X + A×Y

the sum injections

and hence explains the distributive law in N.

0.0.5 Equations and isomorphisms — bijective proofs. So we can ask
which equations valid in N come from finite sets? Which can be lifted or
categorified? This question has a long history in combinatorics: combina-
torists speak of a bijective proof of a combinatorial identity, if each side of
the equation counts something and the equation is proved by establishing
a explicit bijection between the two sets being counted. There are identities
which are known to be true, but for which no bijective proof is known. . .

[Rough draft, version 2009-08-05 23:56.] [Input file: intro.tex, 2009-08-04 13:20]

0.0 Prologue: natural numbers and finite sets 15

0.0.6 Categorification. The example is part of a programme known under
the name categorification which is this process: substitute sets by categories
in such a way that equations between elements in the set becomes isomor-
phisms between objects. As we shall see it is sometimes necessary more
generally to replace equations by equivalences, not just isomorphisms. In
any case the goal of this process is to understand not only whether an
equation holds or not, but also why it holds. The word ‘categorification’
was introduced by Crane [30] and the programme has been advocated
much by Baez and Dolan (see for example [12] for a very readable account,
very relevant to the themes of the present exposition). Previously Lawvere
and Schanuel had used the term ‘objectification’.

There are many other reasons why this process is fruitful. Generally
speaking it is because sets are much richer than numbers, and can interact
in more interesting ways. Specifically, there are mappings between sets!
As a particular case, sets have symmetries. For example, a finite set A of n
elements has a symmetry group, Aut(A) + Sn, which is a very interesting
algebraic object associated to A, much more interesting than associating a
number n! to a given number n. So from this viewpoint, the categorified
setting gives us all of group theory, whereas in contrast, the reduced set-
ting just gives us the theory of factorials (and their prime factors).

More generally, a set can have structure. In addition to group structure,
it could be an ordering, a vector space structure, a topology and so on.
Furthermore, things you can do with usual constant sets, you can often
do with variable sets too [72], or more generally in a topos. For example,
the theory of polynomial functors is closely related to the Sierpiński topos,
cf. Section 2.

Finally, to come back the the concrete question of natural numbers and
finite sets, we notice that many things we can do with finite sets, we might
as well do with infinite sets! This was Cantor’s original motivation for
inventing abstract sets, to handle infinite quantities. E.g. for numbers it
is often a problem that an infinite sum ∑

∞
i=0 ai is not necessarily a well-

defined number. But an infinite sum of sets, well that’s just another set.
There is some hope that categorification can help physics overcome prob-
lems related to ill-defined sums that tend to appear, for example in quan-
tum mechanics, which are currently handled by dubious renormalisation
tricks.

Recently, motivation has come also from higher category theory. . .

[Rough draft, version 2009-08-05 23:56.] [Input file: intro.tex, 2009-08-04 13:20]

16

[Rough draft, version 2009-08-05 23:56.] [Input file: intro.tex, 2009-08-04 13:20]

Chapter 1

Basic theory of polynomials in
one variable

1.0.7 Reminders on polynomials with natural-number coefficients. A
polynomial with natural-number coefficients is a formal expression of the
form

∑
n∈N

anXn an ∈ N,

like for example 4 + X3 + 7 X8. The symbol X is a formal variable, a mere
place holder. So formally one could also say that a polynomial is a finite
list of natural numbers (a0, a1, a2, . . . , ak), but the idea is of course that one
can substitute numbers into X, and hence a polynomial defines a function
N → N. Two polynomials define the same function if and only if their se-
quences of coefficients agree. This functional interpretation immediately
explains the familiar operations of addition and multiplication of poly-
nomials, with which the set of all polynomials becomes a commutative
semiring,1 denoted by N[X].

From the function viewpoint there is also an obvious operation of sub-
stituting one polynomial into another—this is nothing but composition of
functions—and by repeated use of the distributive law (which holds in N
and therefore in the function semiring N[X] too), it is easy to see that the
composite of two polynomial functions is again given by a polynomial.

1Also called a rig by some authors — this is not recommended since it is not easy to
translate into other languages.

[Rough draft, version 2009-08-05 23:56.] [Input file: basic.tex, 2009-08-04 22:34]

18 Basic theory of polynomials in one variable

There is also the operation of differentiation: it is defined in the usual
way by

D : N[X] −→ N[X]

Xn %−→ nXn−1, n > 0
X0 %−→ 0

and extending N-linearly. (When polynomials are interpreted as functions
N → N, differentiation has no direct analytical interpretation, but of course
the polynomials could also be interpreted as functions of a real variable.)
We have the usual Leibniz rule and chain rule:

D(F · G) = DF · G + F · DG
D(F ◦ G) = (DF ◦ G) · DG.

1.0.8 Polynomial functors — overview. The notions involved—sums, prod-
ucts, and exponentiation—make sense also in the category of sets. Hence
a polynomial functor will be something like

Set −→ Set

X %−→ A + B×XN + C×XR

for some fixed sets A, B, C, N, R and a variable set X. Many of the things
you can do with good old polynomials make sense also for polynomial
functors: of course you can add them and multiply them, but you can also
substitute them into each other or take derivative, and all these notions be-
have as expected. For example there is a Leibniz rule and a chain rule. In a
precise sense, polynomial functors are the categorification of polynomials
with natural-number coefficients.

There is also a notion of polynomial functor in many variables, but it is
better treated with some more categorical machinery, so it is postponed to
Part II of these notes.

In this chapter we study those elementary operations on polynomial
functors. But that is only a beginning: soon we’ll see that the Set ver-
sion of polynomials is much richer, and has connections to many areas of
mathematics we might not have guessed just from the elementary algebra
of polynomials of numbers.

[Rough draft, version 2009-08-05 23:56.] [Input file: basic.tex, 2009-08-04 22:34]

1.1 Definition 19

1.1 Definition

1.1.1 Notation and conventions. We use the symbol + and ∑ for the dis-
joint union of sets. We denote the empty set by 0 (although occasionally
the usual notation ∅ is also practical, as well as 0 for the empty ordinal).

If p : E → B is a map of sets, we denote by Eb the fibre {e ∈ E | p(e) =
b}, and we make the natural identification

∑
b∈B

Eb = E.

(Formally, the disjoint union ∑b∈B Eb is defined to be the set of pairs (b, e)
with b ∈ B and e such that p(e) = b. But since all the sets Eb are subsets
in the same set E, and since they are clearly pairwise disjoint, is is natural
to replace the ‘disjoint union’ by the ‘union inside E’, hence arriving at the
identification.)

Another identification we make freely is:

∑
b∈B

X = B × X

In this case the definition of disjoint union quickly gives the result. (The
proof involves (B × X)b = {b}× X = X.)

Similarly,
∏
e∈E

X = XE.

Here XE denote the set of all set maps from E to X.

1.1.2 Monomials. The simplest polynomials are the (monic) monomials.
In one variable, these are functions of the form

N −→ N

x %−→ xn.

Correspondingly, we can consider sets of the form XE:
By definition, a monomial functor is a functor

Set −→ Set

X %−→ XE

[Rough draft, version 2009-08-05 23:56.] [Input file: basic.tex, 2009-08-04 22:34]

20 Basic theory of polynomials in one variable

for some fixed set E. In other words, it is just a representable endofunctor
on Set , represented by E. If ϕ : X → Y is a map of sets, it’s image is the
map ϕE : XE → YE taking E → X to E → X → Y.

While a monomial is specified by a single set, of course a sum of mono-
mials will be specified by a family of sets.

1.1.3 Polynomials. A polynomial functor (in one variable) is by definition a
functor Set → Set (isomorphic to one) of the form

X %→ ∑
b∈B

XEb

where Eb is a family of sets indexed by some other set B. The value of the
functor on a map of sets ϕ : X → Y is the map

∑
b∈B

ϕE : ∑
b∈B

XE → ∑
b∈B

YE

defined term-wise by taking Eb → X to Eb → X → Y.
To give a family of sets (Eb | b ∈ B) amounts to giving a set map

p : E → B,

and then Eb denotes the fibre p−1(b). This is just to write E = ∑b∈B Eb. We
say that the family p : E → B represents the polynomial functor.

We do not require the indexing set B to be finite (so in this sense we are
allowing polynomials with infinitely many terms), but sometimes it will
be convenient to require all fibres to be finite. Such a map will be called
finitary. This corresponds to allowing only finite exponents.

So to every set map p : E → B there is associated a polynomial functor

P : Set −→ Set

X %−→ P(X) = ∑
b∈B

XEb .

To give a single set is then just to give a map E → 1, showing that a
monomial is just special case of a polynomial.

Conversely, given a polynomial functor (something of the form X %→
∑b∈B XEb then there is a unique map of sets E := ∑b∈B Eb → B. SHOULD

[Rough draft, version 2009-08-05 23:56.] [Input file: basic.tex, 2009-08-04 22:34]

1.1 Definition 21

ANALYSE A LITTLE BIT HOW CANONICAL THIS IS. FOR EXAMPLE,
FOR LINEAR FUNCTORS (CF. BELOW) THERE SEEMS TO BE NOT VERY
MUCH HOLD ON THE SET E. . .

Convention: we use the word polynomial functor for the functors, while
we shall sometimes say polynomial for the configuration of sets specified
by E → B. This is perhaps not so useful here in the one-variable case. . .

1.1.4 Graphical interpretation. The whole point about the theory of poly-graphical1
nomial functors is to manipulate P : Set → Set in terms of the represent-
ing map p : E → B. It turns out this is intimately linked with the combi-
natorics of trees. The key to understanding these relations is the graphical
interpretation we now present. We shall use trees as a very convenient
way to manipulate polynomial functors. Later, in Chapter 14, we shall see
that this connection is in fact fundamental: we shall see that trees are poly-
nomial functors (in several variables) and that polynomial functors can be
described as colimits of trees. (That discussion is postponed only because
it needs many-variables theory.)

The important property of an element in B is really the corresponding
fibre Eb, so we will build it into the picture: we picture an element b ∈ B
by drawing b itself as a dot, and represent the fibre Eb as a set of edges
coming into the dot:

b

We have also drawn an edge coming out of the dot. There is no justification
at this point of the exposition for having this edge in the picture, but we
are going to need it crucially later on: when we come to polynomials in
many variables, we will need this root edge to carry a label specifying
which variable we refer to. We think of b as an operation. We think of the
edges above the node as input slots and we think of the root as the output.
This is another reason why we insist on drawing the root edge —we want
every operation to have an output.

The input slots will eventually be filled: this happens when we evalu-
ate the polynomial functor on a set, as we shall see shortly.

[Rough draft, version 2009-08-05 23:56.] [Input file: basic.tex, 2009-08-04 22:34]

22 Basic theory of polynomials in one variable

To specify an element in E is the same thing as specifying a fibre and
then an element in that fibre, i.e., specifying b ∈ B together with an el-
ement in Eb. This is just a paraphrasing of the canonical bijection E =
∑b∈B Eb. So we can represent an element in E as

b

∗

where the mark indicates which element in the fibre we chose.

1.1.5 Constant functors. Consider the family given by the map 0 → B.constant
The corresponding polynomial functor is

X %→ ∑
b∈B

E0 = ∑
b∈B

1 = B,

the constant functor X %→ B. As a special case, the map 0 → 0 represents
the constant zero polynomial X %→ 0. Another important case is 0 → 1,
representing the constant polynomial X %→ 1.

This gives us a way of interpreting any set as a constant polynomial
functor, just like we can interpret a natural number as a constant polyno-
mial. (We shall see later that this defines a functor from Set to the cat-
egory of polynomial functors; it is in fact a homomorphism of semiring
categories (2.3.5).)

We like to use the symbol X as a place holder, a position for plugging
in any given set. Let us now consider a fixed set S. We picture it as a bunch
of dots, one for each element:

S = {• • · · · •}

We can also interpret S as the constant polynomial functor X %→ S, it is
represented by the map ∅ → S. Hence all the fibres are empty, so all
operations of this polynomial functor are nullary. So in this case we picture
the elements as

. . .

So when we are picturing the elements of S as dots, we are also thinking
of them as nullary operations. This is standard: we think of static sets as
sets of nullary operations for the corresponding constant functor.

[Rough draft, version 2009-08-05 23:56.] [Input file: basic.tex, 2009-08-04 22:34]

1.1 Definition 23

1.1.6 Evaluating polynomial functors. Given a polynomial functor P(X) =P(X)
∑b∈B XEb , the image set comes with a natural projection to B, since it is a
sum indexed by the elements of B. (This is to say that actually P factors
as Set → Set/B → Set where the last functor is the forgetful functor
that forgets about the map to B.) The fibre over b ∈ B is the set of maps
Eb → X. Since we have already chosen b at this point of the description we
have the bouquet b, and giving the map Eb → X amounts to decorating
each leaf with an element of X.

In graphical terms, for a fixed set S, the value set P(S) can be pictured
as the set of bouquets like for B, but where each leaf is decorated by an
element in S:

b

x1 x2 x3 . . .

Note that repetition may occur in such a decoration, so in the picture the
xi are not assumed to be distinct.

In general we distinguish between labelling (which means that the la-
bels are unique) and decorations, where repetition can occur. In other words,
labellings are bijections, decorations are maps.

We have already mentioned that S can be identified with the constant
polynomial functor with value S. We will soon define the composition of
two polynomial functors, and as such the set P(S) will be identified with
the composite polynomial functor P ◦ S, which is constant since the first
factor is. The graphical interpretations of these two viewpoints match.

If ϕ : X → Y is a map of sets, it is also easy to grasp the image map
P(ϕ): it is the map from X-decorated bouquets to Y-decorated bouquets,
replacing each decoration x by ϕ(x).

1.1.7 Sneak preview of many-variable polynomial functors. They are
given by diagrams I ← E → B → J. Polynomial functors in one variable
are given by diagrams 1 ← E → B → 1, and hence are really functors
Set/1 → Set/1. Now a constant set S we are saying can be interpreted as
a functor 1 → Set . This can also be seen as the polynomial functor in no
variables given by

0 ← 0 → S → 1

[Rough draft, version 2009-08-05 23:56.] [Input file: basic.tex, 2009-08-04 22:34]

24 Basic theory of polynomials in one variable

observing that Set/0 = 1. In contrast, a constant polynomial functor (‘in
one variable’) is given by

1 ← 0 → S → 1.

1.1.8 Examples. In particular there is a natural bijectionP(1)

P(1) = ∑
b∈B

1Eb = ∑
b∈B

1 = B.

You can interpret this by saying that the bottom set B is the sum of all the
coefficients.

We will often consider the special set 1 = {blank}. If we feed this set
into P the result is the set of bouquets with each leaf decorated by blank.
The idea is of course that we leave the leaf undecorated, so in conclusion
P(1) = B.

1.2 Examples

MAKE DRAWINGS OF EACH OF THE EXAMPLES!

1.2.1 Notation. For each n ∈ N, denote by n the set {0, 1, 2, . . . , n − 1}. In
particular 0 is the empty set, and 1 is the singleton set (terminal set).

1.2.2 Constant functors. We saw that the map 0 → B represents the con-
stant polynomial functor X %→ B. More generally, given any polynomial
functor P(X) = ∑b∈B XEb , we can evaluate at the empty set and find

P(0) = ∑
b∈B

0Eb ,

but the set of maps Eb → 0 is empty unless Eb is empty, in which case there
is exactly one map. So if we set B0 = {b ∈ B | Eb = 0}, we find

P(0) = B0,

the constant term of P.
In other words,

P(0) = {b ∈ B | Eb = 0} = B ! Im p.

[Rough draft, version 2009-08-05 23:56.] [Input file: basic.tex, 2009-08-04 22:34]

1.2 Examples 25

1.2.3 Linear functors. Consider now a family given by a bijection E ∼→ B.linear
Since every fibre is a singleton set, the polynomial functor is the linear
functor

X %→ ∑
b∈B

X1 = B × X.

So in graphical terms, the set B consists entirely of unary operations:

B =

{
. . .

}

There is a particularly important case of this: the polynomial functor
represented by the family 1 → 1 is the identity polynomial X %→ X.

Linear functors in one variable are not terribly exciting (cf. linear al-
gebra in one variable), but linear functors in many variables provide an
interesting and useful ‘categorified matrix algebra’, as we shall see in Sec-
tion 9.1.

1.2.4 Affine functors. Consider a family given by an injection E ↪→ B.affine
There is induced a partition of B into two sets B0 and B1: the subset B0 ⊂
B consists of the elements with empty fibre, and B1 consists of the other
elements (which by injectivity have a singleton fibre). The elements in
B0 are the nullary operations, pictured like ; the elements in B1 are the
unary operations, pictured like . The functor represented by this family
is an affine functor, i.e. the sum of a constant functor and a linear functor:

X %→ ∑
b∈B0

X0 + ∑
b∈B1

X1 = B0 + B1×X.

1.2.5 The free-pointed-set functor; the exceptions monad. A particularly
important affine functor is

X %→ 1 + X.

It is the functor that freely adds a basepoint to a set. We shall see it is an
example of a monad, and we shall need it several times.

In computer science this monad is used to model errors, also called
exceptions. Roughly, the idea is something like this: think of a program
as a function. Sometimes a program needs to give up, if it comes into
a state where is has no instructions on what to do. This is not only for
badly written programs — for examples programs that involve interaction

[Rough draft, version 2009-08-05 23:56.] [Input file: basic.tex, 2009-08-04 22:34]

26 Basic theory of polynomials in one variable

with the user, sometimes the user just asks for something meaningless,
and the program is at loss. Of course the program should not just crash,
it should rather deal with the exceptional situation, for example beep and
do nothing and hope the next input from the user makes more sense. The
possibility of error means that rather than a function we have a partially
defined function. Now a partially defined function with codomain X is
the same thing as a well-defined function with codomain 1 + X, where 1
is now defined as the value of all the undefined points, so the extra value
1 serves as the error value.

Now of course it quickly becomes practical to distinguish between dif-
ferent errors, like error 404 (page not found) and error 504 (timeout), so
instead of having just one error, modelled by the set 1, we can have a set E
of different exceptions, and look at the monad

X %→ E + X

This is what is called the exceptions monad [84]. (This is all a very vague ex-
planation, and we have not at all touched upon where the monad comes
in. Hopefully there will be some more substantial explanations in Chap-
ter 6.)

1.2.6 Bottom set and top set. Let p : E → B represent a polynomial functorbottom-top
P. The bottom set B can be recovered as B = P(1). In a moment we will
define the derivative P′ of a polynomial functor P, and see that the top set
E is naturally identified with P′(1).

1.2.7 Homogeneous polynomials. By definition, the degree of a mono-
mial XF is the set F. By definition, a polynomial is homogeneous of degree F
if the representing map is of form B × F → B. (Or more generally if there
are specified bijections between all the fibres of E → B. Let F be one such
fibre; since all the other fibres are in canonical bijections with this set, any
fibre will do.) Another way of characterising a homogeneous polynomial
functor in terms of its representing map E → B is to say that it is a pullback
of a trivial map F → 1 along B → 1.

1.2.8 Fundamental example: the free monoid functor. The free monoidfree-monoid
M(X) on a set X is the set of all finite words in the alphabet X, including
the empty word. (It is a monoid under concatenation of words.) We also

[Rough draft, version 2009-08-05 23:56.] [Input file: basic.tex, 2009-08-04 22:34]

1.2 Examples 27

write M(X) = X∗ = ∑n≥0 Xn. The free monoid endofunctor

M : Set −→ Set

X %−→ X∗ = ∑
n≥0

Xn.

is polynomial: the representing map is the ’universal family’

u : N′ → N

whose fibre over n ∈ N is the standard n-element set n = {0, 1, 2, . . . , n −
1}. One way to realise N′ is

N′ = ∑
n∈N

n = {(n, i) ∈ N× N | i < n}.

Then N′ → N is simply the projection (n, i) %→ n:

N′

↓

N 0 1 2 3 4

Another way to realise N′ is

N′ := N ×N
u

−→ N

(a, b) %−→ a + b + 1

N′

↓

N 0 1 2 3 4

In fact, if we think of N as the set of all finite sets, then we might also
describe N′ as the set of all pointed finite sets. This is just like in the theory
of moduli of curves: the universal family is the space of pointed things. . .

In any case, the elements of the set N, interpreted as operations, cf. the
graphical interpretation of 1.1.4, are

[Rough draft, version 2009-08-05 23:56.] [Input file: basic.tex, 2009-08-04 22:34]

28 Basic theory of polynomials in one variable

0 1 2 3
. . .

Since there is precisely one operation of each arity, we don’t really have
to label the nodes in each bouquet. . .

(Note that the polynomial ∑n≥0 Xn is the geometric series, so it is tempting to write

M(X) =
1

1 − X
,

but of course at this point this can at most be a suggestive notation —it cannot be taken
literally since it involves division and negative sets! However, in Section 3 we shall intro-
duce negative sets and give some meaning to the expression.)

This functor will play a crucial role. We shall see it is naturally a
monad.

1.3 Other viewpoints

1.3.1 Two fundamental isomorphisms. We use all the time:

∑
b∈B

X = B × X, ∏
e∈E

X = XE

1.3.2 ’Power series’. In usual polynomials we like to collect all monomi-alternative
als of the same type (i.e., the same degree, in the one-variable case) and
put a coefficient in front of it to indicate how many there were of it. For
polynomial functors, strictly speaking there can never be any repetition
among the exponents, because the fibres Eb are all distinct sets. We saw
that homogeneous polynomials have the property that there are canonical
identifications between the fibres, so in this case we allowed ourselves to
write homogeneous polynomials as B×XF.

In the general case what we can do is to take a cruder approach, con-
tenting ourselves with non-canonical isomorphisms, and simply collect
all terms corresponding to sets of the same cardinality. If we assume that
p : E → B is a finite map, i.e., each fibre is a finite set, then we can consider
the classifying mapkappa

κ : B −→ N (1.1)
b %−→ |Eb| (1.2)

[Rough draft, version 2009-08-05 23:56.] [Input file: basic.tex, 2009-08-04 22:34]

1.3 Other viewpoints 29

sending an element b to the cardinality of the corresponding fibre. Putting

Bn := κ−1(n)

we can write B as a sum like this:

B = ∑
n∈N

Bn

and collect terms with isomorphic exponents:

∑
b∈B

XEb = ∑
n∈N

∑
b∈Bn

XEb + ∑
n∈N

∑
b∈Bn

Xn = ∑
n∈N

Bn × Xn.

(Note that the sign + represents a non-canonical isomorphism.)
This sort of expression,

X %→ ∑
n∈N

Bn × Xn

might be called a power series, for obvious reasons. It is specified com-
pletely by giving a sequence of sets (Bn | n ∈ N). But it would be un-
fortunate terminology if ‘power series’ would be a more finite notion than
‘polynomial’, as it is the case here! so we’ll refrain from that terminology,
and in any case we are not going to exploit this viewpoint very much.

Conversely, to give a functor X %→ ∑n∈N Bn × Xn is the same thing as
giving the sequence (Bn | n ∈ N), and that in turn is just to give an abstract
‘classifying map’ κ : B → N. Then we can construct a polynomial functor
E → B by taking E to be the pullback:

E ! N′

B
"

! N

u
"

We could agree to use always the following set as pullback:

E = ∑
b∈B

N′
κ(b).

We will come back to these viewpoints in the section on collections and
operads.

[Rough draft, version 2009-08-05 23:56.] [Input file: basic.tex, 2009-08-04 22:34]

30 Basic theory of polynomials in one variable

1.3.3 More abstract approach. The construction of P : Set → Set fromabstract-preview
a set map p : E → B is really a special case of something more general
and fundamental, and in some sense also easier to understand. And in
any case this is the viewpoint that will lead directly to the many-variable
case—we will come back to this viewpoint in Section 8.

Given a set map p : E → B then there is induced a functor p∗ :
Set/B → Set/E which sends an object Y → B to the pullback Y×B E → E.
(Thinking of this as Set B → Set E then this is just the Yoneda embedding
of p, right?) This functor has adjoints on both sides. The left adjoint p!
is easy to describe: it simply sends Z → E to Z → E → B. (In the pre-
vious paragraph we implicitly computed κ!.) The right adjoint p∗ is the
interesting one just now. It is given by

p∗ : Set/E −→ Set/B

Z %−→ ∑
b∈B

∏
e∈Eb

Ze

where Ze denotes the fibre over e of Z → E.
Our polynomial functor X %→ ∑b∈B XEb is just a special case of that

formula: we start with an abstract set X, and construct a set over E, namely
Z : = X × E, the pullback of X along the map s : E → 1. Now we apply
p∗ to get a set over B, and since the map Z → E is now just the ’trivial
fibration’ Z = X × E → E, we can simplify the above formula a little bit,
recovering our usual formula:

∑
b∈B

∏
e∈Eb

Ze = ∑
b∈B

∏
e∈Eb

X = ∑
b∈B

XEb .

In fact this last set is a set over B. To forget about the B-structure is to
apply t! .

1.4 Basic operations on polynomials

Since polynomial functors take values in Set , and since Set is a semiring
category, it is clear how to add and multiply polynomial functors. Also,
since polynomial functors are endofunctors, it is clear what it should mean
to compose them. We shall see now that the results of these operations are
again polynomial functors in a canonical way. In fact we shall show how
to perform these operations on the level of the representing families.

[Rough draft, version 2009-08-05 23:56.] [Input file: basic.tex, 2009-08-04 22:34]

1.4 Basic operations on polynomials 31

Polynomial functors are represented by a few sets and maps encod-
ing exponents and coefficients, and we want to describe all operations on
polynomial functors in terms of such data.

We now introduce sums and products of polynomials. Soon we shall
describe a category of polynomials functors, and then these sums and
products will be the categorical sum and product. We treat composition in
Subsection 1.5.

1.4.1 Addition of polynomials. Given two polynomial functors P and Q,
their sum should be the functor

X %→ P(X) + Q(X).

If P is represented by the family p : E → B and Q by q : F → C, then it is
easy to see that the sum of these two families,

p + q : E + F → B + C,

represents the sum of the functors.
Note that this operation is associative (as much as sum is in Set) and

that the neutral polynomial functor for addition is the zero functor (repre-
sented by the family 0 → 0).

1.4.2 Multiplication of polynomials. If P and Q are polynomial functors,product
their product should be the functor

X %→ P(X) × Q(X).

If P is represented by p : E → B and Q by q : F → C, let us write out what
the product functor does (using distributivity):

P(X) × Q(X) =

(

∑
b∈B

XEb

)

×

(

∑
c∈C

XFc

)

= ∑
(b,c)∈B×C

XEb × XFc = ∑
(b,c)∈B×C

XEb+Fc.

So we see that the base set is B × C (this is the indexing set for the expo-
nents), and the total space is

∑
(b,c)∈B×C

Eb + Fc

[Rough draft, version 2009-08-05 23:56.] [Input file: basic.tex, 2009-08-04 22:34]

32 Basic theory of polynomials in one variable

Now this way of writing the total space, just as a sum of all the fibres,
always works, but often there is a more synthetic way of describing the
set. In this case we find this more concise description of the top space and
the map:

(E × C) + (B × F)

p × idC

idB ×q
! B × C

Here is a drawing: if P and Q are represented by families drawn like
this:

E

↓
B

F

↓
C

then the drawing of the family representing the product is this:

E × C

+
C

B

B × F

↓

C
B

B × C

Note that the multiplication is associative (to the same extent as the prod-
uct is in Set) and that the neutral polynomial functor is the constant poly-
nomial 1 (represented by the family 0 → 1)

Since addition and multiplication are defined in terms of addition and
multiplication in Set , it is immediate that the distributive law holds.

[Rough draft, version 2009-08-05 23:56.] [Input file: basic.tex, 2009-08-04 22:34]

1.4 Basic operations on polynomials 33

We shall shortly introduce the category of polynomial functors —the
full subcategory of Fun(Set , Set) consisting of polynomial functors. In
here, the product we have just described in of course the categorical prod-
uct (since products are computed pointwise in a functor category).

1.4.3 Scalar multiplication. We have seen (1.1.5) that every set S defines a
polynomial functor, namely the constant functor with value S. It is repre-
sented by ∅ → S. We can think of constant functors as scalars. Scalar mul-
tiplication is just a special case of the multiplication described above: the
scalar multiplication law is this: S times E → B is equal to S × E → S × B.

1.4.4 Elementary-school flashback. If all this looks complicated then try
to multiply two good old-fashioned polynomials:

(x + x3)(x8 + 1) = x · x8 + x · 1 + x3 · x8 + x3 · 1
= x1+8 + x1+0 + x3+8 + x3+0

This is a sum indexed by the product of the indexing sets, and for each
such indexing pair, the actual exponent is their sum—just as in the general
formula.

1.4.5 Sneak preview of Leibniz’ rule. In a minute we will introduce the
derivative of a polynomial functor. We have already stated that the top set
of a representing map p : E → B can be recovered as P′(1). Of course we
want the Leibniz rule to hold:

(p × q)′ = (p′ × q) + (p × q′)

Hence we can guess what the top set for (p × q) should be:

= (p × q)′(1) = p′(1) × q(1) + p(1) × q′(1) = E × C + B × F

This is really sort of backwards reasoning, but often mathematics works
like this: before we settle on a definition of derivation and products we al-
ready require that Leibniz’ rule should hold, so if we can’t arrange the defi-
nitions for this to hold true, then we aren’t really interested in the theory. . .

poly-mono 1.4.6 Example. Suppose p : E → B is any polynomial and m : F → 1 is
a monomial. Then in terms of set maps, p × m is the map p + (B × m) :
E + (B × F) → B. In terms of the functor it is X %→ ∑

b∈B
XEb+F.

[Rough draft, version 2009-08-05 23:56.] [Input file: basic.tex, 2009-08-04 22:34]

34 Basic theory of polynomials in one variable

1.5 Composition of polynomials (substitution)
subsec:composition

THIS IS SORT OF BORING TO DO IN DETAIL, UNLESS SOME SIMPLIFI-
CATION SHOWS UP (ONE SUCH SIMPLIFICATION IS THE ABSTRACT
APPROACH OF SECTION 8.

1.5.1 Key example: Q is the constant polynomial functor represented by
some fixed set S. Then all the operations are nullary, and the composition
consists in grafting such dots upon the leaves of the elements of B (the set
of operations of P).

1.5.2 Overview. Given set maps p : E → B and q : F → C, we want to
show that the composite of their polynomial functors

Set
Q

−→ Set
P

−→ Set

is again a polynomial functor (as our experience with good-old polyno-
mials suggests). (In a more polynomial language we could say that we
substitute Q into P.) Also we’ll not be surprised to see that this is a little
bit complicated—already for good-old polynomials we know that such a
substitution can produce a huge polynomial!

Checking this is just a matter of writing out the formulae, rearrange
the terms using distributivity, and see that it is indeed of the correct form,
represented by some set map U → A. In Section 8 we will do this from an
abstract viewpoint. Here we try to do it by hand.

Now before even trying to expand, we can already say what the base
set A is going to be: indeed we know that

A = (P ◦ Q)(1) = P(Q(1)) = P(C).

This is the set ∑b∈B CEb . So it remains to find the total space U, and de-
scribe the projection map U → A.

Let us start with a graphical analysis. Recall that an element of B is
pictured as a bouquet:

b

[Rough draft, version 2009-08-05 23:56.] [Input file: basic.tex, 2009-08-04 22:34]

1.5 Composition of polynomials (substitution) 35

The set of leaves symbolises the fibre Eb. Similarly, an element in E is a
bouquet just like this, but with one leaf marked. The map E → B just
forgets this mark.

Now look at the composite P ◦ Q. According to the above argument,
the base set of P ◦ Q is the set P(C). Its elements are pairs (b, α) where
b ∈ B and α : Eb → C. In other words, pick an element in B (i.e. such a
bouquet) and for each leaf pick an element in C. USE THE DESCIPTION
OF EVALUATION OF POLYNOMIAL FUNCTORS, DONE IN 1.1.6

IMPORTANT: C is already a set of operations, so in order to keep the
dynamical aspect, we just graft the elements of C on top of the elements
of B. So P(C) is described in terms of grafting of bouquets: its elements
are bouquets of bouquets, or two-level trees, if you wish, where the level-1
node (the root node) is in B and the level-2 nodes are in C: the operations
of P ◦ Q look like this:

b

c1 c2 c3

The conditions on the individual bouquets are still in force: at level 1: the
edges coming into dot b correspond to the elements in Eb, and on the level
2: for each dot c, the incoming edges are in bijection with Fc. (Since we
are in the one-variable case there is no compatibility conditions on which
bouquets can be grafted onto which leaves. When we come to the many-
variable case, there will some bookkeeping to do.)

When we evaluate on some fixed set X, we get these figures:

b

c1 c2 c3

x1 x2 x1 ∈ X

∈ C

∈ B

(where as an illustration we have let two leaves have the same decorating
element x1 ∈ X).

Now we want to describe U, and if the tree-picture is going to have any
value we want the fibre over such a tree to be the set of its leaves. So for

[Rough draft, version 2009-08-05 23:56.] [Input file: basic.tex, 2009-08-04 22:34]

36 Basic theory of polynomials in one variable

a fixed such tree (b, α), what are the leaves? Well, they are the union of all
the leaves of the bouquets c, so it is of the form

∑ Fc

So what are we summing over? Obviously we are summing over Eb, so
the end result for the fibre over (b, α) is

∑
e∈Eb

Fα(e)

So the global description of U is:

∑
b∈B

∑
α:Eb→C

∑
e∈Eb

Fα(e)

You can also think: U(b,α) = α∗F = {(e, f) ∈ Eb × F | α(e) = q(f)}. So
in summary,

U = {(b, α, e, f) | b ∈ B, α : Eb → C, e ∈ Eb, f ∈ F, α(e) = q(f)}.

Here is a picture:

bB

p

EbE

C

q

F

α

1.5.3 Blank. IMPORTANT: 1 = {blank} is the generic place holder.1=generic

1.5.4 Example: composition of linear functors. Recall from 1.2.3 that a
linear functor is one represented by a bijection E ∼→ B. We might as well
restrict to identity maps. So a linear functor is given by a single set. Now
check that the composite of the linear functor given by B with the lin-
ear functor given by A is the linear functor given by B × A. This is one-
variable linear algebra, and it objectifies the fact that composition of linear

[Rough draft, version 2009-08-05 23:56.] [Input file: basic.tex, 2009-08-04 22:34]

1.5 Composition of polynomials (substitution) 37

maps R → R is just about scalar multiplication. When we come to many-
variable linear functors we shall see that matrix multiplication is objecti-
fied by the fibre product.

1.5.5 Sneak preview of the chain rule. DO SOMETHING WITH THIS!
IT MAKES NO SENSE UNTIL WE HAVE INTRODUCED DIFFERENTI-
ATION! Of course we want the chain rule to hold for composite polyno-
mials:

(p ◦ q)′ = (p′ ◦ q) × q′.

Now according to 1.2.6, the top set of p ◦ q is naturally identified with the
bottom set of (p ◦ q)′. Hence we expect to find

U = (p ◦ q)′(1) = (p′ ◦ q)(1) × q′(1) = p′(C) × F.

1.5.6 Comparison with the direct description. So what is P′(C) × F?P’CxF

P′(C) × F = ∑
e∈E

CEp(e)−e × F = ∑
b∈B

∑
e∈Eb

CEb−e × F.

First of all, let’s explain how this is a set over A = P(C) = ∑b∈B CEb . We
fix b ∈ B once and for all, so we need to describe a map

∑
e∈Eb

CEb−e × F −→ CEb .

Now to describe this map it is enough to describe it on each component.
So we just need a map CEb−e × F −→ CEb for each e. So given a punctured
map α′ : Eb − e → C (not defined on e ∈ Eb) together with an f ∈ F, how
do we extend to a complete map Eb → C? Well, we only need to define
the value on e, and the only natural thing to do is to take q(f). So now
we have described the map P′(C) × F → P(C). This is the map U → A
we are looking for. It remains to see that it agrees with the elementary
description given above. To this end, just check out the fibre: over a fixed
b ∈ B, α : Eb → C in P(C), the fibre consists of pairs α′ : Eb − e → C and
f ∈ F for some e ∈ Eb. Such that α extends α′, and such that q(f) = α(e).
Now the set of choices of an e ∈ Eb and an extension of α′ to the whole of
Eb, that’s just the set of maps γ : Eb → C. But there is the compatibility
condition in order to map to α downstairs, namely γ(e) = q(f). But this is
precisely the primitive description we gave first.

[Rough draft, version 2009-08-05 23:56.] [Input file: basic.tex, 2009-08-04 22:34]

38 Basic theory of polynomials in one variable

Now let us start from scratch and compute the composite by direct
calculation. Let us start with two easy cases.

1.5.7 Substitution of monomials Given sets m : E → 1 and n : F → 1,
which we interpret as monomials m(X) = XE and n(X) = XF, then we
can easily compute the composite m ◦ n (first apply n, then apply m), so n
is inner and m is outer.

(m ◦ n)(X) = m(n(X)) = m(XF) = (XF)E = XF×E

So the composite is again a monomial, and it just comes from the set map
m ◦ n : F × E → 1.

The next case is when instead of the monomial m we have a general
polynomial p : E → B. Now

(p ◦ n)(X) = p(n(X)) = p(XF) = ∑
b∈B

(XF)Eb = ∑
b∈B

XF×Eb

So the result is the polynomial corresponding to the set map

F × E → B

(Note that we get some strange orders of the factors. This is due to the
fact that we wrote composition from right to left. . .)

All this is to say that substitution is linear in the outer argument. Of
course this is what we expect from plain-old polynomials, and it is also
what we have experienced in the first approach where it was clear that all
arguments are fibre-wise for a fixed b ∈ B, which is just another way of
phrasing reduction to the case where p is a monomial.

Of course substitution of polynomials is not linear in the inner argument—
in general (xa + xb)e /= xae + xbe. Here we get in clinch with distributivity:

We could now treat the general case, but since in fact we have linearity
in the outer variable it is enough to treat the case of an outer monomial
m : E → 1 and an inner polynomial q : F → C:

(m ◦ q)(X) = m(q(X)) = m
(

∑
c∈C

XFc
)

=
(

∑
c∈C

XFc
)E

Now we have to use distributivity to turn this into a polynomial on stan-
dard form. Continuing the computation,

(
∑
c∈C

XFc
)E

= ∑
α∈CE

∏
e∈E

XFα(e)

[Rough draft, version 2009-08-05 23:56.] [Input file: basic.tex, 2009-08-04 22:34]

1.5 Composition of polynomials (substitution) 39

This is the same as we found initially.
To understand this distributivity argument, let us work out a simple

example of plain old polynomials.

1.5.8 Elementary school flashback. Compute (x3 + x5 + x7)2. In the inner
polynomial, there are three different exponents, so the indexing set for
them is 3 = {0, 1, 2}. Put f0 = 3, f1 = 5, and f2 = 7. So now we can write
the inner polynomial as ∑i∈3 x fi .

Now expand by hand:

(x3 + x5 + x7)2 = x3x3 + x3x5 + x3x7 +

x5x3 + x5x5 + x5x7 +

x7x3 + x7x5 + x7x7

There are 9 = 32 terms in the sum, one for each pair of elements in 3. Each
term is a product of 2 monomials.

To give a pair of elements in 3 is just to give a map α : 2 → 3, and
then the corresponding term in the sum is ∏

i∈2
x fα(i). So altogether we have

computed the expansion as

∑
α∈32

∏
i∈2

x fα(i),

which may look a bit complicated but this is how it is. (Rather, argue the
other way around: if you think this formula is complicated, then just write
out the 9 terms separately and you are as happy as when you computed
the expansion by hand.)

1.5.9 Partial composition. Let us briefly describe another operation, wherepartial
instead of grafting onto all the leaves we only graft onto one leaf. Recall
that the base set P(C) for the polynomial functor P ◦ Q is the set of pairs
(b, α) where b is an element in B and α : Eb → C is a map from the fibre,
i.e., a decoration of the set of leaves. Now in the new simpler case of par-
tial grafting, we don’t need decoration on all leaves of b but only on one of
them. So the base is the set of triples (b, e, α) where b ∈ B, and e ∈ Eb and
α : {e} → C. Now to give this is just to give e ∈ E, and c ∈ C. So the base
is merely

C × E.

The picture is simple too:

[Rough draft, version 2009-08-05 23:56.] [Input file: basic.tex, 2009-08-04 22:34]

40 Basic theory of polynomials in one variable

b

c

Now we want to say that the fibre over such a thing is the set

leaves(c) ∪ leaves(b) ! {e}

So this is easy: there are two components: either the leaf is one of the
original leaves of the bouquet c—that’s Fc. Or it is one of the original
leaves of b, but not e. So that’s Eb ! e. In other words, the polynomial
functor is nothing but

Q × P′.

which spelled out is

F × E + C × (E × E ! ∆)

C × E

q×1E

1C×p′
"

This is the sum of all possible one-substitutions. It is not like the Stash-
eff way of specifying the substitution law in terms of several fixed laws ◦i,
which only makes sense if there is an ordering. Since we cannot indicate
in a global uniform manner a specified element of each fibre, we need to
sum over them all.

1.6 Differential calculus

1.6.1 The derivative of a monomial. Given a monomial P(X) = XE, the
derivative should be something like P′(X) = E × XE−1. Here we need to
give a meaning to the expression E − 1: it should mean the set E except
for one element, but which element? Well, there are E elements to choose
from, and by ‘coincidence’ there are also E copies of the monomial, so we
can just remove each element in turn. Hence a good definition seems to be

P′(X) := ∑
e∈E

XE ! {e}

[Rough draft, version 2009-08-05 23:56.] [Input file: basic.tex, 2009-08-04 22:34]

1.6 Differential calculus 41

Note that the derivative of a monomial is no longer a pure monomial: ei-
ther it has a coefficient, or as we see is better is really a polynomial. As such
it is represented by a family with base E. The fibre over e ∈ E is a copy of
E with e removed, so the top set of the family is E × E minus the diagonal,
with the first projection as map to E. In conclusion, the derivative of P is
represented by the family

E × E ! ∆ → E.

We will denote the derivative of P(X) by DP(X) or P′(X) depending
on what seems most convenient in the context.

1.6.2 Example. Among the monomials we have the constant X0 = 1, rep-
resented by the family 0 → 1. Working directly with the definition, we
see that the derivative is the empty sum, i.e. the zero polynomial 0. Work-
ing instead with the representing families, we find that the derivative is
represented by 0 × 0 ! 0 → 0, again the zero polynomial.

1.6.3 Derivative of a general polynomial. In general, given a polynomial
P(X) = ∑

b∈B
XEb , represented by p : E → B, we should just use linearity

and define
P′(X) := ∑

b∈B
∑

e∈Eb

XEb ! {e}

This functor is clearly polynomial. The base set of the representing family
is ∑b∈B Eb = E, and the fibre over e ∈ E is Ep(e) × Ep(e) ! {e}. Joining all
the fibres we find that the top set of the representing family is

E ×B E ! ∆,

and again the map to E is just the first projection, say.

1.6.4 The mark operator. There is another operator which is simpler:mark-operator
namely the one sending P to the polynomial X %→ XP′(X). This is the
full fibre product (no diagonal removed). If P is represented by p : E → B
then XP′(X) is represented by the top map

E ×B E ! E

E
"

p
! B

"

[Rough draft, version 2009-08-05 23:56.] [Input file: basic.tex, 2009-08-04 22:34]

42 Basic theory of polynomials in one variable

1.6.5 Lemma. Leibnitz rule holds for differentiation of polynomial functors: given
P and Q, then

(P × Q)′ = (P′ × Q) + (P × Q′).

Proof. By additivity, it is enough to check the rule when P and Q are mono-
mials, say represented by the sets p : E → 1 and q : F → 1, respectively.
By 1.4.2, P × Q is then represented by E + F → 1, whose derivative is

(E + F) × (E + F) ! ∆ → E + F.

You can see it all (including the end of the proof) in this picture:

E

F

↓

E + F

Since the target set is a sum, the map also splits into a sum: the summand
over E is

E × E ! ∆ + E × F → E

which is precisely the family representing P′ ×Q. Similarly the F-summand
of the family is

E × F + F × F ! ∆ → F

representing P × Q′. !

1.6.6 Lemma. The chain rule holds:

(p ◦ q)′ = (p′ ◦ q)× q′.

PROOF OF THE CHAIN RULE.

1.6.7 Mac Laurin series (Taylor expansion at zero) Develop this idea: we
already know that P(0) is the constant term of P. Similarly, direct compu-
tation shows that P′(0) is the set

P′(0) = {e ∈ E | e is alone in its fibre}.

[Rough draft, version 2009-08-05 23:56.] [Input file: basic.tex, 2009-08-04 22:34]

1.7 Properties of polynomial functors 43

Now if P is an affine functor, P(X) = A + B × X, then we can rewrite this
as

P(X) = P(0) + X · P′(0).

So P(0) = A and P′(0) = B.
Next, P′′(0) is the set of pairs (e1, e2) ∈ E × E such that e1 /= e2 and

p(e1) = p(e2), and such that there are no other elements in that fibre. In
other words the set of pairs of distinct elements in E which constitute a
whole fibre.

More generally, P(n)(0) is the set of ordered n-tuples from E that con-
stitute a whole fibre.

This set has a canonical action of Sn. We denote the quotient set by

P(n)(0)
n!

.

Proposition: Assume all fibres of p : E → B has cardinality n. Then
there exists a (non-canonical) bijection

P(X) +
P(n)(0)

n!
· Xn.

1.6.8 IDEA TO LOOK AT. Have a look at this definition of differential
quotient: given f : R → R, define

R× R ! ∆
d1 f
−→ R

(x, y) %−→
f (x) − f (y)

x − y

This function extends to the whole of R × R, and its restriction to the di-
agonal, R → R× R → R is equal to f ′.

(Similarly, define d2 f : R × R × R ! some diagonals → R, (x, y, z) %→
d1 f (x,y)−d1 f (y,z)

x−z or something. . .

1.7 Properties of polynomial functors

Give only easy arguments here. Refer to 8.6 for fancier and more concep-
tual proofs in the general case. . .

[Rough draft, version 2009-08-05 23:56.] [Input file: basic.tex, 2009-08-04 22:34]

44 Basic theory of polynomials in one variable

preserve-pullbacks 1.7.1 Lemma. A polynomial functor preserves fibre products (and hence monos)
(And more generally limits over diagrams with a terminal object). See Part II for
such general statements.

Proof. The statement is a special case of Lemma 8.2.5, and a more concep-
tual proof is given there. Here we give a more direct ad hoc proof. . .

!

1.7.2 Example. The free monoid functor M does preserve monos (since
this takes place degree-wise, so it amounts to the observation that if X ↪→
Y is a mono then XE → YE is also mono (CHECK THIS OUT)). This should
also be the general argument.

We call a set map finite if it has finite fibres.

preserve-seq 1.7.3 Lemma. The polynomial functor preserves filtered colimits if and only if
the representing map E → B has finite fibres.

Proof. The functor is a sum of representables, so it preserves filtered colim-
its if and only if each summand does. But each summand is of the form
X %→ XE, and such preserve filtered colimits if and only if E is finite. !

See also [75].

1.7.4 Example. The free-monoid monad M of 1.2.8: given a directed union
like this A0 ⊂ A1 ⊂ A2 ⊂ . . . , then M(∪Ai) = ∪M(Ai). The first set is the
set of all finite words in the total alphabet ∪Ai. Now any such word has
only a finite number of letters so it does belong to Ai for some sufficiently
big i.

[Rough draft, version 2009-08-05 23:56.] [Input file: basic.tex, 2009-08-04 22:34]

Chapter 2

Categories of polynomial functors
in one variable

Sec:morphisms

There are two useful categories of polynomial functors: one is the full sub-
category of Fun(Set , Set) consisting of polynomial functors. That is, all
natural transformations are allowed as morphisms between polynomial
functors. We denote it Set [X]. [POSSIBLY THIS IS BAD NOTATION BE-
CAUSE IT INVOLVES POLYNOMIAL FUNCTORS WITH OPERATIONS
OF INFINITE ARITIES. THAT’S NOT BAD IN ITSELF, BUT THE NO-
TATION Set [X] MIGHT SUGGEST THAT WE ARE TALKING ABOUT
SOMETHING FREELY GENERATED BY BINARY SUMS AND BINARY
PRODUCTS. BUT THAT WOULD GIVE ONLY FINITARY POLYNOMIAL
FUNCTORS. . .]

The other alternative is more restrictive: we only allow cartesian natu-
ral transformations. We denote it Poly .

The first has better categorical properties, and it works as a categori-
fication of the usual polynomial semirings. However the general mor-
phisms are a bit tricky to handle in terms of the representing maps E → B,
and some important constructions do not work so well in this generality.
The cartesian ones behave very well in term of representing families, and
they are important in the applications to operads and tree structures.

[Rough draft, version 2009-08-05 23:56.] [Input file: cat1var.tex, 2009-08-04 22:32]

46 Categories of polynomial functors in one variable

2.1 The category Set [X] of polynomial functors

The main result is that every natural transformation between polynomial
functors factors as a representable one followed by a cartesian. This is to
say that the functor

Set [X] −→ Set

P %−→ P(1)

is a Grothendieck fibration. Of course we are going to introduce the terms
used.

2.1.1 Categories of polynomial functors. Polynomial functors form a cat-
egory denoted Set [X] by taking the arrows to be all natural transformation
between them. [SEE REMARKS AT THE START OF THIS CHAPTER]

A main goal in this section is to describe natural transformations of
polynomial functors in terms of their representing families.

2.1.2 Notation. Up to now we have often drawn diagrams of polynomial
functors vertically, in order to better visualise the idea of fibre. Now we
shall turn the pictures 90 degrees and picture maps E → B horizontally.
This is more practical, and prepares the way for the multi-variable case. . .

2.1.3 Preliminary heuristic discussion. Let P be a polynomial functor rep-
resented by p : E → B, and let Q be represented by q : F → C. The ques-
tion we ask is how to describe the natural transformations P ⇒ Q in terms
of the representing maps?

A first guess might be that natural transformations should correspond
to commutative squares

E
p ! B

F
"

q
! C.

"

This is not true however—in general such a square does not induce a nat-
ural transformation P ⇒ Q. We shall see in 2.1.7 that if the square is a

[Rough draft, version 2009-08-05 23:56.] [Input file: cat1var.tex, 2009-08-04 22:32]

2.1 The category Set [X] of polynomial functors 47

pullback square then it works: there is induced a natural transformation,
but not every natural transformation arises in this way.

The problem with commutative squares occurs already in the case of
monomials: Given monomials p and q and a commutative square

E
p ! 1

F
"

q
! 1

"

there is no way in general to construct a natural map XE → XF from it.
The only natural map goes in the other direction—in fact by the Yoneda
lemma for

Setop −→ Fun(Set , Set)

E %−→ [X %→ XE],

there is a bijection between natural transformations XE → XF and maps
F → E. Let us take note of this observation in a slightly more general
set-up:

2.1.4 Representable transformations. Given a commutative squareB=B

E
p ! B

F

σ

#

q
! B

then there is induced a natural transformation σ : P ⇒ Q:

∑
b∈B

XEb → ∑
b∈B

XFb

which sends the b-summand into the b-summand—i.e. it is a B-map. We’ll
call such transformations representable.

To see the construction formally, note that the triangle amounts to a
map q → p in the category Set/B. That’s the same as a family of maps
Fb → Eb. In other words, the set of all such triangles is the set

∏
b∈B

HomSet (Fb, Eb).

[Rough draft, version 2009-08-05 23:56.] [Input file: cat1var.tex, 2009-08-04 22:32]

48 Categories of polynomial functors in one variable

But by the contravariant Yoneda lemma, this set is the same as

∏
b∈B

Nat(XEb , XFb)

(where abusively we denote the functor X %→ XEb by XEb). So for each
b ∈ B we have a natural transformation XEb → XFb . Now we can sum
over all those to get

∑
b∈B

XEb → ∑
b∈B

XFb

In fact, the argument shows also that every natural transformation
∑b∈B XEb → ∑b∈B XFb which respects the b-summands arises uniquely in
this way. The natural transformation can also be characterised as those for
which the 1-component

B = P(1) → Q(1) = B

is the identity map. So we have characterised those natural transforma-
tions in terms of easy triangle diagrams.

There is an obvious way to stack two such diagrams. It is easy to see
that

2.1.5 Lemma. Stacking of such diagrams corresponds precisely to composition
of the associated natural transformations.

Back to the idea of squares: while general commutative squares do not
induce natural transformations, the situation is much better with pullback
squares, as already mentioned.

Cartesian morphisms
cartesian

Definition. If D and C are categories with fibre products, given two func-
tors F, G : D → C , a natural transformation u : F ⇒ G is cartesian if for
every arrow X → Y in D , the naturality square

F(X) ! G(X)

F(Y)
"

! G(Y)
"

is cartesian.

[Rough draft, version 2009-08-05 23:56.] [Input file: cat1var.tex, 2009-08-04 22:32]

2.1 The category Set [X] of polynomial functors 49

F(1) 2.1.6 Remark. Suppose D has a terminal object 1, and denote by uX : X →
1 the unique map from an object X to 1.

If θ : F ⇒ G : D → C is a cartesian natural transformation, then the
cartesian naturality square

F(X)
F(uX)! F(1)

G(X)

θX
"

G(uX)
! G(1)

θ1
"

shows that F is determined by its value on 1 and its relation to G. Indeed,
the cartesian square gives a natural isomorphism

F(X) = G(X) ×G(1) F(1).

cartNatTrans 2.1.7 Proposition. Given two polynomial functors P and Q, represented by p :
E → B and q : F → C respectively. Then the cartesian natural transformations
from Q to P correspond precisely to cartesian squares

E
p ! B

F

α

"

q
! C

α

"

Proof. Given the pullback square, we construct canonically a natural carte-
sian transformation P ⇒ Q: we must define for each set X a map

∑
b∈B

XEb → ∑
c∈C

XFc .

Since the square is cartesian, for each b ∈ B there is a canonical isomor-
phism Eb

∼→ Fα(b). The inverse of this isomorphism induces an isomor-
phism XEb ∼→ XFα(b). Since we have such a map for each b ∈ B we
have defined the wanted map. To check naturality with respect to a map
ϕ : X → Y, it is enough to check for the c-summand: here it is obvious that
this square commutes and it is even cartesian:

XEb ! XFα(b)

YEb

"
! YFα(b)

"

[Rough draft, version 2009-08-05 23:56.] [Input file: cat1var.tex, 2009-08-04 22:32]

50 Categories of polynomial functors in one variable

—the horizontal maps are isomorphisms! In fact it follows readily from
this, that also the general naturality squares are cartesian: when setting all
the sum signs, each fibre for the horizontal maps are locally isomorphisms:
for each c ∈ C, the inverse image of XFc is ∑b∈α−1(c) XEb . And each Eb is
isomorphic to Fc. Hence, locally at c, the map is just the second projection
from the product α−1(c) × XFc .

A more down-to-earth explanation: to give a cartesian morphism is to
give a map α : B → C together with a bijection Eb

∼→ Fα(b) for each b ∈ B.
So it’s about setting up bijections between the exponent sets.

Conversely, given a cartesian natural transformation, we construct a
pullback square. In fact we can do better, as in Proposition 2.5.1. !

2.1.8 Lemma. Composition of cartesian natural transformation (between poly-
nomial functors) corresponds precisely to pasting of pullback squares between the
representing maps.

kappa-not-unique 2.1.9 Example. (Cf. Example 1.2.8.) For any finite map p : E → B, the
classifying map (1.1) extends to a cartesian square

E ! B

N′
"

! N

κ
"

and hence a cartesian morphism from P to the free monoid functor M. So
the universal property can be restated by saying that every finite poly-
nomial functor has a natural transformation to M. NOTE HOWEVER
that this natural transformation is rarely unique, because although κ is
uniquely defined, the map in the left-hand side of the diagram is not! (The
natural transformation to M is unique if and only if P is affine, i.e. when
E → B is mono.)

2.1.10 Example. Another obvious example of such a pullback square is

E ×B E ! E

E
"

p
! B

"

[Rough draft, version 2009-08-05 23:56.] [Input file: cat1var.tex, 2009-08-04 22:32]

2.1 The category Set [X] of polynomial functors 51

The two horizontal maps represent polynomial functors and the square
represents a cartesian natural transformation between them. We saw in
1.6.4 that the top functor is X · P′(X).

2.1.11 Putting together the pieces. Now we have two ways of inducing
natural transformations: the representable ones and the cartesian ones. Of
course we can compose these two types to obtain new natural transforma-
tions. For example we can compose a representable natural transforma-
tion with a cartesian one: We get natural transformations represented by
diagrams of the form

E
p ! B

Z

σ
#

! B

F
"

q
! C

"

(2.1) generalmorphism

We could also compose in the opposite order—first a cartesian trans-
formation and then a representable one, like this:

E
p ! B

W
"

! C
"

F

#

q
! C

Now the crucial remark is that this last composite natural transformation
can be realised by a diagram of the first type. The argument goes like this:
simply consider the pullback Z = F ×C B. Now this set has maps to W and
B, so by the universal property of the pullback E, there is then induced a
unique map σ : Z → E, and we are back to the standard situation. Of
course it remains to check that the natural transformation induced by this
cartesian-representable composite is the same as the one induced by the
original representable-cartesian one. This is routine.

[Rough draft, version 2009-08-05 23:56.] [Input file: cat1var.tex, 2009-08-04 22:32]

52 Categories of polynomial functors in one variable

So any composite of cartesian and representable natural transforma-
tions are of the form of diagram 2.1.

Now we are ready to formulate the main result in this section:

2.1.12 Proposition. Every natural transformation between polynomial functors
factors as a representable transformation followed by a cartesian transformation,
and this factorisation is essentially unique.

In other words:

2.1.13 Proposition. Representable natural transformations and cartesian natu-
ral transformations form a factorisation system in the category Set[X].

This operation of changing a cartesian-representable composite into a
representable-cartesian one describes precisely how the factorisation sys-
tem works.

2.1.14 Factoring a polynomial transformation. We will no show how a
general polynomial transformation can be factored. Let there be given a
natural transformation s : P ⇒ Q, i.e. a natural family

∑
b∈B

XEb −→ ∑
c∈C

XFc .

The first set is naturally over B and the second is naturally over C, and the
first remark is that each summand maps into a summand. This is just to
take the 1-component of the natural transformation: this gives us the map
B → C. The naturality diagram reads

∑b∈B XEb ! ∑c∈C XFc

B
"

! C.
"

which shows that the map splits into summands.
So now we have

E ! B

F ! C
"

[Rough draft, version 2009-08-05 23:56.] [Input file: cat1var.tex, 2009-08-04 22:32]

2.1 The category Set [X] of polynomial functors 53

In summary, for each b we have a map XEb → XFϕ(b), and altogether a map

∑
b∈B

XEb → ∑
b∈B

XFϕ(b).

Here the right-hand side is nothing but the polynomial functor U defined
by the map

Z := F ×C B → B

so we have found a natural transformation P ⇒ U. By the Yoneda lemma
(for Set/B), this is represented by some B-map U → E, i.e. a diagram

E
p ! B

Z

#

! B.

On the other hand, there is a cartesian natural transformation U ⇒ Q,
defined by the square

Z ! B

F
"

! C
"

Hence we have factored our natural transformation into P ⇒ U ⇒ Q.

2.1.15 As a Grothendieck fibration. Consider the category of arrows in
Set , denoted Set2. The objects are arrows a : x → y, and the morphisms
are commutative squares

x ! x′

y

a

"

f
! y′

a′

"

Consider the functor Set2 → Set which returns the target of an arrow
(and the bottom arrow of such a diagram). This functor is a Grothendieck
fibration: the cartesian morphisms are precisely the pullback squares. This

[Rough draft, version 2009-08-05 23:56.] [Input file: cat1var.tex, 2009-08-04 22:32]

54 Categories of polynomial functors in one variable

means that every morphism in Set 2 factors (uniquely) as a vertical mor-
phism followed by a cartesian one. The vertical morphisms are squares

x ! x

y
"
======== y′

"

Hence we see a very strong similarity between Set [X] and Set 2. In
fact, Set [X] is obtained from Set2 by reversing the direction of all vertical
arrows.

2.1.16 Theorem. The functor

Set[X] −→ Set

P %−→ P(1)

is a Grothendieck fibration.

2.1.17 More advanced remark. The general notion of morphism corre-
sponds to allowing ‘repetition and omission’ (which makes sense only in
cartesian contexts(?), repetition is like using the diagonal map, and omis-
sion is like projection. . .) This is like allowing any sort of set map between
the fibres of f and the fibres of g. To restrict to cartesian morphisms is to
allow only bijections between the fibres of f and g. That is: no repetition,
no omission: every element must be used precisely once. . .

2.2 Sums, products

We now describe how to take sums and products of morphisms. It is clear
that these constructions are functorial, since they are just sums and prod-
ucts in a functor category. However, we insist on spelling out how the
constructions work in terms of representing diagrams.

2.2.1 Naturality of multiplication. Given cartesian morphisms α1 : p1 ⇒
q1 and α2 : p2 ⇒ q2, then there is a cartesian morphism

α1 × α2 : p1 × p2 ⇒ q1 × q2.

[Rough draft, version 2009-08-05 23:56.] [Input file: cat1var.tex, 2009-08-04 22:32]

2.2 Sums, products 55

Concretely, given pullback squares

E1
p1 ! B1

F1

α1

"

q1

! C1

α1
"

E2
p2 ! B2

F2

α2

"

q2

! C2

α2

"

Then we can form the square

E1 × B2 + B1 × E2
〈p1×B2,B1×p2〉 ! B1 × B2

F1 × C2 + C1 × F2

α1×α2+α1×α2

"

〈q1×C2,C1×q2〉
! C1 × C2

α1×α2

"

It is straightforward to check that this square is again a pullback square.
Question to check: given a pair of more general morphisms, is their

product then again a morphism?

2.2.2 Multiplication with P. We already argued that multiplication with P
is functorial with respect to cartesian transformations. We now check that
it is also functorial with respect to representable transformations. Given a
representable transformation θ : Q1 ⇒ Q2. It is given by a diagram

F1 ! C

F2

#

! C

Multiply each of the functors with E → B, and see that there is a natural
map induced between them:

F1 × B + C × E ! B × C

F2 × B + C × E

#

! B × C

[Rough draft, version 2009-08-05 23:56.] [Input file: cat1var.tex, 2009-08-04 22:32]

56 Categories of polynomial functors in one variable

The map is obvious. Hence we have shown that multiplication with a
fixed P is functorial both with respect to cartesian and with respect to rep-
resentable transformations. Hence by the factorisation result, multiplica-
tion with P is functorial on all of Set [X].

2.2.3 Multiplication by a monomial. Multiplication by a monomial Xn ismultX
particularly interesting, because since a monomial is represented by a map
n → 1, multiplication with it does not change the base. In other words,
the endofunctor on Set [X] given by multiplication with Xn respects fibres
for the Grothendieck fibration. For example, multiplication with X sends
E → B to

B + E → B

It makes every member of the family one element bigger.
So multiplication with Xn induces an endofunctor on each fibre of the

fibration Set [X] → Set . Each fibre, say over C, is equivalent to the oppo-
site of Set/C. So multiplication-by-Xn defines an endofunctor on Set/C.
It sends E → B to (n × B) + E → B, as we already know.

2.3 Algebra of polynomial functors: categorifica-
tion and Burnside semirings

Now that we have a distributive category FinSet [X] of polynomial func-
tors we can finally investigate to what extent polynomial functors are a
categorification of the polynomial semiring N[X]. There are two levels of
interpretation: a good-old polynomial can be regarded either as a formal
expression, i.e. a certain configuration of coefficients and exponents, or it
can be regarded as a function from N to N. One shows that two poly-
nomials define the same function if and only if they are the same formal
expression, i.e. their coefficients and exponents agree.

The same is true for polynomial functors:

2.3.1 Theorem. Two polynomial functors are isomorphic as functors if and only

[Rough draft, version 2009-08-05 23:56.] [Input file: cat1var.tex, 2009-08-04 22:32]

2.3 Algebra of polynomial functors: categorification and Burnside
semirings 57

if their representing set maps are isomorphic (i.e we have a commutative square

E′ ! B′

E

+

" + ! B

+

"

(which is of course automatically cartesian)).

Proof. In fact we already proved more: let θ : P′ ⇒ P be a natural iso-
morphism. We know this particular natural transformation is represented
uniquely by a square as claimed. !

2.3.2 Categories of polynomial functors. Polynomial functors form a cat-
egory denoted Set [X] by taking the arrows to be all natural transformation
between them. We see that Set [X] is a distributive category. WHAT DO
WE MEAN BY DISTRIBUTIVE? FINITE DISTRIBUTIVE?

2.3.3 Finite polynomial functors. Call a polynomial functor finite if the
representing family consists of two finite sets; this means that all expo-
nents and coefficients are finite. Let FinSet [X] denote the full subcategory
of finite polynomial functors.

Now for the categorification result, analogous to 0.0.1.

N[X]-Burnside 2.3.4 Theorem. N[X] is the Burnside semiring of the category of finite polyno-
mial functors.

This extends the usual categorification of the natural numbers:

FinSet ⊂! FinSet [X]

N
"

⊂ ! N[X]
"

Note that by the above results on preservation of all operations under
isomorphisms (and sometimes under more general functors), it is imme-
diate that this categorification accounts for sums, products, substitution,
and differentiation.

[Rough draft, version 2009-08-05 23:56.] [Input file: cat1var.tex, 2009-08-04 22:32]

58 Categories of polynomial functors in one variable

The proof follows readily from the alternative description of finite poly-
nomial given in 1.3.2: every finite polynomial functor is isomorphic to a
functor of the form

X %→ ∑
n∈N

Bn × Xn

with only finitely many Bn non-empty. Clearly, these ‘normal-form’ poly-
nomials correspond precisely to good-old natural-number polynomials.

2.3.5 Semiring category. FinSet is a distributive category, and it sits assemiringhomo
a full coreflective subcategory in FinSet [X]. This functor is a distributive
functor (i.e. preserved sums and products).

The functor

Set −→ Set [X]

S %−→ [0 → S]

sending a set S to the constant functor X %→ S is a distributive functor,
making Set [X] into a Set-algebra.

2.3.6 Lemma. Every natural transformation out of a constant functor is carte-
sian.

Proof. A constant functor is represented by ∅ → S, and when a repre-
sentable map out of it would amount to a map to ∅. But such a map must
be the identity map of ∅. Hence the representable part of the transforma-
tion is invertible.

!

P(0)-adj 2.3.7 Lemma. The inclusion Set → Set[X] has a right adjoint, given by return-
ing the constant part of a polynomial (i.e. evaluation at 0).

Proof. Natural transformations (cartesian by the previous lemma) from the
constant functor ∅ → S to E → B are given by specifying a map S → B,
and the elements in B hit by this map must be nullary, by cartesianness.
But P(0) is precisely the set of nullary operations. This establishes the
asserted bijection

Set(S, P(0)) = Set [X](S, P)

!

[Rough draft, version 2009-08-05 23:56.] [Input file: cat1var.tex, 2009-08-04 22:32]

2.3 Algebra of polynomial functors: categorification and Burnside
semirings 59

Note in particular that evaluation at 0 is right adjoint to both the inclusion
Set → Set [X] and to the inclusion Set → Poly (cartesian fragment).

2.3.8 Theorem. FinSet[X] is the free FinSet-algebra on one generator.

This should mean: first we define what a FinSet -module is: it is a category
C with finite sums and equipped with an action Set × C → C . Now
define a FinSet -algebra to be a monoid in the category of FinSet -modules.

The subtlety is that we have two candidates for the free thing: FinSet [X]
and also the semiring of formal expressions ∑n∈N bnXn. Depending on the
notion of monoid and also depending on the notion of action, we get dif-
ferent results: if we take some definition like formal iterated binary prod-
ucts of objects in FinSet with object X, then possibly we get the latter
version. However, we should allow products indexed over arbitrary finite
sets, and this will lead to FinSet [X], it seems. The proof still remains to be
worked out in detail.

Similarly, Set is a distributive category and it injects into the distribu-
tive category Set [X].

2.3.9 Theorem. Set[X] is the free Set-algebra on one generator.

THIS IS PROBABLY FALSE WITHOUT SOME MORE CARE WITH IN-
FINITIES. ‘FREE ALGEBRA’ WILL OFTEN MEAN SOMETHING GEN-
ERATED BY FINITELY MANY OPERATIONS, BUT IT SEEMS THAT Set [X]
CONTAINS ALSO INFINITE OPERATIONS. . .

2.3.10 Experiment. Just as the result that N classifies finite sets can be stated more inter-
estingly as a solution to a moduli problem, try to do the same for polynomial functors.
Define what a family of polynomial functors is, over a base that can be any set. We should
try to encode the fibres of such families as finite set maps. In other words, for each ele-
ment j ∈ J in the base set, we should have a finite set map Ej → Bj. In other words, this
is to have set maps

E

B
"

J
"

[Rough draft, version 2009-08-05 23:56.] [Input file: cat1var.tex, 2009-08-04 22:32]

60 Categories of polynomial functors in one variable

such that for each fixed j ∈ J, the sets Ej and Bj are finite. This in turn is just to have a
J-tuple of polynomial functors. It is also clear what an isomorphism of such families is:
just an isomorphism on each level.

Then figure out what the universal family should be, the base should be N[X]. So
just describe the fibre over some arbitrary polynomial, say 3X2 + 4. The corresponding
Ej → Bj should have a 7-element set as B, and over three of the points the fibre should be
2, and over four of the points the fibre should be empty.

We might try to do this in a linear algebra fashion: since N[X] as an N-module is
spanned by N itself (the monomials, 1, X, X2, . . .), we might try first to describe the
fibres over these monomials. The fibre over Xk is just the set map k → 1. The fibre over
akXk is just the set map ak × k → ak.

Perhaps we can arrive at a nice global description in the style of those universal fam-
ilies N′ → N. . .

2.3.11 Other things to work out — routine. We have the category of commutative semir-
ings. Now we also have the 2-category of distributive categories: the arrows are the
functors that preserve finite sums and finite products. The 2-cells are natural transforma-
tions compatible with that. Just as N is the initial object in the category of commutative
semirings, so FinSet should be initial in the 2-category of distributive categories. How-
ever, this is rather 2-initial: it means that for any distributive category D , the hom cat
Distr(FinSet , D) is contractible. In other words, up to equivalence, there is only one
sum-product preserving functor to D . It is perhaps better first to consider a skeleton for
FinSet , namely the category of finite cardinals (often denoted Φ by me).

2.4 Composition

Here we should only treat horizontal composition of 2-cells if it can be
done in a reasonably elementary fashion, i.e. without building up big dia-
grams which would fit more naturally into the many-variable setting.

The outcome is a monoidal structure on each of Set [X] and Poly .

2.5 The subcategory Poly: only cartesian natural
transformations

FtoP 2.5.1 Proposition. If P : Set → Set is a polynomial functor represented by
p : E → B, and F : Set → Set is any functor with a cartesian natural transfor-
mation θ : F ⇒ P, then F is also polynomial (i.e. isomorphic to one such). More

[Rough draft, version 2009-08-05 23:56.] [Input file: cat1var.tex, 2009-08-04 22:32]

2.5 The subcategory Poly : only cartesian natural transformations 61

precisely, F is represented by E ×B F(1) ! F(1), and θ is represented by

E ×B F(1) ! F(1)

E
"

! B = P(1)

θ1
"

Proof. The polynomial functor represented by E ×B F(1) ! F(1) has
the same value on 1 as F, and since they both have a cartesian natural
transformation to P they are naturally isomorphic by Observation 2.1.6. !

2.5.2 KEY REMARK. The horizontal composition of two cartesian natural trans-circcart
formations (between polynomial functors) is again cartesian. This is a conse-
quence of the fact that polynomial functors preserve pullbacks.

2.5.3 Terminology. We call a category discrete if the only arrows are the
identity arrows. We say that a category is rigid if for any two objects there
is at most one isomorphism between them. This is equivalent to saying
that each object has a trivial group of automorphisms. For groupoids,
the two notions coincide up to equivalence, in the sense that any rigid
groupoid is equivalent to a discrete one. Maybe we should rather reserve
the word discrete for rigid groupoids. . .

2.5.4 Some elementary remarks on set maps and bijections. It is a triv-
iality that if two linearly ordered finite sets are isomorphic (as linearly
ordered sets) then the isomorphism is unique. An ordering is just a fixed
bijection with some finite ordinal n, so the remark is that the category
FinBij /n is rigid: between any two sets there is at most one bijection over
n. Now orders are not the only way of fixing things. For any set B, the
category Bij /B is rigid.

Key observation to put somewhere explicitly: To say that a square of
sets

E′
p′

! B′

E

ψ

"

p
! B

φ

"

[Rough draft, version 2009-08-05 23:56.] [Input file: cat1var.tex, 2009-08-04 22:32]

62 Categories of polynomial functors in one variable

is cartesian is to say that for each b′ ∈ B′, the map ψ restricts to a bijection
between the fibres E′

b′ and Eφ(b′).
Note crucially that giving the cartesian square specifies those bijections.

But just from the maps φ and p we cannot know which bijection: differ-
ent choices of the pullback give different bijections. Choosing a pullback
amounts to choosing some bijections. It is crucial that we choose and fix a
specific pullback.

So ψ is characterised as being fibrewise a bijection. Note that since φ is
not necessarily surjective, it can happen that some fibre of p is ridiculously
large and does not correspond to anything up in E′. The fibres over points
in B not in the image are not part of any bijection.

Note that if p′ is mono, that means that each fibre Eb′ is empty or single-
ton. In this case (and only in this case) is the map ψ determined completely
by the map φ.

unique-pullback 2.5.5 Remark. We have seen by example that in a pullback square

F1 ! C1

F2

"
! C2

φ

"

there may be many different maps F1 → F2 making the diagram commuta-
tive. But if both F1 → C1 and F2 → C2 have a cartesian morphism to some
fixed E → B, and φ is required to commute with this, then the extension to
F1 → F2 is unique. Indeed, fibrewise over b ∈ B the map has to commute
with the bijections (F1 → E)b and (F2 → E)b, hence is unique.

We shall have a look at the slice categories of Poly .

2.5.6 Proposition. For a fixed polynomial functor P represented by E → B, the
slice category Poly/P is naturally equivalent to Set/B.

2.5.7 Remark. If we understand by polynomial functor any functor iso-
morphic to one given by one of those diagrams, then the functor should
be described as Q/P %→ Q1/P1 ∈ Set/P1.

[Rough draft, version 2009-08-05 23:56.] [Input file: cat1var.tex, 2009-08-04 22:32]

2.5 The subcategory Poly : only cartesian natural transformations 63

Proof. We have the obvious functor Φ : Poly/P → Set/B which to a carte-
sian square

W ! V

E
"

! B
"

associates the map V → B. This functor is canonically given. In the other
direction we can associate to any map V → B the pullback square

E ×B V ! V

E
"

! B
"

However, for this to make sense we need to choose pullbacks. It might
not be strictly functorial but only a pseudo-functor in some suitable 2-
categorical setting. . . Assuming we have this, the universal property of the
pullback ensures that the two functors define an equivalence of categories.
But at least this converse ‘construction’ makes it clear that the first functor
Φ is surjective on objects. To see that it is fully faithful: that’s precisely the
preceding remark: maps between pullback squares over a fixed map are
completely determined by the codomain component φ. !

Remark: in particular, all slices of Poly are toposes. Poly itself is not
since it does not have a terminal object. Later we investigate pullbacks
and products. It seems that Poly has many features in common with the
category of topological spaces and etale maps. [The product of two spaces
X and Y in this category is the space of germs of etale maps from X to Y
(which is canonically isomorphic to the space of germs of etale maps from
Y to X). In particular, the product is the empty space in many cases.]

Products in Poly

The category Poly of polynomial functors and cartesian natural transfor-
mations have some strange products!

THEY ARE A BIT DEGENERATE. THEY ARE DESCRIBED IN SOME
HANDWRITTEN NOTES.

[Rough draft, version 2009-08-05 23:56.] [Input file: cat1var.tex, 2009-08-04 22:32]

64 Categories of polynomial functors in one variable

2.5.8 Point-wise products. The pointwise product, the one treated in 1.4.2,
is not the categorical product in Poly . Nevertheless, it is still well-defined
as a functor on Poly : to establish this we just have to show that the point-
wise product of two cartesian natural transformations is again a cartesian
natural transformation. In other words, given cartesian natural transfor-
mations θ1 : P1 ⇒ Q1 and θ2 : P2 ⇒ Q2, then the natural transformation
θ1 · θ2 : P1 · P2 ⇒ Q1 · Q2 is again cartesian. We can check this directly on
the representing families: if Pi is represented by Ei → Bi and Qi is repre-
sented by Fi → Ci, then we just need to check that the square

E1 × B2 + B1 × E2 ! B1 × B2

F1 × C2 + C1 × F2

"
! C1 × C2

"

is a pullback. We should be able to check this summand-wise: we first
check that

E1 × B2 ! B1 × B2

F1 × C2

"
! C1 × C2

"

is a pullback, and afterwards we check the other summand. . . But this
should just amount to saying that the product of two pullback squares is
again a pullback square.

So we have an extra monoidal structure on Poly .

2.5.9 Multiplication with X. There is a particularly important case of
point-wise multiplication, namely the functor

Poly −→ Poly

P %−→ X · P

sending ∑b∈B XEb to ∑b∈B X × XEb = ∑b∈B X1+Eb . The representing family
of X · P is

B + E → B

It makes every fibre one element bigger, and we saw in 2.2.3 how it is
related to the free-pointed-set monad X %→ 1 + X.

[Rough draft, version 2009-08-05 23:56.] [Input file: cat1var.tex, 2009-08-04 22:32]

2.5 The subcategory Poly : only cartesian natural transformations 65

2.5.10 Linear functors. The full subcategory of Poly consisting of the lin-Poly_1=Lin
ear functors is naturally isomorphic to Poly/Id. (In particular Lin has a
terminal object, namely the identity functor.)

The inclusion Lin → Poly has a right adjoint, given by taking product
with Id. This works only with this strange categorical product that we
have in Poly .

This is a general fact about forgetful functor from slice categories of a
category with products.

Differentiation in Poly

2.5.11 OBSERVATION! Differentiation is not functorial with respect to
general morphisms! Indeed, given a general morphism

E
p ! B

Z

σ
#

! B

F
"

q
! C

"

if there were a natural transformation between the derivatives, it would
involve a map on bases E → F, and there is no way we can get this map.

2.5.12 Lemma. Taking derivative is functorial for cartesian morphisms.

Proof. Given a cartesian natural transformation

E
p ! B

F
"

q
! C

ϕ
"

pull back the whole cartesian square

F ×C F ! F

F
"

! C
"

[Rough draft, version 2009-08-05 23:56.] [Input file: cat1var.tex, 2009-08-04 22:32]

66 Categories of polynomial functors in one variable

along ϕ to get

E ×B E ! E ! B

F ×C F
"

! F
"

! C
"

Since the right-hand square and the big composite square are cartesian by
construction, the left-hand square is cartesian.

Now if we remove the diagonals, we are just diminishing the cardinal-
ity by one in each fibre, both upstairs and downstairs, so we still have a
bijection on fibres. GIVE A MORE FORMAL ARGUMENT HERE. !

THIS IS THE APPROPRIATE POINT TO STATE AND PROVE THAT
DIFFERENTIATION IS RIGHT ADJOINT TO MULTIPLYING WITH X.

[Rough draft, version 2009-08-05 23:56.] [Input file: cat1var.tex, 2009-08-04 22:32]

Chapter 3

Aside: Polynomial functors and
negative sets

Sec:negative
In this section we look at the possibilities for getting some sort of negative
coefficients and exponents for out polynomial functors. The theory of neg-
ative sets is a whole subject on its own, and this is not the place to give the
detail—and I don’t know so much about it. But there are some very funny
calculations to do. . .

3.1 Negative sets

We have seen that N is the Burnside semiring of FinSet and that N[X] is
the Burnside semiring of FinSet [X]. Can we find a distributive category
D whose Burnside semiring is Z? This question was posed and studied by
Schanuel [95], to whom is due all the results of this section. The presenta-
tion owes a lot to John Baez [10].

It turns out fairly quickly that there can be no such distributive cate-
gory, so it is necessary to rephrase the question.

3.1.1 Lemma. In any distributive category, if X0 + X1 + 0 then also X0 +
X1 + 0.

Proof. Given an isomorphism ϕ : X0 + X1 → 0, let ϕi be defined by the

[Rough draft, version 2009-08-05 23:56.] [Input file: negative.tex, 2008-03-12 13:32]

68 Aside: Polynomial functors and negative sets

diagram

X0 ⊂
i0 ! X0 + X1 $ i1 ⊃ X1

0

ϕ

" ϕ1
$

ϕ0 !

But in a distributive category, every initial object is strict, in the sense that
any arrow into it is invertible. Hence ϕ0 and ϕ1 are invertible. !

3.1.2 Corollary. The Burnside semiring of a distributive category is never a ring.

(Except if the distributive category is trivial, in which case also its Burnside
semiring is trivial, and hence a ring. . .)

Of course that’s a serious blow to the project, but Schanuel [95] ob-
served that we can ask for slightly less. If we can’t find a distributive
category with an object X such that X + 1 + 0, then we might at least be
able to find X such that X + 1 + 0 modulo something.

The following heuristic discussion is borrowed from Baez [10].

3.1.3 Islands and bridges. A finite set is a bunch of isolated islands,

• • •

So what is a negative island? A bridge is a negative island: if you place
it between two islands you get just one island! According to this principle,
setting two bridges between two islands should give zero islands, which
you could also explain by saying that a lake is a negative island, and a pair
of bridges between two islands is the same as one island with a lake. Now
if you join the two bridges. i.e. fill the lake between them, then you are left
with one island again, so a bridge-between-bridges counts as a negative
bridge, i.e. counts as 1. With this alternating behaviour it begins to look
like the Euler characteristic: set

χ(•) = 1, χ() = −1

and demand compatibility with sums and products.

[Rough draft, version 2009-08-05 23:56.] [Input file: negative.tex, 2008-03-12 13:32]

3.1 Negative sets 69

This version of the Euler characteristic, which is called the Euler mea-
sure, agrees with the ordinary topological Euler characteristic for compact
spaces, defined as ∑

∞
i=0 hi(X), but in general is defined using cohomology

with compact support, assuming this sum converges, which is the case for
most nice spaces. One class of spaces where the Euler measure is well-
defined, and not too difficult to treat, are the polyhedral sets:

3.1.4 Polyhedral sets. A polyhedral set is a subset of Rn (for any n) ob-
tained from half-spaces by taking intersections, unions, and complements.
A polyhedral map between polyhedral sets A ⊂ Rm and B ⊂ Rn is a map
whose graph is a polyhedral set (in Rm+n). This means that the map may
well be discontinuous, but that it is linear on each of finitely many pieces
that make up the domain A. Here is an example of the graph of a polyhe-
dral map from the open interval to itself

(In fact you observe that this is an invertible polyhedral map.)
Let P denote the category of polyhedral sets and maps. It is easy to

verify that this is a distributive category: the sum is the disjoint union, so
you need some convention of how to embed realise this in some Rk. For
example, given A ⊂ Rm and B ⊂ Rn, define A + B ⊂ Rm+n+1 to be

A×{0}×{1} ∪ {0}×B×{2}

or some other convention. The product is just the cartesian product, as
polyhedral set in Rm+n.

We now restrict attention to the full subcategory P0 of bounded polyhe-
dral sets, i.e. those polyhedral sets that fit into a ball in some Rn.

A pure d-cell is a polyhedral set isomorphic to the product of d copies
of the open unit interval I. The pure 0-cells are just points. It is a fact
that every bounded polyhedral set admits a pure cellularisation, i.e. can
be written as a disjoint union

A =
∞

∑
d=0

ad Id

[Rough draft, version 2009-08-05 23:56.] [Input file: negative.tex, 2008-03-12 13:32]

70 Aside: Polynomial functors and negative sets

of ad copies of pure d-cells Id.
With • and we can generate all bounded polyhedral sets. The open

interval I plays a key role, as a model for −1. The crucial observation is
that it satisfies the equation

I + I + 1 + I,

which is just to say that we can cut the interval into two intervals with a
‘gluing point’ in the middle:

= + • +

This relation shows that is as good a model for −1 as we can hope for:
while 0 = + 1 is impossible, at least we have = + • + ,
so we can also say that we have found a −1 module additive cancellation.

3.1.5 The Euler measure. CLEAN UP THE NEXT COUPLE OF PARA-
GRAPH

Intuitively, the Euler measure should work just like the Euler charac-
teristic, except that you should use only open cells. We want it to count Id

as (−1)d, and of course it should be finitely additive and multiplicative.
The existence of such a measure goes a long way back in history and is
known as the

3.1.6 Hadwiger-Lenz lemma. (Euler and Rota) There exists a function χ :
P0 → Z which is finitely additive and multiplicative, and with χ(•) = 1, and
χ(I) = −1.

The Euler measure is also called the combinatorial Euler characteristic, and
Baez calls it the Euler-Schanuel characteristic, but in fact the function fits
naturally into geometric measure theory.

The Euler measure can also be characterised in terms of cellularisa-
tions: define if A = ∑

∞
d=0 ad Id, define χ(A) = ∑

∞
d=0(−1)dad, but then you

have to prove that it is independent of choice of cellularisation, and that
once again is a bit similar to proving that the map from E is injective. . .

The construction of Schanuel, and also Rota, to prove the Hadwiger-
Lenz lemma, uses Euler integration. Note first that polyhedral maps have
polyhedral fibres: indeed, the fibre can be seen as a linear section of the

[Rough draft, version 2009-08-05 23:56.] [Input file: negative.tex, 2008-03-12 13:32]

3.1 Negative sets 71

graph, which is polyhedral by definition of polyhedral map. Next, observe
that a Z-valued polyhedral map must have finite image.

Now suppose we are given a measure χ, and a polyhedral map f :
A → Z. The Euler integral of f with respect to χ is defined as

∫

A
f dχ := ∑

n∈Z

n χ(An),

where An : = f−1(n). Now construct the Euler measure inductively: first
define a measure χ1 for all polyhedral sets of dimension −∞, 0 and 1, by
linearity and the initial requirements χ1() = −1, and so on. Now let E
be a 2-dimensional polyhedral set, and let p : E → B denote its projection
to the first coordinate axis. Then we have a sort of classifying map

κp : B −→ Z

b %−→ χ1(Eb).

Check that this map is polyhedral, but at least it has polyhedral fibres. . .
Now define the second Euler measure as

χ2(E) :=
∫

B
κp dχ1.

And check the axioms
PERHAPS WE SHOULD NOT GO INTO THIS HERE, BUT JUST STATE

AS A THEOREM THAT SUCH AN EULER MEASURE EXISTS. . .

3.1.7 Remark. If X is a finite set of points, then χ(X) = #X.
If X is compact, then the Euler measure coincides with the topological

Euler characteristic. But in general it does not, and in particular the Euler
measure is not a homotopy invariant. The basic example is of course the
open interval which has Euler measure −1, although it is homotopically
equivalent to a point.

Now you can go on an use polyhedral sets and their Euler measure to
do tricks with negative sets, but it is worthwhile to understand how the
theory relates with Burnside semirings and such.

3.1.8 Theorem. (Schanuel and also Rota.) The Burnside semiring of P0 is

N[T]/(T+1+T∼T)

which we denote by E.

[Rough draft, version 2009-08-05 23:56.] [Input file: negative.tex, 2008-03-12 13:32]

72 Aside: Polynomial functors and negative sets

By the above discussion it is clear that there is a surjection of semirings
from E to the Burnside semiring of P0: just send T to the class of the open
interval. The difficult part is to show the map is injective. To this end, we
need some algebraic remarks. The idea is that fails to be a true −1
because of lack of additive cancellation. . .

3.1.9 Additive cancellation. The semiring N has additive cancellation,
and so has Z:

n + x = n + y ⇒ x = y.

Let ½Ring± denote the full subcategory of semirings having additive can-
cellation. The inclusion functor i : ½Ring± ↪→ ½Ring has a left adjoint a
which to any semiring R associates the quotient semiring R/ ∼, where ∼
is the congruence defined by

x ∼ y ⇔ ∃r[r + x = r + y]

The counit for the adjunction is (for each semiring R) simply the quotient
map R → R/ ∼. Every homomorphism of semirings R → T, where T
has additive cancellation, factors uniquely through the quotient map R →
R/∼. This quotient map is called the Euler measure on a semiring, and we
denote it

χ : R → R/∼

We also talk about the Euler measure on a distributive category, which of
course is just the Euler measure on its Burnside semiring. We shall see
shortly that this gives the Euler measure on P0.

Note in any case that this abstract Euler measure generalises cardinal-
ity, because for the distributive category FinSet , the Burnside semiring
already has additive cancellation, so a is the identity in this case.

3.1.10 Lemma. The additive-cancellatification of E is Z:

a(E) = Z,

and the Euler measure is T %→ −1.

This is easy to see: we already have the relation 2T + 1 = T, and if we
impose additive cancellation this gives T + 1 = 0, so T goes to −1.

[Rough draft, version 2009-08-05 23:56.] [Input file: negative.tex, 2008-03-12 13:32]

3.1 Negative sets 73

Now notice that there is a well-defined notion of degree in E, since the
relation we divide out by equates polynomials of the same degree. This
defines a homomorphism of semirings to the semiring

D := (N ∪ {−∞}, max, +)

where addition is max and multiplication is the natural-number sum. (Note
that the degree of a sum of polynomials is the max of their degrees, and
that the degree of a product is the sum of the degrees.) This semiring is
called the dimension semiring by Schanuel, and in other contexts it is called
the tropical semiring.

With a little work one can find in fact that:

3.1.11 Lemma. Two elements in E are equal if and only if they have the same
Euler measure and the same degree. In other words,

E → Z ×D

in injective.

It is easy to characterise the image of this map: it is nearly surjective, ex-
cept in dimension −∞ and 0: for d = −∞ necessarily we have χ = 0, and
for d = 0 necessarily we have χ > 0. Otherwise all values are attained.

With these preparations we see that defining a map from the Burnside
semiring of P0 to E, is equivalent to defining maps χ : P0 → Z and
d : P0 → D. The first is the Euler measure, as defined geometrically, and
the second is the expected geometric notion of dimension: the dimension
of a polyhedral set A is the largest d for which there exists an injective
polyhedral map Id → A, and we set d(∅) = −∞.

Given these two geometrically defined invariants, we have therefore
defined a map from the Burnside of P0 to E, and from the constructions it
is easy to see that it is inverse to the ‘presentation map’ initially given.

So as a corollary of these results we find that:

3.1.12 Corollary. Two bounded polyhedral sets are isomorphic if and only if they
have the same dimension and the same Euler measure.

This may look strange at first, since the dimension only depends on the
highest dimension component. So for example, a solid square plus a point
is isomorphic to the sum of two squares.

[Rough draft, version 2009-08-05 23:56.] [Input file: negative.tex, 2008-03-12 13:32]

74 Aside: Polynomial functors and negative sets

But note that the whole notion of component is sort of out of place,
because there is no continuity involved anywhere.

You might say that the reason the result is true, is that the highest di-
mensional component gives the necessary space to absorb and rearrange
the lower dimensional pieces. For example, starting with a solid square
plus a point, the solid square can split off a half open square × closed
interval, and this new piece in turn is isomorphic to a triangle minus a
vertex. And this vertex we had extra from the beginning, so we get a solid
triangle, which in turn is isomorphic to a solid square. . .

3.1.13 Other models. There are other geometric categories for which the
Euler measure is Z-valued. Schanuel outlines also the examples of the
category of semi-algebraic sets, where instead of generating the geometric
objects by affine inequalities, we use polynomial inequalities. This cate-
gory turns out to have E as Burnside semiring. In this case there is no need
to restrict to bounded sets, because the open interval is semi-algebraically
isomorphic to the open real half-line (t %→ t−1 − 1). Another example is
the category of finitely subanalytic sets, again with Burnside semiring E.

It is also interesting to consider constructible sets: i.e. the boolean closure
of the set of algebraic varieties in Cn. This time the Burnside semiring is
big and complicated, and its Euler measure will not seem to be Z-valued.
However, by dividing out with yet another relation, which is roughly to
force the Fubini theorem to hold, one does get E again. This relation says
that if the fibres of a map A → B have the same measure, then the measure
of B is the product of the measure of A with the measure of the fibre.
(Note that this relation holds already for the Euler measure for the three
categories mentioned above.)

I DON’T REALLY UNDERSTAND THIS. PLEASE READ SCHANUEL,
TO SEE IF YOU UNDERSTAND IT BETTER.

3.2 The geometric series revisited

We saw that the universal family of finite sets parametrises the free monoid
monad M(X) = ∑

∞
n=0 Xn, and we suggested to write it as 1

1−X . Now that
we have negative sets at our disposal, let us make a computation to sup-
port this suggestion. Just like the standard first-year calculus proof, let us

[Rough draft, version 2009-08-05 23:56.] [Input file: negative.tex, 2008-03-12 13:32]

3.2 The geometric series revisited 75

multiply M with the polynomial functor H(X) = 1 − X, and see if we get
something like 1.

Let us first describe the representing family of H: it is the disjoint union
of the trivial family 0 → 1 (which represents the constant polynomial func-
tor 1), and the family → which represents the polynomial −X (it
has exponent 1 and coefficient , hence the family has base and
singleton fibres). Another heuristic argument: evaluate at 1 to get the base
(that’s −1), and evaluate the derivative at 1 to get the top space (that’s also
−1). Putting the two pieces together we see that H is represented by this
family:

"

Now compute M × H by applying the formula for multiplication of
polynomial functors 1.4.2. The base space B of the product M × H is the
product of the bases, so we get

B = N× = ∑
i∈N

= R≥0

Now let us compute the top space: according to the product rule, it is
the sum E = E1 + E2 of two components: the first is E1 = N′ × with
the projection u × id down to N × = R≥0 = B. Here is a picture of
that map:

E1

↓

B = R≥0

The top space can be described as E1 = {(x, i) ∈ R≥0 × N | i < x},
and then the map to the base B = R≥0 is just the projection. We see that
over the first ⊂ R≥0, the fibre is empty, over the next such piece it is
singleton, and so on.

Now the other part of the top space is the base of the first factor times
the top space of the second. That space is just E2 = N× = ∑i∈N =

[Rough draft, version 2009-08-05 23:56.] [Input file: negative.tex, 2008-03-12 13:32]

76 Aside: Polynomial functors and negative sets

R≥0 ! N, the positive reals minus the integer points. The map to the com-
mon base B = R≥0 is just the inclusion (corresponding to the fact that
the family representing R is just the inclusion of the open interval into the
half-open):

E2

↓

B = R≥0

So add this piece to the picture from before, to get something like

E1 + E2

↓

B = R≥0

Hence there is a single empty fibre (over 0 ∈ R≥0). Over the first the
fibre is singleton, over the next half-open interval the fibre is of cardinality
2, and so on. So altogether the polynomial functor is

(M · H)(X) = 1 + ∑
n>0

Xn

This is not precisely the constant polynomial functor as we might have
hoped for, but it is so modulo , and that was in fact all we could rea-
sonably hope for.

Hence we have given a sort of bijective proof of an analytical identity,
by showing that two polynomial functors are isomorphic, up to dimen-
sion reduction. Recall that two polyhedral sets are isomorphic if and only
if they have the same dimension and the same Euler measure. We have
shown that the identity holds up to dimension.

3.2.1 Remark. Note that the base set of the universal family is not a fi-
nite set and that it is not a polyhedral set either. Also, the identification
we made, N × + R≥0 is not an isomorphism of polyhedral sets, it is
merely a bijection of abstract sets.

[Rough draft, version 2009-08-05 23:56.] [Input file: negative.tex, 2008-03-12 13:32]

3.3 Moduli of punctured Riemann spheres 77

3.3 Moduli of punctured Riemann spheres

in this subsection we consider an example which is interesting since it
combines differentiation of polynomial functors with interpretation in terms
of negative sets.

3.3.1 Moduli of punctured Riemann spheres. Let B(n) denote the moduli
space of Riemann spheres with 3 + n labelled punctures, modulo punc-
ture preserving holomorphic isomorphism, and we let r(n) : E(n) → B(n)

denote the universal family. (The standard notation for B(n) in algebraic
geometry is M0,3+n, where the subscript indicates genus 0.) Given a 3-
punctured Riemann sphere, there is a unique isomorphism with CP1 ! {0, 1, ∞},
so clearly B(0) = 1, and the total space of the universal family is just
E(0) : = CP1 ! {0, 1, ∞}. In view of this, we can fix automorphisms once
and for all, and simply take B(n) to be the space of n labelled punctures
in CP1 ! {0, 1, ∞}, without having to mod out by anything else. Hence
simply

B(1) = E(0) = CP1 ! {0, 1, ∞},

and the universal family is the fibred product minus the diagonal:

E(1) = B(1) × B(1) ! ∆,

and in general,

E(n) = B(1) × · · ·× B(1)
︸ ︷︷ ︸

n+1 factors

! all diagonals.

An alternative description, which is the one we shall use, is

E(n) = B(n) ×B(n−1) B(n) ! ∆;

here r(n) : E(n) → B(n) is the projection onto the first factor.

[Rough draft, version 2009-08-05 23:56.] [Input file: negative.tex, 2008-03-12 13:32]

78 Aside: Polynomial functors and negative sets

In summary, we’ve got a tower of maps

· · · ! B(3)

E(2)

*
r(2)

! B(2)

E(1)

*
r(1)

! B(1)

E(0)

*
r(0)

! B(0)

1

**

realconf 3.3.2 Remark. In fact, once we have fixed E(0) as CP1 ! {0, 1, ∞} and only
consider configurations of labelled punctured in here, without dividing
out any further, we might as well take E(0) to be any other space or set,
and the construction is the same: B(n) becomes the set of configurations
of labelled punctures in E(0). One interesting case is to take E(0) to be an
open interval in R.

3.3.3 The polynomial functors corresponding to r(n). Let R(0) denote the
polynomial functor represented by r(0). It is just the monomial

R(0)(X) = XE(0)
.

Now the easy observation is that all the others are precisely the iterated
derivatives of this one! The description of r(n) as a projection from a fibre
product minus the diagonal is exactly the definition of derivative. Hence:

DnR(0) = R(n).

3.3.4 Interpretation in terms of negative sets. We only defined the Euler
measure for bounded polyhedral sets. For the unbounded case, you need
also to assign the value −1 to the open real half-line. If X denotes the open
interval as before, and if we let Y denote the open half line, we have the
relation Y + X + 1 + Y. Schanuel shows that this extra relation gives the
Burnside semiring of P . Now we should only notice that

E(0) = CP1 ! {0, 1, ∞} has Euler measure − 1.

[Rough draft, version 2009-08-05 23:56.] [Input file: negative.tex, 2008-03-12 13:32]

3.3 Moduli of punctured Riemann spheres 79

Intuitively, since the CP1 is compact its Euler measure equals is Euler char-
acteristic, which is 2, and removing three points leaves us with Euler mea-
sure −1. More formally, we are talking about the complex plane minus
two points, and it is easy to cut in into pieces: we get 4 pieces of type
R≥0 ×R≥0, four pieces of type R≥0, and one piece . Hence by additiv-
ity,

χ(E(0)) = 4 − 4 − 1 = −1.

So we can interpret
R(0)(X) = XE(0)

= X−1,

and similarly

R(n)(X) = Dn R(0)(X)

= Dn X−1 = −n!(−X)−n−1.

To do the next one by hand, notice that the fibres of r(1) : E(1) →
B(1) are all Riemann spheres with four punctures, temporarily denoted
F, hence of Euler measure χ(F) = −2. Hence

R(1)(X) = ∑
b∈B(1)

XE(1)
b + B(1) × XF

= −X−2 = D X−1.

3.3.5 The easier, bounded version. As noticed in 3.3.2, we might redefine
all E(n) and B(n) to refer to configurations of labelled punctures in the open
interval. The negative-set interpretations are the same since χ() = −1,
and in fact it is an simpler model for those derivatives of X−1, because we
can stay in the category of bounded polyhedral sets. The choice of punc-
tured Riemann spheres was chosen mainly because the audience were al-
gebraic geometers. However there are a couple of other reasons for the
choice: one is that CP1 ! {0, 1, ∞} can also be viewed as C ! {0, 1}, which
is the generator (the −1) in the category of constructible sets (after quoti-
enting by the Fubini relation)

[Rough draft, version 2009-08-05 23:56.] [Input file: negative.tex, 2008-03-12 13:32]

80 Aside: Polynomial functors and negative sets

[Rough draft, version 2009-08-05 23:56.] [Input file: negative.tex, 2008-03-12 13:32]

Chapter 4

Algebras

4.1 Initial algebras, least fixpoints

4.1.1 P-algebras. Let C be a category and consider an endofunctor P :
C → C . A P-algebra is a pair (A, a) consisting of an object A of C together
with an arrow a : P(A) → A. A morphism of P-algebras from (A, a) to
(B, b) is just an arrow f : A → B such that this square commutes:

P(A)
P(f)! P(B)

A

a
"

f
! B

b
"

This defines the category P-alg of P-algebras. The P-algebras are also
called Lambek algebras for P.

4.1.2 Remark. Note that there are no axioms imposed on the structure
map a : P(A) → A. Now if P happens to be a monad, there is another no-
tion of algebra, Eilenberg-Moore algebras: in that case the structure map
is required to satisfy the associative and unit axioms, amounting to de-
manding (A, a) to be a right P-module (well, a left module, in the current

[Rough draft, version 2009-08-05 23:56.] [Input file: alg.tex, 2008-04-12 22:41]

82 Algebras

backwards right-to-left notation for composition):

PPA
Pa ! PA $ ηA

A

PA

µA
"

a
! A

a
" =

$

In other words, in the case where P is a monad, an Eilenberg-Moore alge-
bra is a Lambek algebra satisfying two extra axioms.

When P is a monad, or if it just has a natural transformation µ : PP ⇒
P, then P(A) is automatically a P-algebra: the structure map is µA : PPA →
PA. If P is a monad, then this is also an Eilenberg-Moore algebra.

The following result (due to Lambek [68]) is very very useful, yet very
easy to prove.

4.1.3 Lemma. (Lambek’s fixpoint lemma.) If (I, η) is an initial object of the cat-
egory of P-algebras, then η is an isomorphism.

Proof. Consider the P-algebra (P(I), P(η)) and the diagram

P(I)
P(u)! P(P(I))

P(η)! P(I)

I

η

"

u
! P(I)

P(η)
"

η
! I.

i
"

The right-hand square is obviously commutative, saying that η is a mor-
phism of P-algebras from (P(I), P(η)) to (I, η). In the left-hand square, u
is the unique P-algebra morphism to (P(I), P(η)) from (I, η); hence by
definition the left-hand square commutes too. Now since (I, η) is ini-
tial, we conclude that η ◦ u is the identity arrow of I. On the other hand,
u ◦ η = P(η) ◦ P(u) = P(η ◦ u) = P(idI) = idP(I); hence u is the inverse to
η. !

4.1.4 Least fixpoints. An object X with an isomorphism P(X) ∼→ X is
called a fixpoint, so the lemma says that an initial algebra is a fixpoint, via
the forgetful functor from P-alg to C . In fact it is the least fixpoint in the
sense that it does not contain any proper subalgebras. Indeed, if I is an

[Rough draft, version 2009-08-05 23:56.] [Input file: alg.tex, 2008-04-12 22:41]

4.1 Initial algebras, least fixpoints 83

initial P-algebra, and X ⊂ I is a subalgebra (more precisely, we are given a
monomorphic P-algebra homomorphism f : X ↪→ I), then since I is initial,
there is a unique P-algebra homomorphism u : I → X, and the composite
map f ◦ η must be the identity map on I. So the monomorphism f has a
section and is therefore an isomorphism.

We will be concerned with the case C = Set . Initial algebras do not
always exist, not even in this case. For example, the functor

Set −→ Set

X %−→ 2X

cannot not have an initial algebra, because in standard set theory it is not
possible to have a bijection between a set and the set of its subsets. Note
however that this functor is not polynomial. The main result of this chap-
ter will be that for polynomial functors P : Set → Set , initial algebras
always exist.

First let us have a look at some examples.

4.1.5 Example. Given a bijection p : E ∼→ B, the corresponding polynomial
functor is P(X) = B × X. Hence a P-algebra is a set X equipped with an
‘action’ B × X → X. A P-algebra homomorphism is a map compatible
with the actions

B × X
B× f! B × A

X
"

f
! Y

"

It is easy to see that ∅ is the initial P-algebra in this case.

4.1.6 Example. Generalising the previous example a little bit: for any sur-
jection E → B, the initial algebra for the corresponding polynomial functor
is ∅. Indeed, P(∅) = ∑b∈B ∅Eb , but all the summands are zero, because
there are no empty fibres. Hence ∅ is a fixpoint, and it is obviously the
least such. (In other words, if there are no nullary operations, then ∅ is the
initial algebra.)

[Rough draft, version 2009-08-05 23:56.] [Input file: alg.tex, 2008-04-12 22:41]

84 Algebras

4.1.7 Example. Consider now the inclusion p : ∅ → B. The corresponding
polynomial functor is the constant functor P(X) = B. A P-algebra is just a
set equipped with a map from B, so the category of P-algebras is just the
coslice category B\Set of objects under B. The initial algebra is B equipped
with the identity map.

Functoriality of least fixpoints

If u : P ⇒ Q is natural transformation, there is induced a functor

u∗ : Q-alg −→ P-alg

[QX → X] %−→ [PX
uX→ QX → X]

Note that this functor is the identity on the underlying sets.
In particular, if WQ denotes a least fixpoint for Q, then u∗WQ is a P-

algebra. If WP is a least fixpoint for P, i.e. an initial P-algebra, then we
have a unique algebra map WP → WQ. This means that the association of
a least fixpoint to a endofunctor is functorial.

4.2 Natural numbers, free monoids

4.2.1 Key example: construction of the natural numbers. Let p : E → B
denote the inclusion of a one-element set into a two-element set—this is
the simplest set map not of the two types treated in the previous examples.
Then the corresponding polynomial functor is the free pointed-set monad,

P(X) = {∗} + X.

The initial algebra for this polynomial functor is N, the set of natural numbers.
This is really the key example to understanding what the notion of initial
algebras is about and what it has to do with induction, so we’ll go through
all the details, from various viewpoints.

4.2.2 Peano-Lawvere axiom for the natural numbers (called Dedekind-
Peano axiom by Lawvere, see for example [72]). We continue with the
polynomial functor P(X) = {∗} + X. A P-algebra is a set X equipped
with a set map {∗} + X → X, in other words, a set X with a distinguished

[Rough draft, version 2009-08-05 23:56.] [Input file: alg.tex, 2008-04-12 22:41]

4.2 Natural numbers, free monoids 85

element x0 ∈ X and an endomorphism s : X → X. So P-algebras are
diagrams {∗} → X → X.

By the definition, an initial P-algebra is a P-algebra {∗} → N σ
→ N

such that for any other P-algebra (X, x0, f) there is a unique ϕ : N → X
making this diagram commute:

N
σ ! N

∗

!

X

ϕ

"

f
!

!
X

ϕ

"
(4.1) Peano-Lawvere

This universal property is precisely the Peano-Lawvere axiom for a nat-
ural number object in a topos. Now we do not want to assume any topos
theory—and we like to wallow in details!—so let us explain this in terms
of the usual Peano axioms for the natural numbers:

4.2.3 Peano’s axioms for the natural numbers. The set of natural numbers
can be characterised as a set N with a distinguished element 0 ∈ N and a
successor function s : N → N satisfying

(i) 0 is not a successor
(ii) every element x /= 0 is a successor
(iii) the successor function is injective.
(iv) If a subset U ⊂ N contains 0 and is stable under the successor

function, then U = N.
Note that (i)+(ii)+(iii) amount to saying that the map

{∗} + N 〈0,s〉! N

is a bijection. The last axiom is called the induction axiom.
(These axioms can be expressed in a more formal way, and in particular

you can avoid using ‘not-equal-to’, but in our context the above formula-
tion should suffice. . .)

4.2.4 Historical remark. These axioms are usually called the Peano ax-
ioms. They were introduced by Giuseppe Peano [88] in 1889, but in fact
they were discovered by Richard Dedekind [31] in 1888 who stated them
as a theorem. Peano explicitly acknowledges that he got the idea from
Dedekind. The Peano-Lawvere axiom is the categorical reformulation of
the axioms, as we shall now see.

[Rough draft, version 2009-08-05 23:56.] [Input file: alg.tex, 2008-04-12 22:41]

86 Algebras

4.2.5 The Peano axioms are equivalent to the Peano-Lawvere axiom (in
Set). Suppose we are given (N, 0, σ) satisfying Peano’s axioms. We need
to define a map ϕ : N → X making the diagram (4.1) commute. For the
triangle to commute we need to set ϕ(0) = x0, and for the square we need

ϕ(σ(n)) = f (ϕ(n)).

(in other words, ϕ(n + 1) = f (ϕ(n))). Now Peano’s axioms allow us to use
these two conditions as definition—it is definition by induction! Indeed, by
the first three axioms there is no contradiction in this definition, because
every element in N is either 0 or the successor of a unique element, so we
are not defining the value on a given element twice. Now the induction
axiom ensures that this method exhausts N.

Conversely, given (N, 0, σ) with the universal property. That is, it is
initial among all diagrams ∗ → X → X. Well, then Lambek’s lemma
tells us that {∗} + N → N is an isomorphism, so this is already Peano’s
first three axioms! The remark about the terminology least fixpoint now
expresses the last Peano axiom.

4.2.6 Finding an initial algebra for the above functor. Given any fixpoint,
i.e. a set S with an isomorphism f : {∗} + S ∼→ S. (I.e., a set satisfying the
first three axioms of Peano.) Then construct a set which satisfies all four
axioms as follows. Define U to be the intersection of all subsets Y ⊂ S
satisfying f (∗) ∈ Y and y ∈ Y ⇒ f (y) ∈ Y. Then (U, ∗, f) satisfies all
Peano’s axioms.

Perhaps we can describe U as the colimit (non-disjoint union)

0 ∪ { f (0)} ∪ { f (f (0))} ∪ . . .

The existence of a set S with S + 1 + S is called the infinity axiom. The
argument shows that the infinity axiom is equivalent to the existence of N.

4.2.7 Specific graphical version. CLEAN UP THIS GRAPHICAL EXAM-
PLE. To be specific, take B = {stop, continue} and map the unique el-
ement of E to continue. MUCH BETTER TO STICK TO THE GRAPHI-
CAL INTERPRETATION THAT WE KNOW AND WHICH WORKS SO
WELL: THE ELEMENT stop IS THE NULLARY DOT, WHEREAS THE
ELEMENT continue IS THE UNARY ONE-DOT OPERATION. THIS GIVES
IMMEDIATELY THE INTERPRETATION WE WANT:

[Rough draft, version 2009-08-05 23:56.] [Input file: alg.tex, 2008-04-12 22:41]

4.2 Natural numbers, free monoids 87

Now picture the empty set as a line. So f (∅) is either stop (the leaf-
less one-dot tree) or continue (unary one-dot tree) followed by stop.
The natural numbers are the union of all these trees, obtained by grafting
on top. In each case there are two possibilities: stop or continue. But
eventually we stop.

These pictures are really pictures of a certain level of repetition of this
endofunctor—here there seems to be four dots, so this element comes
in degree 4. The natural numbers is the colimit (the union) of all these
possibilities. . .

4.2.8 Remark. Given this characterisation of N, one can proceed to show
that N is a monoid, in fact the free monoid on one generator. Now as
such, there is an obvious generalisation to look for, namely the free monoid
generated by any set S.

4.2.9 Constructing the free monoid on a set as an initial algebra. CLEAN
UP HERE!! In order to generate N, the free monoid on one generator 1, as
least fixpoint, we took the polynomial functor represented by the set map
1 → {∗} + 1. To get the free monoid on S, the set map should be

S ↪→ {∗} + S

Indeed, then there is one singleton fibre for each element in S, and in ad-
dition to that, one empty fibre. So the polynomial functor is

FS(X) = 1 + S×X.

4.2.10 Proposition. The set M(S) (the free monoid on S) is a least fixpoint for
the endofunctor FS(X) = 1 + S×X.

Proof. Recall first the definition of M: we have M(S) = S∗ = 1 + S + S2 +
S3 + · · · = ∑n∈N Sn.

An FS-set consists of an ‘action’ S × X → X and a distinguished el-
ement x0 ∈ X, and an FS-map is one compatible with these structures.

[Rough draft, version 2009-08-05 23:56.] [Input file: alg.tex, 2008-04-12 22:41]

88 Algebras

Now first check that the free monoid S∗ is indeed an FS-object: the action
is

S × S∗ −→ S∗

(s, x1 · · · xk) %−→ sx1 · · · xk

and the distinguished element is the empty word 1 ∈ S∗.
To check that S∗ is an initial FS-algebra is equivalent to showing that

the free monoid on S is characterised by some Peano axiom like this: there
is a bijection

1 + (S × S∗) + S∗.

Now suppose K ⊂ S∗ is a subalgebra. Let w be a word which is not in
S∗ and assume it is of minimal length. (It is not the empty word, because
K contains the empty word just by being and FS-algebra.) Now remove
the first letter s, and let w′ be the remainder of the word. Now this word
is in the image of the successor map, namely the image of (s, w′), hence
would have to be in K, hence K = S∗. So S∗ is a least fixpoint.

!

ě

4.2.11 Example. Generalising the natural numbers example a little bit,
consider a pointed set B = {∗} + S (for some set S), with the natural aug-
mentation map

1 −→ B
∗ %−→ ∗

The polynomial functor is

P(X) = ∑
b∈B

XEb = X1 + ∑
s∈S

X0 = S + X.

So P-algebras are diagrams S → X → X. Using Lambek iteration we see
that the initial algebra is

∑
n≥0

S = N× S

Clearly there is an isomorphism S + S × N + S × N—by distributivity
S + S × N + S × (1 + N) and we conclude by our favourite isomorphism

[Rough draft, version 2009-08-05 23:56.] [Input file: alg.tex, 2008-04-12 22:41]

4.3 Tree structures as least fixpoints 89

1 + N + N. The diagram is

S −→ S ×N ! S × N

s %−→ (s, 0) %−→ (s, n + 1)

End of the treatment of the natural numbers. Back to the general situa-
tion.

4.3 Tree structures as least fixpoints
initial

The trees we are going to get in this subsection are quite different from
those used elsewhere in the book. They are trees without boundary. Usu-
ally our trees have input leaves and one output edge, which together form
the boundary. In this section they have neither. We will call them dead trees,
since they have no leaves, or static trees since they represent only nullary
operations (i.e. constants).

4.3.1 Method for constructing the initial algebra. Given an endofunctor
P : Set → Set , suppose it preserves monomorphisms and that it preserves
sequential colimits. Note that all polynomial functors preserve monos (as
a consequence of 1.7.1), and if it is defined by a finite map then it also
preserves sequential colimits (by 1.7.3).

Start with the map i : ∅ ↪→ P(∅). Now take P on that and continue
like this:

P0(∅)
i

↪→ P1(∅)
P(i)
↪→ P2(∅) ↪→ . . .

Since P preserves monos, all these maps are monos, so the colimit is just
the union of all these sets. Now this union is the initial algebra: indeed,
there is an isomorphism

P(∪n≥0Pn(∅)) + ∪n≥0P(Pn(∅)) = ∪n≥0Pn(∅)

This is Peano’s first axiom. For the second we need to argue that no
previous set in the sequence can work. Suppose we have a monomor-
phism X ↪→ ∪Pn(∅) with P(X) + X. Then we can find a section: start
with ∅ → X, then we get P(∅) → P(X) + X, and in the limit we get
∪Pn(∅) → ∪Pn(X) + X. Check that this is a section. . .

[Rough draft, version 2009-08-05 23:56.] [Input file: alg.tex, 2008-04-12 22:41]

90 Algebras

4.3.2 Preview: general transfinite induction. The general case (the state-
ment that every polynomial functor has an initial algebra) goes in the same
way, except that there is no guarantee that the first colimit is a fixpoint! But
then continue to apply the functor again and again and take the colimit of
all that. This may once again not be the fixpoint, but then continue. Even-
tually this will stabilise. Doing this properly requires some nontrivial set
theory, which we briefly review in the end of this section.

4.3.3 Planar binary trees. Consider the map E → B:

{left, right} −→ {stop, continue}
left %−→ continue

right %−→ continue

There is one empty fibre and one fibre of cardinality 2. In other words,
one nullary operation and one binary. Hence the polynomial functor is
P(X) = 1 + X2.

We picture the base set B as consisting of these two operations:

We claim the initial algebra (i.e. the least fixpoint) for this polynomial
functor is the set of planar binary trees.

To compute it, start with P(0): by the graphical approach to polyno-
mial functors, this is the set of all ways of decorating the two bouquets by
elements in the empty set. Since there is precisely one nullary operation,
we have P(0) = { } = 1.

Next, P(1) is just the base set B, by the standard interpretation 1.1.8,
but in this case the singleton 1 is the specific set { } consisting of one
nullary operation, so we are better off keeping within the strictly graphical
interpretation: hence P({ }) is the set of all ways of decorating either
of the two bouquets in B by elements in { }, so the picture of the two
possibilities becomes

We should also describe the map P(0) ↪→ P(1): it is of course just the
inclusion of into P(1) mapping the nullary bouquet into the nullary

[Rough draft, version 2009-08-05 23:56.] [Input file: alg.tex, 2008-04-12 22:41]

4.3 Tree structures as least fixpoints 91

bouquet. Indeed, since the empty set 0 is a subset of P(0), decorating in 0
is a subset of decorating in P(0).

Next, P(B) consists of the nullary operation together with all ways of

decorating the two-leaf bouquet with or This gives 5 possibilities al-
together:

Again the inclusion of B1 into B2 is precisely the one that can be seen in
the drawings: i.e. the two figures in B1 are included in B2 as the same two
figures. (Which is just a sign that the drawing conventions are good. . .)

In the next step we get the 1 + 52 = 26 binary tree of height at most 4,
and next the 1 + 262 = 677 binary trees of height at most 5. Clearly the
conclusion is that the union of all that is the set of all binary planar dead
trees (i.e. without free input leaves).

So the least fixpoint for this polynomial functor is the set of binary pla-
nar dead trees. The planarity comes about because the fibre was {left, right}.
This was sort of cheating or smart, in order to take advantage of the ori-
entation of the paper. More abstractly, the fibre could be any two-element
set, for example {red, blue}, and in that case we would have to specify for
each node which input edge is red and which is blue. It is clear, though,
that we could get an isomorphic set of trees. Hence by abuse of concepts
we say that we get the planar binary trees. But in fact it can often be very
helpful not to be bound to using ordered sets as labels. We shall see later
that more formally we are talking about P-trees.

The equation satisfied by planar binary trees is

X = 1 + X2

which expresses that a planar binary tree is either the trivial tree, or other-
wise a pair of planar binary trees.

Notice how the possible node shapes are precisely listed in the cograph
of the map E → B. (See Lawvere–Rosebrugh [72] for the notion of co-
graph.)

[Rough draft, version 2009-08-05 23:56.] [Input file: alg.tex, 2008-04-12 22:41]

92 Algebras

4.3.4 Planar trees. Start with our favourite map N′ → N, representing the
free monoid endofunctor M,

X %→ ∑
n≥0

Xn

So there is one operation of each arity n, and each is interpreted as a bou-
quet with n inputs. Combining these freely, iterating the operations, we
construct all planar trees (without input leaves). It is easy to see that the
set T of all such planar trees is a fixpoint. This is just to follow the same
construction as we just applied to planar binary trees.

The last observation reveals something I don’t understand: we have an
isomorphism

T + ∑
n≥0

Tn

expressing the characterisation that a tree is a sequence of trees, possibly
the empty sequence. Now, in functional terms: we have the equation T =

1
1−T which we REWRITE (CAREFUL HERE!) as

T = 1 + T2.

This is weird! it seems to be the same equation as for binary trees! Well it is
true that any planar binary tree is a planar tree, and hence it might be an-
other fixpoint for the same functor. . . one of these is the least one. . . when
rewriting, perhaps we did some assumption. . . one equation is perhaps a
factor in the other. . .)

THERE IS SOME PAPER BY D. KNUTH ABOUT TREES=BNINARY-
TREES??? WHERE DID I SEE THIS MENTIONED?

4.3.5 Variations. A very interesting variation of the previous examples it
to consider, for any polynomial functor P the functor 1 + P. The extra con-
stant should be considered the polynomial functor represented by 0 → 1,
so the unique element in 1 is a nullary operation (as always, we consider
fixed sets as sets of nullary operations). Repeating now the colimit con-
struction for 1 + P we get the following least fixpoint: its elements are the
trees built out of the operations in P and the extra nullary operation from
1, and no free leaves are allowed. If we think of the new nullary operation
as a red dot, then we get the same trees as before but with some of the
stopdots coloured red.

[Rough draft, version 2009-08-05 23:56.] [Input file: alg.tex, 2008-04-12 22:41]

4.4 Induction, well-founded trees 93

More generally, if we fix a set A, as always thought of as a set of nullary
operations, then the least fixpoint for A + P is the set of dead trees with
stopdots either in A or in the set of nullary operations of P.

BE EXPLICIT ABOUT THE TWO EXAMPLES, BINARY TREES AND
GENERAL PLANAR TREES.

Continuing with the example of planar binary tree, and the example M
giving all planar trees, we can easily figure out what the least fixpoints are
for A + B or A + M. Let’s just work with A + M.

4.3.6 Least fixpoint for 1 + M: live trees. Let us compute the least fixpointFix(A+M)
for X %→ A + M(X). This is a key example. The constant polynomial
endofunctor with value A is represented by the map ∅ → A, so the set
A is a set of nullary operations. Hence the set of operations of A + M
is the set consisting of the bouquets (one for each natural number) and
then an extra collection of nullary operations, one for each element in A.
Repeating the colimit construction of the least fixpoint, the first step gives
us that (A + M)(∅) is the set of coloured dots: there is one neutral colour
(corresponding to the nullary operation in M) and one dot coloured a for
each element a ∈ A. You immediately see that the least fixpoint is the set
of dead trees, in which each stopdot (nullary node) has a colour.

But in fact, the example A = 1 is the most important. EXPLAIN
WHY WE WANT TO USE THE SEPCIAL-PURPOSE SINGLETON SET
1 = {blank}.

In a moment we are going to let A vary, to construct a left adjoint to the
forgetful functor P-alg → Set .

4.4 Induction, well-founded trees

The free-monoid examples (and N in particular) illustrate the importance
of least fixpoints. We see that the notion of fixpoint for an algebra is a
generalisation of the first three axioms of Peano. Being in addition the least
fixpoint generalises the induction axiom. We shall formalise the analogy
further.

4.4.1 Definition of wellfounded trees. In the category of sets, they are just
trees with the property that there are no infinite paths. This is a stronger
condition than just saying that every node is at finite distance from the
root, in which case the tree as a whole could have infinite height.

[Rough draft, version 2009-08-05 23:56.] [Input file: alg.tex, 2008-04-12 22:41]

94 Algebras

The signature of a tree (also called branching type) is the set of possible
kinds of nodes the tree can have, i.e. what sort of structure is considered
on the input edges of the nodes. For example the kind could be just ’bi-
nary’, or there could be allowed arbitrary finite number of incoming edges
at each node, or various infinities could be allowed. In other words, a sig-
nature is a certain set of bouquets. And in other words, a signature is just
a polynomial functor E → B, where B is the set of bouquets, and the fibre
over each b ∈ B is the set of incoming edges to that node.

Hence a wellfounded tree of signature B is a tree that can be obtained
by grafting together bouquets from B in a finite number of steps (but with-
out bounding this finiteness).

In conclusion, the set of wellfounded trees of signature E → B is pre-
cisely a least fixpoint for the polynomial functor E → B. Or equivalently,
as we shall see in the next section: wellfounded trees of signature E → B
are the operations for the free monad on E → B (CHECK THAT THIS IS
CORRECT, OTHERWISE SOMETHING VERY SIMILAR IS TRUE.)

4.4.2 Induction and wellfoundedness. One way to think of a P-algebra X
is as a set X equipped with a family of operations

(
µb : XEb → X | b ∈ B

)

so in the natural numbers example there was one nullary and one unary
operation.

If the initial algebra for a polynomial functor p : E → B exists it is
denoted W(p), the set of wellfounded trees of signature p. Of course the
set W(p) depends crucially on p, but in the following couple of paragraphs
we hold p fixed and suppress p from the notation, writing W := W(p) for
simplicity. Since W is a P-algebra, for each b ∈ B there is an operation
denoted

supb : WEb → W

Initiality of W means that for any P-algebra X, there is a unique P-algebra
map W → X. In the fibre-wise description this means that for any P-
algebra (µb : XEb → X | b ∈ B) there is a unique map ϕ : W → X such

[Rough draft, version 2009-08-05 23:56.] [Input file: alg.tex, 2008-04-12 22:41]

4.5 Transfinite induction 95

that the diagrams

XEb
µb ! X

WEb

ϕEb

#

supb

! W

ϕ

#

commutes for every b ∈ B. This is to say that for every t : Eb → W we
have

ϕ(sup
b

(t)) = µb(ϕ ◦ t)

This expresses that ϕ is defined by induction: if we already know the val-
ues of ϕ on the image of all t : Eb → W then the equation defines also ϕ on
supb(t).

In intuitive terms, we have all the trees pointed to by the map Eb → W.
Their sup is obtained by gluing all those trees onto the leaves represented
by the elements in Eb. (Every nontrivial tree has a root node and a collec-
tion of all the ideal subtrees given by the input edges of that root node.)

By Lambek’s lemma, P(W) → W is an isomorphism. This means that
each w ∈ W is the image of a unique WEb → W for unique b ∈ B and
unique t : Eb → W. In other words, each w ∈ W is of the form supb(t) for
unique b ∈ B and t : Eb → W.

This is the generalisation of Peano’s first three axioms: for N the state-
ment is that each natural numbers is of the form f (b) for a unique b ∈
{stop, continue} and t : Eb → B—this is just to say that every element is
either 0 or a successor.

As we noted, initiality of W implies that every subalgebra of W must
be W itself. This can be stated like this: if R ⊂ W is such that for every
b ∈ B and every t : Eb → W, whenever the image of t is inside R then
supb(t) is also in R. Then R = W.

4.5 Transfinite induction

THE TRANSFINITE INDUCTION PROOF THAT EVERY POLYNOMIAL
ENDOFUNCTOR HAS AN INITIAL ALGEBRA—look up details in Borceux.

[Rough draft, version 2009-08-05 23:56.] [Input file: alg.tex, 2008-04-12 22:41]

96 Algebras

4.5.1 Ordinals. The ordinals can be characterised as the smallest set with
successor function and supremum. This means that every element has a
successor, and that for every small subset there is a supremum—a smallest
element greater than everybody in the subset. What about the order? Is it
assumed or is it a consequence of the two other structures?

In practice, start with the empty subset of Ord . It must have a supre-
mum which we call 0. Now take the successive successors of 0, to get all
finite ordinals. This is a small set (we will not go into the subtleties of the
technical meaning of the word ‘small’, but let us just promise that count-
able is small) so it has a supremum, which we call ω. Repeat like this, al-
ternating between creating new elements using successor and supremum.
(Note that this will give us two sorts of ordinals: successors and limits).

0, 1, 2, . . . ω, ω + 1, ω + 2, . . . ω·2, ω·2 + 1. . . ω2, . . . ω3, . . . , ωω, . . . ωωω

Remark: The limit of all those ω
. . .

ω

is a famous ordinal called ε0. It
is the first ordinal number that cannot be constructed from smaller ones
by finite additions, multiplications, and exponentiations. It is also the first
ordinal that satisfies the equation x = ωx.

However, the list of ordinals just goes on forever. . .

Every ordinal can be written in a unique way on Cantor normal form,
as a finite sum of smaller and decreasing ordinals:

α = α1 + α2 + · · · + αn with α1 ≥ · · · ≥ αn.

It is a little bit analogous to the obvious fact that every natural number can
be written in base 10, i.e. as a finite sum of . . . 10000, 1000, 100, 10, 1.

For the ordinals smaller than ε0, the necessary ingredients are just 0, ω,
sum, and exponentiation. We use the equation ω0 = 1. For example here
is a certain ordinal on Cantor normal form

ωωω+ωω+ω+1+1 + ωω+1 + ω + ω + 1 + 1 + 1.

Recalling that 1 = ω0 we see that it is just a finite sum of omegas, raised
to different exponents, which in turn are smaller ordinals and therefore
are finite sums of omegas raised to different exponents, and that every
exponentiation terminates with 0 as the most deeply nested exponent.

[Rough draft, version 2009-08-05 23:56.] [Input file: alg.tex, 2008-04-12 22:41]

4.5 Transfinite induction 97

In conclusion, every ordinal smaller than ε0 is represented by a finite
rooted tree: a dot represents a sum, and its children are the summands. In
particular a dot without children is the empty sum 0. Each edge represents
ω, and the subtree sitting on top of the edge represents its exponent. So
for example the tree • represents the empty sum 0. The tree represents

the one-term sum ω0 = 1, the tree represents ωω0
+ ω0 = ω + 1.

The example of normal form given above is represented by the tree

These are non-planar trees, but when converting a tree into a normal-
form ordinal we have to order the children of each node according to the
order of the subtrees. . .

The ordinal ε0 was used by Gentzen [40] to prove the consistency of
arithmetics. (We know by Gödel’s theorem that one cannot prove the
consistency of arithmetics within arithmetics. But by going out to a large
number system Gentzen was able to prove the consistency. His proof uses
induction indexed by ε0. . . somehow indexing all possible expressions of
arithmetics??)

Now being an ordered set, Ord is just a special case of a category,
supremum is just a special case of colimit. Now let C be a cocomplete
category equipped with an endofunctor F : C → C . Then there is a canon-
ical functor Ord → Cat which preserves colimits and sends the successor
function to F.

4.5.2 Finer theory of colimit preservation. We already observed that if
F preserves sequential colimits, then after iterating ω times we stabilise.
More generally let α be an ordinal, then an α-chain in C is a chain indexed
by chains shorter than α. Then there is some sort of notion of preserving
α-colimits, and that will ensure that the iteration stabilises after α.

[Rough draft, version 2009-08-05 23:56.] [Input file: alg.tex, 2008-04-12 22:41]

98 Algebras

Now given a polynomial functor, given by a set map p : E → B. If all
fibres are finite, then P will preserve ω-chains.

If the biggest fibre Eb is of some cardinality w, then there will be a least
ordinal σ dominating w, and then P will preserve σ-sequential colimits.

4.5.3 Theorem. Every polynomial endofunctor has a least fixpoint.

XXXXAnd in fact we do, although we have not yet proved this. If we
assume P preserves sequential colimits (e.g. P is represented by a finite
map) then the least fixpoint is the object

⋃

n∈N

Pn(∅).

This is then U(FP(∅)). So if just we make explicit what its algebra struc-
ture is, then we have discovered the value of FP on ∅. The algebra struc-
ture is the natural isomorphism

P(
⋃

n∈N

Pn(∅)) −→
⋃

n∈N

Pn(∅)

4.5.4 Example. Recall from 4.3.6 that if P is the free-monoid monad Set →
Set then the least fixpoint is the set of dead trees. In other words, F(∅) =
trees. And also that the least fixpoint for A + M is the set of dead trees
some of whose dot-leaves are decorated with elements in A.

In general, this same descriptions holds, and the graphical interpre-
tation is clear: the least fixpoint is the set of all dead P-trees, or closed
P-trees: these are all the trees that can be built from the bouquets repre-
senting the set of operations B, with the condition that there are no open
leaves left. The condition that everything is closed comes from the col-
imit construction: already in the first step we only get contribution from
nullary operations, since these are the only ones that can be decorated in
the empty set. So already here we only get closed stuff, and from here on
we only ever use these as decorations.

We now aim at computing FP(A) for any object A. In a minute we shall
see that the underlying set of FP(A) is a least fixpoint for the endofunctor
X %→ A + PX, so we can compute FP(A) as the union

⋃

n∈N

(A + P)n(∅).

[Rough draft, version 2009-08-05 23:56.] [Input file: alg.tex, 2008-04-12 22:41]

4.6 Free-forgetful 99

Now we can repeat the graphical description: the constant A is given by
the polynomial functor represented by the map ∅ → A, so all the elements
in A must be interpreted as nullary operations. So in the first step in the
colimit construction, computing P(A) we get the union of A with the set
of nullary operations of P. And in the end we get the set of all trees formed
by the operations in P together with the operations in A (all nullary), with
the condition that no leaves are left open.

4.6 Free-forgetful

From now on we let P : Set → Set denote a polynomial functor. Most
of the constructions work for more general endofunctors, but then some
conditions should be put here and there. . .

WE SHOULD RESTRICT ATTENTION TO POLYNOMIAL ENDOFUNC-
TORS

The idea is that the least-fixpoint construction assembles into a functor,
and this functorial construction provides us with better and more dynamic
trees. Namely, with the help of the least-fixpoint construction we get a left
adjoint F to the forgetful functor U : P-alg → C .

This adjoint pair generates a monad T : = U ◦ F : Set → Set the free
monad on P. It has a very explicit description in terms of decorating trees,
and we see that it is in fact a polynomial monad! The types for this poly-
nomial monad are the good dynamic trees.

4.6.1 The free P-algebra functor. The forgetful functor U : P-alg → C hasalg-adj
a left adjoint FP, the free P-algebra functor. This is very general—perhaps
there is a concrete description of it. We will rather assume it exists, and
then slowly discover how it goes.

Suppose C has an initial object ∅. Since FP is a left adjoint it preserves
initial objects, so FP(∅) is an initial algebra, and U(FP(∅)) is a least fix-
point. So if we know the left adjoint, we can use it to compute least fix-
points.

Conversely, we will now assume we know how to construct the least
fixpoint.

4.6.2 Constant endofunctors. Consider now a constant endofunctor X %→
A. Then an A-algebra is just an arrow A → X, and an A-algebra map is

[Rough draft, version 2009-08-05 23:56.] [Input file: alg.tex, 2008-04-12 22:41]

100 Algebras

just a triangle

A

X !

$

Y

!

In other words, the category of A-algebras is naturally identified with the
coslice category A/C . In this case it is clear what the free A-algebra on
an object X is: it is just A + X, assuming that C has sums. Indeed, let us
check the bijection

HomC (X, U(R)) + HomA-alg(A + X, R),

where A → R is an A-algebra and X is an object of C : but to give an
A-map A + X → R is the same as giving just a map X → R.

4.6.3 Translations of P. We fix an endofunctor P : C → C , and study its
translations,

PA := A + P : C −→ C

X %−→ A + PX.

There is a cartesian diagram of forgetful functors

(A+P)-alg ! P-alg

A-alg
"

! C

"

A PA-algebra is an object K with a map A + PK → K. In other words, is a
triple (K, a, s) where K is an object of C , s : P(K) → K gives it P-algebra
structure, and a : A → K gives it A-structure.

4.6.4 Proposition. UP : P-alg has a left adjoint if and only if for every set A,
the polynomial endofunctor A + P has a least fixpoint.

Proof. The category (A+P)-alg is naturally identified with the comma cat-
egory A\P-alg which we now proceed to describe. The result follows from
general facts: !

[Rough draft, version 2009-08-05 23:56.] [Input file: alg.tex, 2008-04-12 22:41]

4.6 Free-forgetful 101

4.6.5 Reminder on comma categories and adjunctions. (See also Mac
Lane [76], Theorem 2 on page 83.) Let G : D → C be a functor, and let
X be an object of C . The comma category X ↓ G is the following. Its objects
are pairs (D, δ) where D is an object of D , and δ : X → GD is an arrow in
C . An arrow from (D′, δ′) to (D, δ) is an arrow α : D′ → D in D such that

X

GD′
Gα

!

δ′
$

GD.

δ

!

An object (IX , ηX) in X ↓ G is initial when for each δ : X → GD there is a
unique α : IX → D such that

X

GIX Gα
!

ηX

$

GD.

δ

!

In other words, the map

D(IX , D) −→ C (X, GD) (4.2)
α %−→ Gα ◦ ηX

is a bijection.
Suppose now that for every object X ∈ C , the comma category X ↓ G

has an initial object (IX , ηX). Then we can construct a functor F : C → D

which is left adjoint to G. On objects, we set F(X) := IX. On arrows, given
φ : X′ → X in C , consider the diagram

X′ φ ! X

GIX′

ηX′

"
! GIX .

ηX

"

Initiality of (IX′ , ηX′) tells us there is a unique arrow ψ : IX′ → IX such that
G(ψ) fits in as the dashed arrow. We define F(φ) := ψ. It is easy to see that

[Rough draft, version 2009-08-05 23:56.] [Input file: alg.tex, 2008-04-12 22:41]

102 Algebras

this makes F into a functor. The diagram now reads

X′ φ ! X

GFX′

ηX′

"

Fφ
! GFX,

ηX

"

showing that the arrows ηX assemble into a natural transformation η :
IdC ⇒ GF. The bijection (4.2) now says that F is left adjoint to G.

Conversely, given a left adjoint F 7 G with unit η, the arguments above
show that the pair (FX, ηX) is an initial object of the comma category X ↓
G.

In conclusion we have proved:

4.6.6 Lemma. A functor G : D → C has a left adjoint if and only if for each
object X ∈ C , the comma category X ↓ G has an initial object. !

To finish the proof of the Proposition, take D = P-alg . It is clear from
the general description of the objects and arrows in A\E that it is naturally
identified with (A+P)-alg , hence the proposition follows.

A few ad hoc arguments: suppose we know (for each X) that WX is the
initial (X + P)-algebra. By the inclusion P ⊂ X + P it is also a P-algebra.
Let us describe explicitly the bijection

P-alg(WX , A) + Set(X, UA).

Given X → UA, that makes A into an X-algebra. Since it is already a
P-algebra, it therefore becomes an X + P-algebra, and since WX is the ini-
tial such, we have a map WX → A. Conversely, given a P-algebra map
WX → A, the fact that WX is an X + P-algebra gives us further a map
X + P(WX) → WX → A, and hence in particular a map X → A.

4.6.7 When P is a monad. We already observed that when P is a monad,
then P(X) is naturally a P-algebra. In that case there is a natural map of
P-algebras F(X) → A(X) (natural in X). Indeed, by adjunction

HomP-alg(FX, PX) + HomC (X, PX),

[Rough draft, version 2009-08-05 23:56.] [Input file: alg.tex, 2008-04-12 22:41]

4.6 Free-forgetful 103

and in here we have ηX : X → PX.
(You might also try to find this map directly by finding a map ∪(A +

P)n(∅) → P(A). In an case you need the unit.

See Theorem 2 on page 311 of Barr & Wells [13].

4.6.8 The functor TP. We now know the value of TP on any set A: it is
the least fixpoint for the functor A + P, and we have described it explicitly
as the set of trees made from the operations in P, together with special
stopdots decorated in A.

Now we vary the set A. We should also indicate what TP does on
arrows: given a set map from ϕ : A → B, the image arrow is simply the
map that sends a trees with A-stopdots to the same tree with B-stopdots,
replacing a stopdot a ∈ A by ϕ(a).

Since we are now varying the decorating set A, we might perhaps
rather think of those variable decorations as empty slots where any set
A can be thrown in. So what is the generic set of trees? Well, that’s just
TP(1), where like in 1.5.3 we think of the label 1 as blank. Since we leave
the input open, we represent it by a dotless line.

Slogan: 1 means blank
So we think of T(1) as the set of trees made out of the operations in P

and one extra operation, which is in fact nullary, but since we are going to
use it for decorations, we prefer to think of it as an open leaf. So there is
no longer any requirement that all leaves are closed. If the original poly-
nomial functor is represented by E → B, denote by B∗ : = T(1), the set
of these generic, dynamic trees. Let E∗ denote the set of such trees with a
marked input leaf, i.e. one of the 1-stopdots singled out.

The conclusion of this whole discussion is

4.6.9 Theorem. TP itself is a polynomial functor, represented by E∗ → B∗.

Indeed, TP applied to a set A is the set of all ways to decorate the
generic trees TP(1) by elements in A. This is the description we found in
the construction of TP, and it is precisely the description of the polynomial
functor E∗ → B∗.

This new polynomial functor TP, the free monad on P: in general there
is no map TP → P. These maps are in one-to-one correspondence with
maps B∗ → B. To have such a map we need extra structure: in fact if P is
a monad then we do precisely have such a map!

[Rough draft, version 2009-08-05 23:56.] [Input file: alg.tex, 2008-04-12 22:41]

104 Algebras

4.6.10 Example. If M : Set → Set is the free-monoid monad. The value
of M on a set X is the set of planar bouquets with leaves decorated in
X. An M-algebra is a set X equipped with a map ∑n∈N Xn → X. The
free M-algebra functor associates to a set X the set of planar trees with
leaves decorated in X. Note that in M(2) there are two different two-leaf
bouquets with leaves decorated in 2: because Eb is a specified set, and we
study maps Eb → X. . . XXXXXXXXXXXX

????This is precisely the polynomial functor represented by E∗ → B∗.

4.6.11 Remark. Important remarks: let U : P-alg → Set denote the forget-
ful functor from the category of Lambek algebras. The category of Lambek
algebras is often denoted (P : Set). If this functor has a left adjoint F then
it is monadic. This means that P-alg is equivalent to the Eilenberg-Moore
category Set T, where T : = U ◦ F. [13, Ch.9,Prop.1]. Furthermore, in this
case T := U ◦ F. is the free monad on P [13, Ch.9,Thm.3].

[Rough draft, version 2009-08-05 23:56.] [Input file: alg.tex, 2008-04-12 22:41]

Chapter 5

Polynomial monads and operads

Ch:I:operads

5.1 Polynomial monads

Cartesian monads

5.1.1 Monads. If C is a category (for example the category of sets), then
there is a category End(C) whose objects are the endofunctors C → C ,
and whose arrows are the natural transformations. The composition oper-
ator ◦ turns End(C) into a (strict) monoidal category; the unit object is the
identity functor IdC . By definition, a monad is a monoid in the monoidal
category (End(C), ◦, IdC), i.e. an endofunctor P : C → C equipped with
natural transformations µ : P ◦ P ⇒ P and η : IdC ⇒ P, satisfying associa-
tivity and the unit law. So a monad is a triple (P, µ, η), but we will often
refer to a monad just by the naming the functor part. In any case we will
use the letters µ and η for the structure maps of any monad, so there is not
much won in referring to them. . .

5.1.2 Cartesian monads. A monad (P, µ, η) is cartesian if P preserves carte-
sian products and if µ and η are cartesian natural transformations. In this
section (and perhaps throughout!) all our monads will be cartesian.

If S and T are two monads defined on the same category C , then a
monad map is a cartesian natural transformation f : S ⇒ T making two
obvious squares commute.

5.1.3 Polynomial monads. Let Poly denote the category of polynomial
functors (in one variable) and their cartesian natural transformations, with

[Rough draft, version 2009-08-05 23:56.] [Input file: operads.tex, 2008-10-05 22:24]

106 Polynomial monads and operads

monoidal structure given by composition of functors. A monoid in here is
called a polynomial monad. In detail, a polynomial monad is a polynomial
functor P : Set → Set equipped with a composition law µ : P ◦ P → P
with unit η : Id → P, satisfying the usual associativity and unit conditions;
the structure maps µ and η should be cartesian natural transformations.

Note that polynomial functors always preserve cartesian squares (cf. 1.7.1).

5.1.4 Graphical interpretation. The composition law is described graph-
ically as an operation of contracting trees (formal compositions of bou-
quets) to bouquets. We shall refer to B as the set of operations. Since we
have a unit, we can furthermore think of E as the set of partial operations,
i.e. operations all of whose inputs except one are fed with a unit.

5.1.5 The set map description of the composition law. It’s about taking a
height-2 tree and producing from it a bouquet (height-1 tree). To require
the map P ◦ P → P to be cartesian means that the fibres match. This means
that this new bouquet must have the same set of leaves as the resulting
height-1 tree. The cartesian condition is that there is a square

P′(B) × E ! E

P(B)
"

! B
"

Here we use the compact differential notation, cf. 1.5.6.

5.1.6 Units. If a polynomial monad P is represented by E → B, then the
unit η : Id ⇒ P is represented by a cartesian square

1
= ! 1

E
"

! B
"

That is, the map 1 → B singles out an element u in B (a distinguished
operation) and the requirement that the morphism be cartesian means that
the fibre over this element is singleton, so the operation u is unary, hence
is represented by a bouquet with only one leaf. That’s just what it means
to have a cartesian morphism Id → P. Now there is furthermore the unit

[Rough draft, version 2009-08-05 23:56.] [Input file: operads.tex, 2008-10-05 22:24]

5.1 Polynomial monads 107

requirement, namely that grafting a big collection of units on any bouquet
and then contracting is the same as doing nothing, and that if you graft
any bouquet b on top of the unit bouquet, then you get b again. For this
reason we draw the unit operation as a single edge without a dot.

5.1.7 Example: the pointed-set monad. The polynomial functor

Set −→ Set

X %−→ 1 + X

has a natural monad structure, just like more generally the functor

X %→ E + X

for some fixed set E. Indeed, the natural maps

X → E + X ← E + E + X

have to be the identity on the variable summand, and on the E-summand
it is given by the unique monoid structure (with respect to +) that exists
on any object. Exercise: this monad is cartesian.

5.1.8 Example:The free-monoid monad. The free-monoid functor

Set −→ Set

X %−→ ∑
n∈N

Xn

has a natural monad structure: the unit ηX : X → M(X) assigns the
one-letter word (x) to each element in X, and the multiplication µX :
M(M(X)) → M(X) takes a word of words and concatenate them into
a single word.

This monad is cartesian: the explicit graphical description makes is
easy to check that µ and η are cartesian. in the case of the free-monoid
monad: M itself has as operations the set of bouquets, and M ◦ M has as
operations the set of two-level trees. The multiplication law µ just con-
tracts inner edges to produce a bouquet from a two-level tree. Since it
does not alter the number of input edges (the fibres), this is a cartesian
map. Similar argument for η.

In contrast, the free-commutative-monoid monad is not cartesian. See
Leinster’s book. We are not so interested in this monad anyway since we
know it is not polynomial. . .

[Rough draft, version 2009-08-05 23:56.] [Input file: operads.tex, 2008-10-05 22:24]

108 Polynomial monads and operads

5.1.9 Example: linear monads. Recall that a linear functor is a polynomial
functor whose representing map is a bijection, and that we might as well
assume it is an identity map. So a linear functor is given by just one set M,
and it is

Set −→ Set

X %−→ M × X

The composite of this functor with itself is then represented by M × M,
and it is easy to see that monad structure on this functor amounts precisely
to monoid structure on the set M. Such linear monads are automatically
cartesian. In conclusion, in the one-variable case, linear monads are just
monoids. We shall see in the many-variable case ?? that linear monads are
just small categories!

5.1.10 Partial composition law viewpoint. (The partial viewpoint for op-
erads is advocated by Markl and Stasheff.) The composition law can be
described in terms of partial operations as a map

B × E → B,

consisting in substituting one operation into one input of another opera-
tion.

The rest of this subsection is devoted to an analysis of the partial-
composition viewpoint.

This viewpoint amounts to grafting only on one leaf. It is equivalent to
the standard substitution because of the existence of units. We can define
an operation by grafting onto only one leaf and then graft the unit on the
remaining leaves. This defines an operation

P × P′ → P

cf. the description we made in Number 1.5.9. To say that this is a cartesian
operation (we have to check that cartesian composition law implies carte-
sian partial composition law, but that should be straightforward). That is
to have a cartesian square

E × E + B × (E ×B E) ! ∆) ! E

B × E
"

! B
"

[Rough draft, version 2009-08-05 23:56.] [Input file: operads.tex, 2008-10-05 22:24]

5.1 Polynomial monads 109

The cartesian condition is that doing this contraction does not change
the set of leaves! The important thing is that the fibre is the set of all leaves
and that this does not change under the composition. This is the cartesian
condition.

b

c

%→ b̃

The picture (and the cartesian condition) indicates that the bouquet is ob-
tained from the two-level tree by contracting dot c back to dot b. However,
this b̃ cannot be the same as b because it has another fibre.

Here is the unit condition in terms of partial composition law: It’s a
morphism 1 → B such that the induced map E → E × B followed by
composition E × B → B is the projection itself:

E
p ! B

E × B

µ

!

η !

This is the expression of the requirement that grafting a single u on top on
any bouquet at any leaf gives back the same bouquet.

The other requirement is that the section 1 → B extends to 1 → E (it
does by the cartesian condition since there is only one point in the fibre
over u) and that this is a section to both the map s : E → 1 (which is
obvious in the one-variable case) and also, as explained, is a section to
E → B → 1. This section induces B → E × B (b %→ 1 × b) and this is a
section to µ. That is, B → E × B → B is the identity map on B.

Exercise. Write out what associativity means in this viewpoint. There
are two equations, corresponding to the fact that the top space over B × E
has two components. One is the condition that it doesn’t matter if you first
graft on leaf e and then on another leaf f . The second condition is that it
doesn’t matter if you first graft g onto a leaf of f , and then graft the result
onto a leaf of e, of if you first graft f onto e, and then graft g onto one of
the leaves of f .

[Rough draft, version 2009-08-05 23:56.] [Input file: operads.tex, 2008-10-05 22:24]

110 Polynomial monads and operads

The first condition should amount to saying that some differential op-
erator P∂2 is symmetric. The second condition is a differential equation
looking something like

P∂(P∂(P)) → P∂(P) = (P∂P)∂P → (P)∂P

I haven’t yet figured out precisely what it is. . .

The free monad on a polynomial endofunctor (one variable)

5.1.11 P-trees. Let P denote a polynomial endofunctor given by E → B.
We define a P-tree to be a tree whose nodes are decorated in B, and with
the additional structure of a bijection for each node n (with decoration b)
between the set of input edges of n and the fibre Eb.

Another description is useful: a B-tree is a tree with node set N, and
node-with-marked-input-edge set N′, together with a diagram

N′ ! N

E
"

! B

β
"

Then the β expresses the decorations, and the cartesian square encodes the
bijections. As we saw when constructing them, the P-trees are obtained by
freely grafting elements of B onto the leaves of elements of B, and formally
adding a dotless tree. (We shall formalise this in 12.4.1.)

5.1.12 The free monad on a polynomial endofunctor. The adjunction

P-Set

Set

FP

#
7 U

"

described in 4.6.1 generates a monad TP := U ◦ F : Set → Set . It is the free
monad on P. We will denote it P. We already described it: it sends a set X
to the set of P-trees with leaves decorated in X. Hence it is represented by
the map tr′(P) → tr(P) where tr(P) is the set of P-trees, and tr′(P) is the
set of P-trees with one leaf marked.

[Rough draft, version 2009-08-05 23:56.] [Input file: operads.tex, 2008-10-05 22:24]

5.1 Polynomial monads 111

The monad structure of P is described explicitly in terms of grafting of
trees. In a partial-composition description, the composition law is

tr(P) × tr′(P) → tr(P)

consisting in grafting a tree onto the specified input leaf of another tree.
The unit is given by 1 → tr(P) singling out the dotless tree.

A better description: nodes are decorated in B, and the additional
structure of a bijection between the set of input edges of node n with dec-
oration b and the fibre Eb.

5.1.13 Lemma. The free monad on a polynomial functor is cartesian.

Proof. We must show that µ : P ◦ P → P and η : Id → P are cartesian. let
us start with η since it is the easiest: the map 1 → tr(P) singles out the
dotless tree. We need to show that the square

tr′(P) ! tr(P)

1

#

! 1

#

is cartesian, but this is true because the dotless tree has precisely one leaf.
We will apply the same argument to the composition map: intuitively,

the reason the composition is cartesian is that a two-level tree and the one-
level tree obtained by the composition map has the same number of leaves
(and the same decorations). (Note that this is the same argument as for the
unit, where we observed that both had a singleton fibre).

But let us work through the involved sets: the base set for the compos-
ite polynomial functor is p∗(E × B), which we identified as the set of trees
whose leaves are decorated by trees. This is the same thing as a tree with
a cross section. (Note that in this interpretation we are implicitly using the
fact that we have units: a cross section might cross a leaf, in which case we
need to interpret the upper part of that leaf as dotless tree, which we can
do because we have formally added the dotless trees.) The top set of P ◦ P
is the set of trees with a cross section and one leaf marked. The compo-
sition map consists in forgetting the cross section. Clearly this operation
does not change the number or decoration of the leaves, so we see that
fibres for q and p are in natural bijection. That’s all. !

[Rough draft, version 2009-08-05 23:56.] [Input file: operads.tex, 2008-10-05 22:24]

112 Polynomial monads and operads

I wanted to understand the cartesian condition also in the partial sub-
stitution viewpoint. . .

5.1.14 Alternative fixpoint construction. There is an alternative descrip-
tion of the free monad, which we briefly mention: I HAVE NOT YET
FIGURED OUT THE RELATIONSHIP BETWEEN THE TWO FIXPOINT
CONSTRUCTIONS. The free monad is a least fixpoint for the functor

Γ := ΓP : Polyc −→ Polyc

Q %−→ Id + P ◦ Q.

Let ∅ denote the constant polynomial functor on the empty set (it is given
by ∅ → ∅). One can check that Γ preserves monos, hence there is a se-
quence of monos

∅ ↪→ Γ(∅) ↪→ Γ2(∅) ↪→ . . .

If P is finitary (i.e., p : E → B is a finite map—this is the case in most our
examples) then it preserves such sequential colimits, and the least fixpoint
can be constructed as

P =
⋃

n≥0
Γn(∅).

The equation satisfied by P,

P = Id + P ◦ P,

expresses the recursive characterisation of trees: a tree is either a dotless
tree or a finite set of trees.

Otherwise we need transfinite induction. . .

Examples

5.1.15 Example. The free-monoid monad is not a free monad on anything.

5.1.16 Example. (The pointed-set monad.) The pointed-set monad is the
free monad on the constant polynomial functor X %→ 1. The functor X %→ 1
is represented by the set map

{ } { }

[Rough draft, version 2009-08-05 23:56.] [Input file: operads.tex, 2008-10-05 22:24]

5.1 Polynomial monads 113

The free monad on this is represented by

∗{ }
,

{ }

X %→ 1 + X

the pointed-set monad.

5.1.17 Example. Similarly, for a fixed set S, we can consider the constant
polynomial functor X %→ S. The free monad on this one is

X %→ S + X.

A special case of this situation is the constant polynomial functor X %→ ∅.
It generates the identity monad X %→ X.

5.1.18 Example. The free monad on id : Set → Set , is the free N-action
monad X %→ N × X. (Its Eilenberg-Moore algebras are the N-sets, i.e. set
with an N-action.)

5.1.19 Example. Construct the free monad on 2 → 1. It is going to be the
monad whose operations are the binary trees.

(Note that if we don’t include a nullary operation, then after the first
iteration we have only the dotless tree as operation. Then in the next step
we get only the binary bouquet, plus the dotless tree. And then we can
graft these onto the binary bouquet, and in the end we get all binary trees
(planar) but not levelled. If we include a nullary operation, then we also
allow stopdots in the otherwise binary trees. . .)

No it seems we don’t get levelled trees. The reason is that in each step
of the iteration, the base bouquet is from the original P. This means in a
sense that every tree is obtained only with one parenthesisation, namely
so-to-speak with all the parentheses near the root,

5.1.20 The free monad on M: planar trees. The really interesting example
to work out is of course when we start with M, the free-monoid monad.

[Rough draft, version 2009-08-05 23:56.] [Input file: operads.tex, 2008-10-05 22:24]

114 Polynomial monads and operads

The first iteration is about the composite M ◦ 0. The operations for
this composite endofunctor is the set of ways to decorate bouquets in ∅.
Only the nullary operation survives as operation generated in this way,
and then we add the dotless tree, to account for adding Id. Now we have a
polynomial endofunctor T with two operations: the stopdot and the dot-
less tree.

In next iteration we compute M ◦ T: its operations are obtained by
decorating bouquets with the dotless tree or the stopdot. We get

. . .

and then add the dotless tree again.
And so on. It is clear that in the limit we get exactly the planar rooted

trees with boundary. These are M-trees.
Planarity is just one way to encode that for each node there is a speci-

fied bijection between the input edges and the corresponding fibre of the
map N′ → N.

5.2 Classical definition of operads

An operad (more precisely, a non-symmetric or planar operad) consists of a
sequence of sets (An | n ∈ N) equipped with a many-in/one-out compo-
sition law: for each n, k1, . . . , kn (natural numbers) a map

An × Ak1 × · · ·× Akn −→ Ak1+···+kn

(b; a1, . . . , an) %−→ b ◦ (a1, . . . , an)

and a specified identity operation 1 ∈ A1 satisfying associativity and unit
axioms:

(
b ◦ (a1, . . . , an)

)
◦ (a1,1, . . . , a1,m1 , a2,1, . . . , a2,m2 , . . . , . . . an,1, . . . , an,mn)

= b ◦
(
a1 ◦ (a1,1, . . . , a1,m1), . . . , an ◦ (an,1, . . . , an,mn)

)

1 ◦ a = a and b ◦ (1, . . . , 1) = b.

[Rough draft, version 2009-08-05 23:56.] [Input file: operads.tex, 2008-10-05 22:24]

5.3 The monoidal category of collections 115

The elements of An are called n-ary operations.

We picture an element b ∈ An as a bouquet with n input leaves (and
label the dot with the name of the element). The composition law then
consists in grafting the sequence of operations (a1, . . . , an) onto the leaves.
Note that these ai form an ordered sequence, so in order to know which
leaf we are grafting each of them onto, we need to require that the drawing
is planar, in contrast to our convention for the bouquets for polynomial
functors.

With the graphical interpretation, composition and the associativity ax-
iom are much easier to understand: given a bottom operation b with n
leaves, and n operations a1, . . . , an, and for each input leaf of each of these
another operation ai,j, then it doesn’t matter whether we first graft the ai
onto b, and then finally graft the long list of ai,j onto the union of all the
leaves of the ai, OR if we first take each ai and fill all its leaves with the
operations ai,1, . . . , ai,mi and then graft the resulting n trees on top of b.

A morphism of operads, say from A to B, is a sequence of maps f =
(fn : An → Bn | n ∈ N) such that and f1(1) = 1, and fk1+···+kn(b ◦
(a1, . . . , an)) = fn(b) ◦ (fk1(a1), . . . , fkn(an)). (Here is it understood that
ai ∈ Pki

.)

5.2.1 Partial composition laws. Since we have a unit, we can make sense
of partial composition laws: there are k partial composition laws

An × Ak −→ An−1+k

(b; a) %−→ b ◦i a

consisting in grafting a onto the ith leaf of b and grafting units onto the
remaining n − 1 leaves.

WRITE THE AXIOMS FOR THIS VIEWPOINT

5.3 The monoidal category of collections

By a collection we mean a N-graded set, i.e. a set A equipped with a map to
N. Hence we can write

A = ∑
n∈N

An.

[Rough draft, version 2009-08-05 23:56.] [Input file: operads.tex, 2008-10-05 22:24]

116 Polynomial monads and operads

A map of collections is just a set map compatible with the grading, i.e. a
morphism in the slice category Set/N. In other words, the category of
collections is

Coll := Set/N.

A collection is just like an operad but without the extra structure of the
composition law and the unit law. So we will still think of the elements
of An as n-ary operations, and we picture them as planar bouquets with n
input leaves.

We now construct the substitutional tensor product of collections. It is
non-symmetric. Namely given two collections A and B, we define a set
B ⊗ A as the set of all ways of sticking operations from A into operations
in B

AGREE ON A CONVENTION FOR COMPOSITION! SHOULD WE
USE CONVENTIONAL ◦ NOTATION? the convention is currently dic-
tated by compatibility with composition of endofunctors, written in stan-
dard ◦ backwards notation.

Since the inputs of an element in B are ordered, and there are n of them
for some n ∈ N, we need a list of n elements from A. Altogether we have

Bn × An

We do this for each n ∈ N, so the total set of B ⊗ A is

B ⊗ A := ∑
n∈N

Bn × An.

Now we need to specify how this set is N-graded, i.e. give it structure of a
collection. The idea is that the degree is the total number of input leaves.
In other words,

deg(b; a1, . . . , an) :=
n

∑
i=1

deg(ai)

So if we want to describe the set B ⊗ A degree-wise, the degree-n piece is
given by the formula

∑
d∈N

∑
i

Bd × Ai1 × Ai2 × · · ·× Aid

[Rough draft, version 2009-08-05 23:56.] [Input file: operads.tex, 2008-10-05 22:24]

5.3 The monoidal category of collections 117

the inner sum is over all ordered partitions of the integer n into d parts,

i1 + . . . id = n

Check the axioms for a monoidal category. To see that it is unital is
not so bad: the collection 1 → N (which picks the one-element in N) is a
unit. Indeed, this collection has only one operation, and it is of degree 1,
so the ugly sums reduce to a single term. In the graphical viewpoint this is
easy to see: for each b ∈ Bn there is precisely one way to graft the unique
operation of 1 onto the leaves of b, so 1 ⊗ B = B. Conversely, if we want
to graft all possible operations of A onto the unique operation of 1, we get
A again.

5.3.1 M-collections. Collections take sequences of elements as input. For
this reason we can formulate the notions in terms of the free-monoid monad,
and it becomes much easier to handle. So the notion of collection is really
M-collection, and later on we shall see how any cartesian monad P (and
polynomial ones in particular) gives rise to a notion of P-collection and
P-operad (generalised operad).

If A and B are collections, the substitutional tensor product is defined
as

B ⊗ A := B ×N M(A) = ∑
n∈N

Bn × An.

The map M(A) → N is simply M(A) → M(1) = N, obtained by taking
M on the unique map to the singleton set. The fibre-product condition
simply says that we take an n-tuple of elements in A when B is of arity n.
The unit is 1 → N, which is precisely η1, the unit for the monad M.

The degree map from B ×N M(A) to N is not just the map via the fibre
condition (that would amount to letting the tensor product always have
the same degree as its second factor). It is defined using the monad struc-
ture on M. Namely first project onto M(A), then take the map M on the
structure map A → N = M(1); this gives M(A) → M(M(1)) and then
apply the multiplication map µ1, which is nothing but addition in N. This
degree map agrees with the original description of the degree: from the
sequence of elements in A we first get a sequence of natural numbers, and
then we add them. (So the degree is the total number of leaves of the
operations listed.)

Now it is easy to check the unit law: note that in order to check that
1 ×N M(A) is isomorphic to A, we use the cartesian condition on η: we

[Rough draft, version 2009-08-05 23:56.] [Input file: operads.tex, 2008-10-05 22:24]

118 Polynomial monads and operads

have

A ! 1

M(A)
"

! M(1)
"

(So on one side of the unit axiom verification, we used only monoid struc-
ture on N, not the general multiplication map of M. On the other side we
used that η is cartesian.)

Now verify the associativity.
All this is just an easy case of Burroni’s construction.

5.3.2 Proposition. An operad is the same thing as a monoid in (Coll,⊗, 1).

5.3.3 M-operads. The operads we have considered are really M-operads.
They can also be described as collections X/N equipped with an action

X ×N M(X) → X

which must be associative and unital.

5.4 Finitary polynomial functors and collections

Definition. A map p : E → B is called finite if every fibre is finite. A poly-
nomial functor is called finitary if represented by a finite map. Let FinPoly
denote the category of finitary polynomial functors and cartesian natural
transformations.

Let P be a finitary polynomial functor, represented by the finite map
p : E → B. Then the classifying map (1.3.2)

B −→ N

b %−→ |Eb|

gives us already a collection. Clearly this is functorial and gives us a func-
tor FinPoly → Coll .

[Rough draft, version 2009-08-05 23:56.] [Input file: operads.tex, 2008-10-05 22:24]

5.4 Finitary polynomial functors and collections 119

In the other direction there is also an obvious functor: given a collection
B/N we can form the pullback square

N′ ×N B ! B

N′
"

! N
"

(5.1) polyfromcoll

the the top row represents a polynomial functor (clearly finitary).
If we start with a collection, constructs a finitary polynomial functor,

then the classifying map is exactly the collection we started with. If we
start with a finitary polynomial functor, and consider the polynomial func-
tors constructed from the classifying map, then it is clear that we get some-
thing isomorphic. It is an easy mistake to make to think that this pair
of functors constitute an equivalence of categories between FinPoly and
Coll . But it is certainly not an equivalence: closer inspection reveals that
the functor FinPoly → Coll is not even faithful. Indeed, the finitary poly-
nomial functor M is clearly sent to the terminal collection N/N but M has
many automorphisms!

(The situation is similar to the case of a functor from a nontrivial group
G (considered as a one-object category) to the terminal category. There is
an obvious (in fact unique) functor in the opposite direction, but clearly
this is not an equivalence.)

The issue is that although the classifying map is uniquely given, its
extension to a cartesian square

E ! B

N′
"

! N

κ

"

is not unique, as we have already observed (2.1.9).
So every finitary polynomial functor admits a cartesian map to the free-

monoid monad M, but this map is not unique so M is not a terminal object
in Polyc.

In order to get an equivalence of categories, we need to retain more
information in the passage from collection to polynomial functor: instead

[Rough draft, version 2009-08-05 23:56.] [Input file: operads.tex, 2008-10-05 22:24]

120 Polynomial monads and operads

of just returning the top row of the diagram (5.1) we retain the whole dia-
gram, so as to land in the category Polyc/M of polynomial functors over
M (necessarily finitary since M is).

This functor is an equivalence.

5.4.1 Proposition. The two functors just described constitute an equivalence of
categories

Polyc/M + Coll.

We will now show that this is furthermore an equivalence of monoidal
categories, where the monoidal structure on Polyc/M is composition, and
on Coll the substitutional tensor product for collections. Thereby we also
establish an equivalence of categories between monads over M and oper-
ads.

Equivalence of monoidal categories

MENTION CLUBS, AND REFER TO [58]
Let us look at polynomial functors with a specified cartesian map to M

(the free-monoid endofunctor, represented by N′ → N). (Note that having
such a cartesian map implies that P is finitary.)

The category of polynomial functors with a (cartesian) morphism to
M is monoidal: given P → M and Q → M, their composite P ◦ Q has a
canonical map to M using the monad structure on M: namely

P ◦ Q → M ◦ M
µ
→ M

The unit is he identity endofunctor with structure map η : Id ⇒ M (the
unit for the monad M).

Note that P ◦ Q ⇒ M ◦ M is a cartesian natural transformations: it
is the horizontal composite of two cartesian natural transformations, and
since all the involved functors preserve pullbacks, this is again a cartesian
natural transformation. Cf. 2.5.2.

5.4.2 Proposition. There is an equivalence of monoidal categories between the
category (Polyc/M, ◦, id) and the category of collections (Coll,⊗, 1).

We already established the equivalence of categories. . . Now use the no-
tion of M-collection to see easily that this equivalence is monoidal.

[Rough draft, version 2009-08-05 23:56.] [Input file: operads.tex, 2008-10-05 22:24]

5.5 The free operad on a collection 121

(Note that the terminal object in the first category is M, corresponding
to the terminal collection N → N. A terminal object in a monoidal category
always carries a unique monoid structure: the polynomial functor M is in
fact a monad, and the terminal collection is in fact an operad.)

Note that a monoid in the monoidal category Polyc/M is the same as
an object in the slice category PolyMnd /M. These in turn by the Proposi-
tion correspond to monoids in Coll and these are precisely the operads:

Mmonad=operad 5.4.3 Corollary. There is an equivalence of categories

PolyMnd/M + Opd.

There is also the forgetful functor Polyc/M → Polyc. Composing with
the equivalence Coll → Polyc/M we get a functor Coll → Polyc: it is
simply the map that takes a collection B → N, and returns the polynomial
functor N′ ×N B → B (the pullback of the universal family).

5.5 The free operad on a collection

5.5.1 The free-operad monad. The forgetful functor from Opd to Collfree-operad
has a left adjoint F, which to any collection associates the operad obtained
by freely combining all the operations in all possible ways, and formally
adding a unit (a dotless tree). So the free operad on A is the set T of trees
with each node of degree n decorated by an element in An. The grading of
T is given by the number of leaves.

It is just the general construction of the free monoid on an object in a
monoidal category. This might not always exist, but it does in this case
since it is just the free monad on a polynomial functor.

We will later come to polynomial functors in many variables. An im-
portant example are polynomial functors in countably many variables:
these are functors Set/N → Set/N, and we shall see that the free-operad
endofunctor on Set/N (which is a monad since it was generated by an
adjunction) is polynomial.

[Rough draft, version 2009-08-05 23:56.] [Input file: operads.tex, 2008-10-05 22:24]

122 Polynomial monads and operads

constellations 5.5.2 Example. We have now understood the free-operad monad F : Coll →
Coll . Now we can study its Lambek algebras. So define a F-collection to
be a collection X/N equipped with a map of collections FX → X. Now it
turns out the forgetful functor F-Coll → Coll has a left adjoint C, the free
F-collection on a collection.

Figure out what it is. We already observed that the free operad on a
collection is the collection of planar trees built from the operations of the
original collection. Figure out that the free F-collection on a collection X is
the set of X-trees with circles! I.e. planar constellations.

Thinking of F(1) as being given by a set of planar bouquets, C(1) is
the set of trees of trees. These are planar constellations. I.e. circles set in
planar trees. Since F is a monad, there is for each collection X a natural
map of collections C(X) → F(X). In particular, for the terminal collection
1: a map associating to a constellation a tree: it is just to erase the circles.

5.6 P-operads

See Leinster [75] Section 4.2.

The constructions and results of the previous section work with any
polynomial monad in the place of M, giving rise to notions of P-collection
and P-operad. We shall not go too much into detail here, leaving a more
thorough treatment to the many-variable case in Chapter 13.

Let P : Set → Set be a polynomial functor, represented by E → B. The
category of polynomial functors over P, denoted Polyc/P, is naturally a
monoidal category under composition: the composite of X → P and Y →
P is the composite endofunctor X ◦ Y equipped with a map to P defined
by X ◦ Y → P ◦ P → P (cartesian by 2.5.2). The unit for the monoidal
structure is the identity functor, equipped with structure map η : Id ⇒ P.

Define the category of P-collections as Coll = Set/P(1). Thereby there
is induced a tensor product of P-collections: it is not difficult to check
that this tensor product is given by B ⊗ A : = B ×P(1) P(A). The unit is
η1 : 1 → P(1).

There is an equivalence of monoidal categories

Polyc/P −→ P-Coll

X %−→ X(1)

[Rough draft, version 2009-08-05 23:56.] [Input file: operads.tex, 2008-10-05 22:24]

5.6 P-operads 123

The inverse equivalence takes a P-collection A → P(1) and returns the
polynomial functor represented by E ×B A.

In fact there is no need to use polynomial monads for this to work:
it works with cartesian monads in general. If doing it in this generality,
we should just notice that if P is polynomial, then all the P-collections
correspond to polynomial functors again. (Recall from 2.5.1 that any func-
tor with a cartesian natural transformation into a polynomial one is again
polynomial.

Next, since equivalent monoidal categories have equivalent categories
of monoids, we see that polynomial monads over P correspond to P-operads
(we define P-operads in this way). This is a very well-known and basic
result. The only novelty is that if P is a polynomial monad, then all P-
operads are ‘polynomial’. In particular the free P-operad is the same thing
as the free monad over P:

PolyMnd /P P-Opd

Polyc/P

#
7

"
+ Set/P1.

#
7

"

NOT SURE WHAT I MEANT HERE:
In fact we have an equivalence of categories between P-alg and the category of al-

gebras for the free operad on the terminal collection. The free operad on the terminal
collection is just T1 → P1. Its algebras are understood to be the Eilenberg-Moore alge-
bras for the corresponding monad which is none other than T.

But we know that there is a canonical equivalence of categories (the Eilenberg-Moore
comparison functor)

P-alg Φ! Set T

Cf. comments earlier in the text, quoting [13, Ch.9].

[Rough draft, version 2009-08-05 23:56.] [Input file: operads.tex, 2008-10-05 22:24]

124 Polynomial monads and operads

[Rough draft, version 2009-08-05 23:56.] [Input file: operads.tex, 2008-10-05 22:24]

Chapter 6

[Polynomial functors in computer
science]

ch:computing
The category of sets is not a good model for type theory and computer
science. They rather like to work in some constructive setting like for ex-
ample the effective topos, a topos with the feature that every function is
recursive. Type theory takes place in a locally cartesian closed category. . .

PERHAPS THIS WHOLE CHAPTER SHOULD BE MOVED TO THE
MANY-VARIABLE PART

Copy from Manes–Arbib [79].

Cf. Dybjer, Abbott, Altenkirch, etc.
Abbott, Categories of containers [1], Abbott–Altenkirch–Ghani [2], [3],

[4], Abbott–Altenkirch–Ghani–McBride [5], [6], Altenkirch–Morris [8]

6.1 Data types

6.1.1 Type polymorphism. The standard example of a polymorphic data
type is list, which is the generic notion which can be instantiated to
lists of integers, lists of booleans, lists of pairs of integers, lists of lists of
integers, etc. From a categorical viewpoint, the list constructor is a functor

Type → Type ,

[Rough draft, version 2009-08-05 23:56.] [Input file: computing.tex, 2009-08-05 14:04]

126 [Polynomial functors in computer science]

associating to a given data type, the new data type of lists of the given
type. More generally, polymorphic data types are endofunctors of Type .
Here, for the sake of simpification, we will pretend that the category Type
is the category of sets.

The operations that can be applied to polymorphic data types inde-
pendently of their instantiation, called polymorphic functions, are precisely
natural transformation.

An example of a polymorphic data type is the type constructor 5-tuple
(i.e. list of length 5): it makes sense for any given type. Another example is
4-tuple. An example of a polymorphic function is the operation of trun-
cating a 5-tuple to a 4-tuple by discarding the last element in the 5-tuple.
Clearly this operation makes sense independently of what it is a 5-tuple
of.

An example of an operation which is not polymorphic function is trans-
forming a 4-tuple into a 5-tuple by appending a zero. This function only
makes sense for 4-tuples of something where zero makes sense, like 4-
tuples of integers. It does not a priori make sense for 4-tuples of fruits: if
you append a zero to a 4-tuple of fruits you do not get a 5-tuple or fruits.
Another example of a function that it not polymorphic is the operation of
sorting a list of integers according to size. Of course, just as in the previous
non-example, this does not make sense for all base types, but furthermore
the operation is not independent of the data.

Let us pretend that types are sets. Then the data type constructor 5-
tuple is the functor

Set −→ Set

X %−→ X5

Similarly, the 4-tuple constructor is X %→ X4. The truncate function should
now be a natural transformation from X5 to X4. Clearly it’s component
at X is just projecting away the last factor of the five-fold product. We
can find the polynomial representation of this polymorphic function: the
type 5-tuple is represented by the polynomial (map of sets) 5 → 1 and
4-tuple is represented by the map 4 → 1. The natural inclusion

4 ↪→ 5

(omitting the last element in 5) represents the natural transformation which
is therefore of representable type. Note that this natural transformation is

[Rough draft, version 2009-08-05 23:56.] [Input file: computing.tex, 2009-08-05 14:04]

6.1 Data types 127

not cartesian. So in data type theory, it is important not to restrict attention
to cartesian natural transformations.

6.1.2 Historical remarks. Notions of type polymorphism and type con-
structors go back at least 40 years, Strachey [99] (subsequent milestones
include Girard [42] and Reynolds [94]) and is now a built-in feature of
many modern programming languages such as ML and Haskell.

The idea of containers, whose prehistory is also rather long, is that most
interesting polymorphic data types, inductive types in particular, can be
analysed in terms of their shape: such types are given by a ‘set’ of shapes
A, and for each a ∈ A a ‘set’ Ba of positions of shape a. For example, the
list type has N as set of shapes (the shape of a list is just its length), and for
each n ∈ N the set of positions is n = {0, 1, . . . , n − 1}. Instantiating in a
set X amounts to mapping the positions into X, hence the functor is

X %→ ∑
n∈N

Xn .

6.1.3 Append. An important operation on a list consists in appending
some element to it. In other words, given a list and an extra element (of
the same type), you can build a new list, one longer than the original, by
putting the extra element at the end of the list. More formally, for a fixed
type X, the list and the extra element together is an element in

L(X) × X

and we want to get from this an element in L(X). So we are speaking
about a natural transformation

L × Id ⇒ L.

Now L is represented by the map N′ → N as usual. On the other hand,
L × Id is represented by N′ + N → N (by the rule for the product of two
polynomial functors). The natural transformation is given by

L × Id : N′ + N ! N

L : N′

g
"

! N

+1
"

[Rough draft, version 2009-08-05 23:56.] [Input file: computing.tex, 2009-08-05 14:04]

128 [Polynomial functors in computer science]

The fact that the base map is +1 simply says that the list becomes one
longer than the original list. The other map g is where we specify how
this prolongation is done: to define the map N′ + N → N′ we need on the
first summand to send (n, i) to some (n + 1, j) (in order for the diagram to
commute). There are two ways of defining j uniformly: we can take j := i
or we can take j := i + 1. Since we want the square to be cartesian, we need
to have bijection on the fibres, so if we choose j := i, then on the summand
N → N′ we must send the unique point n ∈ N to (n, n − 1) ∈ N′, the
unique point over n not hit by the first summand. Here is a picture of this
way of fitting N′ + N into N′, with the images of the elements of N drawn
as white dots and the images of the elements of N′ drawn as black dots:

N′ + N

↓

N 0 1 2 3 4

On the other hand, if we choose j : = i + 1 then the second summand
should always map to the bottom, i.e. N → N′ mapping n to (0, n). Here is
a drawing of this way of fitting N′ + N into N′:

N′ + N

↓

N 0 1 2 3 4

These two options correspond to the the two different natural trans-
formations: prepending and appending. So we find that both of these
polymorphic functions are cartesian natural transformations.

6.1.4 Concatenation. Given two lists W1 and W2, we can obtain a single
list by concatenation. If W1 has length n1 and W2 has length n2, then the
result will have length n1 + n2. Formally we are describing a natural trans-
formation from

L × L ⇒ L.

The data type constructor L× L of pairs of lists is represented by the family

N′ × N + N ×N′ −→ N ×N.

[Rough draft, version 2009-08-05 23:56.] [Input file: computing.tex, 2009-08-05 14:04]

6.1 Data types 129

For a fixed size (n1, n2) ∈ N × N of a pair of lists, the fibre is of cardinality
n1 + n2. This is also the size of of the result of the concatenation, so we see
that the natural transformation is going to be cartesian. Hence a cartesian
square

L × L : N′ ×N + N ×N′ ! N ×N

L : N′

g
"

! N

+

"

Again it is the defition of the map g that really pinpoints the transfor-
mation. On the left-hand summand, N′ × N we must map an element
((n1, i1), n2) to some (n1 + n2, j), and since we are talking about an i1 point-
ing into the the first factor, we should put j := i1. On the right-hand sum-
mand, N × N′ we must map an element (n1, (n2, i2)) to some (n1 + n2, j)
and we should now take j := n1 + i2, so as to fill up the fibre.

6.1.5 An example of a zip(?). Consider the data type constructor R of
rectangular arrays of size (p, q) ∈ N × N. (Note that this involves more
than one different type of empty array, e.g. of size (7, 0), (3, 0), or (0, 4).)
As an endofunctor of Set it is represented by

N′ × N′ −→ N× N.

(Note that this is not the product in the category of polynomial functors.)
The zip map takes all the rows of the array and concatenate them into a
single list, so we are describing a natural transformation R ⇒ L. So if the
array is of size (p, q), the resulting list will have length pq. (Note that p
is the number of rows, and each row has length q.) As in the previous
examples, we see that this natural transformation is going to be cartesian.
It is given by

R : N′ ×N′ ! N× N

L : N′

g
"

! N.

×

"

The map g is defined as

g((p, i), (q, j)) = (pq, iq + j).

[Rough draft, version 2009-08-05 23:56.] [Input file: computing.tex, 2009-08-05 14:04]

130 [Polynomial functors in computer science]

Of course we could define another zip, by concatenating all the columns
of the array. It would be defined by g((p, i), (q, j)) = (pq, jp + i).

We may also notice that each of these two natural transformation has
two natural sections. One consists in interpreting a list as a 1-row array;
this is the natural transformation L ⇒ R given by n %→ (1, n) on the base
level, and (n, i) %→ ((1, 0), (n, i)). The other consists in interpreting a list
as a 1-column array; this is the the natural transformation L ⇒ R given by
(n, i) %→ ((n, i), (1, 0)).

6.1.6 Some other operations on lists. Repeat last element (if there is one). So
this operation sends a non-empty list (x0, . . . , xn) to (x0, . . . , xn, xn). We are
dealing with a natural transformation L ⇒ L Since the length incremented
by one (except for the empty list), on the base sets the map is "(n) = n + 1
for n > 0 and "(0) = 0. The whole diagram is

L : N′ ! N

K

s
#

! N

L : N′

d
"

! N

"

"

Here K = {(n, i) ∈ N × N | n /= 0, i ≤ n}, and the map d sends (n, i) to
(n + 1, i), and the other map is

s(n, i) =

{
(n, i) if i < n
(n, i − 1) if i = n

Tail. This operation removes the first element (if there is one). This
shortens the list by one, so the ‘length map’ " : N → N is

N −→ N

n %−→

{
n − 1 if n > 0
0 if n = 0

[Rough draft, version 2009-08-05 23:56.] [Input file: computing.tex, 2009-08-05 14:04]

6.1 Data types 131

The whole diagram is

L : N′ ! N

K

s
#

! N

L : N′

d
"

! N

"

"

In this case K = {(n, i) | 0 < i < n}, and s is the evident embedding
(n, i) %→ (n, i). On the other hand, d(n, i) = (n − 1, i − 1).

Pop. This one is nearly the same: remove the last element if there is
one.

Truncate to length k. This operation sends a list (x0, . . . , xk, . . . , xn) to
(x0, . . . , xk) if n > k, and it does nothing on shorter lists.

L : N′ ! N

K

s
#

! N

L : N′

d
"

! N

"

"

Here "(n) = n if n ≤ k and "(n) = k for n > k. We have K = {(n, i) |
i < n, i < k}, and d(n, i) = ("(n), i). The map s is the evident inclusion
(n, i) %→ (n, i).

Truncate to even length. If the list is of even length, leave it alone; if it is
of odd length, delete the last entry. This transformation is given by

L : N′ ! N

K

s
#

! N

L : N′

d
"

! N

"

"

[Rough draft, version 2009-08-05 23:56.] [Input file: computing.tex, 2009-08-05 14:04]

132 [Polynomial functors in computer science]

where "(2n) = 2n, "(2n + 1) = 2n, and the set K is best understood in
terms of the picture

K

↓

N 0 1 2 3 4 5

The map d is easy to describe in terms of ", and the map s : K → N′

is the evident inclusion. In this example, one might ask where the type
constructor even-length-list appears — it is not the one given by the
middle row. Rather it occurs when image-factorising the cartesian part.

6.1.7 Streams. A stream is an infinite sequence of things. As an endofunc-
tor it is represented by the map

N → 1

Note that this is not a finitary functor.

6.1.8 A natural transformation from non-empty lists to streams. Given
a non-empty list, we can construct a stream by repeating the list over and
over again. So if the list is (a, b, c) the stream will be (a, b, c, a, b, c, a, b, c, . . .).
If the list is of length p, then the nth entry in the stream will be n mod p.
(Here, by n mod p we mean the smallest natural number congruent to
n mod p.) Since L has finite arities whereas S has infinite arity, there can
be no cartesian natural transformation between them. So the natural trans-
formation we are describing will be given by a diagram

L>0 : N′
>0

! N>0

N× N>0

c
#

! N>0

S : N
"

! 1
"

where c is given by c(n, p) = (p , n mod p).

[Rough draft, version 2009-08-05 23:56.] [Input file: computing.tex, 2009-08-05 14:04]

6.1 Data types 133

6.1.9 Repeat to fill. For lists longer than 1024 truncate at this length; for
shorter lists, repeat until reaching length 1024.

L>0 : N′
>0

! N>0

1024× N>0

c
#

! N>0

1024
"

! 1
"

where c is given by c(n, p) = (p , n mod p) for p ≤ 1024, and c(n, p) =
(p, n) for p < 1024.

Shapely types

See also Cockett [27], Moggi et al. [85]

6.1.10 Shapely functors. We discuss the relationship between polynomial
functors and the shapely functors and shapely types of Jay and Cock-
ett [52], [51]. A shapely functor [52] is a pullback-preserving functor F :
E m → E n equipped with a strength. Since, for a natural number n, the
discrete power E n is equivalent to the slice E /n, where n now denotes the
n-fold sum of 1 in E , it makes sense to compare shapely functors and poly-
nomial functors. Since a polynomial functor preserves pullbacks and has
a canonical strength, it is canonically a shapely functor. It is not true that
every shapely functor is polynomial. For a counter example, let K be a set
with a non-principal filter D, and consider the filter-power functor

F : Set −→ Set

X %−→ colimD∈D XD ,

which preserves finite limits since it is a filtered colimit of representables.
Since every endofunctor on Set has a canonical strength, F is a shapely
functor. However, F does not preserve all cofiltered limits, and hence, by
8.6.3 (ii) cannot be polynomial. For example, ∅ = limD∈D D itself is not
preserved. This example is apparently at odds with Theorem 8.3 of [2].

[Rough draft, version 2009-08-05 23:56.] [Input file: computing.tex, 2009-08-05 14:04]

134 [Polynomial functors in computer science]

More details on the filter argument. Let D be a non-principal filter on a
set K. For example, let K be an infinite set, and let D be the filter consisting
of all complements of finite subsets of K. Consider the filter-power functor

F : Set −→ Set

X %−→ colimD∈D XD

[REF: Adamek–Koubek–Trnkova: How large are left exact functors?, TAC
2001.] In the example, colimD∈D XD is the set of almost-everywhere de-
fined maps K → X modulo the equivalence relation identifying two par-
tial maps if they agree almost everywhere. Since F is a filtered colimit
of representables, it preserves finite limits, and we also have F(∅) = ∅.
(In the example, this is clear: since K is infinite, the empty subset does not
belong to D). We now check that F does not preserve infinite limits. Specif-
ically it does not preserve the limit ∅ = limD∈D D. To see this, observe that
for every D ∈ D, the set F(D) contains the partial map K → D given by
the identity map on D. Since the restriction of the identity map is always
the identity map, this gives us an element in the limit set limD∈D F(D),
which is therefore nonempty, hence the limit is not preserved.

6.1.11 Shapely types. Let L : E → E denote the list endofunctor, L(X) =
∑n∈N Xn, which is the same as what we usually call the free-monoid monad
in Example 1.2.8. A shapely type [52] in one variable is a shapely functor
equipped with a cartesian strong natural transformation to L. A morphism
of shapely types is a natural transformation commuting with the structure
map to L. The idea is that the shapely functor represents the template or
the shape into which some data can be inserted, while the list holds the ac-
tual data; the cartesian natural transformation encodes how the data is to
be inserted into the template. As emphasized in [85], the cartesian strong
natural transformation is part of the structure of a shapely type. Since
any functor with a cartesian natural transformation to L is polynomial by
Proposition 2.5.1, it is clear that one-variable shapely types are essentially
the same thing as one-variable polynomial endofunctors with a cartesian
natural transformation to L, and that there is an equivalence of categories
between the category of shapely types and the category Polyc(1, 1)/L.

According to Jay and Cockett [52], a shapely type in m input variables
and n output variables is a shapely functor E m → E n equipped with a
cartesian strong natural transformation to the functor Lm,n : E m → E n

[Rough draft, version 2009-08-05 23:56.] [Input file: computing.tex, 2009-08-05 14:04]

6.2 Program semantics 135

defined by
Lm,n(Xi | i ∈ m) =

(
L(∑i∈m Xi) | j ∈ n

)
,

and they motivate this definition by considerations on how to insert data
into templates. With the double-category formalism, we can give a con-
ceptual explanation of the formula: writing um : m → 1 and un : n → 1 for
the maps to the terminal object, the functor Lm,n : E m → E n is nothing but
the composite

u∗n ◦ L ◦ um ! = (um, un)∗L ,
the base change of L along (um, un). Hence we can say uniformly that a
shapely type is an object in Polyc/L with endpoints finite discrete objects.

Aiming at finding a good class of recursive data types closed under fix-
point formation, several researchers came to notions of positive data types.
They are basically defined as the smallest class of functors containing cer-
tain constants, identity functors and closed under sums, products, and fix-
point formation. These are also polynomial. These developments found
a good common framework in the theory of containers developed by Ab-
bott and his collaborators [1], [4]. Shapely types as well as strictly positive
types, are all captured in the notion of container, which is in fact precisely
the notion of polynomial functor. The theory of containers benefited from
the work of Moerdijk and Palmgren [81].

6.2 Program semantics

The origins of the use of polynomial functors program semantics go back
to the ’70s, with the work of the Czech school on automata theory, con-
ditions for existence of free algebras, and existence of minimal realisation
of machines [7]. The book [79] was quite influential, and has polynomial
functors explicitly. The use of polynomial functors in program semantics
was recently explored from a different viewpoint under the name ‘interac-
tion systems’ in the setting of dependent type theory by Hancock and Set-
zer [47] and by Hyvernat [50], where polynomials are also given a game-
theoretic interpretation. The morphisms there are certain bisimulations,
more general than the strong natural transformations used in the present
work.

Here is the idea of the game interpretation: for a polynomial

S $ D ! A ! S

[Rough draft, version 2009-08-05 23:56.] [Input file: computing.tex, 2009-08-05 14:04]

136 [Polynomial functors in computer science]

S is the set of states, A is the set of white moves, D is the set of pairs
consisting of a white move followed by a black move. The maps are:
from A to S, return the initial state of the white move. From D to A, re-
turn the white move. From D to S: return the new state (after the black
move). The morphisms are quite different from the usual ones between
polynomial functors. They are motivated by the notion of simulation:
one game can simulate another if for each state there is a corresponding
move giving a bijective set of possible responses... One can think of one
game P as being a high-level language and another game Q as a low-level
language. Then a simulation from P to Q is an implementation of the
high-level language in the low-level language. This game-theoretic use
of bridge diagrams is also closely related to something called predicate
transformers and to formal topology! Please visit Hyvernat’s web page at
http://www.lama.univ-savoie.fr/~hyvernat/

6.2.1 Coalgebras. A coalgebra for a polynomial functor P : Set → Set
is just a set X equipped with a map X → P(X). There is the notion of
terminal object in the category of coalgebras, also called largest fixpoint. A
dual construction of that iteration may give a way of constructing terminal
coalgebras, but I haven’t checked under what conditions it works.

We observed for a surjective map p : E → B, the initial algebra is just
∅. Since P(∅) + ∅, this is a fixpoint in any case, but as you can imagine
it is not the largest one! Such polynomial functors have dull algebras but
interesting coalgebras. Example. Consider the identity map B → B. The
corresponding polynomial functor is X %→ B × X. This particular functor
P(X) = B × X preserves sequential limits and epimorphisms, so in this
case we can construct the largest fixpoint in a way dual to the Lambek
iteration.

1 $ P(1) $ P(P(1)) $. . .

which is just the sequence 1 $ B $ B2 $. Clearly the limit is BN,
the set of infinite sequences in B. The isomorphism

BN + B × BN

is just the exponentiation of the bijection N + 1 + N.

Algebras and coalgebras for endofunctors Set → Set are important
concepts in theoretical computer science. Algebras are used as an abstrac-
tion of the notion of data types, while coalgebras are an abstraction of

[Rough draft, version 2009-08-05 23:56.] [Input file: computing.tex, 2009-08-05 14:04]

http://www.lama.univ-savoie.fr/~hyvernat/

6.2 Program semantics 137

systems or automata. Indeed, we saw that an algebra can be interpreted
as a set with a collection of operations on it—this is about the same thing
as a data type is (e.g., queues and stacks and trees and so on).

6.2.2 Automata. Consider a automaton, like for example a coffee machine.
To describe it we first describe its user interface: this consists of an input
alphabet I and an output alphabet O. Think of the input alphabet as the set
of buttons you can press, and the output alphabet as the set of things that
can come out of the machine, i.e. various types of hot drinks, or change.
Now let S denote the set of states of the machine, i.e. how much coffee,
sugar, and milk the machine contains, as well as water temperature, etc.
Now the machine is described by its transition function

I × S → O × S.

It says that if you press one button while the machine is in a certain state,
then something comes out, and the machine enters a new state. By adjunc-
tion, the transition function can also be described as

S → (O × S)I .

In other words, the machine is described as a coalgebra for the polynomial
endofunctor X %→ (O × X)I .

Now the theory of polynomial functors says that these exists a terminal
coalgebra. This amounts to saying there exists a universal coffee machine!
In other words, there exists a coffee machine U (i.e. a set U with a map
U → (O × U)I) such that for every other machine S → (O × S)I there
is a map S → U commuting with the structure map. So the universal
machine can do everything any other machine can do! This machine U
will typically be immense, so you might not want to build on for your
math department, but even if you don’t build one, it is of considerable
theoretical interest: namely any other machine S comes with a morphism
to U, called the behaviour of S. This map does not characterise the machine
completely, but the image in U says everything about what you get out
of the machince when a given button is pressed. It does not say anything
how the machine actually implements this behaviour. Often you are more
interested in the behaviour than in the machine itself. . .

Initial algebras are particularly important because they allow for def-
inition and proof by induction. (Similarly terminal coalgebras allow for

[Rough draft, version 2009-08-05 23:56.] [Input file: computing.tex, 2009-08-05 14:04]

138 [Polynomial functors in computer science]

coinduction. . .) It seems that in practice, algebras modelling data types
often come from polynomial functors. For coalgebras modelling systems,
it is perhaps less common to be polynomial??

[Rough draft, version 2009-08-05 23:56.] [Input file: computing.tex, 2009-08-05 14:04]

Chapter 7

[Species. . .]

There is scheduled here a long section on species, and comparison be-
tween polynomial functors and species.

The following is just copy and paste from [39]:

7.1 Introduction to species and analytical func-
tors

7.1.1 Species. Recall [54], [19] that a species is a functor F : FinSetbij →
Set , or equivalently, a sequence (F[n] | n ∈ N) of Set-representations of
the symmetric groups.

7.1.2 Analytical functors. To a species is associated an analytic functor

Set −→ Set

X %−→ ∑
n∈N

F[n] ×Sn Xn .

Species and analytic functors were introduced by Joyal [55], who also
proved the following theorem characterising analytic functors:

7.1.3 Theorem. A functor Set → Set is analytic if and only if it preserves weak
pullbacks, cofiltered limits, and filtered colimits.

[Rough draft, version 2009-08-05 23:56.] [Input file: species.tex, 2009-07-31 07:41]

140 [Species. . .]

7.2 Polynomial functors and species

It is the presence of group actions that makes the preservation of pullbacks
weak, in contrast to the polynomial functors, cf. (ii) above.

7.2.1 Flat species. Species for which the group actions are free are called
flat species [19]; they encode rigid combinatorial structures, and corre-
spond to ordinary generating functions rather than exponential ones. The
analytic functor associated to a flat species preserves pullbacks strictly and
is therefore the same thing as a finitary polynomial functor on Set .

7.2.2 Flat analytic functors and polynomial functors. Explicitly, given a
one-variable finitary polynomial functor P(X) = ∑a∈A XBa represented by
B → A, we can ‘collect terms’: let An denote the set of fibres of cardinality
n, then there is a bijection

∑
a∈A

XBa ∼= ∑
n∈N

An × Xn.

The involved bijections Ba ∼= n are not canonical: the degree-n part of P is
rather a Sn-torsor, denoted P[n], and we can write instead

P(X) ∼= ∑
n∈N

P[n] ×Sn Xn, (7.1) equ:species

which is the analytic expression of P.

7.2.3 Example: Catalan numbers. As an example of the polynomial en-
coding of a flat species, consider the species C of binary planar rooted
trees. The associated analytic functor is

X %→ ∑
n∈N

C[n] ×Sn Xn ,

where C[n] is the set of ways to organise an n-element set as the set of
nodes of a binary planar rooted tree; C[n] has cardinality n! cn, where cn
are the Catalan numbers 1, 1, 2, 5, 14, . . . The polynomial representation is

1 ←− B −→ A −→ 1

where A is the set of isomorphism classes of binary planar rooted trees,
and B is the set of isomorphism classes of binary planar rooted trees with
a marked node.

[Rough draft, version 2009-08-05 23:56.] [Input file: species.tex, 2009-07-31 07:41]

Part II

Polynomial functors in many
variables

[Rough draft, version 2009-08-05 23:56.] [Input file: species.tex, 2009-07-31 07:41]

Chapter 8

Polynomials in many variables

many-variables

8.1 Introductory discussion

We shall now study polynomial in many variables. The idea is that instead
of having just one variable X, we have a bigger set of variables (Xi | i ∈ I).
For example we might have just two variables X1 and X2, corresponding
to the indexing set I = {1, 2}, and then a polynomial functor should be
something like

Set × Set −→ Set

(X1, X2) %−→ ∑
b∈B

XE1b
1 XE2b

2 .

For each b ∈ B, we specify one exponent set for X1 and one exponent set
for X2. Hence the whole thing is represented by two maps, E1 → B and
E2 → B. We can organise those two maps into a single map E = E1 + E2 →
B. By construction, the new set E is partitioned into two parts. We encode
this by giving a map s : E → I, then the indices on E become an instance
of our general notation for fibres: E1 is the fibre of s over 1, and E2 is the
fibre over 2. The map s now takes care of the bookkeeping of the involved
variables: we can write

(Xi | i ∈ I) %−→ ∑
b∈B

∏
e∈Eb

Xs(e).

[Rough draft, version 2009-08-05 23:56.] [Input file: manyvars.tex, 2009-08-05 17:14]

144 Polynomials in many variables

This expression makes sense for any indexing set I. The data required to
represent such an expression is a diagram of shape

E
p! B

I

s
$

The polynomial takes as input an I-indexed family of sets, and returns a
single set.

We will be slightly more general, allowing also for functors returning
a J-indexed family of sets. This generality is convenient because it is the
natural setting for substituting many-variable polynomials into each other.
In particular we will be interested in the case J = I, and study polynomial
monads in the many-variable setting.

The final definition of a polynomial functor is thus

Set/I −→ Set/J
(Xi | i ∈ I) %−→

(
∑

b∈Bj

∏
e∈Eb

Xs(e) | j ∈ J
)
, (8.1)

referring to a diagram of sets and set maps

E
p ! B

I

s

$

J

t! (8.2)

We shall see in a moment that the big formula is obtained from the dia-
gram by

t! ◦ p∗ ◦ s∗.

8.1.1 Slices and presheaf categories. So far we have been talking about
I-indexed families of sets, without being precise about what that means.
There are two (equivalent) alternatives: one is to encode an I-indexed fam-
ily (Xi | i ∈ I) as a map X → I. The members of the family are then the
fibres. Then the category is just the slice category Set/I. The other option
is to regard a family as a map I → Set , then the ith member of the fam-
ily is the image of i. We regard this as a presheaf category: interpreting
I as a discrete category, we are talking about the category Fun(Iop, Set),

[Rough draft, version 2009-08-05 23:56.] [Input file: manyvars.tex, 2009-08-05 17:14]

8.1 Introductory discussion 145

i.e. presheaves on I. (The op is irrelevant, but helpful psychologically. We
will study non-discrete cases in Part III.)

There is a natural equivalence of categories

Set I + Set/I.

In each case the objects are families of sets (Xi | i ∈ I). In each case a map
from (Xi | i ∈ I) to (Yi | i ∈ I) is a family of maps (fi : Xi → Yi | i ∈ I).

From Set/I to Set I there is a canonical functor, associating to a map
X → I the functor I → Set that sends i to Xi (the fibre over i). To construct
the inverse functor we need to assemble all the sets Xi into a single set
with a map to I. This set should of course be the disjoint union (i∈IXi,
but this is only well-defined up to unique isomorphism. . .

REMARK: this adjointness (in this case an equivalence) between taking
fibres and taking sums is in fact an instance of, or a phenomenon analo-
gous to, the adjunction p! 7 p∗ . . . Analyse this more carefully. . .

Now some phenomena are easier to grasp in terms of Set I and other are more easily
understood in terms of Set/I. An example of a notion that is best understood in Set I is
this: given two I-indexed families, E and X. What is the object XE? Let’s try in Set/I.
So we have families E → I and X → I. What is the object XE → I? It is not just the set
of maps E → X over I, because this set does not have a natural map to I, and hence is
not an object of Set/I. In other words, the hom set HomI(E, X) is not internal hom. It
is easier to see what it should be in the other viewpoint: the two objects are now maps
X : I → Set and E : I → Set . The new object XE should be a functor I → Set . Well, Set I

is just a presheaf category: the internal hom is pointwise. So it means that for each i ∈ I
we just consider the maps E(i) → X(i) in Set . In other words XE is the functor

I −→ Set

i %−→ X(i)E(i)

Once we have seen that the exponentiation in Set I + Set/I should be fibrewise, we
can also describe it in the viewpoint of Set/I: the power set XE in Set/I is given by
specifying that the fibre should be XEi

i . So altogether it is

∑
i∈I

XEi
i → I,

so an giving an element amounts to choosing i ∈ I and then ϕ : Ei → Xi.
(Compare with the ‘external’ hom set HomI(E, X) = ∏i∈I XEi

i .)

8.1.2 General polynomial functor. Here comes the general construction.

[Rough draft, version 2009-08-05 23:56.] [Input file: manyvars.tex, 2009-08-05 17:14]

146 Polynomials in many variables

A diagram of sets and set maps like this

E
p ! B

I

s

$

J

t! (8.3) P

gives rise to a polynomial functor P : Set/I → Set/J defined by

Set/I s∗! Set/E p∗! Set/B t!! Set/J.

Here lowerstar and lowershriek denote, respectively, the right adjoint and
the left adjoint of the pullback functor upperstar. We shall study these
adjoints thoroughly in the next section, and extract the explicit formula

Set/I −→ Set/J
(Xi | i ∈ I) %−→

(
∑

b∈Bj

∏
e∈Eb

Xs(e) | j ∈ J
)

where Bj := t−1(j), Eb := p−1(b), and Xi := f−1(i).
If I and J are singleton sets, we recover the one-variable polynomial

functors of Part 1.

8.2 The pullback functor and its adjoints

8.2.1 Adjunction. Brief reminder—for those of me who is not good at
distinguishing left from right. Given two functors

C
F!$
G

D

F is left adjoint to G, written F 7 G, when there is a natural bijection
D(FX, Y) = C (X, GY). Then for the special case D(FX, FX) = C (X, GFX)
the element on the right corresponding to idFX is the adjunction’s unit
1C ⇒ G ◦ F. Similarly there is the counit F ◦ G ⇒ 1D .

8.2.2 The pullback functor itself. Given ϕ : A → B and a set Y over B,pullback-fibre
then

ϕ∗Y = A ×B Y = ∑
a∈A

Yϕ(a).

[Rough draft, version 2009-08-05 23:56.] [Input file: manyvars.tex, 2009-08-05 17:14]

8.2 The pullback functor and its adjoints 147

It is often convenient to describe only the fibres: in this case the fibre over
a ∈ A is

(ϕ∗Y)a = Yϕ(a).

8.2.3 Details on lowershriek. Given ϕ : A → B and a set X → A, then
ϕ! (X) is described explicitly as

ϕ! X = X = ∑
b∈B

∑
a∈Ab

Xa.

In other words, as a set nothing happens; it is only a question about how
it is organised into fibres. The fibre over b ∈ B is

(ϕ! X)b = ∑
a∈Ab

Xa.

We need to prove that this is really a left adjoint, i.e. establish

HomB(ϕ! X, Y) = HomA(X, ϕ∗Y).

Here is the argument, given

X Y

A
"

ϕ
! B

"

then to give f ∈ HomB(ϕ! X, Y) is just to provide a commutative square

X
f ! Y

A
"

ϕ
! B

"

But this is equivalent to giving an A-map from X to the pullback A ×B Y,
i.e. a element in the set HomA(X, ϕ∗Y).

t!-pres-pb 8.2.4 Lemma. The functor ϕ! : Set/A → Set/B preserves pullbacks. More
generally it preserves any limit whose shape is a diagram with a terminal object.

[Rough draft, version 2009-08-05 23:56.] [Input file: manyvars.tex, 2009-08-05 17:14]

148 Polynomials in many variables

Proof. A pullback in Set/A is just a diagram

X ×S Y ! Y

X
"

! S
"

! A

i.e. a pullback in Set together with a map from the vertex S to B. When
we compose with A → B it clearly continues to be a pullback square.
The same argument works with any limit over a diagram with a terminal
object: let the image of that terminal object be S, then the limit is computed
in Set and there is a map from S to A. Applying ϕ! does not change the
limit. !

Note that ϕ! does not preserve all limits: most blatantly it does not
preserve the terminal object of Set/A: clearly ϕ! A /= B (except if ϕ = id).
Products are not preserved either: the products in Set/A are just fibre
products over A in Set , and the products in Set/B are fibre products over
B. But ϕ! (X ×A Y) /= X ×B Y (except if ϕ = id). The terminal object and
products are examples of limits over non-connected diagrams. In fact the
precise characterisation of the limits preserved by ϕ! is this:

thm:connectedlimits 8.2.5 Proposition. The functor ϕ! : Set/A → Set/B preserves (in fact creates)
connected limits.

This is Carboni–Johnstone [25]. See also Leinster [75]. The proof will soon
be included here. . .

8.2.6 The unit for the adjunction ϕ! 7 ϕ∗. Start with X over A, lower-
shriek it to B, and pull it back to A again. By the above formulae, the fibre
of ϕ∗ϕ! X over a ∈ A is

∑
q∈Aϕ(a)

Xq

The unit for the adjunction is simply the map X → ϕ∗ϕ! X defined by
sending Xa into the summand corresponding to q = a.

8.2.7 The counit for ϕ! 7 ϕ∗. Starting with Y over B, pull it back to A to
get the set ϕ∗Y, and lowershriek it back to B: this just the same set ϕ∗Y
again, and the counit is the map ϕ∗Y → Y itself.

[Rough draft, version 2009-08-05 23:56.] [Input file: manyvars.tex, 2009-08-05 17:14]

8.2 The pullback functor and its adjoints 149

We can also give a useful fibrewise description: remembering the for-
mulae (ϕ! X)b = ∑a∈Ab

Xa and (ϕ∗Y)a = Yϕ(a) we find

(ϕ! ϕ∗Y)b = ∑
a∈Ab

(ϕ∗Y)a = ∑
a∈Ab

Yϕ(a) = ∑
a∈Ab

Yb = Ab × Yb.

Note that the counit is just the projection Ab × Yb → Yb.

shriek-star-cart 8.2.8 Lemma. The unit and the counit for ϕ! 7 ϕ∗ are both cartesian natural
transformations.

Proof. Let us first look at the unit: the component of η at an object p : X →
A is the map

X −→ A ×B X
x %−→ (p(x), x))

so given a map f : X′ → X over A, the corresponding naturality square is

X′ ! A ×B X′

X
"

! A ×B X.
"

We check it is a pullback square by analysing the fibres for the two hor-
izontal maps: starting with (a, x′) in A ×B X′, the fibre is singleton if
a = p f x′ and empty otherwise. In the lower row, the fibre over the im-
age, (a, f x′), is singleton if a = p f x′ and empty otherwise. So the fibres
are always isomorphic, and we conclude that the square is cartesian.

Consider now the counit: for a map Y′ → Y over B, the naturality
square is the top square in the diagram

ϕ∗Y′ ! Y′

ϕ∗Y
"

! Y
"

A
"

ϕ
! B;

"

[Rough draft, version 2009-08-05 23:56.] [Input file: manyvars.tex, 2009-08-05 17:14]

150 Polynomials in many variables

The top square is cartesian since the bottom square and the big square are
so (cf. A.1). !

8.2.9 Details on the lowerstar. Given ϕ : A → B, and a map X → A. Then
ϕ∗X is the set over B given by

ϕ∗X = ∑
b∈B

∏
a∈Ab

Xa.

The slogan for ϕ∗ is: multiply the fibres.
To give an element in ∏a∈Ab

Xa is to give for each a ∈ Ab an element in
X lying over a itself, so we can also describe the fibre (ϕ∗X)b as the set of
all maps s : Ab → X making this triangle commute:

X

Ab

s

!

⊂ A
"

Note that in general there is no canonical map X → ϕ∗X over f . In-
deed, to have such a commutative square would mean that the top map is
really a B-map from ϕ! X → ϕ∗X. (That is how ϕ! is defined.) Now by the
adjunction ϕ∗ 7 ϕ∗, to give such a map is the same as giving ϕ∗ϕ! X → X,
and there is no way to get a canonical map like this. There is a map in the
other direction, namely the unit of the adjunction ϕ! 7 ϕ∗. . .

8.2.10 Lemma. Given ϕ : A → B, the functor

ϕ∗ : Set/A −→ Set/B
X/A %−→ ∑

b∈B
∏

a∈Ab

Xa

is right adjoint to ϕ∗.

Proof. Given

X Y

A
"

ϕ
! B

"

[Rough draft, version 2009-08-05 23:56.] [Input file: manyvars.tex, 2009-08-05 17:14]

8.2 The pullback functor and its adjoints 151

we claim there is a natural bijection

HomA(ϕ∗Y, X) + HomB(Y, ϕ∗X).

Indeed, to give an A-map ϕ∗Y → X is to give for each a ∈ A a map
(ϕ∗Y)a → Xa. This is just to give Yϕ(a) → Xa. So the left-hand side is

∏
a∈A

X
Yϕ(a)
a .

Now split the product into parts, one for each fibre:

= ∏
b∈B

∏
a∈Ab

X
Yϕ(a)
a

And then we know ϕ(a) = b, getting

= ∏
b∈B

∏
a∈Ab

XYb
a .

On the other hand, to give a B-map Y → ϕ∗X = ∑
b∈B

∏
a∈Ab

Xa, so it is for

each b ∈ B a map Yb → ∏
a∈Ab

Xa. A map into a product is the same as a

product of maps, so this is the same as the left-hand side. !

8.2.11 Example. Notice how familiar the adjointness becomes when B =
1. This is really all there is to it: suppose we have

X Y

A
"

ϕ
! 1.

"

The set ϕ∗X is simply the set of sections to X → A. We denote it HomA(A, X).
The adjointness say there is a bijection

HomA(A × Y, X) ↔ Hom(Y, HomA(A, X)).

[Rough draft, version 2009-08-05 23:56.] [Input file: manyvars.tex, 2009-08-05 17:14]

152 Polynomials in many variables

But this is easy: given an A-map γ : A × Y → X we construct

Y −→ HomA(A, X)

y %−→ [a %→ γ(a, y)]

and given for each y an A-map σy : A → X, we define

A × Y −→ X
(a, y) %−→ σy(a).

8.2.12 Lemma. The functor ϕ∗ : Set/A → Set/B preserves filtered colimits if
and only if the map ϕ : A → B has finite fibres.

Proof. By the formula ϕ∗(X) = ∑b∈B ∏a∈Ab
Xa, since sums commute with

filtered colimits, we see that we can reduce to the case B = 1. Now the
lemma follows by observing that it is just a product, and products com-
mute with filtered colimits precisely when they are finite.

!

8.2.13 Example. For each infinite set S, it is easy to construct an S-indexed
family of directed systems such that the product of all the colimits is not
the colimit of the product of the directed systems. For simplicity take S =
N. For each n ∈ N consider the directed system Sn

· · · = ∅ = ∅ → 1 = 1 · · ·

where the first singleton set occurs in position n. It is clear that each of
these has colimit 1, so ∏n∈N colimi Sn = 1. On the other hand, the product
of those directed systems is computed entry-wise, and since for any posi-
tion i there is a systems with ∅ in position i, the product of all the systems
is the system which is constant ∅, and clearly the colimit of this is ∅.

8.2.14 The unit for the adjunction ϕ∗ 7 ϕ∗. Start with Y over B, pull back
to A, to get ∑a∈A Yϕ(a), then push forth again to get

ϕ∗ϕ∗Y = ∑
b∈B

∏
a∈Ab

Yϕ(a) = ∑
b∈B

∏
a∈Ab

Yb = ∑
b∈B

YAb
b .

Let us also put the fibre in a displayed formula:

(ϕ∗ϕ∗Y)b = YAb
b .

The unit for the adjunction ϕ∗ 7 ϕ∗ is the natural map Y → ϕ∗ϕ∗Y
that sends an element y ∈ Yb to the constant map Ab → Yb on y.

[Rough draft, version 2009-08-05 23:56.] [Input file: manyvars.tex, 2009-08-05 17:14]

8.2 The pullback functor and its adjoints 153

8.2.15 The counit for ϕ∗ 7 ϕ∗ (the evaluation map). Start with X over A;
push forth to B and pull back to A again:

ϕ∗ϕ∗X = A ×B ϕ∗X

Before being explicit with sums and products, we can already describe the
counit ϕ∗ϕ∗X → X: recall that the fibre of ϕ∗X over b consists of maps
s : Ab → X over A. Now our fibre product over B consists of pairs (a, s)
where a ∈ Ab and s : Ab → X is in ϕ∗X. Now the counit for the adjunction
is just the evaluation map

εX : A ×B ϕ∗X −→ X
(a, s) %−→ s(a).

And here comes the fibrewise description: the fibre of ϕ∗X over b is
∏

a∈Ab

Xa. Hence by 8.2.2 the fibre of ϕ∗ϕ∗X over a is

∏
q∈Aϕ(a)

Xq.

The counit εX : ϕ∗ϕ∗X → X is described fibrewise as the natural pro-
jection from ∏

q∈Aϕ(a)

Xq onto the distinguished factor Xa corresponding to

q = a.

8.2.16 Locally cartesian closed categories. It is clear that the notion of
polynomial functor makes sense anywhere we have a pullback functor
having both adjoints. So first of all we need to place ourselves in a category
E with pullbacks. It is not difficult to see that our construction of the left
adjoint to pullback is completely formal. Precisely,

8.2.17 Lemma. If E is a category with pullbacks, then for any arrow ϕ : A → B
in E the pullback functor ϕ∗ : E /B → E /A has a left adjoint, which is merely

ϕ! : E /A −→ E /B
[X → A] %−→ [X → A → B].

Hence, so far we need E to have pullbacks. This is equivalent to saying
that every slice of E has finite products.

[Rough draft, version 2009-08-05 23:56.] [Input file: manyvars.tex, 2009-08-05 17:14]

154 Polynomials in many variables

What do we need in order to ensure that pullback also has a right ad-
joint? The construction suggested that this has to do with exponentiation,
i.e. that the products existing in each slice are closed. That is, in each slice
there is a right adjoint to taking product with some fixed object.

A category E is called locally cartesian closed if every slice of it is carte-
sian closed.

8.2.18 Proposition. (Freyd [37].) A category E is locally cartesian closed if
and only if it has pullbacks for every arrow f : X → Y in the pullback functor
f∗ : E /Y → E /X has a right adjoint.

Proof. See Barr–Wells [14], Theorem 13.4.3. !

Our favourite category Set is of course locally cartesian closed. More
generally, any topos is locally cartesian closed. In contrast, Cat is carte-
sian closed but not locally cartesian closed, cf. Example 15.0.2. Although
we are mainly interested in the case E = Set , it is very useful to work
out as much of the theory as possible in the general setting. It allows us
to see clearly which results are completely formal, and which depend on
particular features of Set .

On the other hand, we also use many arguments involving formulae
like

 ∑
b∈Bj

∏
e∈Eb

Xs(e) | j ∈ J

which look completely set theoretic! But in fact such formulae can be in-
terpreted in any locally cartesian closed category E , by exploiting the so-
called internal language of E .

Currently these notes do not go into these issues, since we are content
with developing the theory only in the setting of Set .

If the category has some sums. . .
Such a category is said to have dependent products if the pullback functor has also a

right adjoint f∗. A pretopos E has dependent products if and only if it is locally cartesian
closed.

DO SOMETHING WITH THIS! In topos theory, the functor p∗ is often denoted Πp,
because it is ‘multiply’, and sometimes (inspired by the role these maps play in logic)
it is also denoted ∀p. The functor t! is often denoted Σt, since it is the sum map, and
sometimes it is also denoted ∃t. In logic, these notions make sense more generally in any
Heyting pretopos. . . cf. [81]. Finally let us denote the pullback functor ∆p. It is also called

[Rough draft, version 2009-08-05 23:56.] [Input file: manyvars.tex, 2009-08-05 17:14]

8.2 The pullback functor and its adjoints 155

substitution, since it is about substituting one set of variables into another. . . However,
this terminology will not be used here, because we are going to talk about substitution of
one polynomial into another. . .

, or, which is about the same: give a concise description of the polynomial functor

P(X) = ∑
b∈B

XEb

can be described as the total space of the following object in Set/B, namely

(X×B→B)p:E→B

We have just described this object: its fibre over b ∈ B is the power set XEb . That’s all.

Repeat this description: given 1 s
← E

p
→ B, and a set X, we claim that P(X) can be

described as an object of Set/B as
(s∗X)E

Where s∗X = X × E. We just argued that exponentiation in Set/B is fibrewise. So this
object is the set over B whose b-fibre is

(s∗X)Eb
b

but (s∗X)b is just X, so the fibre is XEb and the total space is ∑b∈B XEb .

Coherence

Let f and g be composable arrows in E . Since composition of arrows is
strictly associative, it follows that

g! ◦ f! = (g ◦ f)! .

This is possibly an irrelevant feature. The natural feature is just that these
two functors are naturally isomorphic. (For example, if we accept the
standpoint that the crucial property of lowershriek is to be left adjoint to
upperstar, then if we took another left adjoint (of course necessarily iso-
morphic to the standard lowershriek), then we would only find isomor-
phism, not equality.

In any case, for pullback itself, we only have a natural isomorphism

f∗ ◦ g∗ + (g ◦ f)∗

[Rough draft, version 2009-08-05 23:56.] [Input file: manyvars.tex, 2009-08-05 17:14]

156 Polynomials in many variables

Formally, the association

E
op −→ Cat

A %−→ E /A
f %−→ f∗

is a pseudo-functor, not a strict functor. It means that those natural iso-
morphisms are built in as a part of the structure.

From those canonical and invertible 2-cells, we get other 2-cells. For
example, for every commutative square

·
ϕ ! ·

·

α

"

ϕ
! ·

β

"

we get a natural isomorphism

ϕ∗ ◦ β∗ + α∗ ◦ ϕ∗

8.3 Beck-Chevalley and distributivity

In this section we should work in a general locally cartesian closed cat-
egory E . However, the current formulation of the proof of distributivity
looks like it is specific to E = Set . . . This should not be a problem: we can
always invoke the internal language of E . However, it would be nice to
find a more conceptual formulation. . .

8.3.1 The Beck-Chevalley condition. Given a pullback squareBC

A
ϕ ! B

A

α

"

ϕ
! B

β

"

[Rough draft, version 2009-08-05 23:56.] [Input file: manyvars.tex, 2009-08-05 17:14]

8.3 Beck-Chevalley and distributivity 157

there are natural isomorphisms of functors

α! ◦ ϕ∗ ∼→ ϕ∗ ◦ β! and β∗ ◦ ϕ∗
∼→ ϕ∗ ◦ α∗.

They are usually referred to as the Beck-Chevalley conditions.
Here is an elementary proof of the first. (The two isomorphisms deter-

mine each other via adjunction.) Let Y → B be an object in E /B. Consider
the diagram

A ×B Y ! Y

A
"

! B
"

A

α

"
! B

β

"

Applying α! ◦ ϕ∗ to Y → B amounts to first performing the pullback of
the top square, then composing the left-hand side with α. The result is the
long left-hand side of the diagram. On the other hand, applying ϕ∗ ◦ β! to
Y → B amounts to first composing with β, then performing the pullback
of the outer square. The equality of these two constructions is nothing but
the fact that the pasting of two pullback squares is again a pullback square.

We shall analyse the Beck-Chevalley situation further, and see that the
statement follows formally just from the adjunctions. Consider now an
arbitrary (commutative) square

A
ϕ ! B

A

α

"

ϕ
! B

β

"

We have tautologically a commuting diagram of functors

E /A
ϕ!! E /B

⇑

E /A

α!

"

ϕ!

! E /B

β!

"

[Rough draft, version 2009-08-05 23:56.] [Input file: manyvars.tex, 2009-08-05 17:14]

158 Polynomials in many variables

Taking mate (with respect to the adjunctions ϕ! 7 ϕ∗ and ϕ! 7 ϕ∗) we get
a 2-cell

E /A $ϕ∗
E /B

⇓

E /A

α!

"
$

ϕ∗
E /B

β!

"

This is the natural transformation of the Beck-Chevalley condition, so we
have established that it always exists in the direction indicated. We have
also shown that it is cartesian (since the adjunction used to take mate has
cartesian unit and counit). In fact, the mate business amounts to saying
that the Beck-Chevalley 2-cells is

α! ◦ ϕ∗
unit
⇒ ϕ∗ ◦ ϕ! ◦ α! ◦ ϕ∗ = ϕ∗ ◦ β! ◦ ϕ! ◦ ϕ∗

counit
⇒ ϕ∗ ◦ β!

(The remaining statement is that this natural transformation is invertible
when the original square is a pullback. We already proved that by a direct
argument.)

Now we can take mate another time, this time with respect to α! 7 α∗

and β! 7 β∗. We get

E /A $ϕ∗
E /B

⇓

E /A

α∗
#

$
ϕ∗

E /B

β∗
#

(This is the obvious isomorphism obtained by pulling back along in two
ways along the edges of a commutative square.) And finally take mate
with respect to the adjunction ϕ∗ 7 ϕ∗ and ϕ∗ 7 ϕ∗ to get

E /A
ϕ∗! E /B

⇑

E /A

α∗
#

ϕ∗
! E /B.

β∗
#

[Rough draft, version 2009-08-05 23:56.] [Input file: manyvars.tex, 2009-08-05 17:14]

8.3 Beck-Chevalley and distributivity 159

This is the natural transformation of the second Beck-Chevalley condition:

β∗ ◦ ϕ∗
unit
⇒ ϕ∗ ◦ ϕ∗ ◦ β∗ ◦ ϕ∗ = ϕ∗ ◦ α∗ ◦ ϕ∗ ◦ ϕ∗

counit
⇒ ϕ∗ ◦ α∗

It always exists as a 2-cell in the indicated direction (but this one is not in
general cartesian!), and it remains to establish that it is invertible when the
original square is a pullback.

lowershriek-lowerstar 8.3.2 Lemma. Given a pullback square

A
ϕ ! B

A

α

"

ϕ
! B

β

"

there is induced a natural transformation

β! ◦ ϕ∗ ⇒ ϕ∗ ◦ α! .

(It is not in general cartesian.)

Proof. There are two ways to get it, and both depend on the inverse of the
Beck-Chevalley transformations. Start with the inverse 2-cell of the Beck-
Chevalley transformation corresponding to the left adjoints:

E /A $ϕ∗
E /B

⇑

E /A

α!

"
$

ϕ∗
E /B

β!

"

Now take mate with respect to ϕ∗ 7 ϕ∗ and ϕ∗ 7 ϕ∗, getting the promised
2-cell:

E /A
ϕ∗! E /B

⇓

E /A

α!

"

ϕ∗
! E /B

β!

"

[Rough draft, version 2009-08-05 23:56.] [Input file: manyvars.tex, 2009-08-05 17:14]

160 Polynomials in many variables

We could also arrive at this 2-cell by starting with the inverse of the
Beck-Chevalley transformation corresponding to the right adjoints:

E /A
ϕ∗! E /B

⇓

E /A

α∗
#

ϕ∗
! E /B.

β∗
#

and then taking mate with respect to α! 7 α∗ and β! 7 β∗.
(One can wonder whether these two constructions in fact agree, or if

there are in fact two natural transformations β! ◦ ϕ∗ ⇒ ϕ∗ ◦ α! . The an-
swer is that they do agree. This is subtle to prove: it depends on a compat-
ibility between inverses and mates, and in general taking mates does not
preserve invertibility. . . Perhaps this proof should go into the appendix.)

!

8.3.3 Distributivity. Starting from maps A
ϕ! B

ψ! C, we can con-distributivity
struct the following diagram by applying ψ∗ to the map ϕ : A → B:

ψ∗ψ∗A
ψ! ψ∗A

A

εA

"

B

ϕ

"

ψ
! C.

ϕ̃

"

Here εA is the A-component of the counit for the adjunction ψ∗ 7 ψ∗.

thm:distributive 8.3.4 Proposition. In the situation just described, the distributive law holds
for any X → A:

ψ∗ϕ! X = ϕ̃! ψ∗ε∗X

Let us first of all construct a natural transformation. Then it is another
matter whether it is invertible. Applying the previous lemma, we get a

[Rough draft, version 2009-08-05 23:56.] [Input file: manyvars.tex, 2009-08-05 17:14]

8.3 Beck-Chevalley and distributivity 161

natural transformation

ϕ̃! ◦ ψ∗ ⇒ ψ∗ ◦ ϕ! ◦ εA !

Precompose this natural transformation with ε∗A:

ϕ̃! ◦ ψ∗ ◦ ε∗A ⇒ ψ∗ ◦ ϕ! ◦ εA ! ◦ ε∗A

Now compose with the counit for εA ! 7 ε∗A:

ϕ̃! ◦ ψ∗ ◦ ε∗A ⇒ ψ∗ ◦ ϕ! ◦ εA ! ◦ ε∗A ⇒ ψ∗ ◦ ϕ! .

That’s all. Note that these arguments were completely generic and would
apply to any diagram of the shape given. In order to show that this natural
transformation actually happens to be invertible, we must of course use
the fact that the diagram is constructed in a very particular way. . .

Proof of distributivity. Distributivity as we know it from elementary school
describes how to transform a product of sums into a sum of products. The
abstract distributivity formula here does just that, as we see if we write out
explicitly what it means. Temporarily, put Y = ϕ! X. The fibre of Y over
b ∈ B is ∑a∈Ab

Xa. Pushing forth Y to C gives a set with fibre ∏
b∈Bc

Yb, so in

this case the fibre is
∏

b∈Bc

∑
a∈Ab

Xa.

Hence the left-hand side of the distributivity statement is

ψ∗ϕ! X = ∑
c∈C

∏
b∈Bc

∑
a∈Ab

Xa. (8.4) prod-of-sums

Writing only the fibre over c ∈ C, the formula is
(
ψ∗ϕ! X

)
c = ∏b∈Bc ∑a∈Ab

Xa.
Now for the other way around the diagram. We will work through

the formula a little backwards, starting with an arbitrary map Z → ψ∗A.
Then ϕ̃! Z is the set over C with fibre

∑
s∈(ψ∗A)c

Zs

We are interested in the case where Z = ψ∗W for some W over ψ∗ψ∗A.
So in that case the fibre of ψ∗W over s ∈ ψ∗A is

∏
m∈(ψ∗ψ∗A)s

Wm

[Rough draft, version 2009-08-05 23:56.] [Input file: manyvars.tex, 2009-08-05 17:14]

162 Polynomials in many variables

Substituting this formula into the previous, we find this expression for the
fibre over c of ϕ̃! ψ∗W:

(ϕ̃! ψ∗W)c = ∑
s∈(ψ∗A)c

∏
m∈(ψ∗ψ∗A)s

Wm.

Here we can simplify the indices in the product a little bit: to give an
element in the pullback ψ∗ψ∗A = B ×C ψ∗A that maps to s ∈ ψ∗A, and
knowing that this s maps to c, all we need to specify is the first factor in
the fibre product, which of course has to lie in the fibre Bc. So we can write
a little more concisely:

(ϕ̃! ψ∗W)c = ∑
s∈(ψ∗A)c

∏
b∈Bc

Wm.

Finally, the W we are interested in is ε∗X, whose fibre over m ∈ ψ∗ψ∗A
is Xε(m). Now the counit ε is just the evaluation map (b, s) %→ s(b), so we
can write Wm = Xε(m) = Xs(b). So here is the final expansion of the right-
hand side of the distributivity statement:

(ϕ̃! ϕ∗ε∗X)c = ∑
s∈(ψ∗A)c

∏
b∈Bc

Xs(b). (8.5) sum-of-prods

All the above were just preliminary manoeuvres to make explicit what
distributivity means. At the same time it made it clear that everything is
fibrewise. So in order to prove that (8.4) is equal to (8.5), we can reduce
to the case where C = 1. In this case there is a simpler description of the
lowerstar: ψ∗A is simply the set of sections to ϕ : A → B, which we denote
ΓB(A).

Now the statement is all about these two maps:

X γ! A ϕ! B

and the pushforth to C. Consider it like this:

X
γ ! A ψ∗X

ψ∗(γ)! ψ∗A

B
ψ

!

$

!

C

$

!

[Rough draft, version 2009-08-05 23:56.] [Input file: manyvars.tex, 2009-08-05 17:14]

8.3 Beck-Chevalley and distributivity 163

The map ψ∗(γ) is just

ΓB(X) −→ ΓB(A)

σ %−→ γ ◦ σ.

The left-hand side of the distributivity equation is

ψ∗ϕ! X = ∏
b∈B

∑
a∈Ab

Xa = ΓB(X).

We want to describe it in terms of pulling back X along ε and then multi-
plying. In other words, we want to write it as a sum. The sum should be
over all s ∈ ∏

b∈B
Ab = ΓB(A). Well, there is a natural map ΓB(X) → ΓB(A)

namely σ %→ γ ◦ σ. (Check that this map is ψ∗(γ).) So it remains to de-
scribe the fibres of this map. Here is the relevant diagram:

s∗(X) ! X

B
"

s
! A

γ

"

To give a section B → X (over s) is the same as giving B → s∗X. So the
fibre is

ΓB(s∗X) = ∏
b∈B

Xs(b)

In total, we have written

ΓB(X) = ∑
s∈ΓB(A)

∏
b∈B

Xs(b)

This is precisely (8.5), the right-hand side of the distributivity equation. !

The proof above already implicitly shows how to reduce the expression
of distributivity to an expression involving only the two original maps

A
ϕ

−→ B
ψ

−→ C

[Rough draft, version 2009-08-05 23:56.] [Input file: manyvars.tex, 2009-08-05 17:14]

164 Polynomials in many variables

Here are some more details. Let’s put a few more names in the diagram,
writing M = ψ∗A and N = ψ∗M:

N
ψ ! M

A

εA

"

B

ϕ

"

ψ
! C.

ϕ̃

"

Spelled out in the ‘internal language’, distributivity says:

(
∏

b∈Bc

∑
a∈Ab

Xa | c ∈ C
)

=
(

∑
m∈Mc

∏
n∈Nm

Xε(n) | c ∈ C
)

The right-hand side involves the new sets M and N, but we will now ex-
pand these by their definition to arrive at an expression involving only the
original sets and maps. By construction, we have

M =
(

∏
b∈Bc

Ab | c ∈ C
)

hence

Mc = {m : Bc → A | sections to ϕ}.

Now to give n ∈ Nm is the same as giving b ∈ Bc for c = ϕ̃(m). The map
ε : N → A is defined as evaluation: it sends n = (m, b) to m(b). Hence we
can write ∏n∈Nm Xε(n) = ∏b∈Bc Xm(b). Finally we can write the right-hand
side of distributivity as

=
(

∑
m:Bc→A

∏
b∈Bc

Xm(b) | c ∈ C
)
.

[Rough draft, version 2009-08-05 23:56.] [Input file: manyvars.tex, 2009-08-05 17:14]

8.4 Further Beck-Chevalley gymnastics 165

8.4 Further Beck-Chevalley gymnastics
Sec:gymnastics

The twelve ways of a square

For any square

·
f ! ·

·

u

"

g
! ·

v

"

we denote the Beck-Chevalley transformations

φ : f∗u! ⇒ v! g∗ ψ : g∗v∗ ⇒ u∗ f∗

NOTE THAT WE WRITE COMPOSITION FROM LEFT TO RIGHT!
If the square is a pullback square, then we also have the transformation

of Lemma 8.3.2, which we denote by

γ : f∗v! ⇒ u! g∗.

twelveways 8.4.1 Proposition. For any square

·
f ! ·

(#)

·

u

"

g
! ·

v

"

the following eight equations of 2-cells hold:

f∗
ηv
⇒ v! v∗ f∗

ηu ⇓ (i) ‖

f∗u! u∗ ⇒
φ

v! g∗u∗

v∗g∗u∗
ψ
⇒ f∗u∗u∗

‖ (ii) ⇓ εu

v∗v∗ f∗ ⇒
εv

f∗

[Rough draft, version 2009-08-05 23:56.] [Input file: manyvars.tex, 2009-08-05 17:14]

166 Polynomials in many variables

v∗ f∗u!
φ
⇒ v∗v! g∗

‖ (iii) ⇓ εv

g∗u∗u! ⇒
εu

g∗

g∗
ηu
⇒ g∗u∗u∗

ηv ⇓ (iv) ‖

v∗v∗g∗ ⇒
ψ

v∗ f∗u∗

f!
ηv
⇒ f! v! v∗

ηu ⇓ (v) ‖

u! u∗ f! ⇒
φ

u! g! v∗

u∗g∗v∗
ψ
⇒ u∗u∗ f∗

‖ (vi) ⇓ εu

f∗v∗v∗ ⇒
εv

f∗

u∗ f! v!
φ
⇒ g! v∗v!

‖ (vii) ⇓ εv

u∗u! g! ⇒
εu

g!

g∗
ηu
⇒ u∗u∗g∗

ηv ⇓ (viii) ‖

g∗v∗v∗ ⇒
ψ

u∗ f∗v∗

If furthermore the square (#) is cartesian, we also have these four equations:

u∗g! v∗
γ
⇒ f! v∗v∗

φ−1 ⇓ (ix) ⇓ εv

u∗u∗ f! ⇒
εu

f!

f∗
ηu
⇒ u! u∗ f∗

ηv ⇓ (x) ⇓ ψ−1

f∗v! v∗ ⇒
γ

u! g∗v∗

g!
ηv
⇒ g! v∗v∗

ηu ⇓ (xi) ⇓ φ−1

u∗u∗g! ⇒
γ

u∗ f! v∗

v∗ f∗u!
γ
⇒ v∗v! g∗

ψ−1 ⇓ (xii) ⇓ εv

g∗u∗u! ⇒
εu

g∗

Proof. All the proofs are elementary. As an example let us prove (v). We
use string diagrams, read from bottom to top. The claim is

[Rough draft, version 2009-08-05 23:56.] [Input file: manyvars.tex, 2009-08-05 17:14]

8.4 Further Beck-Chevalley gymnastics 167

φ

ηu

f!

u! g! v∗

= ©

ηv

f!

u! g! v∗

where © denotes the identity 2-cell. The proof is just to use the definition
of the 2-cell φ:

φ

u∗ f!

g! v∗

:=

εu

ηv

©

u∗ f!

g! v∗

which is seen here inside the rectangle:

φ

ηu

f!

u! g! v∗

=

εu

ηv
ηu

©

u!

f!

g! v∗

= ©

ηv

f!

u! g! v∗

The second step was the triangle identity for the adjunction u! 7 u∗. !

The six ways of a pair of squares

sixways 8.4.2 Lemma. For any pair of squares

·
f ! ·

f̃ ! ·

·

u

"

g
! ·

v

"

g̃
! ·

w

"

the following four equations of 2-cells hold:

u∗ f! f̃ ! ⇒ g! g̃! w∗

⇓ ⇑

g! v∗ g̃!

w∗ g̃∗g∗ ⇒ f̃∗ f∗u∗
⇓ ⇑

f̃∗u∗g∗

[Rough draft, version 2009-08-05 23:56.] [Input file: manyvars.tex, 2009-08-05 17:14]

168 Polynomials in many variables

f̃∗ f∗u! ⇒ w! g̃∗g∗

⇓ ⇑

f̃ v! g∗

g∗ g̃∗w∗ ⇒ u∗ f∗ f̃∗
⇓ ⇑

g∗v∗ f̃∗

Here, the horizontal natural transformations are Beck-Chevalley along a compos-
ite map. So the equations just say that a Beck-Chevalley along a composite map
can be realised in two steps.

Furthermore, if the squares are pullbacks, then we also have the following two
equations:

f∗ f̃ ∗w! ⇒ u! g∗ g̃∗
⇓ ⇑

f∗v! g∗

u∗g! g̃! ⇒ f! f̃ ! w∗
⇓ ⇑

f! v∗ g̃!

One more lemma

Here is a concrete problem to get us started: Suppose we have

·
ϕ! ·

ψ! ·
ψ′
! ·

Then we have an expression

ψ′
∗ ◦ ψ∗ ◦ ϕ!

Now we can rewrite in a single step using distributivity of (ψ′ ◦ ψ)∗ over
ϕ! . Or we could use distributivity in two steps, and then a Beck-Chevalley,
as follows: consider the diagram (assumed to be the sort of diagram oc-

[Rough draft, version 2009-08-05 23:56.] [Input file: manyvars.tex, 2009-08-05 17:14]

8.4 Further Beck-Chevalley gymnastics 169

curring in distributivity):

·
s ! ·

m ! ·

·

a

" g ! ·

e

"

B

ε

"

·

b

"

q
! ·

c

"

r
! ·

w

"

The upper right-hand corner is both (rq)∗B and r∗q∗B. One should check
that ε ◦ a coincides with the counit (rq)∗(rq)∗B → B.

Now one way of rewriting is

r∗ ◦ q∗ ◦ b! + w! ◦ (ms)∗ ◦ (εa)∗

with just one application of distributivity.
Another way of rewriting is

r∗ ◦ q∗ ◦ b! + r∗ ◦ c! ◦ g∗ ◦ ε∗ + w! ◦m∗ ◦ e∗ ◦ g∗ ◦ ε∗ + w! ◦m∗ ◦ s∗ ◦ a∗ ◦ ε∗

The two end results are clearly isomorphic by two applications of the
compatibility-with-composition rule. But how do we know that these two
way of arriving here coincide?

The answer is to take all the involved 2-cells and break them up accord-
ing to their construction. We know that all the 2-cells we use are built up
from units and counits (and compatibility-with-composition triangles)—
and their inverse when they exist.

When we tackle this problem, we don’t really care whether the dis-
tributivity 2-cell is invertible. In fact the proof goes through for any dia-
gram of the shape, if just we are careful about the direction of the transfor-
mations.

We can deduce the equality of the two composite 2-cells by first study-
ing the similar question for the 2-cell of Lemma 8.3.2.

[Rough draft, version 2009-08-05 23:56.] [Input file: manyvars.tex, 2009-08-05 17:14]

170 Polynomials in many variables

8.5 Composition

Assuming we have an intrinsic characterisation of polynomial functors
then it should follow readily from stability properties of the conditions
in the characterisation that the composite of two polynomial functors is
again polynomial. Such a proof would not support our viewpoint that all
operations on polynomial functors should take place on the representing
sets and maps.

thm:composite 8.5.1 Lemma. The composite of two polynomial functors is again polynomial.

Proof. Consider the beautiful diagram

·
Π ! ·

Π ! ·

·
Π

!

∆

$
·

∆

$

·
Π

!

∆

$
·

∆

$
·

Π
!

Σ !
·

Σ

"

·

∆

$
·

∆

$
Σ !

·

Σ

!

In this diagram the labels just indicate what sort of operation we are per-
forming along the given map, ∆ indicating pullback, Σ lowershriek, and Π

lowerstar. Given a set X over the lower left-hand set, dragging X through
the lower six maps is to apply two polynomial functors to it. According to
the Beck-Chevalley conditions and distributivity, dragging X through the
top sequence of arrows gives the same result, and doing this is clearly a
polynomial functor. Indeed the three squares are defined by pullback, and
the pentagon is constructed as in the distributivity result.

Alternatively, you can give each map a specific name and start rewrit-
ing using Beck-Chevalley conditions and distributivity. E.g. suppose the

[Rough draft, version 2009-08-05 23:56.] [Input file: manyvars.tex, 2009-08-05 17:14]

8.5 Composition 171

maps are called

·
b ! · ·

q
! ·

·

a

$
·

z
$

c !
·

m

!

then the proof starts like this: form the pullback

·
x ! ·

·

k

"

c
! ·

z

"

and use Beck-Chevalley:

m! ◦ q∗ ◦ z∗ ◦ c! ◦ b∗ ◦ a∗ + m! ◦ q∗ ◦ x! ◦ k∗ ◦ b∗ ◦ a∗

exchanging the middle lowershriek and upperstar. And so on, inventing
names for the maps in the big diagram. (You do see it all in the diagram!)

!

8.5.2 Graphical interpretation. The following graphical interpretation isgraphical
very useful. Referring to a polynomial functor

E
p ! B

I

s

$

J

t! (8.6)

the important aspects of an element b ∈ B are: the fibre Eb = p−1(b) and
the element j := t(b) ∈ J. We capture these data by picturing b as a (non-
planar) bouquet (also called a corolla)

b

j

e . . .

[Rough draft, version 2009-08-05 23:56.] [Input file: manyvars.tex, 2009-08-05 17:14]

172 Polynomials in many variables

Hence each leaf is labelled by an element e ∈ Eb, and each element of Eb
occurs exactly once. In virtue of the map s : E → I, each leaf e ∈ Eb
acquires furthermore an implicit decoration by an element in I, namely
s(e).

An element in E can be pictured as a bouquet of the same type, but
with one of the leaves marked (this mark chooses the element e ∈ Eb,
so this description is merely an expression of the natural identification
E = (b∈B Eb). Then the map p : E → B consists in forgetting this mark,
and s returns the I-decoration of the marked leaf.

Consider now a set over I, say f : X → I. Then the elements of P(X)
are bouquets as above, but where each leaf is furthermore decorated by
elements in X in a compatible way:

b

j

e . . .
x . . .

The compatibility condition for the decorations is that leaf e may have
decoration x only if f (x) = s(e). The set of such X-decorated bouquets
is naturally a set over J via t (return the label of the root edge). More
formally, P(X) is the set over B (and hence over J via t) whose fibre over
b ∈ B is the set of commutative triangles

X $ Eb

I.

s

$

f !

Let us work through the diagram and interpret all the sets in graphical
terms. Suppose the polynomial functors are given by I ← B → B → J and

[Rough draft, version 2009-08-05 23:56.] [Input file: manyvars.tex, 2009-08-05 17:14]

8.5 Composition 173

J ← C → C → K

W ! W ! q∗V = Q(B)

V !
$

V
$

distr.

B
p

!
$

B
$

C
q

!
!

C
"

I
$

P J
$

!

Q K
!

(8.7) big-comp-diagram

According to the general description, the set V is just B ×J C. This is
the set of pairs of bouquets, one B-bouquet b and one C-bouquet f with a
marked leaf, such that the decoration of the marked leaf of f is the same as
the root decoration of b. In other words, the elements are two-node trees,
the lower node being c and the upper node b, and all edges decorated in J:

c

b

Now push this set forth along q: the set q∗V is described as follows,
cf. the general description of pushing forth: its elements are B-bouquets,
where furthermore each leaf is decorated by an element in T. Indeed, by
the general description, q∗V is a set over C whose fibre over c ∈ C is the
set of commutative triangles

B $ ϕ
Cc

J.

$

!

I.e. to each leaf of c we have to choose a B-bouquet with the output type
equal to the input type at the leaf. In other words, we just have the con-
figurations of all two-level trees, with the bottom level being a C-bouquet,
and the top levels being B-bouquets.

[Rough draft, version 2009-08-05 23:56.] [Input file: manyvars.tex, 2009-08-05 17:14]

174 Polynomials in many variables

c

b1 b2 b3

The set W : = q∗q∗V is described in a similar manner: they are just
two-level trees with one of the inner edges marked. Indeed, formally its
elements (in the fibre over c ∈ C) are pairs (f , ϕ) where f ∈ Cc and ϕ is a
diagram like above, so f just selects an inner edge in the previous figure:

c

b1 b2 b3
∗

The map from here to V simply forgets about the upper nodes not cor-
responding to the marked inner edge. I.e. prune all non-marked edges.
Formally, it is the evaluation map, sending a pair (f , ϕ) to the pair (ϕ(f), f),
i.e. we no longer have to select a B-bouquet for every leaf, but only for the
one singled out by f .

Finally we have the pulled back versions of these sets. We denote by
V the pullback of V along p. Clearly this is just the set of two-node trees
(lower node in C and upper in B) with a marked leaf of the upper node.

c

b

∗

Finally W : = p∗W is the same configurations as in W = q∗q∗V, but
with one leaf marked of the node lying over the marked inner edge. Note
that with this leaf marked, the mark on the inner edge becomes superflu-
ous since it is determined uniquely as the inner edge leading to the marked
leaf. So in conclusion, W is the set of two-level trees with one marked leaf.

c

b1 b2 b3

∗

[Rough draft, version 2009-08-05 23:56.] [Input file: manyvars.tex, 2009-08-05 17:14]

8.5 Composition 175

Altogether we just recover the description we arrived at by heuristic ar-
guments, namely that the composite is defined in terms of two-level trees.

In particular, the base set for the composite is seen to be

q∗(B ×J C)

which is also what we knew from some other computation we did earlier.

This is not strictly associative, because the involved operations, pull-
back, pushforth, and so on are only well-defined up to unique isomor-
phism. If we chose them as algebraic operations from the beginning then
we get a well-defined composition law, but it will only be associative up
to isomorphism. It is clear that the pentagon equation is satisfied because
all the weakness comes from universal properties.

Another proof of coherence: given a triple composition, the associator
will be a natural transformation between two slightly different polyno-
mial functors. However, each of these polynomial functors has a natural
isomorphism to the triple composition of functors, which is strictly as-
sociative, and in fact the associator is defined through these, and since
everything is thus anchored in the strict world of functors, coherence is
automatic.

Rewrite systems and coherence

The following is an easy consequence of the previous subsection:

8.5.3 Corollary. The class of polynomial functors is the smallest class of functors
between slices of Set containing the pullback functors and their adjoints, and
closed under composition and natural isomorphism. !

We often use a Beck-Chevalley isomorphism as if it were the identity.
And we treat distributivity in the same careless way. But we ought to
worry about coherence. . .

Let’s define more generally a polynomial functor to be any (finite) com-
posite of upperstar, lowerstar, and lowershriek functors. Each of these
classes of functors are in particular polynomial, and since we already showed
that composites of polynomial functors are again polynomial, it is clear
that this new definition is not more general than the original: We will see

[Rough draft, version 2009-08-05 23:56.] [Input file: manyvars.tex, 2009-08-05 17:14]

176 Polynomials in many variables

in a moment that every such composite can be brought on ‘normal form’
as the usual three-step polynomial functor we use all the time.

However, it is interesting to analyse these rewriting processes more
carefully.

8.5.4 Proposition. Every composite of upperstar, lowerstar, and lowershriek func-
tors can be brought on normal form:

E
p ! B

I

s

$

J

t

! (8.8)

P : Set/I → Set/J defined by

Set/I s∗! Set/E p∗! Set/B t!! Set/J.

Proof. First we move all the lowershriek functors to the end: given some
occurrence

g∗ ◦ f!

as in the diagram

·

·
f

! ·

g

"

complete to a pullback diagram

·
k ! ·

·

h

"

f
! ·

g

"

Then we have g∗ ◦ f! = k! ◦ h∗, by Beck-Chevalley.

[Rough draft, version 2009-08-05 23:56.] [Input file: manyvars.tex, 2009-08-05 17:14]

8.5 Composition 177

In the situation where we have p∗ ◦ a! as in the diagram

X

·

a

"

p
! ·

complete to a pullback diagram diagram

p∗p∗X
q ! p∗X

X

ε

"

·

a

"

p
! ·

g

"

and invoke distributivity:

p∗ ◦ a! = g! ◦ q∗ ◦ ε∗

In conclusion we can always move all occurrences of lowershriek to
the end.

Once we have done that, we can move all the occurrences of upperstar
to the beginning. We just ave to move them past all the occurrences of
lowerstar, and we can do that by Beck-Chevalley. !

We may want to formulate this as a double factorisation system. As-
suming we have an abstract characterisation of polynomial functors, say
first that every polynomial functor factorises uniquely as a right adjoint
(the upperstar-lowerstar part) followed by a ???-part (characterising the
lowershriek part). Next, show that every right adjoint polynomial func-
tor factorises uniquely as an upperstar followed by a lowerstar. (There is
no factorisation system in which the left-hand class is the class of upper-
stars, because the class of lowershriek-and-lowerstar functors is not closed
under composition, cf. distributivity.)

Here is the issue: we have certain rewriting rules that allow us to
start from any composite of upperstars, lowershrieks and lowerstars, and

[Rough draft, version 2009-08-05 23:56.] [Input file: manyvars.tex, 2009-08-05 17:14]

178 Polynomials in many variables

rewrite to arrive at the normal form. The rules are: move the lowershrieks
towards the right, swapping with upperstars using Beck-Chevalley, and
swapping with lowerstars using distributivity (this step produces a new
upperstar). We can do this with all the lowershrieks until they are all con-
centrated in the end. Then we can interchange upperstars and lowerstars
using Beck-Chevalley until finally we have all the upperstars in the begin-
ning. Then we can compose all the upperstars, compose all the lowerstars,
and compose all the lowershrieks.

But we could also compose two adjacent terms of the same type when-
ever we can. How do we know that the various isomorphisms such ob-
tained from the initial expression and to the normal form are the same?
Can we even guarantee the normal forms to be the same independently
of how we rewrite? Yes, this is OK, because all steps are isomorphisms,
so the resulting normal forms are always isomorphic. But could it be that
there is more than one isomorphism?

THE RESULTS IN SECTION 8.4 SHOW THAT EVERYTHING IS OK. . .
What are the gymnastics results for distributivity?

Alternatively, perhaps we can deduce the coherence result from the biequiv-
alence with the 2-category of polynomial functors, established in the com-
ing chapters. . .

8.6 Basic properties
Sec:many:basic

8.6.1 Lemma. Polynomial functors (over an arbitrary lccc) preserve connected
limits.

Proof. Indeed, p∗ and s∗ are right adjoints so they preserve all limits, and
t! preserves connected limits by Lemma 8.2.5.

!

In particular polynomial functors are cartesian, and since monos can
be characterised in terms of pullbacks, it follows that polynomial functors
preserve monos.

8.6.2 Intrinsic characterisations of polynomial functors. Here we give
some intrinsic characterisations of polynomial functors over Set . This case
is somewhat special due to the equivalence Set/I + Set I.

[Rough draft, version 2009-08-05 23:56.] [Input file: manyvars.tex, 2009-08-05 17:14]

8.6 Basic properties 179

thm:six 8.6.3 Theorem. For a functor P : Set/I → Set/J, the following conditions are
equivalent.

item:poly (i) P is polynomial.

item:connected (ii) P preserves connected limits (or, equivalently, pullbacks and cofiltered lim-
its, or equivalently, wide pullbacks).

item:famrepr (iii) P is familially representable (i.e. a sum of representables).

item:topos (iv) The comma category (Set/J)↓P is a presheaf topos.

item:lra (v) P is a local right adjoint (i.e. the slices of P are right adjoints).

item:generic (vi) P admits strict generic factorisations [103].

item:normalform (vii) Every slice of el(P) has an initial object (Girard’s normal-form property).

The equivalences (ii) ⇔ (v) ⇔ (vi) go back to Lamarche [67] and Tay-
lor [102], who were motivated by the work of Girard [43], cf. below. They
arrived at condition (vi) as the proper generalisation of (vii), itself a cat-
egorical reformulation of Girard’s normal-form condition [43]. Below we
give a direct proof of (i) ⇔ (vii), to illuminate the relation with Girard’s
normal functors. The equivalence (ii) ⇔ (iii) is due to Diers [32], and was
clarified further by Carboni and Johnstone [25], who established in partic-
ular the equivalence (ii) ⇔ (iv) as part of their treatment of Artin gluing.
The equivalence (i) ⇔ (iii) is also implicit in their work, the one-variable
case explicit. The equivalence (i) ⇔ (v) was observed by Weber [104], who
also notes that on general presheaf toposes, local right adjoints need not
be polynomial: for example the free-category monad on the category of
directed graphs is a local right adjoint but not a polynomial functor.

8.6.4 Finitary functors. A polynomial functor P : Set/I → Set/J is fini-
tary if it preserves filtered colimits. If P is represented by I ← B → A → J,
this condition is equivalent to the map B → A having finite fibres.

8.6.5 Girard’s normal functors. Girard [43], aiming at constructing mod-
els for lambda calculus, introduced the notion of normal functor: it is a func-
tor Set I → Set J which preserves pullbacks, cofiltered limits and filtered
colimits, i.e. a finitary polynomial functor. Girard’s interest was a certain
normal-form property (reminiscent of Cantor’s normal form for ordinals),

[Rough draft, version 2009-08-05 23:56.] [Input file: manyvars.tex, 2009-08-05 17:14]

180 Polynomials in many variables

which in modern language is (vii) above: the normal forms of the func-
tor are the initial objects of the slices of its category of elements. Girard,
independently of [55], also proved that these functors admit a power se-
ries expansion, which is just the associated (flat) analytic functor. From
Girard’s proof we can extract in fact a direct equivalence between (i) and
(vii) (independent of the finiteness condition). The proof shows that, in
a sense, the polynomial representation is the normal form. For simplicity
we treat only the one-variable case.

thm:normalform 8.6.6 Proposition. A functor P : Set → Set is polynomial if and only if every
slice of el(P) has an initial object.

Proof. Suppose P is polynomial, represented by B → A. An element of P
is a triple (X, a, s), where X is a set, a ∈ A, and s : Ba → X. The set of
connected components of el(P) is in bijection with the set P(1) = A. For
each element a ∈ A = P(1), it is clear that the triple (Ba, a, id Ba) is an
initial object of the slice el(P)/(1, a, u), where u is the map to the terminal
object. These initial objects induce initial objects in all the slices, since
every element (X, a, s) has a unique map to (1, a, u).

Conversely, suppose every slice of el(P) has an initial object; again
we only need the initial objects of the special slices el(P)/(1, a, u), for
a ∈ P(1). Put A = P(1). It remains to construct B over A and show
that the resulting polynomial functor is isomorphic to P. Denote by (Ba, b)
the initial object of el(P)/(1, a, u). Let now X be any set. The unique map
X → 1 induces P(X) → P(1) = A, and we denote by P(X)a the preimage
of a. For each element x ∈ P(X)a , the pair (X, x) is therefore an object of
the slice el(P)/(1, a, u), so by initiality we get a map Ba → X. Conversely,
given any map α : Ba → X, define x to be the image under P(α) of the
element b; clearly x ∈ P(X)a . These two constructions are easily checked
to be inverse to each other, establishing a bijection P(X)a ∼= XBa . These
bijections are clearly natural in X, and since P(X) = ∑a∈A P(X)a we con-
clude that P is isomorphic to the polynomial functor represented by the
projection map ∑a∈A Ba → A. !

8.7 Examples

Special classes of polynomial functors:

[Rough draft, version 2009-08-05 23:56.] [Input file: manyvars.tex, 2009-08-05 17:14]

8.7 Examples 181

8.7.1 Constant polynomial functors. The constant polynomial functors
Set/I → Set with value Λ are represented by the diagrams I ← ∅ → Λ.
More generally the constant functors Set/I → Set/J with value Λ/J are
represented by I ← ∅ → Λ → J. If we furthermore want it to be equal in
each output component, we should take a fixed set Λ and use Λ × J.

This defines a functor Set/J −→ PolyFun(I, J) sending Λ/J to the
constant functor. Check that this one has a right adjoint which is evalu-
ation at ∅. We can compose this adjunction with the adjunction Set →
Set/J which sends Λ to Λ × J. (The right adjoint is the forgetful func-
tor.) This gives a functor Set → PolyFun(I, J) which has as right adjoint
evaluation at the empty set.

8.7.2 Partial identity functors (one for each type). WAIT UNTIL WEmultXi
HAVE INTRODUCED MULTIPLICATION OF POLYNOMIA FUNCTORS.
For each i ∈ I we have the identity functor X/I %→ Xi. It is represented

by the diagram I i
←− 1 → 1. The effect of multiplying with this functor

which de denote by Xi is:

Xi · (I ← E → B) = I ← E + B → B

where the new B-summand in the top space maps to i. In other words, to
every fibre there is added an extra element (of type i).

8.7.3 Linear functors. This means that the middle map (the multiplication
part) is a bijection—we can assume it is the identity map. Then we are
talking about diagrams like

A

I

s

$

J

t!

The set A is indexed in simultaneously by the two sets I and J, so it is really
a matrix of sets! Now many concepts from linear algebra carry over, but
of course it is more precisely linear algebra over N we are talking about!
Since this is cool anyway, the whole next subsection is dedicated to this. . .

8.7.4 Affine functors.affine-many

[Rough draft, version 2009-08-05 23:56.] [Input file: manyvars.tex, 2009-08-05 17:14]

182 Polynomials in many variables

8.7.5 In case of map over I. Suppose we are given a commutative diagram

E
p ! B

I

t

$

s !

This is a special case of a polynomial functor. In this case, the formula

∑
i∈I

∑
b∈Bi

∏
e∈Eb

Xs(e)

simplifies a little bit: since the triangle commutes we have s(e) = i, so the
expression simplifies to

∑
i∈I

∑
b∈Bi

XEb
i .

Taking for granted the statement that polynomial functors make sense
in any topos, then the functors of this type are those that are one-variable
polynomial functors in the topos Set/I.

The free-category functor on graphs with fixed object set
Sub:free-cat

Consider the set of linear functors with endpoints S. This is the same thing
as a (non-reflexive) directed graph with vertex set S. We now construct
the free category on this graph. This will be the left adjoint to the forgetful
functor from categories with object set S to directed graphs with vertex set
S. Put differently it is the adjunction between linear polynomial monads
with endpoint set S, and linear polynomial functors with endpoint set S.
We are talking about endofunctors on Set/(S × S).

Given a graphs with vertex set S there is a free category on that graph,
and of course it has object set S again. The corresponding monad on S-
graphs is polynomial. A graph with vertex set S is a diagram E !! S, so
the category of graphs with vertex set S is the slice category Set/(S × S).

The terminal graph with vertex set S is the chaotic graph on S (i.e. there
is precisely one edge between any two vertices). That’s just S × S !! S.
The free category on that graph is this: it has the set S as object set, and
it has the set of paths in the chaotic graph on S as arrow set. We do not
allow the empty path. A path is therefore given by specifying a non-empty

[Rough draft, version 2009-08-05 23:56.] [Input file: manyvars.tex, 2009-08-05 17:14]

8.7 Examples 183

chain of elements of S. The shortest paths are those with only one element
of S (then the corresponding arrow will be the identity arrow we introduce
for that element). So T1 = S+. This set has two projections to S, namely
returning the first and the last element of the chain.

For a general graph with vertex set S, that’s X → S × S, we need rather
to specify a sequence

x_1 x_2 x_3 ... x_n
s_0 s_1 s_2 s_n

where xi is an edge from si−1 to si.
This assignment is polynomial: the E-set is the set of non-empty chains

of elements in S with two consecutive elements marked. In the end the
polynomial functor is given by

S+ ′′ ! S+

S × S

$

S × S

!

Indeed, given a graph with vertex set S and edge set X, that is, X → s × S,
then by pulling back to S+ ′′ and pushing forth to S+ we get the set of
alternating incidence sequences as required.

So the free category on X → S × S is the category with arrow set

∑
n∈N

X ×S · · ·×S X

and with the two outer projections.
You can also say that it is the set of

with dots decorated in S and edges decorated in X, subject to the obvious
compatibility requirement.

Now the set S+ is already the set of such linear graphs with nodes
decorated by elements in S. So all the polynomial functor does is to further
decorate the linear graph with X at the nodes, in a compatible way.

We shall later come back to the free-category monad without fixing the
vertex set. This monad is not polynomial in the sense of this chapter. It

[Rough draft, version 2009-08-05 23:56.] [Input file: manyvars.tex, 2009-08-05 17:14]

184 Polynomials in many variables

is polynomial in a more general sense, where we use presheaf categories
instead of slice categories.

Then instead of just having the S-decorations fixed in advance, and let
the polynomial functor provide the X-decorations, we will have abstract
linear graphs and let the polynomial functor (in the generalised sense) dec-
orate everything.

[Rough draft, version 2009-08-05 23:56.] [Input file: manyvars.tex, 2009-08-05 17:14]

Chapter 9

Examples

9.1 Linear functors (matrices)
Sec:linear

9.1.1 Notation for linear algebra. We are going to develop some rudimen-
tary linear algebra, and let us fix some notation. We want the following:
composition is denoted left-to-right, so that the composite of linear maps

U
A! V

B! W

will be the matrix product AB. Hence in particular, a linear maps does
x %→ x · A. This means that vectors are row vectors.

We want to distinguish upper and lower indices like in physics. Hence
the above products should read

∑
j

Ai
j · Bj

k = Ci
k

and ∑i xi Ai
j

If you think this looks strange, try to work out a few matrix multipli-
cations, just to get used to it before starting on the linear functors. . .

An alternative notation would be to move the upper indices down on
the left side. Then matrix multiplication looks like this

i Aj · jBk = iCk

9.1.2 Linear functors. This means that the middle map (the multiplication
part) is a bijection. For simplicity we assume it is the identity map, so we

[Rough draft, version 2009-08-05 23:56.] [Input file: examples.tex, 2009-08-06 17:26]

186 Examples

are talking about diagrams

A

I

s

$

J

t!

The corresponding polynomial functor F is

Set/I −→ Set/J
(Xi | i ∈ I) %−→ (∑

a∈Aj

Xs(a) | j ∈ J)

which of course we call a linear functor. As usual, let Aj denote the subset
t−1(j) ⊂ A. Since there are no exponents involved in linear functor, we
will allow ourselves to use upper indices now: let Ai denote the subset
s−1(i) ⊂ A. Let Ai

j denote the intersection Ai ∩ Aj. Hence

A = ∑
i,j

Ai
j.

Now, this is just a matrix of sets—the rows of the matrix are indexed by
I, and the columns are indexed by J. Many notions like rows and columns
usually assume that I and J are finite ordered sets, but in fact many con-
cepts don’t require this assumption.

Now the linear functor is

F : Set/I −→ Set/J
X %−→ A ×I X

(Xi | i ∈ I) %−→ (Yj | j ∈ J)

with
Yj = Ai

jXi

WITH THE ABOVE CONVENTION, I THINK THIS SOULD BE X ×I A
and Xi × Ai

j
So the linear functors Set/I → Set/J are given by the set Set/(I × J).

9.1.3 Composition of linear functors—matrix multiplication. Given lin-
ear functors (and we have to find a good convention to make the order
look right in all cases. . .)

I ← A → J ← B → K

[Rough draft, version 2009-08-05 23:56.] [Input file: examples.tex, 2009-08-06 17:26]

9.1 Linear functors (matrices) 187

clearly the composite linear functor is given by the fibre product A ×J B.
Let us look at the i

k fibre (A ×J B)i
k. It is the sum

∑
j∈J

Ai
j × Bj

k

which says that A ×J B is precisely the matrix product of A and B. Well,
what else would you expect?

In conclusion, the formula for multiplying two matrices is just a pull-
back formula!

The linear functors I ← B → J sit inside PolyFun(I, J) as a full subcat-
egory.

UPS: WE HAVEN’T YET INTRODUCED THOSE CATS
Note that for between linear functors there is no difference between

general natural transformation and cartesian ones, so Lin(I, J) is also a full
subcategory of PolyFun(I, J). However, the following result only applies
to Polyc(I, J):

9.1.4 Lemma. The inclusion functor Lin(I, J) → Polyc(I, J) has a right ad-
joint.

It is the functor

Polyc(I, J) −→ Lin(I, J)
E/B %−→ E1/B1

which only retains the linear part. I.e. we take the subset B1 ⊂ B consisting
of elements whose fibre is singleton and then E1 + B1.

Indeed if I ← M → J is a linear functor, and I ← E → B → J is a
general polynomial functor, then to give a cartesian map from M/M into
E/B is the same as giving one into the linear part, because all elements in
M are of arity 1, so have to map to the arity-1 operations in B.

Note that in general there is no cartesian map from E/B to M/M, so
there is certainly not a left adjoint to the inclusion.

Note that the linear-part functor is neither full not faithful: any two
cartesian maps between polynomial functors without linear part are mapped
to the identity map of ∅, so linear-part functor is not faithful. It is not full
either, because there are no cartesian maps between the polynomial func-
tors 3/1 and 2/1, yet there is the identity map on the linear part.

[Rough draft, version 2009-08-05 23:56.] [Input file: examples.tex, 2009-08-06 17:26]

188 Examples

THE FOLLOWING DISCUSSION SHOULD BELONG TO THE VARIABLE-
TYPE CASE: HOWEVER: if we restrict to the category of trees (the big one
with three sorts of maps), then we know that a map between trees is com-
pletely determined by its value on edges (these are unary operations), so
this shows in particular that the linear-part functor is faithful when re-
stricted to the subcategory of trees. It is still not full: for the single-dot tree
of arity 2, then the linear part is the functor 3 ← 3 → 3. This one has 3!
automorphisms whereas the original tree only has 2.

More generally, define Polyc
n to be the sub-2-category of Polyc con-

sisting of the polynomial functors of degree at most n. This means that
the cardinality of each fibre of E → B is at most n. (We could define
Aff : = Polyc

1, the affine functors mentioned in (1.2.4 and) 8.7.4.) Again
the inclusion functor Polyc

n ↪→ Polyc has a right adjoint which only takes
the subset of B for which the fibre is at most n.

An important case of this is the n = 0: the category Polyc
0(1, 1) is natu-

rally identified with Set , and more generally, Polyc
0(I, J) is identified with

Set/J. The right adjoint is evaluation at ∅.

And similarly, for any m ≤ n, the inclusion Polyc
m ↪→ Polyc

n has a right
adjoint.

Similarly, we could consider polynomial functors of precisely degree
n, or perhaps even go for those of degree F for a fixed set F.

9.1.5 Square matrices. Square matrices are linear endofunctors Set/I →
Set/I. They are given by a pair of maps

I ← A → I

which is to say they are graphs! (I.e. nonreflexive directed graphs.)

9.1.6 Linear monads = small categories. In particular we have linear mon-lin-monad
ads. These are precisely small categories!

An important class of linear monads are given by products: given a

[Rough draft, version 2009-08-05 23:56.] [Input file: examples.tex, 2009-08-06 17:26]

9.1 Linear functors (matrices) 189

map α : I → J, then we can form the product:

I ×J I

I

π1

$ I

π2

!

J

α
$

α !

The linear endofunctor defined by this span is

π2∗ ◦ π∗
1 = α∗ ◦ α!

(via Beck-Chevalley). Since this endofunctor is induced by an adjoint pair,
it is a monad! (cartesian as all linear monads). As a monad it is given by
X/I %−→ X ×J I. The monad structure is X ×J I ×J I → X ×J I remove the
middle factor. The unit is given by X %→ X ×J I (remembering that X was
an object over I).

Since it is a linear monad, it is a category! It has object set I. The set of
arrows is I ×J I. There is an arrow from i0 to i1 if and only if they have the
same image in J. Hence the category is a groupoid, and even a codiscrete
groupoid: it is the equivalence relation generated by the map α.

9.1.7 Fibonacci sets. Consider the directed graph E !! V with two ver-
tices and three edges: one in each direction between the vertices, and one
loop at one of the vertices:

1 2

This is a span

This is the polynomial functor sending

(X1, X2) %−→ (X2, X1 + X2)

[Rough draft, version 2009-08-05 23:56.] [Input file: examples.tex, 2009-08-06 17:26]

190 Examples

If we give it as input the sets (0, 1), and then iterate, and then pick out the
first coordinate, we get the sequence of sets

0, 1, 1, 2, 3, 5, 8

the Fibonacci sets!
We can also look just at the sequence En, where we interpret the set of

edges as a matrix. We get

E0 =

(
1 0
0 1

)
, E1 =

(
0 1
1 1

)
, E2 =

(
1 1
1 2

)
, E3 =

(
1 2
2 3

)
,

E4 =

(
2 3
3 5

)
, E5 =

(
3 5
5 8

)
, E6 =

(
5 8
8 13

)
, E7 =

(
8 13

13 21

)
,

9.1.8 Traces. The trace of a graph is by definition the subgraph with the
same vertices but only the loops as edges. The reason for the terminology
is of course that if we consider the graph as a matrix, then the subgraph of
its loops are the diagonal entries of the matrix. Maybe we should rather
say that the trace of a graph is the set of loops. That’s the sum of all the
diagonal sets.

The Lucas sets are the sets (Tr(Mn) | n ∈ N), where M is the Fibonacci
graph.

9.1.9 Graph theory in terms of linear algebra. There are many notions
from graph theory that allow an elegant formulation in terms of linear
algebra. Interpreting a graph as a matrix is nothing but the familiar adja-
cency matrix from graph theory, just with sets instead of numbers. . .

9.1.10 The free category on a directed graph. Consider the graph given
by the matrix Gn, where G is a graph, and n ∈ N. This graph is the graph
of paths in G of length n. In other words,

∑
n∈N

Gn

is the free category on the graph G. Note that the sum is sum of matrices,
not a sum of graphs. This means that the sum, if interpreted as a graph,
still has the same set of vertices. The sum of matrices is of course just the

[Rough draft, version 2009-08-05 23:56.] [Input file: examples.tex, 2009-08-06 17:26]

9.2 Finite polynomials: the Lawvere theory of comm. semirings 191

entry-wise sum. This is also the sum of lienar functors, which in turn is
induced from the sum in the category Set/V.

Note the similarity with the free-monoid monad on Set , the familiar
X %→ ∑n∈N Xn. This is indeed a sepcial case, namely where we interpret
the set X as the graph X !! 1 (i.e. X is the set of edges in a graph with
only one vertex). Then matrix multiplication is just cartesian product of
sets, so the two formulae agree.

There is a slogan here: A set is a graph with only one vertex.

Let G be the Fibonacci graph. It makes sense to call the free category
on G the Fibonacci category – why not?

9.1.11 Some sort of Perron-Frobenius theorem? The classical Perron-Frobenius theo-
rem states that a square matrix with non-negative entries (assumed to be an irreducible
matrix, i.e. not similar to an upper-triangular block matrix) has a maximal real positive
eigenvalue, and an associated eigenvector with nonnegative entries. In the categorified
setting of linear functors, the theorem should be (at least the existence of an eigenset):
given a graph G, there exists a set X → V (i.e. a family of sets indexed by the vertices and
an eigenset Λ such that X · G = X × Λ. Now this is surely to hope too much, because
in the setting of numbers, typically such an eigenvalue is not an integer. So we should
modify the notion of eigenvector a little bit: an eigenvector is a vector of sets X → V
such that X and X · G are proportional. This means that there are sets Λ+ and Λ− and a
natural bijection

X × Λ+ + X × Λ− · G

But this is still not likely, because typically eigenvalues are irrational! Some problem to
crack here!

But for some particular matrices, there should be some nice things to say. For example
if the graph is d-regular, meaning that every vertex is of valence d, then d should be an
eigenset, with eigenvector (1, . . . , 1). How to prove this?

9.2 Finite polynomials: the Lawvere theory of comm.
semirings

9.2.1 Finite polynomials. Call a polynomial over Set

I ← B → A → J (9.1) equ:polytamb

finite if the four involved sets are finite. Clearly the composite of two finite
polynomials is again finite. For the purpose of this section, we identity
two finite polynomials if they are isomorphic Let T denote the skeleton of

[Rough draft, version 2009-08-05 23:56.] [Input file: examples.tex, 2009-08-06 17:26]

192 Examples

the category whose objects are finite sets and whose morphisms are finite
polynomials (up to isomorphism). The main result of this section is the
following.

9.2.2 Theorem. The category T is the Lawvere theory for commutative semi-
rings.

9.2.3 Tambara’s work. The category T was studied by Tambara [101], inpara:tambara
fact in the more general context of finite G-sets, for G a finite group. His
paper is probably the first to display and give emphasis to diagrams like
(9.1). Tambara was motivated by representation theory and group coho-
mology, where the three operations ∆, Σ, Π are, respectively, ‘restriction’,
‘trace’ (additive transfer), and ‘norm’ (multiplicative transfer). Further
study of Tambara functors was carried out by Brun [23]. We shall not go
into the G-invariant achievements of [101], but wish to point out that the
Theorem is implicit in Tambara’s paper and should be attributed to him.

Lawvere theories

THIS SECTION NEEDS AN OVERHAUL: IT SHOULD PROBABLY BE
MOVED TO AN INDEPENDENT SECTION AND PUT MORE EMPHA-
SIS ON THE COMPARISON BETWEEN THEORIES, MONADS, AND OP-
ERADS. AND STRESS THE DIFFERENCE BETWEEN FUNCTORIALITY
W.R.T. BIJECTIONS (OPERADS) AND FUNCTORIALITY W.R.T. ALL MAPS
(THEORIES). PERHAPS THIS SHOULD BE TREATED ALSO TOGETHER
WITH SPECIES AND ANALYTICAL FUNCTORS.

Some good points to copy from [49].

Let us remind ourselves about Lawvere theories. Since this notion is
very closely related to that of monad, we take the opportunity to explain
that relationship.

9.2.4 Idea. An ‘algebraic theory’ in the naive sense, like the theory of
groups, is something like this: a group is a set G with some operations and
equations: the operations could be taken to be the composition law (that’s
a binary operation), the neutral element (that’s a nullary operation, i.e. a
constant) and inversion (that’s an unary operation). And then there are
the familiar equations that these operations must satisfy, e.g. associativity.

[Rough draft, version 2009-08-05 23:56.] [Input file: examples.tex, 2009-08-06 17:26]

9.2 Finite polynomials: the Lawvere theory of comm. semirings 193

One observes that this definition makes sense not just in Set but in any
category with finite products. Then the equations take form of commuta-
tive diagrams. However, it is possible to define what a group is in terms
of just one binary operation, (a, b) %→ ab−1, satisfying some complicated
equation. Both of these are an ‘equational theory’ of groups. So what is
the invariant content of this? Lawvere, in his thesis [71] from 1963, which
is a milestone in the history of category theory, figured out the following:
the theory is itself a category Θ with finite products, containing an object 1
which is the generic group (or whatever algebraic structure we are talking
about): this means that every group in the naive sense arises uniquely as
the image of 1 under a product-preserving functor Θ → Set . (The old-
style theories are then interpreted as presentations of this category Θ, and
more than one presentation may be possible.)

9.2.5 Lawvere theories. An algebraic theory in the sense of Lawvere, nowa-
days often called a Lawvere theory, is a category Θ with one object n for
each natural number n ∈ N, and having all finite products according to
the rule

m × n = m + n

(The morphisms are not explicitly referred to in the abstract definition,
but of course the notion of product depends heavily on which morphisms
exist in the category! In fact certain morphisms must exist, namely projec-
tions and diagonals. The various possibilities for introducing morphisms
between the objects correspond to the algebraic structure encoded, be it
groups, semirings, or whatever.)

9.2.6 Models. An model for a Lawvere theory Θ, also called a Θ-algebra, is
a product-preserving functor Θ → Set . A homomorphism of Θ-models is
a natural transformation. (Naturality implies that in fact these homomor-
phisms are automatically compatible with products.)

[Historical remarks? relation with the older notion of clone (Hall).]

9.2.7 Hom sets of a theory. To describe the hom set Θ(m, n), observe that
since n is the n-fold product of 1, we have

Θ(m, n) = Θ(m,
n

∏
i=1

1) =
n

∏
i=1

Θ(m, 1),

[Rough draft, version 2009-08-05 23:56.] [Input file: examples.tex, 2009-08-06 17:26]

194 Examples

so it is enough to describe the hom sets

Θ(m, 1)

which we refer to as the set of m-ary operations of the theory.

9.2.8 Example. In the theory of groups, in the usual presentation, we have
the following generating operations: the composition law m (arity 2), the
neutral element e (arity 0), and the inversion i (arity 1). But these are not all
the operations of the theory: any combination of these three operations is
again an operation (and some of these combinations are identified by the
defining equations of the theory). For example we have a binary operation
(a, b) %→ ab−1 obtained by combining the composition law with inversion.
The possible operations can be enumerated in terms of trees: picture the
generating operations as bouquets according to their arity:

e i m

Then the set of all operations is the set of all planar trees made out of these
three basic building blocks, modulo the equations. For example associa-
tivity says that

m
m =

m
m

EXERCISE: write down all the possible operations of arity 4.

Given a theory in the sense of universal algebra, say the theory of
groups, what is the corresponding Lawvere theory? For the sake of il-
lustration, let us work with groups. The starting point is the diagram

K ! Grp

F

#

! Set .

F
#
7 U

"

Here F 7 U is the free-forgetful adjunction, and F denotes a chosen skele-
ton of the category of finte sets and functions. To be explicit, choose sym-
bols xn for each n ∈ N, and let the objects of F be n = {x1, . . . , xn}. The

[Rough draft, version 2009-08-05 23:56.] [Input file: examples.tex, 2009-08-06 17:26]

9.2 Finite polynomials: the Lawvere theory of comm. semirings 195

category K is the category of finitely generated free groups, or more ex-
plicitly, it is the full subcategory of Grp whose objects F(n) are the free
groups on the finite sets n = {x1, . . . , xn}.

The category K has finite sums since F(m) + F(n) = F(m + n) (and
of course the inclusion K ↪→ Grp preserves sums). We now define the
Lawvere theory to be Θ : = Kop, and proceed to check that Θ-models are
the same thing as groups in the naive sense.

Given a group G, we have the functor

Θ = Kop ! Grpop hG! Set

where hG = Grp(−, G). This functor clearly preserves finite products,
so it defines a Θ-model. To see that conversely every Θ-model defines a
group is the interesting part.

The key point to note is that the object 1 = F(1) is a group object in Θ.
To see this, let us show that it has the necessary operations and satisfies the
required equations. Let us see how the operations m : 2 → 1 is defined.
By construction of Θ we are talking about a map F(1) → F(2), and by
freeness, to give such a map is to give a single element in F(2), the free
group generated by x1 and x2. This element should be x1x2, the product.
We proceed similarly for each of the generating operation symbols in the
theory: if the symbol is of arity k, we need a map k → 1 in Θ, that is,
an element in F(x1, . . . , xk). Just take the value of the operation symbol
on those k generators. Checking the axioms is similar. In conclusion, 1 is
a group object. (More general conclusion: this argument works for any
algebraic structure defined by finitary operation symbols and universally
quantified equations.)

We can now easily show that each Θ-model defines a group, namely
G : = A(1): since A preserves products, it sends group objects to group
objects.

We have now argued that there is a one-to-one correspondence be-
tween groups and Θ-models. Of course a similar analysis is required to
see that also group homomorphisms correspond to Θ-model homomor-
phisms, so that altogether we find an equivalence (in fact an isomorphism)
of categories

Grp + Θ-Mod .

We should also note here that under this correspondence, the finitely gen-
erated free groups correspond exactly to the representable functors.

[Rough draft, version 2009-08-05 23:56.] [Input file: examples.tex, 2009-08-06 17:26]

196 Examples

Here is another argument (HOW DOES IT FIT IN?): Every naive group
defines a functor Θ → Set , and this functor preserves finite products.
Altogether, we find an embedding

Grp → Θ-Mod ⊂ [Θ, Set].

On the other hand, we saw that the Yoneda embedding Θop → [Θ, Set]
factors through Grp , and that in fact the essential image is the full subcat-
egory finitely generated free groups. . .

The crucial point in this description was the notion of free group. Sup-
pose now we are given a Lawvere theory Θ, and we don’t yet know what
it is a theory for. How to perform the above arguments? Well, we need
first of all to establish a notion of free Θ-model. There is a forgetful func-
tor Θ-Mod → Set given by evaluation at 1. We need to show first that
this functor always has a left adjoint. In fact:

9.2.9 Proposition. For any Lawvere theory Θ, the category of models Θ-Mod
is monadic over Set.

Knowing this, at least we can make sense of the notion finitely generated
free Θ-model: we have the diagram

f.g.Θmodels ! Set T ! Θ-Mod
∼! Set T

FinSet

#

! Set

#
7

"$

!

9.2.10 Proposition. An algebraic theory Θ is canonically equivalent to the op-
posite of the category of finitely generated free Θ-models.

9.2.11 Classical algebras as models. With the previous proposition, I think
all the arguments from the discussion of groups go through in the general
case. To start, given an algebra in the classical sense, we can define a model
Θ → Set by

L + f.g. free algebrasop → algebrasop Hom(−,G)! Set

etc. . .

[Rough draft, version 2009-08-05 23:56.] [Input file: examples.tex, 2009-08-06 17:26]

9.2 Finite polynomials: the Lawvere theory of comm. semirings 197

9.2.12 Theories and monads. We already saw (or claimed) that Θ-Mod is
monadic over Set . The resulting monad is

T : Set −→ Set

X %−→ colimn⊂X F(n)

where F(n) denotes the free Θ-model on n generators. This definition
already shows that T is finitary. In fact:

9.2.13 Proposition. (Linton.) Lawvere theories are essentially the same thing
as finitary monads.

9.2.14 Example. In the theory of commutative semirings, the set of all m-
ary operations is precisely the set N[X1, . . . , Xm] of all polynomials in m
variables with natural-numbers coefficients. Indeed, each polynomial P
can be interpreted as the m-ary operation that sends (a1, . . . , am) to P(a1, . . . , am),
i.e. substituting the constants into the polynomial.

Proof of Tambara’s theorem

9.2.15 Products in T. The arrows in T can be interpreted by extension as
polynomial functors between slices of the form Set/m, and here we have
the isomorphism

Set/(m + n) + Set/m × Set/n.

It follows that m + n is the product of m and n in T. The projection m +
n → m is given as the pullback along the sum inclusion in Set . Namely if
i1 : m ↪→ m + n denotes the first sum inclusion in the category of sets, then
i∗1 : Set/(m + n) → Set/m is the first projection.

9.2.16 Idea of proof. The point is that for the two Set-maps

0 e
−→ 1 m

←− 2

the polynomial functor

m! :

2
= ! 2

2

=

$

1

m!

[Rough draft, version 2009-08-05 23:56.] [Input file: examples.tex, 2009-08-06 17:26]

198 Examples

considered as a map in T, represents addition,

m∗ :

2
m ! 1

2

=

$

1

=!

represents multiplication,

e! :

0
= ! 0

0

=

$
1

e!

represents the neutral for addition, and

e∗ :

0
e ! 1

0

=

$

1

=!

represents the neutral for multiplication. These are the four standard gen-
erating operations

0
!0"!!
!1"

1
+$$
×

2

in the theory of commutative semirings. It is clear from these definitions
that addition as well as multiplication satisfy the associative and unit laws.

We already saw that pullback provides the projection for the product in
T. It is also needed to account for distributivity, which in syntactic terms
involves duplicating elements. Let us show how to derive use the abstract
distributive law (8.3.4) to compute

m∗ ◦ k!

where k : 3 → 2 is the map pictured as , recovering the distributive
law a(x + y) = ax + ay of elementary algebra.

The elementary distributive law means that

3
()!

2
()∗

1

(a, x, y) %→ (a, x + y) %→ a(x + y)

[Rough draft, version 2009-08-05 23:56.] [Input file: examples.tex, 2009-08-06 17:26]

9.2 Finite polynomials: the Lawvere theory of comm. semirings 199

is equal to

3
()∗

4
()∗

2
()!

1

(a, x, y) %→ (a, x, a, y) %→ (ax, ay) %→ ax + ay

But showing this is precisely the pentagon-shaped distributivity diagram:

4
lowerstar ! 2

3

$
up

pe
rs

ta
r

2
lowerstar

!

low
ershriek

!

1

lowershriek

"

The set 2 appears as f∗3, because the map k has one fibre of cardinality 2
and one of cardinality 1, and we have to multiply those two fibres. The
trickiest is probably to compute the map ε : 4 → 3.

Note that there is an isomorphism that can be inserted in different
places in the decomposition, depending on choices of constructing the
‘distributivity diagram’. Above we had this isomorphism as part of the
evaluation map ε. We could also have taken another pullback for 4, then
we would find the factorisation

3
()∗

4
()∗

2
()!

1

(a, x, y) %→ (a, a, x, y) %→ (ax, ay) %→ ax + ay

9.2.17 Interpretation in terms of free semirings. In general we know that
the Lawvere theory for P-algebras (for some abstract P), is equivalent to
the opposite of the category of finitely generated free P-algebras. In our
case this means that the category T should be equivalent to the opposite
of the category of finitely generated free commutative semirings. Here is
the equivalence in explicit terms.

The object n of T corresponds to the object N[x1, . . . , xn] of the category
of finitely generated free commutative semirings. A morphism m → n in
T is given by

m ← E → B → n

[Rough draft, version 2009-08-05 23:56.] [Input file: examples.tex, 2009-08-06 17:26]

200 Examples

which we think of as

Set/m −→ Set/n
(Xi | i ∈ m) %−→ (∑

b∈Bj

∏
e∈Eb

Xs(e) | j ∈ n)

so that’s n polynomials Pi in m variables. To this map there should corre-
spond a semiring homomorphism

F : N[x1, . . . , xn] → N[y1, . . . , ym]

Thanks to the natural isomorphism N[x1, . . . , xn] + N[x1] ⊗ · · ·⊗ N[xn], to
give F is equivalent to giving for each i = 1, 2, . . . , n a semiring homomor-
phism

N[xi] → N[y1, . . . , ym]

and such a semiring homomorphism is specified just by saying where xi
is sent. But we just send it to Pi(y1, . . . , ym). In other words, substitute
the variables yj into the formal expression of Pi. So the whole point is that
finite polynomials can be interpreted in any semiring!

Conversely, given the semiring homomorphism F, we get in particular
the images of the generators xi, which we denote Pi. It’s a polynomial in
the yi. We can interpret it as a finite polynomial functor Set/m → Set ,
and hence an arrow in T.

9.3 Differential calculus of polynomial functors

Introduction

Partial derivatives

In two variables, given {1, 2} ← E1 + E2 → B, the derivative with respect
to 1 is

{1, 2} ← (E1 ×B E1) ! ∆ + E1 × E2 → E1

where the summand (E1 ×B E1) ! ∆ maps to 1 and the summand E1 × E2
maps to 2.

[Rough draft, version 2009-08-05 23:56.] [Input file: examples.tex, 2009-08-06 17:26]

9.3 Differential calculus of polynomial functors 201

Spell it out:

(X1, X2) −→ ∑
e

∏
u∈((E1×BE1)! ∆+E1×E2)e

Xs(u)

= ∑
e

∏
u∈((E1×BE1)! ∆)e

X1 ∏
u∈E1×E2)e

X2

= ∑
e∈E1

XE1−{e}
1 XE2

2

If we picture the fibre over b ∈ B as a column of white dots (going to
1) and black dots (going to 2), then the new base is E1, and the fibre over
some white dot is the set of possible other dots in the same fibre. This
means it can be another white dot or any black dot in that fibre, and this
explains the shape of the formula.

So in short: the base is E1, and for each e ∈ E1 the new fibre is the
complement of e in the old fibre.

9.3.1 Example. Now let us work out ∂1∂2. The result is

E1 ×B E1 ! ∆ ×B E2 + E1 ×B (E2 ×B E2 ! ∆)

E1 ×B E2

"

(and we should specify that the left-hand summand maps to 1 and the
right-hand summand to 2). The conclusion is that the new base is the set
of pairs (e1, e2), two dots in the same fibre and of different colour, and the
fibre over such pair is the complement of that fibre.

WRITE OUT THE GENERAL FORMULA.

Homogeneous functors and Euler’s Lemma

TIGHTEN UP THE FOLLOWING CHILDISH DISCUSSION

9.3.2 The degree of a homogeneous polynomial. The degree of the good-old monomial
x3y2 is 5, and you compute that by ‘forgetting’ that x and y are distinct variables: con-
sidering them to be the same (say x), the monomial is x3x2 = x3+2 = x5, and hence the
degree is 5.

[Rough draft, version 2009-08-05 23:56.] [Input file: examples.tex, 2009-08-06 17:26]

202 Examples

Similarly a monomial in many variables

E ! 1

I

s

$

1

!

which is
(Xi | i ∈ I) %→ ∏

e∈E
Xs(e)

Considering all the variable to be equal clearly this monomial is of degree E. In a sense
we obtain this result by precomposing the functor with lowershriek along d : I → 1 and
then pullback to I . This yields ∏e∈E Xd(s(e)) = ∏e∈E X = XE.

More precisely, we actually started with a set over I then consider it a set over 1, this
means lowershriek it along d: this destroys the difference between the variables. Now
pull it back along first d then s.

This trick reduces the question to the one-variable case, and again we can define a
homogeneous polynomial to be one

E ! B

I

$

J

!

such that E = B × F for some set F.

Definition. A polynomial functor I ← E → B is homogeneous of degree F if
E = F × B. Here F is a fixed set. More generally, we will say that I ←
E → B is homogeneous of degree F if there is specified an isomorphism
(as polynomial functors) with one of the form F × B.

Note that the map s : F × B → I in general is different on each copy of
F.

9.3.3 Example. It is evident that every monomial E → 1 is homogeneous
(of degree E).

9.3.4 Derivatives of monomials. Note that with the above definition of
homogeneous, the derivative of a monomial is not naturally homogeneous:
(say in the one-variable case), if E → 1 is a monomial, then the derivative
is E × E ! ∆ → E. There is no natural way to trivialise this: there is no
canonical way to provide a bijection E × E ! ∆ + (E ! {e}) × E, as we
remarked already in the definition of the derivative. In contrast, the dif-
ferential operator XD provides a homogeneous polynomial: XD applied

[Rough draft, version 2009-08-05 23:56.] [Input file: examples.tex, 2009-08-06 17:26]

9.3 Differential calculus of polynomial functors 203

to E → 1 gives E × E → E. And more generally, given a homogeneous
polynomial F × B → B then if we apply XD we get F × F × B → F × B,
which is again homogeneous.

9.3.5 Homogenisation. Don’t know what use of this. . . A homogenisation
of I ← E → B (to degree F) consists in introducing a new variable and a
diagram

I $ E ! B
∩ ∩

I + 1 $ F × B ! B

*

such that the complement of E in F × B is mapped to the new variable.

Let Λ be a fixed set. We denote by ·Λ the functor

Set/I −→ Set/I
X/I %−→ (Λ × X)/I.

It is represented by the linear polynomial I ← Λ × I = Λ × I → I.

9.3.6 Lemma. Let P be a homogeneous polynomial functor of degree F:

I ← F × B → B

and let Λ be any set. Then there is a canonical natural isomorphism filling the
square

Set/I
Λ·! Set/I

Set

P
"

ΛF ·
! Set

P
"

Proof. We should prove this in formal Beck-Chevalley style, but here is a

[Rough draft, version 2009-08-05 23:56.] [Input file: examples.tex, 2009-08-06 17:26]

204 Examples

quick and dirty proof: The upper-right-hand way around gives

X/I %→ (Λ × X)/I %−→ ∑
b∈B

∏
e∈(F×B)b

(Λ × X)s(e)

= ∑
b∈B

∏
e∈(F×B)b

(Λ × Xs(e))

= ∑
b∈B

∏
e∈(F×B)b

Λ ∏
e∈(F×B)b

Xs(e)

= ∑
b∈B

ΛF × ∏
e∈(F×B)b

Xs(e)

= ΛF × ∑
b∈B

∏
e∈(F×B)b

Xs(e)

which is precisely what the other way around gives. The equality signs
represent canonical isomorphism. !

9.3.7 The Euler operator. Recall that the operator Xi · ∂i sends I ← E →
B to Ei ×B E → Ei (no diagonal removed). Indeed, we know that first
the partial derivative gives us Ei ×B Ei ! Ei ×B E → Ei, and then the Xi-
multiplication consists in adding an i-point in each fibre. This is precisely
to fill in back the diagonal.

Define the Euler operator to be

Euler := ∑
i∈I

Xi · ∂i

Note that if P is given by I ← E → B then Euler P is given by

I ← E ×B E → B.

In other words, take the derivative as if all the variables were the same. . .

9.3.8 Lemma. (Euler’s lemma) If P : Set/I → Set is homogeneous of degree F
then there is a natural isomorphism

Euler P = F × P

Proof. The classical proof is to write down the homogeneity equation

P(Λ × X) = ΛF × P(X)

[Rough draft, version 2009-08-05 23:56.] [Input file: examples.tex, 2009-08-06 17:26]

9.3 Differential calculus of polynomial functors 205

and recall that it is natural in Λ. Hence we can take derivative with respect
to Λ. Now we have to invoke the chain rule

DO THAT
and finally set Λ = 1 to arrive at the promised formula.
The second proof exploits direct manipulation with the representing

diagrams: we already observed that the Euler operator on I ← E → B
gives I ← E ×B E → E. In the special case where the polynomial is homo-
geneous of degree F, this gives F × F × B → F × B. But this is clearly the
same as F × P. !

Note that Euler’s lemma for good-old polynomials is also a triviality:
by linearity it is enough to prove for monomials: each Xi∂i just has the
effect of placing the exponent of that variable as a coefficient. When sum-
ming all these we get of course the total degree.

9.3.9 Interpretation of variables as constants In order to better under-
stand partial derivation we should investigate how to interpret other vari-
ables as constants.

9.3.10 Example. Given {1, 2} ← E1 + E2 → 1, which is just XE1
1 XE2

2 , we
want to think of XE2

2 as a constant B. The new polynomial is

{1} ← E1 × B → B

Indeed,

X1 %→ ∑
b∈B

XE1 = B × XE1

as we wanted. The new polynomial is a family of polynomials parametrised
by X2. There is really some internal hom adjunction going on that we
should get straight:

Set I1 × Set I2 −→ Set

Set I2 −→ Polyc(Set I1, Set)

WHAT IS IT?

[Rough draft, version 2009-08-05 23:56.] [Input file: examples.tex, 2009-08-06 17:26]

206 Examples

9.4 Classical combinatorics

9.4.1 Binomial sets. Let I be a set, and let k ∈ N. By definition the set
(

I
k

)

is the set of all subsets of I of cardinality k.
We also put P(I) = ∑k∈N (I

k), the set of all finite subsets of I.
Finally we shall need pointed versions: let

(
I
k′

)

denote the set of all pointed finite subsets of I of cardinality k. And put

P
′(I) = ∑

k′∈N′

(
I
k′

)

where the sum runs over all iso-classes of pointed finite sets.

One could prove a binomial theorem in this style: suppose I is finite of
cardinality n. Then we have a (non-canonical) isomorphism of polynomial
functors

(X1 + X2)
I +

n

∑
k=0

(
I
k

)
Xk

1Xn−k
2

But there are non-canonical identifications, like collecting terms. In fact,
the binomials appear as coefficients, something we know is not canonical. . .

The honest expansion is

(X1 + X2)
I = ∑

S1+S2=I
XS1

1 XS2
2 ,

where the sum is over all partitions of I into two parts. The binomial
theorem arises when we collect terms: collect all the S1 of the same size
k. . .

By the way, here is how to derive the honest formula using the distribu-
tive law. The functor (X1 + X2)I is the composite of (X1, X2) %→ X1 + X2
which is given by

2 ← 2 → 2 → 1

[Rough draft, version 2009-08-05 23:56.] [Input file: examples.tex, 2009-08-06 17:26]

9.4 Classical combinatorics 207

and the Y %→ YI which is given by

1 ← I → 1 → 1.

To apply the distributive law, take first the pullback

2 × I

##

!
"

"" I

##

2 "" 1

then we are dealing with
2 × I → I → 1

and the distributive law says that

∏
b∈I

∑
c∈(2×I)b

Xc = ∑
m:I→2

∏
b∈I

Xm(b)

and the last sum can be written as the sum over all 2-part partitions,

= ∑
S1+S2=I

XS1
1 XS2

2 .

We shall now make a similar argument for the elementary symmetric
functions.

9.4.2 Elementary symmetric functions. By definition, the degree-k elemen-
tary symmetric polynomial of I-many variables is given by

I ←
(

I
k′

)
→

(
I
k

)
→ 1

Since there is one functor for each k ∈ N, we may as well put them all
together in a single polynomial functor

I s
← P

′(I)
p
→ P(I) t

→ N

Here s returns the marked element of the subset, p forgets the mark on the
subset, and t returns the cardinality of the subset.

As an example, if I = {1, 2, 3} then the total symmetric function on I is
the sequence

(1, X1 + X2 + X3, X1X2 + X1X3 + X2X3, X1X2X3, 0, . . .)

It is zero after coordinate 3, because there are no bigger subsets of I than
of cardinality 3.

[Rough draft, version 2009-08-05 23:56.] [Input file: examples.tex, 2009-08-06 17:26]

208 Examples

9.4.3 Symmetric functors. A (polynomial) functor F : Set/I → Set is
called symmetric if it is invariant under permutation of the I-many vari-
ables. More precisely, for any permutation σ : I ∼→ I, there is induced a
polynomial functor σ∗ : Set/I ∼→ Set/I. We require that

F ◦ σ∗ + F.

It should be noted that σ∗(Xj | j ∈ I) = (Xσ(i) | i ∈ I). The permuta-
tion of coordinates could also be achieved using lowershriek or lowerstar.
In that case the formulae are: σ! (Xi | i ∈ I) = (Xσ−1(j) | j ∈ I) and
σ∗(Xi | i ∈ I) = (Xσ−1(j) | j ∈ I). (The two functors coincide for isomor-
phisms.)

EXERCISE: the elementary symmetric functors are indeed symmetric
in this sense.

Theorem (conjecture at the moment): Every symmetric polynomial functor
P factors through the total elementary symmetric functor. More precisely, given
any symmetric polynomial functor P:

I ← E → B → 1

(which we can assume to be furthermore homogeneous of degree d) there
exists a polynomial functor

{0, 1, 2, . . . , d} ← F → C → 1

such that the composite

I ← P
′(I) → P(I) → N ← F → C → 1

is isomorphic to P
If the proof is going to follow Lang [70], then we need the binomial

theorem to prove first that the elementary symmetric functors arise as co-
efficients of

∏
i∈I

(Y + Xi),

but perhaps there is a more direct proof. . .

[Rough draft, version 2009-08-05 23:56.] [Input file: examples.tex, 2009-08-06 17:26]

9.5 Polynomial functors on collections and operads 209

9.5 Polynomial functors on collections and oper-
ads

We saw in Chapter 5 that there is a natural equivalence of categories

Polyc/M + Set/N

the second category is the category of collections. In this section we take a
look at a few constructions with polynomial functors from the viewpoint
of collections: since Set/N is a slice of Set it makes sense to study polyno-
mial functors on it!

LOTS OF THINGS TO THROW AWAY. . .

The free-operad functor

9.5.1 The free-operad functor. The free-operad functor (5.5.1),

Set/N −→ Set/N

A %−→ T(A)

was defined in 5.5.1 as generated by the free-forgetful adjunction between
collections and operads. It sends a collection A to the operad freely gener-
ated by it. It is the set of planar trees with nodes decorated in A subject to
a compatibility condition: nodes with n input edges must have decoration
in An.

Now it is easy to see that it is just the polynomial functor given by

*

{ } { }

(9.2)

[Rough draft, version 2009-08-05 23:56.] [Input file: examples.tex, 2009-08-06 17:26]

210 Examples

(In this diagram as well as in the following diagrams of the same type, a
symbol

{ }
is meant to designate the set of all bouquets like this (with

the appropriate decoration), but at the same time the specific figures rep-
resenting each set are chosen in such a way that they match under the
structure maps.)

Now that we know it is a polynomial functor T : Set/N → Set/N, we
can look at the category of T-algebras (in the Lambek sense). It consists of
collections X/N equipped with a map of collections T(X) → X.

Let C : Set/N → Talg denote the free T-collection functor. We are
interested in the value of C at the terminal collection N → N which we
denote by 1: it is the least fixpoint for the functor

X %→ N + T(X)

This is the set of all planar constellations cf. 5.5.2
Since T is a monad, there is a map of collections C(1) → T(1).

Linear differential operators are linear

in the sense of polynomial functors

THERE IS A SERIOUS ISSUE TO SORT OUT HERE: WE ARE WORK-
ING IN Set/N + Polyc/M. IS DERIVATION DEFINED AS A FUNCTOR
ON THIS CATEGORY?

Yes. It depends on a trick: we know that the derivative of P → M is
P′ → M′. But there exists a cartesian natural transformation M′ → M. It
is given by

N′′ ϕ ! N′

N′

u′

"

n %→n−1
! N

u
"

where u denotes the usual universal family for finite sets, u′ is its deriva-
tive, and ϕ is defined as

(i /= j < n) %→

{
j − 1 < n − 1 for j > i
j < n − 1 for j < i

[Rough draft, version 2009-08-05 23:56.] [Input file: examples.tex, 2009-08-06 17:26]

9.5 Polynomial functors on collections and operads 211

We really need to explore this map. I think it will play a central role.
The point is related to this: given E → 1, usually when we take deriva-

tive of XE we get ∑e∈E XE−{e} and we do not make the noncanonical re-
duction to anything of the sort E × XE−1. There is no canonical way of
identifying those punctured versions of E with any fixed set with one ele-
ment less.

But in the special situation where we are over M, then every fibre ac-
quires an order, and when we remove an element this order is retained,
so using this order there is a canonical way of identifying the complement
with something. Hence the case of polynomials over M is rather special.
This is what we are exploiting.

A LOT OF JUNK TO THROW AWAY IN THIS PART

Given a finite map p : E → B, there is an associated collection B → N
(the classifying map). We have studied the differentiation of p. It is the
finite map

p′ : E ×B E ! ∆ → E

In terms of the polynomial functor it is

X %→ ∑
e∈E

XEp(e)−e.

This is a finite map over E. To find the corresponding collection, we need
to describe the degree map (the classifying map) E → N. The fibre over
e ∈ E has degree one less than the fibre Ep(e). Hence e has degree n if and
only if p(e) has degree n + 1. So the corresponding collection is just

∑
n≥0

(n + 1)Bn+1 → N

(Of course this is also what we expect to find in view of our experience
with good old-fashioned polynomials.)

Now differentiation defines a functor from FinMap to itself. At least
this is true if we restrict to cartesian squares as arrows in the category. We
should check functoriality more carefully. We claim that there is corre-
spondingly a true morphism of collections:

Set/N → Set/N

(this is a functor).

[Rough draft, version 2009-08-05 23:56.] [Input file: examples.tex, 2009-08-06 17:26]

212 Examples

9.5.2 Proposition. The functor

Set/N −→ Set/N

∑
n≥0

An %−→ ∑
n≥0

(n + 1)An+1

induced by differentiation of finite maps (polynomial functors) is itself polynomial—
in fact it is linear.

Note that the fibre over n = 0 is thrown away.

It is the map

N + N′ id! N + N′

N

+1

$

N

!

Here the right-hand map is the one corresponding to the polynomial
X × M′(X). The left-hand map N + N′ → N is the one sending an element
to one more than expected. Perhaps it is best to realise it in two steps:

N + N′ → N
+1
→ N

Proof. Start with the collection ∑n≥0 An → N. Pulling back along N
+1
→ N

gives the collection ∑n≥0 An+1 → N. Now pull back to the set N + N′.
The fibre over an n in the first summand is An+1. The fibre over a point
(a < b) in N′, is Ab+1 (and there are b fibres of this type). Finally, take
lowershriek (sum along the canonical map N + N′ → N. For each n in the
target N there are n + 1 elements in the fibre, and all these element has the
same sort of fibre, namely An+1. So altogether, the resulting collection is
∑n≥0(n + 1)An+1. !

Note that there is another representation of the functor as a finite map:

N′ id ! N′

N

$

N

−1

!

[Rough draft, version 2009-08-05 23:56.] [Input file: examples.tex, 2009-08-06 17:26]

9.5 Polynomial functors on collections and operads 213

The minus-one map makes sense in this situation because the map N′ → N
factors through N ! {0}, from which is minus-one map is well-defined. So
the precise definition of the map is

N′ → N ! {0} −1
−→ N

9.5.3 Remark. The second representation is better, I think. Start with the
collection ∑n≥0 An → N. Pull it back to N′: the fibre over a point (i < n)
is just An. Finally sum, by going down to N ! {0}: the fibre over n ≥ 1
is now nAn. Finally, go down along the minus-one shifting map: the fibre
over n will be (n + 1)An+1. That’s all.

Note that if we compose with the plus-one map, then we undo the last
shift: we get in the end nAn. This is the operator xD. Se below.

9.5.4 Remark. Some related possibilities and their result:
Omitting the plus-one map on the left, we get the operator sending

∑n≥0 An to ∑n≥0(n + 1)An. Indeed, the fibres never change in this con-
struction, only the coefficients.

Using the plus-one map on the left, but using the standard N′ in the
middle (instead of N + N′) the result will be the operator sending ∑n≥0 An
to ∑n≥0 nAn+1. Indeed, in this case the number of fibres of degree n is still
just n. . .

9.5.5 Remark. Note that the pushforth along some map in the middle will
perform multiplication of some sort (i.e. give something like ∏Ve. So such

polynomial functors are of no use to realise derivative-like operations.

For example, pushforth along N
+1
→ N with create a constant terms 1 for

the empty fibre! Indeed, there will be an empty product, and hence a term
1. This is true in general: each empty fibre will produce a constant term 1.

9.5.6 Remark. Note that the single operation: pullback along N
+1
→ N gives

the operator
∑
n≥0

An %→ ∑
n≥0

An+1

This would be some sort of divided-power derivation. I don’t know any-
thing about such operators if they have any use.

[Rough draft, version 2009-08-05 23:56.] [Input file: examples.tex, 2009-08-06 17:26]

214 Examples

9.5.7 Example. The poly-map diagram whose last part is lowershrieking

along N
+1
→ N gives rise to the functor

Set/N −→ Set/N

∑
n≥0

An %−→ ∑
n≥1

An−1

This is the operator multiplication with X.

Now it follows that the operator xD is also polynomial: first the deriva-
tive polynomial, then lowershriek along the plus-one map. Note that there
is now a plus-one map in each end. In fact the plus-one maps out of N + N′

amount just to undo the effect of having an extra summand. In fact, the
operator xD can be described directly, and much more easily by

N′ id ! N′

N

$

N

!

9.6 Bell polynomials

References:
–Faà di Bruno formula and Hopf algebra

As a starting point, see Figueroa and Gracia-Bondía [34], Part II.
See also: Knuth [61].
See also: Touchard polynomials (Wikipedia, printed)

Let S be a set. A k-partition of S consists of k nonempty subsets called
blocks, which are pairwise disjoint and whose union is S. (We only care
about which elements of S are together in a block, not about the order of
the blocks.)

Let Bn,k denote the number of k-partitions of an n-element set. (Note
that 0-partitions do not exist for n > 0. But the empty set can well be par-
titioned into 0 (non-empty!) parts.) Let Bn := ∑

n
k=0 Bn,k denote the number

of partitions of an n-element set. These are called the Bell numbers. (Note
that according to our convention we have B0,0 = 1.)

More generally, we define the Bell polynomials, Bn(x1, . . . , xn) a poly-
nomial in n ordered variables. Again we have its homogeneous terms, so

[Rough draft, version 2009-08-05 23:56.] [Input file: examples.tex, 2009-08-06 17:26]

9.6 Bell polynomials 215

that Bn(x1, . . . , xn) = ∑
n
k=0 Bn,k(x1, . . . , xn). The idea is that Bn,k(1, . . . , 1) =

Bn,k. The variables are meant to keep track of the shape of the involved
partitions: instead of just saying that there are b4,2 = 7 2-partitions of the
5-element set, we now write B4,2(x1, . . . , x4) = 4x1x3 + 3x2

2 meaning that
the partitions naturally divide into 4 partitions of shape 1 + 3 and 3 parti-
tions of shape 2 + 2. So the variables are to keep track of the shapes, and
the coefficients count how many there are of a given shape. Let λ denote
a shape of a k-partition of an n-element set. We are thus defining

Bn,k(x1, . . . , xn) = ∑
λ

bλxλ

Here bλ denotes the number of (n, k)-partitions of shape λ, and xλ denotes
the monomial obtained from the partition shape.

It is fruitful to consider all the Bell polynomials as polynomials is count-
ably many variables, x0, x1, x2, Then we just observe that the 0th Bell
polynomial is B0(x) = x0, and that the polynomial Bn(x) only depends on
the n variables x1, . . . , xn.

We can categorify this construction: let S be an n-element set, and con-
sider also the nth ordinal [n] = {1, 2, . . . , n} — with no further relationship
between S and [n]. Define a polynomial functor Bn by the diagram

Π′(S) ! Π(S)

[n]

$

Bn [1]

!

Here Π(S) denotes the set of partitions of S, and Π′(S) denotes the set of
partitions with one marked block. The map Π′(S) → [n] returns the size
of the marked partition.

Spelling out what the functor does, it sends an [n]-indexed set X (i.e. an
ordered set of variable X1, . . . , Xn) to the set given by: it has one monomial
for each element in Π(S). Each monomial is of degree k if the partition is a
k-partition (because the instruction is ‘multiply along the fibres’), and the
precise monomial we find here is obtained by multiplying the sizes of the
k blocks: if there is a block of size i, put a factor Xi. It is clear that this
is precisely the polynomial functor categorifying the informal description
we first gave.

[Rough draft, version 2009-08-05 23:56.] [Input file: examples.tex, 2009-08-06 17:26]

216 Examples

Here is an example. Consider the 4-element set {a, b, c, d}. The possible
partitions are:

k = 1 : (abcd)

k = 2 : (abc)(d)

(abd)(c)
(acd)(b)
(bcd)(a)
(ab)(cd)

(ac)(bd)

(ad)(bc)
k = 3 : (ab)(c)(d)

(ac)(b)(d)

(ad)(b)(c)
(bc)(a)(d)

(bd)(a)(c)
(cd)(a)(b)

k = 4 : (a)(b)(c)(d)

So the polynomial functor is

(X1, X2, X3, X4) %−→ X4︸︷︷︸
k=1

+ 4X1X3 + 3X2
2︸ ︷︷ ︸

k=2

+ 6X2
1X2︸ ︷︷ ︸

k=3

+ X4
1︸︷︷︸

k=4

Note that since the indices on the variable count something, Bell poly-
nomial do not give meaning on abstract variable sets, only when the in-
dexing set is an ordinal.

Each Bell polynomial Bn is a functor of n variables. We might as well
say that it is a functor of countably may variables, then we have them all
on the same footing — it doesn’t matter that in a given polynomial only
some of the variables are ever used. So now the nth Bell polynomial reads

Π′(S) ! Π(S)

N

$

Bn 1

!

[Rough draft, version 2009-08-05 23:56.] [Input file: examples.tex, 2009-08-06 17:26]

9.6 Bell polynomials 217

Now let us assemble all the Bell polynomials into a single one: this
means a vector of polynomials, where we put the nth polynomial as the
nth coordinate functor. So the total Bell polynomial is

∑n∈N Π(n)′
p ! ∑n∈N Π(n)

N

s

$
B N

t

!

Here the t-fibre is the set of all partitions of some standard n-element
set S = [n].

But now we may as well forget about standard n-element sets, and at
the same time resolve the mysterious size function in the definition of s:
we now define the total Bell polynomial to be

partitions′
p ! partitions

FinSet

s

$
B FinSet

t

!

This is much more canonical. Note however that it is a little bit different
from the original, because since subsets of a given set are different sets
even though they may have the same size, it implies that there will be
no coefficients in this new version. For example, in the polynomial B4,
which we really ought to write as B{a,b,c,d} — it is the {a, b, c, d}-component
of B — instead of having as before a term 6X2

1X2, we will now have six
separate terms. Namely, the variables are no longer indexed by natural
numbers, but rather by actual sets, namely the subsets in question. So the
term expands to

X{ab}X{c}X{d} + X{ac}X{b}X{d} + X{ad}X{b}X{c}+

X{bc}X{a}X{d} + X{bd}X{a}X{c} + X{cd}X{a}X{b}

Now the polynomial functor has become something we can easily grasp,
and it looks familiar: in fact we claim it is a monad. It even looks suspi-
ciously like some free monad, or at least the level-2 part: think of the finite

[Rough draft, version 2009-08-05 23:56.] [Input file: examples.tex, 2009-08-06 17:26]

218 Examples

sets as elementary trees, and think of the partitions as refinements where
each leaf has been refined to another elementary tree, i.e. we have grafted
other bouquets on top.

Better still: the types of this polynomial functor are the finite sets. The
operations are shrubs such that each input edge is decorated by a finite
set, and the output edge is decorated by the disjoint union of those sets.
Beware that we should divide out by some symmetry group, because if
a shrub has arity 2, and we have two given sets, there are two ways to
decorate that particular shrub with those two sets, but we want that to
count as only one operation!

In other words, the node is the operation ‘take disjoint union’. Now
if we apply this endofunctor to itself, the set of operations will be the set
of 2-level trees whose edges are decorated by finite sets, subject to the
compatibility condition that the outgoing edge of a node is decorated by
the sum of the sets decorating the incoming edges of that node.

CERTAINLY A LOT OF STUFF TO EXERCISE HERE

[Rough draft, version 2009-08-05 23:56.] [Input file: examples.tex, 2009-08-06 17:26]

Chapter 10

Categories and bicategories of
polynomial functors

ch:bicat
Many results in this chapter and the next are due to joint work with Nicola
Gambino [39].

10.1 Natural transformations between polynomial
functors

In this section we mostly keep two sets I and J fixed. Let PolyFun(I, J)
denote the full subcategory of Cat(Set/I, Set/J) consisting of the poly-
nomial functors (i.e. those isomorphic to one of the form of our diagrams),
and all natural transformations between them.

10.1.1 Morphisms. We argued in Chapter 2 that in the one-variable case
cartesian squares and backwards triangles give rise to natural transfor-
mations between polynomial functors, and that all natural transforma-
tions arise as composition of a backwards triangle followed by a cartesian
square. The same is true in the many-variable case, and in fact the proofs
will now seem much easier, because we have the more abstract viewpoints
of adjunctions and Beck-Chevalley conditions at our disposal.

[Rough draft, version 2009-08-05 23:56.] [Input file: categories.tex, 2009-07-31 23:21]

220 Categories and bicategories of polynomial functors

10.1.2 Representable morphisms. Given a diagram

E
p ! B

I

s

$

J

t!
F

w

#

q
!

z

$

B

t

!

then there is induced a natural transformation

t! p∗s∗
η
⇒ t! p∗w∗w∗s∗ = t! q∗z∗

where η : 1 ⇒ w∗w∗ denotes the unit for the adjointness w∗ 7 w∗.
[One might think that conversely every natural transformation between these polynomial functors would be induced in this way, but this

is not true: for example the polynomial functor 1 ← 2 → 2 → 1 (which sends X to X + X) has a nontrivial automorphism given by the twist
map (interchange of factors). This one is not induced by a diagram like the above. What is true is that every natural transformation for which the
terminal-object component is the identity on B does come like this, cf. the Yoneda lemma below.]

[Here there is a problem that we want to describe natural transformations t! p∗s∗
η
⇒ t! p∗w∗w∗s∗ = t! q∗z∗ by cancelling away t! . In order

to do this we would like Nat(P, Q) → Nat(t! P, t! Q) to be a bijection or at least a surjection. This is equivalent to requiring the functor

Fun(Set/I, Set /B) −→ Fun(Set /I, Set /J)

P %−→ t! P

to be fully faithful or at least full. This is not the case in general though: for example if J = 1, then it is not true that given X/B and Y/B then every
arrow X → Y over I is also over B. It is true that t! is faithful, but this doesn’t help. What really does the job is the fact that all components of the
natural transformation lie over P(1) → Q(1). . .]

10.1.3 Cartesian morphisms. Given a diagram

E
p ! B

I

s

$

J

t!

E

u

"

p
!

s

$

B

k

" t

!

then there is induced a natural transformation

t! p∗s∗ = t! k! p∗u∗s∗ B-C
= t! k! k∗p∗s∗ ⇒ t! p∗s∗

where the last step was the counit for the adjunction k! 7 k∗. Now the
counit for this adjunction is always cartesian, cf. Lemma 8.2.8. Whisker-
ing with t! and p∗s∗ do not alter the cartesianness, because each of these
functors preserve pullbacks, cf. 1.7.1.

[Rough draft, version 2009-08-05 23:56.] [Input file: categories.tex, 2009-07-31 23:21]

10.1 Natural transformations between polynomial functors 221

We can now prove a basic theorem about polynomial functors:

thm:representation-thm 10.1.4 Theorem. Every natural transformation between polynomial functors fac-
tors uniquely as a representable natural transformation followed by a cartesian
one.

Proof. The statement is: given a diagram

E
p ! B

I

s

$

J

t!

F
q

!
z

$

C
m

!

and a natural transformation t! p∗s∗ ⇒ m! q∗z∗ then there exist maps

E
p ! B

I $
g

s

$
F ×C B

w
#

r! B

! J

t

!

F

v
"

q
!

z

$

C

u
"

m

!

inducing the given natural transformation. The uniqueness statement is
clarified by this: if this diagram exists it is unique up to unique isomor-
phism by the universal property of the pullback.

The key point is that the terminal-object component of the natural trans-
formation gives us a J-map u : B → C. Since all other components lie over
this one, they are all C-maps, so we reduce to the task of describing all nat-
ural transformations u! p∗s∗ ⇒ q∗z∗, and by adjointness these correspond
to the natural transformations

p∗s∗ ⇒ u∗q∗z∗.

Now form the pullback square in the desired diagram, and apply Beck-
Chevalley to it: we have reduced to a natural transformation

p∗s∗ ⇒ r∗v∗z∗ = r∗g∗

[Rough draft, version 2009-08-05 23:56.] [Input file: categories.tex, 2009-07-31 23:21]

222 Categories and bicategories of polynomial functors

which by the following Yoneda lemma must be induced by a unique w :
F → E. It is clear from the construction of u and w that the diagram
induces the original natural transformation. !

10.1.5 Yoneda lemma. Given a diagram

E

I

s

$ B

p
!

F
q

!
z

$

the canonical map

HomI,B(F, E) −→ Nat(p∗s∗, q∗z∗)

w %−→ [p∗s∗
η
⇒ p∗w∗w∗s∗ = q∗z∗]

is a bijection.

Proof. Since lowerstarring is a fibrewise construction we reduce to the case
B = 1. In this case p∗s∗ is just the functor X/I %→ HomI(E/I, X/I), and
the result follows from the usual Yoneda lemma for Set/I.

Some details: p∗s∗X = ∏e∈E(X×I E)e = ∏e∈E Xs(e) = HomI(E/I, X/I) =

∏i∈I XEi
i . !

thm:carttopoly 10.1.6 Lemma. If P is a polynomial functor and φ : Q ⇒ P is a cartesian
natural transformation, then Q is polynomial.

Proof. Since φ : Q ⇒ P is cartesian, we have an isomorphism

Q(X) ∼= P(X) ×P(1) Q(1)

Suppose P is represented by I ← E → B → J, and recall that P(1) ∼= B. We
now define C = Q(1), let h : C → B be the composite of φ1 : Q(1) → P(1)
with the isomorphism P(1) ∼= B, and put F = E ×B C. It is now clear that
the polynomial functor represented by I ← F → C → J is isomorphic to
Q, since both have a cartesian natural transformation to P and agree on 1.

!

[Rough draft, version 2009-08-05 23:56.] [Input file: categories.tex, 2009-07-31 23:21]

10.1 Natural transformations between polynomial functors 223

Theorem 10.1.4 says that there is a factorisation system on PolyFun(I, J),
but note that the class of representable morphisms is not saturated in the
sense that it does not contain all isomorphisms: it only contains isomor-
phisms P ∼→ Q for which P(1) → Q(1) is the identity map. These are
precisely the vertical arrows for the functor P %→ P(1), and the theorem
can be formulated a little bit more precisely as follows:

10.1.7 Theorem. The functor

PolyFun(I, J) −→ Set/J
P %−→ P(1)

is a Grothendieck fibration. The cartesian arrows are precisely the cartesian natu-
ral transformations.

The importance is not just the ability to factor natural transformations,
but as much the mere fact that every natural transformation can be cap-
tured on the level of the representing sets, so that all computations become
mere manipulations of sets.

Furthermore the following important corollary results: Consider the
category whose object are the diagrams representing polynomial functors.
The arrows are given as the natural transformations of the induced func-
tors. Then by construction, the inclusion is fully faithful, and the essential
image, the category of all functors isomorphic to a polynomial one is an
equivalent category.

Note that even if a given functor is isomorphic to a polynomial one,
then there may be several different isomorphisms. This just amounts to
saying that some polynomial functors admit automorphisms. For example
1 ← N′ → N → 1 has automorphisms which are even vertical for the
fibration, given by permuting the elements of the fibres of N′ → N.

In fact we must absolute work out this example, seeing which natural
transformation is induced by such an automorphism. In fact this example
can be observed already in the very simple example

1 ← 2 → 1 → 1

with an automorphism of 2. It is the functor

X %→ X × X

[Rough draft, version 2009-08-05 23:56.] [Input file: categories.tex, 2009-07-31 23:21]

224 Categories and bicategories of polynomial functors

and surely the natural transformation induced by the automorphism is
the twist. However, working out this example in terms of representable
or cartesian natural transformation is quite tricky! As far as I remember,
it is easy to see that the twist arises from the representable natural trans-
formation induced by the automorphism, but that it is much trickier to
see that also the cartesian natural transformation induced by the automor-
phism is the twist. . . Possibly this involves also the pseudo-naturality of
the pullback!

Note that these calculations could actually be performed and explained
already in the one-variable case, but I think it is more appropriate to do it
in the many-variable case. . .

Perhaps there is a separate argument to be seen in the internal lan-
guage, which would then be a suitable argument for the one-variable viewpoint. . .

10.1.8 Handling natural transformations. By the Theorem, natural trans-handling
formations between polynomial functors are diagrams like above. To com-
pose them, one should just compose the corresponding natural transfor-
mations, and then factor the result into representable followed by carte-
sian. This is not an economical way to do it in practice though, because the
starting representable and the ending cartesian factors are already in place.
It is enough to refactor the middle part: refactor cartesian-followed-by-
representable into representable-followed-by-cartesian. This is very easy:
given

E
p ! B

I $
s

s

$ E

v
"

p
! B

u
"

t
! J

t

!

F

w
#

q
!

z

$

B

****** t

!
(10.1) bad-order

[Rough draft, version 2009-08-05 23:56.] [Input file: categories.tex, 2009-07-31 23:21]

10.1 Natural transformations between polynomial functors 225

define the composite to be

E
p ! B

I $ z

s

$ F

w
#

q ! B

t
! J

t

!

F

f
"

q
!

z

$

B

u
"

t

!
(10.2) good-order

where F := F ×B B, and w : F → E is induced by w and the universal
property of E. That this definition is correct is the content of the following
lemma.

10.1.9 Lemma. The two diagrams, (10.1) and (10.2), define the same natural
transformation.

Proof. The two diagrams fit together in a single diagram

E

B

p
!

F
w

!

q

!

I

s

$ z$ J

t

!

E

v

!

s

$

B

u

" t

!

p
!

F

f

!z

$

w

!

q

!

in which the three squares are pullback squares. The statement of the
lemma is the following equation of natural transformations (written in

[Rough draft, version 2009-08-05 23:56.] [Input file: categories.tex, 2009-07-31 23:21]

226 Categories and bicategories of polynomial functors

left-to-right composition):

s∗p∗t!
unit
⇒ z∗q∗t!

BC ⇓ ⇓ BC

s∗p∗u∗u! t! z∗q∗u∗u! t!

counit ⇓ ⇓ counit

s∗p∗t! ⇒
unit

z∗q∗t!

The left-bottom composite is the natural transformation induced by (10.1),
and the top-right composite is the one induced by (10.2). The two units are
the representable transformations, while the composites BC-counit are the
cartesian transformations. The proof consists in filling in with standard
equations. Here is the full pasting diagram:

s∗p∗t! s∗w∗w∗p∗t! = z∗q∗t!

s∗p∗u∗u! t! s∗w∗w∗p∗u∗u! t!

s∗p∗t! =s∗v∗p∗u! t! s∗v∗w∗w∗p∗u! t! = z∗q∗t!

s∗w∗ f∗w∗p∗u! t!

s∗w∗w∗v∗p∗u! t!

"

" "

"

!

!

!

%
%
%
%

%
%&

%
%
%%&

'
'

''(

‖
A

B

Here region A is Lemma 8.4.1 (iv) applied to the square

F
w ! E

F

f
"

w
! E

v
"

[Rough draft, version 2009-08-05 23:56.] [Input file: categories.tex, 2009-07-31 23:21]

10.1 Natural transformations between polynomial functors 227

and region B is Lemma 8.4.2 (iv) applied to the squares

F
w ! E

p ! B

F

f
"

w
! E

v
"

p
! B.

u
"

The two remaining squares are clearly commutative since each amounts
to rewriting in two independent parts of the expressions. !

This gives an explicit description of composition of natural transfor-
mations between polynomial functors, but in order for it to be strictly as-
sociative (and strictly unital) we just need to recall that we identify two
diagrams if they only differ in the middle part (this difference is unique,
so there are no coherence problems). Indeed, two different factorisations
of the same natural transformation obviously represent the same natural
transformation. . .

10.1.10 Corollary. With the vertical composition just introduced, the assign-
ment Brdg(I, J) → Cat(Set/I, Set/J) is functorial.

!

Together with ?? and ?? this establishes:

10.1.11 Lemma. For any two fixed sets I, J ∈ Set, the functor Brdg(I, J) →
Cat(Set/I, Set/J) is fully faithful. !

Here is another outcome of the theory, as far as I can see:

10.1.12 Proposition. Every natural transformation between composites of up-
perstars, lowershrieks and lowerstars is a composite of units and counits of the
two adjunctions, as well as the invertible 2-cells expressing pseudo-functoriality
of pullback and its adjoints.

Proof. A natural transformation is a composite of a representable transfor-
mation and a cartesian one. Both we have checked that they are given in
terms of units and counits. !

[Rough draft, version 2009-08-05 23:56.] [Input file: categories.tex, 2009-07-31 23:21]

228 Categories and bicategories of polynomial functors

Basic properties of PolyFun(I, J): sums and products

10.1.13 Sums. The sum of two polynomial functors (with common source
and target) is just obtained by taking sums of B and E:

E1 + E2 ! B1 + B2

I

$

J

!

WRITE OUT THE DETAILS HERE. check that the universal property
is satisfied. Check also that the sum inclusions are cartesian.

10.1.14 Products. When we talk about products of polynomial functors
with values in Set J , we are referring of course to products in Set/J. Note
that if X and Y are sets over J then their product in Set/J is just the fibre
product X ×J Y.

The product of two polynomial functors should be just the product of
their values. The product of I ← E → B → J and I ← F → C → J should
be

E ×J C + B ×J F ! B ×J C

I

s
"

J
"

Here s is given by projection onto the E and F factors. (Note that this is
not the product in the smaller category Polyc(I, J).)

SOME EXAMPLE

10.1.15 Extensivity. Just look at polynomial functors in one variable, but
over an arbitrary lccc E . IN ORDER FOR THE PRODUCT OF TWO POLY-
NOMIAL FUNCTORS TO BE POLYNOMIAL AGAIN, WE NEED SOME
EXTRA ASSUMPTION. THE CLEANEST ASSUMPTION IS THAT E BE
EXTENSIVE.

See handwritten notes.

Misc

Temporarily let [n] denote the indexing set {1, 2, . . . , n}. Let FinSet [X1, . . . , Xn]
denote the category of polynomial functors Set/[n] → Set represented

[Rough draft, version 2009-08-05 23:56.] [Input file: categories.tex, 2009-07-31 23:21]

10.1 Natural transformations between polynomial functors 229

by [n] ← E → B with E and B finite. The Burnside semiring of this is
N[X1, . . . , Xn].

Polyc(I, J): the cartesian fragment

Come back to the fibration in groupoids

Polyc(I, J) −→ Set/J
P %−→ P(1)

(note that it is a fibration in groupoids since by definition all the arrows
upstairs are cartesian!) Take slice of it:

Polyc(I, J)/P −→ Set/B
[Q → P] %−→ [Q1 → P1]

This functor is an equivalence of categories.

. . . the key point is that there is a natural equivalence of categories

Polyc(I)/P ∼→ Set/B, (10.3) club-eq

given by evaluation at the terminal object I → I, which we denote by 1.
In detail, if Q → P is an object in Polyc(I)/P, the associated object in
Set/B is simply Q(1) → P(1) = B. The inverse equivalence basically
takes an object C → B in Set/B to the object in Polyc(I)/P given by the
fibre square

E ×B C ! C

I $ E
"

! B
"

! I.

Sums and products in Polyc(I, J)

NOT WRITTEN YET

[Rough draft, version 2009-08-05 23:56.] [Input file: categories.tex, 2009-07-31 23:21]

230 Categories and bicategories of polynomial functors

10.2 Horizontal composition and the bicategory
of polynomial functors

Define PolyFun to be the sub-2-category of Cat whose objects are the slices
of Set , whose arrows are the polynomial functors, and whose 2-cells are
the natural transformations.

As defined, PolyFun is a strict 2-category. A key feature of the theory is
that polynomial functors (and the natural transformations between them)
can be represented by diagrams. The diagrams constitute a biequivalent
non-strict bicategory which we now describe. The relation between the
two is similar to theories versus models, or abstract manifolds versus co-
ordinate charts. We wish to stress that the intrinsic objects are the actual
functors: those functors that admit a polynomial representation. By choos-
ing representations we can work with them easily, and get to grips with the
combinatorics. In practice it is convenient to blur the distinction between
the functors and the representing diagrams. In this section we do make a
careful distinction, only to justify the blur. We do this by defining a bicat-
egory of polynomial diagrams (bridges) and establishing a biequivalence
with the above strict 2-category PolyFun .

10.2.1 Proposition. There is a bicategory Brdg whose objects are the objects of
Set, whose arrows from I to J are the bridge diagrams like

B
f

""

s

$$##
##

##
##

A
t

%%
$$

$$
$$

$$

I J

and whose 2-cells are diagrams like

D
g

""

u

&&%%
%%

%%
%%

C
v

%%$
$$

$$
$$

$

I D′ ""!!

##

''

!
" C ""

##

J

B
f

""

((&&&&&&&&

A

))########

. (10.4) Brdg-2cell

[Rough draft, version 2009-08-05 23:56.] [Input file: categories.tex, 2009-07-31 23:21]

10.2 Horizontal composition and the bicategory of polynomial functors231

(Composition of bridges was described above, composition laws for 2-cells are de-
scribed in the proof below.) The assignment of polynomial functors and natural
transformations to such diagrams as in 10.1.4 constitutes a biequivalence with
the category PolyFun.

The vertical composition was already treated. It remains to treat hori-
zontal composition of 2-cells.

Note that the arrows are the polynomial functors Set/I → Set/J, not the diagrams.
This meant that we are including functors which are only isomorphic to ones given by
such diagrams. (And also that we are considering two diagrams the same if they rep-
resent the same functor CAN THIS HAPPEN??? (and then they differ only by some
bijections).) Doing it this way ensures that composition is well-defined and strictly asso-
ciative. Had we taken the arrows to be diagrams, then the composition would only be
defined up to unique isomorphisms (since it basically relies on pullback), and composi-
tion would only be defined up to this sort of sloppiness, and hence it would not be strictly
associative. We would get only a bicategory. Even for 2-cells, if we had let the 2-cells be
the actual diagrams we would have some looseness, suggesting that there might even
be a weak 3-category around: the vertical composition of 2-cells is not strict, because it
involves a pullback too. (Note however that in this case, one could get away with defin-
ing two 2-cells to be the same if there is a comparison isomorphism, and since this is a
comparison between two pullbacks there can be at most one, and hence there is a clique
of equivalent 2-cells. . .)

The second ingredient we need is the following observation that we
already established:

thm:cohbicat 10.2.2 Lemma. The assignment of polynomial functors to bridges is compatible
with composition (up to specified isomorphisms), and sends identity bridges to
identity functors (up to specified isomorphisms). More precisely,

(i) For every pair of bridges F : I → I ′ and F′ : I ′ → I ′′, we have a natural
isomorphism

φF′,F : F̃′ ◦ F̃ ⇒ F̃′ F .

(ii) For every object I ∈ Set, we have a natural isomorphism

φI : IdSet/I ⇒ ĩd I .

Some preliminary exercises in the cartesian fragment

Let PolyFunc denote the 2-category of all polynomial functors and their
cartesian natural transformations. It is defined as a sub-2-category of Cat

[Rough draft, version 2009-08-05 23:56.] [Input file: categories.tex, 2009-07-31 23:21]

232 Categories and bicategories of polynomial functors

as follows: The objects are the slice categories Set/I. The arrows from
Set/I to Set/J are the polynomial functors (represented by diagrams I ←
E → B → J), and the 2-cells are the natural transformations between them.

We should now explain how they are composed horizontally.

10.2.3 Some exercises. How to whisker a cartesian natural transformation
with a polynomial functor.

The following long computation is like a first step in this direction, showing how to whisker a 2-cell (just a cartesian one) with a 1-cell. The
horizontal composition could be defined in terms of this, but then we would have to verify that the two ways of defining them coincide. Also, we
would have to generalise the argument to more general 2-cells than just the cartesian ones. . .

We will show that composition with a polynomial functor is functorial with respect to cartesian 2-cells. THIS SHOULD FOLLOW AUTOMAT-
ICALLY FROM GENERAL PRINCIPLES. . . YES, SINCE POLYNOMIAL FUNCTORS PRESERVE PULLBACKS (1.7.1), HORIZONTAL COMPOSI-
TION OF CARTESIAN NATURAL TRANSFORMATIONS IS AGAIN CARTESIAN (2.5.2). Hence this long computation is probably superfluous.
However, its ideas are needed for the double-cat stuff. . .

Given a polynomial functor

E
p! B

I

s$

P J

t

!

then there is induced a map

Poly(H, I) −→ Poly(H, J)

Q %−→ P ◦ Q

What we’ll show here is that if there is given a cartesian natural transformation Q ⇒ Q′ (given by

F
q! C

H

$

I

!

F′
"

!

$

C′

"!

then there is induced a cartesian transformation P ◦ Q ⇒ P ◦ Q′ .
The proof consists in splitting the statement into three pieces, depending on the three steps of P. It is enough to show that the result is true

for these three functors
Poly(H, I) s∗! Poly(H, E)

p∗! Poly(H, B)
t!! Poly(H, J)

For the first case, we are concerned with a diagram

F
q! C

H

$

I $s

!

E

F′
"

!

$

C′

"!

To compute the composition of these polynomial functors amounts to performing four pullbacks. In fact the resulting polynomial functor is just the
pullback of the whole diagram along s:

F ×I E ! C ×I E

H
$

E

!

F′ ×I E
"

!
$

C′ ×I E
"!

[Rough draft, version 2009-08-05 23:56.] [Input file: categories.tex, 2009-07-31 23:21]

10.2 Horizontal composition and the bicategory of polynomial functors233

It is obvious that this square is again cartesian.
The second part is the hard part. Renaming the objects, we are in this situation:

F
q! C

H

$

E
p!

!

B

F′
"

!

$

C′
"!

To compute this composition (we look at the top part), we first have to take p∗(C). Now consider the pullback back along p:

p∗p∗(C)! p∗(C)

E
"

p
! B

"

Now by adjunction we have the canonical evaluation map p∗p∗(C) → C (and we should check that it commutes with the map down to E).
Description of this map: Now compare with what happens in the bottom part: the same thing. We have a map p∗(C) → p∗(C′), and pulling it back
we also get p∗ p∗(C) → p∗p∗(C′). This square

p∗p∗(C) ! p∗(C)

p∗p∗(C′)

"
! p∗(C′)

"

is a pullback for the following reason: arrange the squares like this:

p∗p∗C ! p∗C

p∗p∗C′
"

! p∗C′
"

E
"

p
! B.

"

Here the big square and the bottom square are pullbacks by construction. Hence, the top square is too (A.1).

Next we pullback p∗ p∗(C) → C along q and q′. This gives q∗p∗p∗(C) and q′∗ p∗p∗(C′). There is a map between them. Now we have
cartesian squares

q∗p∗ p∗(C) ! p∗ p∗(C)

F
"

! C
"

F′
"

! C′
"

q′∗ p∗ p∗(C′)

#
! p∗p∗(C′)

#

By some cube argument, we can conclude that the square

q∗p∗ p∗(C) ! p∗ p∗(C)

q′∗ p∗ p∗(C′)

"
! p∗p∗(C′)

"

is also cartesian. This is what we wanted to prove.
(The cube argument is something like: if the left face bottom and front are cartesian then the top is too. This is just a variation of the previous

general result about pullback squares.)

Finally for t! it is immediate that the cartesian squares are preserved, because it stays the same.

Note also that all of these three functors preserve monomorphisms. That is, if the vertical maps in the original pullback square are monos,
then the resulting ones are too.

This is just a question of following the constructions through, and observe that we are mostly using pullback, and forming pullback preserves
monos. At one point we also used a pushforth, but this is like taking product, and a product of monos is again a mono.

[Rough draft, version 2009-08-05 23:56.] [Input file: categories.tex, 2009-07-31 23:21]

234 Categories and bicategories of polynomial functors

SLOGAN:
The slogan is that ALL 2-cells between polynomial functors are built

from the units and counits of the adjunctions.

Horizontal composition of 2-cells
subsec:horizontal

A diagram

· ! · · ! ·

· $$ ·

#

! ·

! · $$
!

·

#

! ·

! ·
!

·
"

!
!

·
"

!

·
"

!
!

·
"

!

represents two horizontally composable natural transformations. The com-
posite is again a natural transformation between polynomial functors, hence
we know it can be represented by a diagram. We shall now give a direct
construction of the diagram representing the horizontal composite. We
shall take advantage of the interchange law to break the construction into
two steps: first we compose the upper parts (the representable transfor-
mations) horizontally, and then we compose the lower parts (the cartesian
transformations) horizontally. The lower part is rather straightforward:
the horizontal composite of two cartesian transformations is again carte-
sian, and it is not difficult to construct the diagram. The representable
part is somewhat more complicated: it turns out the horizontal composite
of two representable transformations is not again representable in general.
We analyse this now.

Given a general horizontal composite of representable transformations

· ·

· $ · !
!

· $ · !
!

·

·

#

!$

·

#

!$

we know how to construct the composites of each of the functors (8.7), and
we shall relate those two big diagrams by connecting maps to establish a
natural transformation between them which we then show represents the

[Rough draft, version 2009-08-05 23:56.] [Input file: horizontal.tex, 2008-10-12 10:45]

10.2 Horizontal composition and the bicategory of polynomial functors235

horizontal composite in the functor category. Taking advantage once again
of the interchange law, we break the problem into two steps like this:

· ·

· $ · !
!

· $ · !
!

·

·

#

!$

·

· · ! · $ · !
!

·

·

!$

·

#

!$

(and not the other way around).
The upper part, a representable natural transformation post-whiskered

by a polynomial functor, is quite easy, and is again a representable natural
transformation. We omit that construction.

The lower part, a representable natural transformation pre-whiskered
with a polynomial functor, turns out to be complicated and is not again a
representable natural transformation.

The interaction between upperstars and lowerstars is quite well-behaved,
and so is the interaction between lowershriek and upperstar—as one can
expect from Beck-Chevalley. The difficult case to handle is the interaction
between lowershriek and lowerstar, which involves distributivity. In fact
it is enough to describe how to normalise the 2-cell

·

·
c ! ·

z

$ ·

q
!

·

f
#

q̃

!

z̃

$

i.e. how to pre-whisker a representable natural transformation with a low-
ershriek functor. Recall that the natural transformation is (written left-to-
right)

c! z∗q∗
unit
⇒ c! z∗ f∗ f∗q∗ = c! z̃∗ f∗q∗

We will now work towards bringing it on normal form. The first step
involves the interaction between c! and the triangle z̃ = f z, so for the
moment we can forget about q. So pull back the triangle z̃ = f z along c to

[Rough draft, version 2009-08-05 23:56.] [Input file: horizontal.tex, 2008-10-12 10:45]

236 Categories and bicategories of polynomial functors

get

·
s ! ·

· $

k

$

c
·

z

$

·

n
#

s̃
!

k̃

$

·

f

#

z̃

$

as prescribed in the normalisation procedure (Proof of Lemma 8.5.1). We
now have the following diagram of natural transformations, comparing
the original natural transformation with one step of normalisation via Beck-
Chevalley isomorphisms.

c! z∗
BC
+ k∗s!

unit ⇓ ⇓ unit

c! z∗ f∗ f∗
BC
+ k∗s! f∗ f∗

‖ ⇓ BC

c! z̃∗ f∗
BC
+ k∗n∗ s̃! f∗

Here composition is written left-to-right. The top square is obviously com-
mutative. The bottom ‘square’ is commutative by Lemma 8.4.2 (the fact
that Beck-Chevalley along a composite can be performed in two steps).

For the next step in the normalisation rewriting, there is a trailing q∗,
but in contrast we no longer have to care about the leading k∗, and we can
also forget about the maps c, z, and z̃. So the situation is now the diagram

Ñ
n ! N

F̃

s̃
"

f
! F

s
"

q
! C

and a natural transformation (composition written left-to-right)

s! q∗
unit
⇒ s! f∗ f∗q∗

BC
+ n∗ s̃! (f q)∗ .

[Rough draft, version 2009-08-05 23:56.] [Input file: horizontal.tex, 2008-10-12 10:45]

10.2 Horizontal composition and the bicategory of polynomial functors237

Both these functors are now rewritten using distributivity to acquire nor-
mal form. The relevant diagram for this rewriting is the following:

W
r ! E

p ! D

Ẽ

u
"

p̃ ! D̃

v
"

Ñ

ẽ
"

n ! N

e
"

F̃

s̃
"

f
! F

s
"

q
! C

t

"

Here D = q∗N, and E = q∗q∗N (i.e. the right-hand square is a distributiv-
ity square). Similarly, D̃ = (q ◦ f)∗ Ñ, and Ẽ = (q ◦ f)∗(q ◦ f)∗ Ñ. The map
v is induced as follows (written right-to-left, since if involves evaluation
on objects):

D̃ = (q ◦ f)∗Ñ = q∗ f∗ f∗N unit$ q∗N = D.

The diagram includes the diagram for a natural transformation between
polynomial functors on normal form:

E
p ! D

N $

e

$
W

r
#

! D

! C
!

Ẽ

u
"

p̃
!

ẽn

$

D̃

v
" t

!

As usual, the induced natural transformation is (composition written left-

[Rough draft, version 2009-08-05 23:56.] [Input file: horizontal.tex, 2008-10-12 10:45]

238 Categories and bicategories of polynomial functors

to-right)

e∗p∗v! t! ⇒ e∗r∗r∗p∗v! t!

= n∗ ẽ∗u∗r∗p∗v! t!

+ n∗ ẽ∗ p̃∗v∗v! t!

⇒ n∗ ẽ∗ p̃∗t!

consisting of a unit (the representable part), followed by a Beck-Chevalley
and a counit (the cartesian part).

The claim is that this natural transformation is precisely the result of
conjugating the original natural transformation by distributivity. In other
words, the following diagram of 2-cells commutes (composition written
left-to-right):

s! q∗
distr.
⇔ e∗p∗v! t!

⇓ unit

unit ⇓ e∗r∗r∗p∗v! t!

‖

s! f∗ f∗q∗ n∗ ẽ∗u∗r∗p∗v! t!

⇓ BC

BC ⇓ n∗ ẽ∗ p̃∗v∗v! t!

⇓ counit

n∗ s̃! (f q)∗
distr.
⇒ n∗ ẽ∗ p̃∗t!

The left-hand column is the natural transformation we started with. The
right-hand column is the natural transformation obtained from the di-
agram that serves to apply distributivity to the original functors to get
them on normal form—the boxed functors are those on normal form and
constitute the factorisation into representable followed by cartesian. The
statement is that the resulting natural transformation is precisely the one
obtained from distributivity.

The proof consists in filling the interior of the diagram with standard 2-
cells. Note that the distributivity isomorphism factors as a counit followed
by lowershriek-lowerstar exchange. Neither of these are invertible, so the

[Rough draft, version 2009-08-05 23:56.] [Input file: horizontal.tex, 2008-10-12 10:45]

10.2 Horizontal composition and the bicategory of polynomial functors239

verification must keep track of directions of arrows. Here is the relevant
pasting diagram (with composition written left-to-right):

s! q∗

s! f∗ f∗q∗

n∗ s̃! f∗q∗

e∗e! n∗ s̃! f∗q∗

e∗e! s! q∗

e∗e! s! f∗ f∗q∗ e∗r∗r∗e! s! q∗

e∗r∗u! ẽ! s̃! f∗q∗ e∗r∗u! p̃∗t!

n∗ ẽ∗u∗u! ẽ! s̃! f∗q∗ n∗ ẽ∗u∗u! p̃∗t!

n∗ ẽ∗ ẽ! s̃! f∗q∗

e∗p∗v! t!

e∗r∗r∗p∗v! t!

n∗ ẽ∗u∗r∗p∗v! t!

n∗ ẽ∗ p̃∗v∗v! t!

n∗ ẽ∗ p̃∗t!

)
)

)
)

)*

%
%

%
%
%&

$

"

+
+

+
+

+
+

+
+,

$

-
-
-
-
-
-
--. ///0

1
112

///3

4445

%
%
%
%
%&

)
)

)
)

)*

$

%
%

%
%
%&

)
)

)
)

)*

6666666666667

"

$

$

$

8888888
9 1

1
12

)
)

)
)

)*
)

)
)

)
)*

%
%%&

%
%%&

%
%%&

%
%%&

A

B
C

D

E

F

Here region A is Lemma 8.4.1 (xi) applied to the square

·
r ! ·

·

uẽs̃
"

f
! ·

es
"

Region B is Lemma 8.4.1 (iii) applied to the square

·
r ! ·

·

uẽ
"

n
! ·

e
"

[Rough draft, version 2009-08-05 23:56.] [Input file: horizontal.tex, 2008-10-12 10:45]

240 Categories and bicategories of polynomial functors

Region C is Lemma 8.4.1 (xii) applied to the square

·
rp ! ·

·

u
"

p̃
! ·

v
"

Region D is Lemma 8.4.2 (i) applied to the squares

·
r ! ·

·

uẽ
"

n
! ·

e
"

·

s̃
"

f
! ·

s
"

Region E is Lemma 8.4.2 (v) applied to the squares

·
r ! ·

p ! ·

·

uẽs̃
"

f
! ·

es
"

q
! ·

vt
"

Region F is Lemma 8.4.2 (vi) applied to the squares

·
rp ! ·

·

u
"

p̃
! ·

v
"

·

ẽs̃
"

f q
! ·

t
"

The other regions are commutative for obvious reasons: the squares
are commutative because they amount to rewriting in two independent
parts of the expression. The triangle in the lower left-hand corner is com-
mutative because the counit of a composite adjunction is the composite of
the counits.

[Rough draft, version 2009-08-05 23:56.] [Input file: horizontal.tex, 2008-10-12 10:45]

Chapter 11

Double categories of polynomial
functors

The material of this chapter is mostly from Gambino-Kock [39].

11.1 Summary

It is important to be able to compare polynomial functors with different
endpoints, and to base change polynomial functors along maps in Set .
This need can been seen already for linear functors: a small category can be
seen as a monad in the bicategory of spans, but in order to get functors be-
tween categories with different object sets, one needs maps between spans
with different endpoints. There are two ways to account for this: either in
terms of a bicategory with extra structure [105], or in terms of a double cat-
egory with certain properties: existence of companions and conjoints [45],
folding [36], or the fibration property identified by Shulman [97], who uses
the term framed bicategories for double categories having the property. We
shall take the double-category viewpoint, mostly following Shulman, as
this allows for diagrammatic representation.

The double categories of polynomial functors generalise module-like
double categories, like the double category of spans.

There will be two double categories: one with general 2-cells, and one
with only cartesian 2-cells.

[Rough draft, version 2009-08-05 23:56.] [Input file: double.tex, 2009-07-29 15:26]

242 Double categories of polynomial functors

11.1.1 The general double category. On the level of diagrams (which we
call the intensional level), the double category of polynomials (denoted
Poly#) will have 2-cells of the form

I ′

u

##

·!! "" · "" J′

v

##

·
!
"

''

""

##

·

##
I ·!! "" · "" J

(11.1) general2cell

i.e. like the diagrams defining natural transformations, but with the end-
points opened up. The extensional version of this double category (de-
noted PolyFun#, involving the polynomial functors) will have 2-cells of
the form

Set/I ′

u!

##

P′
""

''''!!

Set/J′

v!

##

Set/I
P

"" Set/J

(11.2)

It follows from standard arguments (cf. the proof below) that PolyFun#

is a framed bicategory. Our main task is to translate this to the level of
diagrams, and make explicit how the various operations are performed at
this level.

11.1.2 Cartesian fragment. The double category with only cartesian 2-
cells, which we denote Polyc

has sets as objects and set maps as vertical
arrows. It has polynomial functors as horizontal arrows, and its squares
are diagrams

D $ U ! V ! C

I
"
$ E

"
! B

"
! J.

"

The extension of such a diagram is precisely a cartesian natural transfor-

[Rough draft, version 2009-08-05 23:56.] [Input file: double.tex, 2009-07-29 15:26]

11.1 Summary 243

mation

Set/I ′

u!

##

P′
""

''''!!

Set/J′

v!

##

Set/I
P

"" Set/J

(11.3) sw-cart

which are the 2-cells of a equivalent double category denoted PolyFunc
#

The cartesian fragment is the most important for applications. In par-
ticular we shall be concerned with applications to operads. When the
polynomial functors are polynomial monads corresponding to coloured
operads, the notion (of monad maps of the above kind) agrees with the
notion of morphism between coloured operads via base change.

Reminder on double categories

WRITE THIS SECTION

11.1.3 Double categories. Recall that a double category is a category in-
ternal to Cat . Spelled out this means a double category D has a category of
objects D0, a category of morphisms D1, together with structure functors

D0 "" D1
∂0

!!

∂1!!
D1 ×D0 D1

comp.
!!

subject to usual category axioms. The objects of D0 are called objects of D,
the morphisms of D0 are called vertical arrows, the objects of D1 are called
horizontal arrows, and the morphisms of D1 are called squares. For details,
see [97], [45], [22]. As is custom, we allow for the possibility that the hori-
zontal composition is associative and unital only up to specified coherent
isomorphisms. Precisely, a double category is a pseudo-category [80] in
the 2-category CAT; see also [75, §5.2].

In practice one often constructs D1 first and then specify the compo-
sition law to produce the double category. We use the convention that if
SomeCat denotes a category playing the role of D1, we put a small square
decoration to refer to the whole double category, SomeCat#.

[Rough draft, version 2009-08-05 23:56.] [Input file: double.tex, 2009-07-29 15:26]

244 Double categories of polynomial functors

11.1.4 Framed bicategories. A framed bicategory [97] is a double category
for which (∂0, ∂1) : D1 −→ D0 × D0 is a bifibration. (In fact, if it is a fibra-
tion then it is automatically an opfibration, and vice versa.) The upshot
of this condition is that horizontal arrows (i.e. objects of D1) can be base
changed back along arrows in D0 × D0 (i.e. pairs of vertical arrows), and
cobase changed forth along arrows in D0 ×D0.

11.1.5 Terminology. We need to fix some terminology. The characteristic
property of a fibration is that every arrow in the base category admits a
cartesian lift, and that every arrow in the total space factors (essentially
uniquely) as a vertical arrow followed by a cartesian one. In the present
situation, the term ‘cartesian’ is already in use to designate cartesian nat-
ural transformations (which fibrationally speaking are vertical rather than
cartesian!), and the term ‘vertical’ already has a meaning in the double-
category setting. For these reasons, instead of saying ‘cartesian arrow’ for
a fibration we shall say transporter arrow; this terminology goes back to
Grothendieck [46]. Correspondingly we shall say cotransporter instead of
opcartesian. We shall simply refrain from using ‘vertical’ in the fibration
sense: the arrows mapping to identity arrows by the fibration will be pre-
cisely the natural transformations of polynomial functors.

The double category of polynomial functors

11.1.6 The double category of polynomial functors. We want to extend
the bicategories Poly and PolyFun to double categories. The objects of
the double category PolyFun# are the slices of Set , and the horizontal ar-
rows are the polynomial functors. The vertical arrows are the lowershriek
functors, and the squares in PolyFun# are of the form

Set/I ′

u!

##

P′
""

''''!! φ

Set/J′

v!

##

Set/I
P

"" Set/J

(11.4) sw

where P′ and P are polynomial functors and φ is a natural transformation.

Before describing the diagrammatic version of this double category, it
is very helpful to have its framed structure available, so we establish that

[Rough draft, version 2009-08-05 23:56.] [Input file: double.tex, 2009-07-29 15:26]

11.1 Summary 245

first.

thm:frabic 11.1.7 Proposition. The double category PolyFun# is a framed bicategory.

Proof. The claim is that the ‘endpoints’ functor

PolyFun# −→ Set × Set

[P : Set/I → Set/J] %−→ (I, J)

is a bifibration. For each pair of arrows (u, v) ∈ Set × Set we have the
following basic squares (companion pairs and conjoint pairs):

·
u! ""

u!

##

''''!! id

·

· ·

·

u!

##

''''!! η

·

· u∗
"" ·

·

''''!! id

·

v!

##
· v!

"" ·

· v∗ ""

''''!! ε

·

v!

##
· ·

(11.5)

It is now direct to check that the pasted square

Set/I ′
u! ""

u!

##

(((("" id

Set/I

(((("" id

P "" Set/J v∗ ""

(((("" ε

Set/J′

v!

##

Set/I Set/I
P

"" Set/J Set/J

is a transporter lift (cartesian lift) of (u, v) to P. We call v∗ ◦ P ◦ u! the
base change of P along (u, v), and denote it (u, v)$(P). Dually, it is direct to
check that the pasted square

Set/I ′

u!

##

(((("" η

Set/I ′

(((("" id

P′
"" Set/J′

(((("" id

Set/J′

v!

##

Set/I u∗
"" Set/I ′

P′
"" Set/J′ v!

"" Set/J

is a cotransporter lift (opcartesian lift) of (u, v) to P′. We call v! ◦ P′ ◦ u∗
the cobase change of P′ along (u, v), and denote it (u, v)$(P′). !

[Rough draft, version 2009-08-05 23:56.] [Input file: double.tex, 2009-07-29 15:26]

246 Double categories of polynomial functors

11.1.8 Remark. The above procedure of getting a framed bicategory out
of a bicategory is a general construction: starting from a bicategory C and
a subcategory L (comprising all the objects), there is a double category
whose horizontal arrows are all the morphisms, whose vertical arrows are
those from L , and whose 2-cells are those of C . If furthermore every
morphism in L is a left adjoint, then the constructed double category is a
framed bicategory. For details, see [97, Appendix].

Via the biequivalence Poly + PolyFun between the bicategory of poly-
nomials and the 2-category of polynomial functors, Proposition 11.1.7 gives
us also a framed bicategory of polynomials Poly#, featuring nice diagram-
matic representations which we now spell out, extending the results of
Chapter 10. The following proposition is the double-category version of
Proposition 10.1.4.

11.1.9 Proposition. The squares (11.4) of PolyFun# are represented by dia-
grams of the form

P′ : I ′

u

##

B′!! "" A′ "" J′

v

##

·
!
"

''

""

##

·

##

P : I B!! "" A "" J .

(11.6) equ:sqdiag

This representation is unique up to choice of pullback in the middle.

Proof. By Proposition 10.1.4, diagrams like (11.6) (up to choice of pull-
back) are in bijective correspondence with natural transformations v! ◦P′ ◦
u∗ ⇒ P, which by adjointness correspond to strong natural transforma-
tions v! ◦ P′ ⇒ P ◦ u! , i.e. squares (11.4) in PolyFun#.

!

We can now conclude the following corollary, although we’ll have to
unravel the structure of framed bicategory implied on Poly#:

11.1.10 Corollary. Extension constitutes a framed biequivalence

Poly#
∼→ PolyFun# .

[Rough draft, version 2009-08-05 23:56.] [Input file: double.tex, 2009-07-29 15:26]

11.1 Summary 247

11.1.11 The double category of polynomials (bridge diagrams). We de-
fine a category BRDG whose objects are bridges

I · ""!! · "" J ,

and whose arrows are diagrams

I ′

u

##

·!! "" · "" J′

v

##

·
!

"

''

""

##

·

##
I ·!! "" · "" J

The vertical composition of two diagrams

·

##

·!! "" · "" ·

##

·
!

"

''

""

##

·

##
·

##

·!! "" · "" ·

##

·
!

"

''

""

##

·

##
· ·!! "" · "" ·

is performed by replacing the two middle squares

·
!
"

""

##

·

##
· "" ·

·

''

"" ·

[Rough draft, version 2009-08-05 23:56.] [Input file: double.tex, 2009-07-29 15:26]

248 Double categories of polynomial functors

by a configuration
· "" ·

·
!
"

""

''

##

·

##
· "" ·

and then composing vertically. The replacement is a simple pullback con-
struction, and checking that the composed diagram has the same exten-
sion as the vertical pasting of the extensions is a straightforward calcula-
tion.

11.1.12 The bifibration structure. At the level of polynomials, the bifibra-
tion Poly# → Set × Set is now the ‘endpoints’ functor, associating to a
polynomial I ← B → A → J the pair (I, J). With notation as in the proof
of Proposition 11.1.7, we know the cobase change of P′ along (u, v) is just
v! ◦ P′ ◦ u∗, and it is easy to see that We can choose the cotransporter lift
of (u, v) to P′ to be

P′ : I ′

u
##

·!! "" · "" J′

v
##

(u, v)$(P′) : I ·!! "" · "" J

so the cobase change of P′ is just v! ◦ P′ ◦ u∗. More intrinsically, we can
characterise the cotransporter morphisms as the diagrams for which the
middle vertical maps are invertible.

The transporter lift of (u, v) to P, which is the same thing as the base
change of P along (u, v), is slightly more complicated to construct. It can
be given by first base changing along (u, id) and then along (id , v):

(u, v)$(P) : I ′ ·!!

!
"

""

##

·
!
"

##

"" J′

v
##

(u, id)$(P) : · ·
!
"

!!

##

"" ·

##

"" ·

·
u

##

·"
!

!!

##
P : I ·!! "" · "" J

[Rough draft, version 2009-08-05 23:56.] [Input file: double.tex, 2009-07-29 15:26]

11.1 Summary 249

or by first base changing along (id , v) and then along (u, id):

(u, v)$(P) : I ′ ·!!

!
"

""

##

·

##

"" J′

·
u

##

·"
!

!!

##
(id , v)$(P) : · ·

!
"

!!

##

"" ·
!
"

##

"" ·
v
##

P : I ·!! "" · "" J

In either case, it can be checked directly that these constructions are indeed
the transporter squares. We omit the details.

11.1.13 Sourcelift. The intermediate polynomial (u, Id)$(P) is called thesourcelift
source lift of P along u, and we shall need it later on. Since ∂0 (as well as
∂1) is itself a bifibration, for which the source lift is the transporter lift, it
enjoys the following universal property: every square

P′ : I ′

u

##

·!! "" · "" J′

v

##

·
!
"

''

""

##

·

##
P : I ·!! "" · "" J

factors uniquely through the source lift, like

P′ : I ′ ·!! "" · "" J′

v

##

·
!

"

''

""

##

·

##
(u, id)$(P) : I ′

u
##

·
!

"
!!

##

"" ·

##

"" ·

P : I ·!! "" · "" J

where the bottom part is as in (??).

[Rough draft, version 2009-08-05 23:56.] [Input file: double.tex, 2009-07-29 15:26]

250 Double categories of polynomial functors

Lifts

For each arrow α : I → J we have the polynomial functor α! , together with
canonical diagrams

· = · = · = ·

|| || ||
· = · = ·

α
! ·

α
"

· = · = ·
α! ·

||
·

α
"

= ·

α
"

= ·

α
"

= ·

which are respectively, an cotransporter and a transporter lift to the iden-
tity functor.

All this amount to say that α and α! form a companion pair, in the
terminology of Grandis-Paré [45], and the fact that every arrow α has a
companion amounts to saying that the double category has a connection,
in the terminology of Spencer [98] and Brown-Mosa [22]. Or that it has a
folding, in the terminology of Fiore [36].

On the other hand, the assignment of the polynomial functor α∗ to an
arrow α, and the 2-cells

· = · = · = ·

|| || ||
·

α
"
$

α
· = · = ·

· $
α

· = · = ·

||
· = ·

α
"

= ·

α
"

= ·

α
"

which are a cotransporter and a transporter lift to the identity. This says
that every vertical arrow has an orthogonal adjoint (Grandis-Paré).

The four 2-cells indicated constitute in a sense the generic cotransporter-
vertical and vertical-transporter factorisations, in the sense that the factori-
sation of any 2-cell is given by horizontal composition with those cells.

[Rough draft, version 2009-08-05 23:56.] [Input file: double.tex, 2009-07-29 15:26]

11.1 Summary 251

Precisely, the factorisation of a 2-cell A : P → Q with end components α:
· $ · ! · ! ·

A
·

α
"
$ · ! · ! ·

α
"

into cotransporter followed by vertical is given by:

· = · = · = · $ · ! · ! · = · = · = ·

|| || || Id || || ||
·

α
"
$α

· = · = · $ · ! · ! · = · = ·
α! ·

α
"

|| A ||
· = ·

α
"

= ·

α
"

= ·

α
"
$ · ! · ! ·

α
"

= ·

α
"

= ·

α
"

= ·
Note that the midway polynomial functor, which we denote by α$P, is here
on normal form.

And the factorisation of A : P → Q into vertical followed by trans-
porter is given by:

· = · = · = · $ · ! · ! · = · = · = ·

|| || || A || || ||
· = · = ·

α
! ·

α
"
$ · ! · ! ·

α
"
$

α
· = · = ·

|| Id ||
·

α
"

= ·

α
"

= ·

α
"

= · $ · ! · ! · = ·

α
"

= ·

α
"

= ·

α
"

Note that the midway functor, α$Q, is not on normal form here.

Observation: we have shown (using just formal properties of adjoint,
together with one mate) that

α$ 7 α$

It is now a easy verification that these two reindexing functors satisfy the
Beck-Chevalley condition.

old calculations

11.1.14 Base change. Given a polynomial functor P represented by I ← E → B → J
and set maps α : I → I and β : J → J, there is a base changed polynomial functor
I ← E → B → J denoted (α, β)$P with the property that morphisms to P lying over (α, β)
are in 1–1 correspondence with natural transformations to (α, β)$P. This is to say that any
map Q → P with ends α and β factors uniquely through (α, β)$P. All this amounts to
saying that the functor Poly → Set × Set that returns the endpoints is a Grothendieck
fibration.

[Rough draft, version 2009-08-05 23:56.] [Input file: double.tex, 2009-07-29 15:26]

252 Double categories of polynomial functors

11.1.15 More details. Given α : I → I and β : J → J. The formula for (α, β)$P : Set/I →
Set/J is easy:

(α, β)$P = α! · P · β∗.

The is a composite of three polynomial functors:

I
= ! I E ! B J

= ! J

I

=

$

I

$α !

J
β$

!
J

=!

What is less obvious is that (α, β)$P has a canonical 2-cell to P, and that this 2-cell has the
‘transporter’ property for the projection functor Poly → Set × Set . We show that below.

11.1.16 Graphical explanation of base change. It is easy to explain in graphical terms
what the base change amounts to and why it has a universal property. If I ← E → B → J
is a polynomial functor, then the set of operations B is pictured as the set of bouquets

PICTURE
where each leaf has a decoration in I and the root has one in J. For the polynomial

functor pulled back along α : I → I and β : J → J, the set of operations is the same but
where each leaf is also decorated with an element in I (required α-compatible with the
decoration in I), and the root has also a J-decoration (β-compatible with the J-decoration).
In other words, instead of having just the decoration in I and J imposed by the polyno-
mial functor (i.e. i decorates leaf e if and only if s(e) = i and j decorates the root edge of b
if and only if t(b) = j) we take all decorations in the α-fibre over s(e) for each leaf e, and
the whole β-fibre over t(b) for the root.

(α, β)$B = {B − bouquetswitheachlea f decoratedinIsuchthat

I.e. maps Eb → I over I. And also an element x ∈ J such that β(x) = t(b)
We call this set B. The map from B → B just forgets the extra decorations. If D ←

U → V → C is another polynomial functor with a map to P in the sense described,
it means that each operation in V is mapped to an operation in B in a way compatible
with fibres and decorations. It is clear that this map factors through B in a unique way
compatible with fibres and decorations.

The new decoration on the root edge is just a question of taking a pullback. For the
new decoration on the leaves, it amounts to evaluating the polynomial functor on the
family α : I → I (except for the last lowershriek). It is intuitively clear that these two
operations commute.

Let us now turn to the formal description.

11.1.17 Base change at codomain. Given

J

I $
s

E
p

! B
t

! J

β
"

[Rough draft, version 2009-08-05 23:56.] [Input file: double.tex, 2009-07-29 15:26]

11.1 Summary 253

the construction is simply

I $ E ×J J ! B ×J J ! J

I

$

s
E
"

p
! B

"

t
! J

β
"

This defines the polynomial functor (I, β)$P = P · β∗ and a map to P.
Note that we think of P as a point of Poly lying over (I, J), and that we are construct-

ing a transporter lift of the arrow (I, β).

11.1.18 Lemma. These arrows (I, β)$P are strongly transporter.

THIS PROOF IS ONLY FOR THE CARTESIAN FRAGMENT!
This means that in each diagram, the dashed arrows are unique.
ROTATE DOWN THIS DIAGRAM:

D

:I =====
!

I

U

#

E ×J J

#

:!
!

E

s
#

V
"

B ×J J
"

:!
!

B

p
"

C
"

J
"

:
β
!

!
J

t
"

This is evident from the universal property of the pullback.

11.1.19 Base change at domain. This is trickier. Given a diagram

I

I

α
"
$

s
E

p
! B

t
! J

i.e. an arrow (α, J) in Set × Set and an object P in Poly lying over the codomain, the

[Rough draft, version 2009-08-05 23:56.] [Input file: double.tex, 2009-07-29 15:26]

254 Double categories of polynomial functors

transporter lift of (α, J) to I ← E → B → J is:

I $ p∗p∗s∗ I ! p∗s∗ I ! J

I

$ s∗ I

ε
"

I

α

"
$

s
E
"

p
! B

"

t
! J

This diagram is clearly nothing but α! · P (according for the description of composition
of polynomial functors), as required.

Note that s∗ I is the set of B-bouquets with a marked leaf e and with e decorated by an
element i ∈ I such that α(i) = s(e). In contrast, p∗p∗s∗ I is the set of B-bouquets with a
marked leaf, but where all leaves has a compatible I-decoration. The counit ε just forgets
all the decorations except at the marked leaf.

11.1.20 Lemma. These arrows (I, β)$P are strongly transporter.

THE PROOF IS ONLY ABOUT THE CARTESIAN FRAGMENT
This means that in each diagram, the dashed arrows are unique: TURN DOWN THIS

DIAGRAM

D

:I
α !

!
I

U

#

p∗p∗s∗ I

#

:!
!

E

s
#

V
"

p∗s∗ I
"

:!
!

B

p
"

C
"

J
" :
=====

!
J

t
"

To see this, observe first that the universal property of the pullback gives a unique
map U → s∗ I. Since U = p∗V, this map corresponds under adjointness p∗ 7 p∗ to a map
V → p∗s∗ I, and the pullback of this map gives us U → p∗p∗s∗ I (which continues to s∗ I

[Rough draft, version 2009-08-05 23:56.] [Input file: double.tex, 2009-07-29 15:26]

11.1 Summary 255

by the counit of the adjointness, and hence makes it fit into the diagram as required).

D $ U ! V ! C

I
"
$ p∗p∗s∗ I

"
! p∗s∗ I

"
! J

"

I

$ s∗ I

ε
"

I

α

"
$

s
E
"

p
! B

"

t
! J

This constructs the map. Uniqueness follows because different choices of U → p∗s∗ I
correspond to different choices of V → s∗ I, but only one is the pullback filler that started
the construction.

More precisely we have this:

11.1.21 Lemma. Given a diagram

U ! V

X

w
"

E
"

p
! B,

"

then the map ϕ : V → p∗X that corresponds to w under the adjointness p∗ 7 p∗ is unique to
make this diagram commute:

U ! V

w

;

p∗p∗X

p∗ϕ

"
! p∗X

ϕ

"

X

ε

"

E
"

p
! B,

"

[Rough draft, version 2009-08-05 23:56.] [Input file: double.tex, 2009-07-29 15:26]

256 Double categories of polynomial functors

Proof. Suppose a different map ϕ′ could fill the place of ϕ. Then since the top cartesian
square is cartesian over E → B in the sense that both sides have cartesian squares with
E → B, we would have to replace the pullback arrow p∗ϕ by p∗ϕ′. But by adjointness
bijection, if ϕ′ /= ϕ then also ε ◦ p∗ϕ′ /= ε ◦ p∗ϕ = w, so the diagram would not commute
in case we change ϕ. !

Now it is a general fact that composites of strongly transporter maps are again strongly
transporter. Hence, since obviously every map in Set × Set factors as (1, β) followed by
(α, 1) (or vice versa), we see that every map has a transporter lift to any target.

Hence we have shown that Poly → Set × Set is a Grothendieck fibration. Let us
be explicit about the general form of a transporter arrow and the general transporter lift:
given a diagram

I J

I

α
"
$

s
E

p
! B

t
! J

β
"

the transporter lift of (α, β) to P is given by either of the two diagrams:

I $ p∗p∗s∗ I ×J J ! p∗s∗ I ×J J ! J

I

! p∗p∗s∗ I

"
! p∗s∗ I

"
! J

β

"

I

α
"
$

s
E
"

p
! B

"

t
! J

I $ p∗p∗s∗ I ! p∗s∗ I ! J

I

α

"

s
! E ×J J

"

p
! B ×J J

"
! J

I

$

s
E

a
"

p
! B

b
"

t
! J

β

"

We shall also call it the pullback of P along (α, β).

There is of course a canonical identification of the top rows: This follows from the
general factorisation result. It also follows from associativity of composition of polyno-
mial functors. But let us provide the comparison explicitly: we need a map (canonical

[Rough draft, version 2009-08-05 23:56.] [Input file: double.tex, 2009-07-29 15:26]

11.2 Horizontal composition 257

and unique, but since this follows from the general result, we just care to exhibit the
map):

p∗s∗ I ∼→ (p∗s∗ I) ×J J.

Since we already have a map p∗s∗ I → J we just need to exhibit a map to p∗s∗ I (and
the two maps should agree down in J). The source of our map is really b! p∗s∗ I. Note
that s = s ◦ a. Now:

b! p∗s∗ I = b! p∗a∗s∗ I → p∗a! a∗s∗ I → p∗s∗ I

The first arrow is the one of Lemma 8.3.2, the second arrow is the counit for a! 7 a∗.

11.1.22 Example. If we restrict to the category of linear polynomial functors—these are
just spans, then the factorisation reduces to the well-known fact that a map of spans

D $ M ! C

I
"
$ B

"
! J

"

factors uniquely through D ← D ×I B ×J C.
ATTENTION! THERE MIGHT BE MORE 2-CELLS FOR LINEAR FUNCTORS THAN

FOR SPANS, BECAUSE WE MIGHT HAVE EXTRA BIJECTIONS IN THE MIDDLE!

PROJECT TO INVESTIGATE MORE CLOSELY. There is probably a large class of
weak double categories with this features: the category of horizontal arrows and 2-cells
is fibred over the vertical category. This means that every square factors (vertically) as
‘essential’ followed by ‘transporter’. Here ‘essential’ is supposed to mean with trivial
vertical arrows as endpoints, and ‘transporter’ is supposed to mean that there is a ‘base-
change’ of the bottom horizontal arrow along the two vertical ones. . .

This should be true for module categories: to give a square in the double category of
modules

R
M ! S

R′

f
"

N
! S′

g
"

is to give an (f , g)-equivariant module map M → N, which in turn should be equivalent
to giving a R-S-module map M → (f , g)$N, with suitable better notation.

CHECK OUT PROFUNCTORS AND SPANS

11.2 Horizontal composition

11.2.1 Horizontal composition of 2-cells. Let us indicate how to com-
pute a horizontal composition at the intensional level. After inserting a

[Rough draft, version 2009-08-05 23:56.] [Input file: double.tex, 2009-07-29 15:26]

258 Double categories of polynomial functors

few identity arrows, the diagram for a general horizontal composition in
BRDG is this:

I ′ ·!! "" · "" J′ ·!! "" · "" K′

·

##

·!!

!
"

''

""

##

·

##

"" ·

##

·!!

!
"

''

""

##

·

##

"" ·

##

I ·!! "" · "" J ·!! "" · "" K

Invoking the interchange law, we can perform this composition row-wise:
the top strip is the horizontal composition of two ‘representable’ natural
transformations. We now proceed to describe this. The bottom strip is a
horizontal composition entirely within the cartesian fragment, which we
describe in the next subsection.

We shall see that it is not true that the class of cartesian (base changes)
is stable. We shall exhibit very explicitly what goes wrong and what works
well.

Given a horizontal composite of base-change squares

· $ · ! · ! · $ · ! · ! ·

P Q

·
"
$ · ! · ! ·

"
$ · ! · ! ·

"

we factor P vertically as source-lift followed by a target-lift, and we factor
Q the other way around:

· $ · ! · ! · $ · ! · ! ·

| | | |

·

$ · ! · ! ·

"
$ · ! · ! ·

| | | |

·
"
$ · ! · ! ·

$ · ! · ! ·

"

Now we invoke the interchange law: we can compose the diagram by
composing each row of 2-cells horizontally.

The top row of 2-cells is clearly vertical for the Grothendieck fibration
(and it is clear that in general it is not the vertical identity 2-cell). Hence

[Rough draft, version 2009-08-05 23:56.] [Input file: double.tex, 2009-07-29 15:26]

11.2 Horizontal composition 259

we see already that the horizontal composite of two base-change squares
is not a base-change square.

Let us show that the horizontal composite of the bottom row of 2-cells
is again a base-change 2-cell:

11.2.2 Lemma. A target-lift 2-cell horizontally followed by a source-lift 2-cell is
again a base-change cell.

Proof. We take advantage of the interchange law once again (and the fact
that the gluing locus is a vertical identity 1-cell) to insert two vertical iden-
tity 2-cells break the proof into two pieces, each of independent interest.
Namely write the composite

· $ · ! · ! · $ · ! · ! ·

| | | |

·
"
$ · ! · ! ·

$ · ! · ! ·

"

as

· $ · ! · ! · $ · ! · ! ·

| |

·
"
$ · ! · ! ·

$ ·

! ·

! ·

| |

·

$ ·

! ·

! ·

$ · ! · ! ·

"

Now the top row horizontal composite is a source-lift and the bottom row
horizontal composite is a target lift, according to the following two lem-
mas.

!

11.2.3 Lemma. A source-lift 2-cell post-whiskered by a 1-cell is again a source-
lift 2-cell.

Proof. !

11.2.4 Lemma. A target-lift 2-cell pre-whiskered by a 1-cell is again a target-lift
2-cell.

Proof. !

[Rough draft, version 2009-08-05 23:56.] [Input file: double.tex, 2009-07-29 15:26]

260 Double categories of polynomial functors

11.3 Cartesian

11.3.1 Cartesian fragment. All the constructions and arguments of this
section apply equally well to the cartesian case: start with the 2-category
of polynomial functors and their cartesian fibred natural transformations,
and construct a double category out of it. Its squares are cartesian (fibred)
natural transformations

Set/I ′

u!

##

P′
""

''''!!

Set/J′

v!

##

Set/I
P

"" Set/J

(11.7)

The corresponding diagrams forming the 2-cells at the intensional level
are simply

I ′

u
##

·!!

!
"

""

##

·

##

"" J′

v
##

I ·!! "" · "" J

(11.8) cartesian2cell

All the constructions are compatible with the cartesian condition, since
they all depend on the lowershriek-upperstar adjunction, which is carte-
sian. Note also that the transporter and cotransporter lifts belong to the
cartesian fragment.

The following two results follow readily.

11.3.2 Proposition. The double category PolyFunc
whose objects are the slices

of Set, whose horizontal arrows are the polynomial functors, whose vertical ar-
rows are the dependent sum functors, and whose squares are cartesian strong
natural transformations

Set/I ′

u!

##

P′
""

''''!!

Set/J′

v!

##

Set/I
P

"" Set/J

is a framed bicategory.

[Rough draft, version 2009-08-05 23:56.] [Input file: double.tex, 2009-07-29 15:26]

11.3 Cartesian 261

11.3.3 Proposition. The squares of PolyFunc
are represented uniquely by dia-

grams (11.8). Hence extension constitutes a framed biequivalence

Polyc
#

∼→ PolyFunc
.

The cartesian fragment is in many respect more well-behaved than the
full double category. For example, horizontal composition of 2-cells like
(11.8) is essentially straightforward, as we shall now see.

Horizontal composition of cartesian 2-cells

It is just a question of building the composites of the top and bottom poly-
nomial functors as in ?? and observing that the connecting arrows can be
carried along in this construction (either by naturality or by the pullback
property).

The vertical arrows are just set maps (or more precisely, pullback maps
or lowershriek maps between the corresponding slice categories. The hor-
izontal arrows are polynomial functors. The 2-cells are diagrams

I ′ $ E′ ! B′ ! J′

I
"
$ E

"
! B

"
! J

"

It is clear how to compose vertically: this is just to compose arrows
and compose such 2-cells vertically, and since the stacking of two pullback
squares is again a pullback square, this gives again a 2-cell.

For horizontal composition, we have already shown how to compose
polynomial functors to get new polynomial functors, and we also know
how to compose cartesian natural transformations horizontally to get a
new cartesian natural transformation.

Now we need to compose more general things, and these are not natu-
ral transformations in any category—at least not apparently.

I ′ $ E′ ! B′ ! J′ $ F′ ! C′ ! K′

I
"
$ E

"
! B

"
! J

"
$ F

"
! C

"
! K

"

[Rough draft, version 2009-08-05 23:56.] [Input file: double.tex, 2009-07-29 15:26]

262 Double categories of polynomial functors

What we need to do is to take two parallel big composition diagrams
like (8.7), place them side by side, and fill in maps between their bases,
making a commutative base with cartesian squares in the middles. Now
we must show that the sides of this construction yields new connecting
arrows, and that the roof of the total construction is a pair of cartesian
squares.

It is quite easy to check that the left-hand part of the diagram gives a
cartesian square on the top: it has a cartesian square as basis, and the sides
are all pullbacks. Hence the top is a pullback. For the right-hand part of
the diagram a few less obvious arguments are needed.

Step 1: in the middle of the basis we have

W ′

W
$

B′
$

F′

!

B $$ F $
!

J′
$

!

J $$
!

Front and back squares are pullbacks, so the dashed arrows exists by the
universal property of the front pullback.

Step 2: take push-forth of W and W ′ along q and q′, respectively. We
want to see that there is a natural map from q′∗W to q∗W. This map will
be the crucial top-right edge of the final roof.

Let c′ be an element in C′ and let c be its image in C under the map we
were given C′ → C. Now we know that the fibre over c′ of q′∗W ′ is the set
of diagrams

W ′

F′
c′

s

!

⊂ F′
"

Given one such diagram (i.e. an element in the set (q′∗W ′)c′) we want to

[Rough draft, version 2009-08-05 23:56.] [Input file: double.tex, 2009-07-29 15:26]

11.3 Cartesian 263

construct a diagram

W

Fc

!

⊂ F
"

i.e. an element in (q∗W)c (There are of course some compatibility condi-
tions to check.) But since the square

F′ ! C′

F
"

! C
"

is a pullback we have a bijection F′
c′
∼→ Fc, so the dashed arrow we want is

the one arising naturally in this diagram:

W ′

F′
c′

⊂ !

!

F′
!

W
"

Fc

⊂ !

!

F
"!

Step 3: now pull back those push-forths. We get the top edges of the
total roof. Since the walls are pullbacks, and the bottom is, then so is the
top. . .

Misc issues in the cartesian fragment

Surjection-injection factorisation in Poly

A cartesian morphism α of polynomial functors is called injective, resp. sur-
jective, if each of the three components, α0, α1, α2 is injective, resp. surjec-
tive.

[Rough draft, version 2009-08-05 23:56.] [Input file: double.tex, 2009-07-29 15:26]

264 Double categories of polynomial functors

fact-Poly 11.3.4 Lemma. Every arrow in Poly factors uniquely as one where all the com-
ponents are epi followed by one where all the components are mono.

(I don’t know if these are the categorical notions of epi and mono.)

Proof. This is straightforward: given

I ′ ! E′ ! B′ ! I ′

I ′′
"

! E′′
"

! B′′
"

! I ′′
"

factor each of the vertical maps into epi-mono:

I ′ ! E′ ! B′ ! I ′

I
""

! E
""

! B
""

! I
""

I ′′
"

"

! E′′
"

"

! B′′
"

"

! I ′′.
"

"

Here you check easily that the middle squares are again cartesian: in-
deed if you take the pullback in the bottom

P ! B

E′′
"

"

! B′′
"

"

you get a mono (since a pullback of a mono is always a mono). Next by the
universal property of this pullback, there is a map from E′ to P, and hence
the top square is a pullback too. Now in the category of sets it is also
true that the pullback of an epi is an epi, so by uniqueness of epi-mono
factorisation in Set , P = E. !

Sums and products in the variable-type categories

11.3.5 Sums. Let’s try:
I1 ← E1 → B1 → J1

[Rough draft, version 2009-08-05 23:56.] [Input file: double.tex, 2009-07-29 15:26]

11.3 Cartesian 265

+

I2 ← E2 → B2 → J2

:=

I1 + I2 ← E1 + E2 → B1 + B2 → J1 + J2

It is easy to see that the sum injections are cartesian. This follows from
the observation that this square is cartesian

E1 ! B1

E1 + E2

"
! B1 + B2

"

Universal property: given Q : D ← U → V → C with cartesian maps
from P1 and P2, then there is induced a unique map P1 + P2 ⇒ Q.

11.3.6 Products.

Coherence problems

We know how to compose bridges, and we know that this composition
law corresponds to composition of the associated functors. We have not
justified how to horizontally compose 2-cells. And we have not proved
that the resulting 2-cell between the composites induces the pasted 2-cell
in the category of functors.

Here is more formally the coherence problem: given two composable
bridges P and Q, we have constructed a composite bridge which we de-
note Q ◦ P. It is connected to the two original bridges by three pullback
squares and one pentagon. We have shown that this big diagram induces
a natural isomorphism

Q̃ ◦ P̃
ΦP,Q
⇔ Q̃ ◦ P.

This isomorphism is a composite of three Beck-Chevalley isomorphisms
and one distributivity isomorphism coming from the pentagon.

[Rough draft, version 2009-08-05 23:56.] [Input file: double.tex, 2009-07-29 15:26]

266 Double categories of polynomial functors

Now suppose we have 2-cells from bridge P′ to bridge P, and from
bridge Q′ to bridge Q. We have also shown that these 2-cells induce natu-
ral transformations

·
P′

! ·
Q′

! ·

↙ ↙

·

!

"

P
! ·

!

"

Q
! ·

!

"

Our task is first to build a 2-cell from bridge Q′ ◦ P′ to bridge Q ◦ P,
and then to verify this equation of natural transformation of functors:

·
Q̃′◦P′

! ·

ΦP′,Q′

·
Q̃′

!

P̃′ !

·
"

·
"

·
" Q̃

!

P̃ !

=

·
Q̃′◦P′

! ·

·
" Q̃◦P ! ·

"

ΦP,Q

·
Q̃

!

P̃ !

In the cartesian fragment, it should not be too difficult, although cum-
bersome perhaps: I think the connecting maps defining the horizontal
composite of the squares induce connecting maps between the compos-
ites of the bridges.

[Rough draft, version 2009-08-05 23:56.] [Input file: double.tex, 2009-07-29 15:26]

Chapter 12

Trees (1)

Ch:tEmb
This chapter is mostly copied verbatim from the paper Polynomial functors
and trees [63].

In this chapter we start the study of the close relationship between
polynomial endofunctors and trees. We shall see how a tree gives rise
to a polynomial endofunctor, and in fact we characterise those polynomial
endofunctors that arise in this way. So in the end we can define trees as a
special kind of polynomial endofunctors.

One single observation accounts for the close relationship between poly-
nomial endofunctors and trees, namely that they are represented by dia-
grams of the same shape, as we now proceed to explain. Although this
observation is both natural and fruitful, it seems not to have been made
before.

Trees are usually defined and manipulated in either of two ways:

• ‘Topological/static characterisation’: trees are graphs E !! V with
certain topological properties and structure (a base point).

• ‘Recursive characterisation’: a tree is either a trivial tree or a collec-
tion of smaller trees.

Here we take a different viewpoint, specifically designed for the use of
trees in operad theory and related topics:

• ‘Operational characterisation’: trees are certain many-in/one-out struc-
tures, i.e. built from building blocks like

[Rough draft, version 2009-08-05 23:56.] [Input file: tEmb.tex, 2009-07-29 15:20]

268 Trees (1)

out

in

Accordingly a tree should have a set of edges A, and a set of vertices
(or nodes) N, which we think of as operations; these should have inputs
and output (source and target). So the structure is something like

N
in

A A.

out

!

The fork represents a ‘multi-valued map’, because a node may have sev-
eral input edges. A standard way to encode multi-valued maps is in terms
of correspondences or spans; hence we arrive at this shape of diagram to
represent a tree:

A s$ M p! N t! A; (12.1) diagram

to be explicit, M is the set of all input edges (i.e. pairs (b, e) where b is
a node and e is an input edge of b). In order to be trees, such diagrams
should satisfy certain axioms, which turn out to be quite simple.

Although this is clearly also a static graph-like definition, its opera-
tional aspect comes to the fore with the observation that this shape of di-
agram is precisely what defines polynomial endofunctors, vindicating the
interpretation of N as a set of operations.

The recursive aspect of trees is also prominent in the present approach,
remembering that polynomial endofunctors provide categorical semantics
for inductive data types (W-types), the latter appearing as initial Lambek
algebras for the former [81]. In fact, a recursive characterisation of trees
(12.3.21) follows quite easily from the definition. While in type theory
trees (of a certain branching profile P) appear as initial algebras for some
polynomial functor P (expressing the branching profile), in this work trees
are themselves certain polynomial functors. In a precise sense they are
absolute trees, i.e. not relative to any preassigned branching profile.

We define a tree to be a diagram of sets of shape (12.1) satisfying four
simple conditions (12.2.3). The category TEmb is the full subcategory of

[Rough draft, version 2009-08-05 23:56.] [Input file: tEmb.tex, 2009-07-29 15:20]

269

PolyEnd (the category of polynomial endofunctors) consisting of the trees.
The morphisms are diagrams

A′ $ M′ ! N′ ! A′

A
"

$ M
"

! N
"

! A.
"

The symbol TEmb stands for ‘tree embeddings’, as it turns out maps be-
tween trees are always injective (12.3.3) and correspond to a notion of
subtree. Root-preserving embeddings and ideal embeddings are charac-
terised in terms of pullback conditions, and every tree embedding fac-
tors as root-preserving followed by ideal embedding (12.3.15). These two
classes of maps allow pushouts along each other in the category TEmb—
this is grafting of trees (12.3.19). This leads to a recursive characterisation
of trees (12.3.21), as well as the useful result that every tree is the iterated
pushout of its one-node subtrees over its inner edges (12.3.24).

For a polynomial endofunctor P, a P-tree is a tree with a map to P. This
amounts to structuring the set of input edges of each node. For example, if
M is the free-monoid monad (1.2.8), then M-trees are precisely planar trees.
The notion of P-tree is crucial for the study of monads, which we take up
again in the next Chapter: we shall show, using the recursive characterisa-
tion of trees, that the set of isomorphism classes of P-trees, denoted tr(P),
is the least fixpoint (initial Lambek algebra) for the polynomial endofunc-
tor 1 +P (Theorem 12.4.6). This leads to the following explicit construction
of the free monad on P: if P is given by the diagram A ← M → N → A,
then the free monad on P is given by

A ← tr′(P) → tr(P) → A

where tr′(P) denotes the set of isomorphism classes of P-trees with a marked
leaf (14.1.2). The monad structure is given by grafting P-trees.

After studying monads, we shall come back to trees, introducing the
category of trees in terms of monads: it is the category of free monads on
trees. Since maps between trees are embeddings, the free monad on a tree
T = (A ← M → N → A) is given by

A ← sub′(T) → sub(T) → A

(where sub(T) (resp. sub′(T)) denotes the set of subtrees of T (resp. sub-
trees with a marked leaf)). We shall define Tree to be the category whose
objects are trees and whose arrows are maps between their free monads (14.2.1).

[Rough draft, version 2009-08-05 23:56.] [Input file: tEmb.tex, 2009-07-29 15:20]

270 Trees (1)

12.1 Trees

12.1.1 Graphs. By a graph we understand a pair (T0, T1), where T0 is a set, and T1 is a set
of subsets of T0 of cardinality 2. The elements in T0 are called vertices, and the elements
in T1 edges. An edge {x, y} is said to be incident to a vertex v if v ∈ {x, y}. We say a vertex
is of valence n if the set of incident edges is of cardinality n.

Say what a map of graphs is, and then what a subgraph is.
Say what a simple path is. Perhaps via maps from a linear graph.
A simple closed path in a graph is a subgraph C ⊂ T with the property that every

vertex is incident to precisely two edges. A graph is said to be simply connected if it does
not contain a simple closed path.

The geometric realisation of a graph is the CW-complex with a 0-cell for each vertex,
and for each edge a 1-cell attached at the points corresponding to its two incident vertices.
A graph is connected (resp. simply connected) if and only if its geometric realisation is
connected (resp. simply connected).

12.1.2 Trees. By a finite rooted tree with boundary we mean a finite graph T = (T0, T1), con-tree-formal
nected and simply connected, equipped with a pointed subset ∂T of vertices of valence 1.
We will not need other kinds of tree than finite rooted trees with boundary, and we will
simply call them trees.

The basepoint t0 ∈ ∂T is called the the output vertex, and the remaining vertices in ∂T
are called input vertices. Most of the time we shall not refer to the boundary vertices at
all, and graphically a boundary vertex is just represented as a loose end of the incident
edge. Edges incident to input vertices are called input edges or leaves, while the unique
edge incident to the output vertex is called the output edge or the root edge.

The set of vertices c(T) := T0 ! ∂T is called the core of the tree, and its elements are
called nodes or dots; we draw them as dots. A tree may have zero dots, in which case it
is just a single edge (together with two boundary vertices, which we suppress). We call
such a tree a unit tree. For a tree with at least one dot, the dot incident to the output edge
is called the root dot. Not every vertex of valence 1 needs to be a boundary vertex: those
which are not are called nullary dots.

The standard graphical representation of trees is justified by geometric realisation.
Note that leaves and root are realised by half-open intervals, and we keep track of which
are which by always drawing the output at the bottom. By labelling the cells we can
recover the abstract tree when needed, and we shall allow ourselves to mix the two view-
points, although we shall frequently omit the labels.

12.1.3 Tree order. If T = (T0, T1, ∂T, t0) is a tree, the set T0 has a natural poset structure
a ≤ b, in which the input vertices are minimal elements and the output vertex is the
maximal element. A poset defined by a tree we call a tree order. We say a is a child of b if
a ≤ b and {a, b} is an edge.

Since T is simply connected, each edge divides T into two connected components.
One component contains the root vertex. This defines an orientation of the edge: we
say the end of the edge is the vertex in the component of the root, and the start of the
edge is the other vertex of the edge. At every vertex (not the root) there is precisely one

[Rough draft, version 2009-08-05 23:56.] [Input file: tEmb.tex, 2009-07-29 15:20]

12.2 From trees to polynomial endofunctors 271

edge starting. Indeed, if there were two, each of them would be the first step in a path
ending at the root vertex (possibly meeting before), and hence we would have a simple
closed path, contradicting the simple connectedness. Hence every dot has an out-edge.
The other edges incident to the dot are called input edges. The orientation of the edges
assemble together into a partial order on the set of edges. (and also a partial order on the
set of vertices).

Need to see that at every dot of a tree, there is precisely one edge going out of it. Any
number of edges going into it.

12.1.4 Subtrees. A subtree in T is a subgraph S with a tree structure (in the sense of 12.1.2)subtree
such that each inner vertex of S is also an inner vertex of T, and the set of input edges
of an inner vertex (i.e. a node) in S coincides with the set of input edges of that node in
T. Finally we require compatibility between the tree orders of S and T (this condition
is automatically satisfied whenever S contains an inner vertex). Geometrically, if T is
embedded in the plane, a subtree is a non-empty connected subgraph that can be cut out
by a circle (or simple closed curve) that does not meet the vertices. The boundary of the
subtree is then the intersection with the circle. Here are two examples:

a
b

⊂
a

b

e
⊃ e

Note that each edge of T defines a dotless subtree.

12.2 From trees to polynomial endofunctors

In this chapter we only use endofunctors. Throughout we use sans serif
typeface for polynomial endofunctors, writing P = (P0, P1, P2) for the
functor represented by

P0 s$ P2 p! P1 t! P0.

We shall use the letters s, p, t for the three arrows in any diagram repre-
senting a polynomial endofunctor.

We shall define trees to be certain polynomial endofunctors. To moti-
vate this definition, let us first informally explain what trees are supposed
to be, and then show how to associate a polynomial endofunctor to a tree.

[Rough draft, version 2009-08-05 23:56.] [Input file: tEmb.tex, 2009-07-29 15:20]

272 Trees (1)

12.2.1 Trees. Our trees are non-planar finite rooted trees with boundary.
Each node has a finite number of incoming edges and precisely one outgo-
ing edge, always drawn below the node. The following drawings should
suffice to exemplify trees, but beware that the planar aspect inherent in a
drawing should be disregarded:

Note that certain edges (the leaves) do not start in a node and that one edge
(the root edge) does not end in a node. The leaves and the root together
form the boundary of the tree.

We shall give a formal definition of tree in a moment (12.2.3).

12.2.2 Polynomial functors from trees. Given a tree, define a polynomialpolyfromtree
functor

T0 s$ T2 p! T1 t! T0,

by letting T0 be the set of edges, T1 the set of nodes, and T2 the set of
nodes with a marked input edge, i.e. the set of pairs (b, e) where b is a
node and e is an incoming edge of b. The maps are the obvious ones: s
returns the marked edge of the node (i.e. (b, e) %→ e), the map p forgets the
mark (i.e. (b, e) %→ b), and t returns the output edge of the node.

For example, the first three trees in the drawing above correspond to
the following polynomial functors:

1 ← 0 → 0 → 1 1 ← 0 → 1 → 1 2 ← 1 → 1 → 2.

The polynomial functors that arise from this construction are charac-
terised by four simple conditions which are convenient to work with. We
shall take this characterisation as our definition of tree:

12.2.3 Definition of tree. We define a finite rooted tree with boundary to be apolytree-def
polynomial endofunctor T = (T0, T1, T2)

T0 s$ T2 p! T1 t! T0

satisfying the following four conditions:

[Rough draft, version 2009-08-05 23:56.] [Input file: tEmb.tex, 2009-07-29 15:20]

12.2 From trees to polynomial endofunctors 273

(1) all the involved sets are finite.
(2) t is injective
(3) s is injective with singleton complement (called the root and denoted

1).
With T0 = 1 + T2, define the walk-to-the-root function σ : T0 → T0 by
1 %→ 1 and e %→ t(p(e)) for e ∈ T2.

(4) ∀x ∈ T0 : ∃k ∈ N : σk(x) = 1.
The elements of T0 are called edges. The elements of T1 are called nodes.

For b ∈ T1, the edge t(b) is called the output edge of the node. That t is
injective is just to say that each edge is the output edge of at most one
node. For b ∈ T1, the elements of the fibre (T2)b := p−1(b) are called input
edges of b. Hence the whole set T2 = ∑b∈T1(T2)b can be thought of as the
set of nodes-with-a-marked-input-edge, i.e. pairs (b, e) where b is a node
and e is an input edge of b. The map s returns the marked edge. Condition
(3) says that every edge is the input edge of a unique node, except the
root edge. Condition (4) says that if you walk towards the root, in a finite
number of steps you arrive there.

The edges not in the image of t are called leaves. The root and the leaves
together form the boundary of the tree.

From now on we just say tree for ‘finite rooted tree with boundary’.

Let us briefly describe how to draw such a tree, i.e. give the converse
of the construction in 12.2.2. Given (T0, T1, T2) we define a finite, oriented
graph with boundary, i.e. edges are allowed to have loose ends: take the
vertex set to be T1 and the edge set to be T0. The edges x ∈ T0 which are
not in the image of t are the input edges of the graph in the sense that they
do not start in a vertex. For each other edge x, we let it start in b if and
only if t(b) = x. (Precisely one such b exists by axiom (2).) Clearly every
b occurs like this. Now we have decided where each edge starts. Let us
decide where they end: the root edge 1 is defined to be the output edge of
the graph, in the sense that it does not end in a vertex. For each other edge
e /= 1 (which we think of as e ∈ T2), we let it end in p(e). Note that the fibre
of p over a vertex b consists of precisely the edges ending in b. Now we
have described how all the edges and vertices are connected, and hence
we have described a finite, oriented graph with boundary. Condition (4)
implies that the graph is connected: every e /= 1 has a ‘next edge’ σ(e)
distinct from itself, and in a finite number of steps comes down to the root

[Rough draft, version 2009-08-05 23:56.] [Input file: tEmb.tex, 2009-07-29 15:20]

274 Trees (1)

edge. There can be no loops because there is precisely one edge coming
out of each vertex, and linear cycles are excluded by connectedness and
existence of a root. In conclusion, the graph we have drawn is a tree.

More formal proof: define a directed graph T = (T0, T1) by taking T1 := I and T0 :=
I + 1 = B + L + 1 (where L denotes the complement of B in I, and 1 denotes the root
vertex). Define the startpoint of each edge by setting

start : I → I + 1

and define the endpoint as
end : I = E + 1 → I + 1

defined as ρ + 1. Here the 1 on the left denotes the root edge, while the 1 on the right
denotes the root vertex.

Observe that start and end are always distinct: for e ∈ E we certainly have ρ(e) /= e,
and for r the root edge in I, then start(r) = r and end(r) = 1 (the root vertex). We should
also check that there are no multiple edges. . .

Connectedness: every edge e has a neighbour ρ(e) or otherwise e is the root edge.
The edge ρ(e) again has a lower neighbour, and so on until we reach the root, so every
edge is connected to the root.

Simple connectedness: define the height h(x) of a dot x as the minimal number h
such that ρh(t(x)) = 1 (the root edge). Suppose there is a simple closed path in T. Then
there is a finite number of vertices involved, so there is a x where h(x) is maximal. But
this contradicts the assumption that x has 2 incident edges: at most one of the edges is an
output edge, so at least one is an input edge, and this edge has another incident vertex in
the loop, hence contradicts the maximality of x.

12.2.4 The trivial tree. The nodeless tree

1 $ 0 ! 0 ! 1,

(consisting solely of one edge) is called the trivial tree, and is denoted $$$.

12.2.5 One-node trees. For each finite set E we have a one-node tree,one-node

E + 1 s$ E p! 1 t! E + 1,

where s and t are the sum inclusions.

12.2.6 Elementary trees. An elementary tree is one with at most one node.
That is, either a trivial tree or a one-node tree. These will play a funda-
mental role in the theory. We shall see in a moment that every tree is
obtained by gluing together one-node trees along trivial trees in a specific
way (grafting), while polynomial endofunctors are more general colimits
of elementary trees.

[Rough draft, version 2009-08-05 23:56.] [Input file: tEmb.tex, 2009-07-29 15:20]

12.2 From trees to polynomial endofunctors 275

12.2.7 Terminology. We define a partial order (called the tree order) on the
edge set T0 by declaring x ≤ y when ∃k ∈ N : σk(x) = y. In this case x
is called a descendant of y, and y is called an ancestor of x. In the particular
case where σ(x) = y and x /= y, we say that x is a child of y. If σ(x) = σ(y)
and x /= y we say that x and y are siblings. We define the distance from
x to y to be min{k ∈ N | σk(x) = y}, whenever this set is nonempty.
Note that the order induced on any ‘upset’ is a linear order: if e ≤ x and
e ≤ y then x ≤ y or y ≤ x. The poset T0 has a maximal element, namely
the root; hence it has binary joins: the join of two edges is their nearest
common ancestor. Every leaf is a minimal element for the tree order, but
there may be other minimal elements. (Note that a partial order is induced
on T2 ⊂ T0, and also on T1 (via t).)

Examples of trees

Given a tree A ← N′ → N → A, recall the explicit description of what a polynomial
functor does: (

Xi | i ∈ A
)
%−→

(
Pj | j ∈ A

)
,

where
Pj = ∑

n∈Nj

∏
e∈N′

n

Xs(e)

Note that if r is the root edge, then the variable Xr does not occur in the expression, since
there is no node with input edge r. Also, if l is a leaf, then Pl is the constant empty set,
simply because the fibre Nl is empty, and Pl is indexed over Nl . Suppose a is an edge
which is not a leaf, then Pa is a sum indexed over all the dots whose output edge is a.
There is precisely one such, say d (since we assumed a is not a leaf), so Pa is a monomial.
it is the product, indexed over the fibre N′

d, which is the set of marked input edges of d,
and for each such, the factor is the variable corresponding to that edge. So in short, Pa is
the monomial

Pa = ∏
e input of a

Xe (12.2) Pa

the product runs over child edges, i.e. edges coming in to the dot where a starts.
Note that each variable only occurs in at most one output monomial! since of course

and edge is only the child edge of at most one other edge. As noticed already, the variable
corresponding to the root edge does not occur at all.

In conclusion, the polynomial functor is a vector of monomials (12.2).

12.2.8 Example. Consider the dotless tree. It corresponds to the polynomial functor

∅ ! ∅

1

$

1

!

[Rough draft, version 2009-08-05 23:56.] [Input file: tEmb.tex, 2009-07-29 15:20]

276 Trees (1)

which in turn is the constant polynomial functor ∅. (This is a one-variable polynomial
functor, since there is only one edge in the tree.)

12.2.9 Example. Consider now the tree The polynomial functor is

∅ ! 1

1

$

1
!

the constant polynomial 1. This is also a one-variable polynomial. Since there are no
edges sitting over the single edge a, it is the empty monomial Xa %→ X∅

a = 1.

These two examples exhaust the one-variable trees. From the tree viewpoint, this is
because they are the only trees with only one edge. From the viewpoint of the theorem
characterising trees, it is because E is forced to be ∅ by condition (2), and B is forced to
be 0 or 1 since t has to be injective.

12.2.10 Example. Consider the linear tree with n dots, and whose edges are decorated
0, 1, . . . , n. Then the corresponding polynomial functor P is the linear functor in n + 1
variables, Pi = Xi+1 for i /= n, and Pn = 0.

12.2.11 Example. Linear trees give linear polynomial functors, but of course most linear
functors do not come from a tree.

12.2.12 Example. Consider now the little tree

a

b c

We have the polynomial functor in three variables Xa, Xb, Xc with components

Pa = XbXc, Pb = 0, Pc = 0.

smalltree 12.2.13 Example. It is an interesting exercise to take the polynomial functor associated to
a tree and compose it with itself. Roughly this gives a polynomial functor whose set of
operations is the full level-2 subtrees in the tree—together with the nullary nodes. That
is, the only operations come from those nodes in the tree all of whose children are nodes
again (not leaves). And then the nullary operations.

By this description, the result is a rather primitive polynomial functor for most small
trees. . .

Example:

1

2

3

4

5

6 7

x

y z

w

[Rough draft, version 2009-08-05 23:56.] [Input file: tEmb.tex, 2009-07-29 15:20]

12.2 From trees to polynomial endofunctors 277

Then the operations of the composite polynomial functor is the set of all ways of
decorating the four bouquets

x

1

2 3 4

y

2

5

z

4

6 7

w

5

with other bouquets. Note that every input edge of a bouquet needs a decoration. Hence it
is impossible to decorate node x (the leaf 3 can’t have a decoration), and also node z (since
neither 6 nor 7 can be decorated). Node w can be decorated (by the empty decoration)
and y can be decorated in a unique way, namely by w. (Slogan, take those operations all of
whose inputs can be filled with other operations.) So in conclusion, the composite polynomial
functor has two operations,

y

2

5
w

w

5

both nullary.
Of course the set of types is the same as for the original functor: {1, 2, 3, 4, 5, 6, 7}. We

could compute the set Eof partial operations by hand, but the fact that we keep careful
track of arities and draw the operations as bouquets and trees with clear arity indication
means that we can reconstruct the set E easily: since both operations are nullary, E is the
empty set.

We could also compute the composite algebraically, thinking in terms of polynomial
functions: we have

P1(X) = X2X3X4

P2(X) = X5

P3(X) = 0
P4(X) = X6X7

P5(X) = 1
P6(X) = 0
P7(X) = 0

so if we substitute Pi for Xi we get

(P ◦ P)1(X) = 0
(P ◦ P)2(X) = 1
(P ◦ P)3(X) = 0
(P ◦ P)4(X) = 0
(P ◦ P)5(X) = 1
(P ◦ P)6(X) = 0
(P ◦ P)7(X) = 0

[Rough draft, version 2009-08-05 23:56.] [Input file: tEmb.tex, 2009-07-29 15:20]

278 Trees (1)

which agrees with the description obtained in graphical terms: it is constant since all
operations are nullary, and the ones in the table correspond to the nullary operations.

12.3 The category TEmb

12.3.1 The category of trees and tree embeddings. Define the category
TEmb to be the full subcategory of PolyEnd consisting of the trees. Hence
a map of trees φ : S → T is a diagram

S0 $ S2 ! S1 ! S0

T0

φ0

"
$ T2

φ2

"
! T1

φ1

"
! T0

φ0

"
(12.3) map

The cartesian condition amounts to ‘arity preservation’: the set of input
edges of b ∈ S1 maps bijectively onto the set of input edges of φ1(b). Root
and leaves are not in general preserved.

12.3.2 Lemma. Morphisms in TEmb preserve the childhood relation. That is,
for a morphism φ : S → T, if x is a child edge of y in S then φ0(x) is a child edge
of φ0(y) in T. More generally, morphisms preserve distance.

Proof. To say that x is a child of y means that x is not the root and t(p(x)) =
y. The property of not being the root is preserved by any map (cf. commu-
tativity of the left-hand square in the diagram), so φ0(x) is not the root
either. Now apply φ and use that it commutes with p and t, cf. (12.3). !

mono-cat 12.3.3 Proposition. Every morphism in TEmb is injective.

Proof. Let φ : S → T in TEmb . Let r ∈ T0 denote the image of the root
edge. Let x, y be edges in S and suppose φ0(x) = φ0(y). Since φ0 preserves
distance we have d(x, 1) = d(φ0(x), r) = d(φ0(y), r) = d(y, 1). Since x and
y have the same distance to the root, it makes sense to put k : = min{n ∈
N | σn(x) = σn(y)}, and z := σk(x) = σk(y) (nearest common ancestor). If
k > 0, then the edges σk−1(x) and σk−1(y) are both children of z, and by
childhood preservation, we have φ(σk−1(x)) = φ(σk−1(y)). But φ induces
a bijection between the fibre (S2)z and the fibre (T2)φ0(z), so we conclude
that already σk−1(x) = σk−1(y), contradicting the minimality of k. Hence
k = 0, which is to say that already x = y. Hence we have shown that φ0

[Rough draft, version 2009-08-05 23:56.] [Input file: tEmb.tex, 2009-07-29 15:20]

12.3 The category TEmb 279

is injective. Since t is always injective, it follows that also φ1 and φ2 are
injective. !

The proposition shows that the category TEmb is largely concerned
with the combinatorics of subtrees, which we now pursue. It must be
noted, though, that the category contains nontrivial automorphisms. In
particular it is easy to see that

12.3.4 Lemma. The assignment of a one-node tree to every finite set as in 12.2.5
defines a fully faithful functor from the groupoid of finite sets and bijections into
TEmb. (The essential image consists of the trees with precisely one node.) !

12.3.5 Subtrees. A subtree of a tree T is an isomorphism class of arrows
S → T in TEmb ; more concretely it is an arrow S → T for which each of
the three set maps are subset inclusions. Translating into classical view-
points on trees, subtree means connected subgraph with the property that
if a node is in the subgraph then all its incident edges are in the subgraph
too.

Here are two examples:

a
b ⊂

a
b

e
⊃ e

12.3.6 Edges. For each edge x of T there is a subtree $$$→ T given byedges

1 $ 0 ! 0 ! 1

T0

!x"
"

$ T2
"

! T1
"

! T0.

!x"
"

The subtree consists solely of the edge x. The edge is the root edge iff
the left-hand square is a pullback, and the edge is a leaf iff the right-hand
square is a pullback.

[Rough draft, version 2009-08-05 23:56.] [Input file: tEmb.tex, 2009-07-29 15:20]

280 Trees (1)

12.3.7 One-node subtrees. For each node b in T there is a subtree inclusion

(T2)b + 1 $ (T2)b ! {b} ! (T2)b + 1

T0
"

$ T2
"

! T1
"

! T0
"

The vertical maps at the ends are the sum of s | (T2)b and the map sending
1 to t(b). The subtree defined is the local one-node subtree at b: the node
itself with all its incident edges.

determinedbynodes 12.3.8 Proposition. Let R and S be nontrivial subtrees in T, and suppose that
R1 ⊂ S1. Then R ⊂ S. In particular, a nontrivial subtree is determined by its
nodes.

Proof. We need to provide the dotted arrows in the diagram

R0 $ R2 ! R1 ! R0

S0 $

!

S2 !

!

S1 !

!

S0

!

T0
"

$

$

T2
"

!

$

T1
"

!

$

T0
"$

The arrow R1 → S1 is the assumed inclusion of nodes. For each node b
in R we have a bijection between the fibre (R2)b and the fibre (S2)b. These
bijections assemble into a map R2 → S2 and a cartesian square. Since
R0 = R2 + {r} where r is the root edge of R, to specify the arrow R0 → S0

it remains to observe that r maps into S0: indeed, there is a b ∈ R1 with
t(b) = r. Hence φ0(r) = φ0(t(b)) = t(φ1(b)) ∈ S0. !

12.3.9 Ideal subtrees. An ideal subtree is a subtree containing all the de-ideal
scendant nodes of its edges, and hence also all the descendant edges.
(Hence it is a ‘down-set’ for the tree order (both with respect to nodes and
with respect to edges), and just by being a subtree it is also closed under
binary join.)

[Rough draft, version 2009-08-05 23:56.] [Input file: tEmb.tex, 2009-07-29 15:20]

12.3 The category TEmb 281

Each edge z of a tree T determines an ideal subtree denoted Dz:

Dz : D0 $ D2 ! D1 ! D0

T0
"

∩

$ T2
"

∩

! T1
"

∩

! T0
"

∩

where

D0 := {x ∈ T0 | x ≤ z},
D1 := {b ∈ T1 | t(b) ∈ D0},
D2 := {e ∈ T2 | t(p(e)) ∈ D0} = D0 ! {z}.

It is easy to check that this is a tree; it looks like this:

z

Dz

Note also that we have x ∈ Dz ⇔ x ≤ z.

ideal3 12.3.10 Lemma. The following are equivalent for a tree embedding φ : S → T:

1. The image subtree is an ideal subtree.

2. The right-hand square is cartesian (like in the above diagram).

3. The image of each leaf is again a leaf.

Proof. (1) ⇒ (2): clearly every ideal subtree S ⊂ T is equal to Dz for z the
root of S. Hence the embedding has cartesian right-hand square.

(2) ⇒ (3): a leaf in S is characterised (12.3.6) as an edge for which the
right-hand square is cartesian; composing with φ gives then again a carte-
sian right-hand square, so the edge is again a leaf in T.

(3) ⇒ (1): let x be an edge in S, having a child node b in T (that is,
p(b) = x). This means x is not a leaf in T, and hence by assumption, not a
leaf in S either. So b is also in S. !

[Rough draft, version 2009-08-05 23:56.] [Input file: tEmb.tex, 2009-07-29 15:20]

282 Trees (1)

12.3.11 Pruning. Using complements, it is not difficult to see that an edge
z ∈ T0 defines also another subtree which has the original root, but where
all descendants of z have been pruned. In other words, the ideal subtree Dz
is thrown away (except for the edge z itself). Formally, with the notation
of the ideal subtree: put C1 := T1 ! D1 and C2 := T2 ! D2. Then clearly we
have a cartesian square

C2 ! C1

T2
"

∩

! T1.
"

∩

Now simply put C0 := C2 + {1} (the original root). It remains to see that
the map t : T1 → T0 restricts to C1 → C0, but this follows from the fact
that if t(b) is not in D0, then it must be in either C2 or 1. Using simple set
theory, one readily checks that this is a tree again.

In any poset, we say that two elements e and e′ are incomparable if nei-
ther e ≤ e′ nor e′ ≤ e. If two subtrees have incomparable roots then they
are disjoint. Indeed, suppose the subtrees S and S′ of T have an edge x in
common. Then the totally ordered set of ancestors of x in T will contain
both the root of S and the root of S′, hence they are comparable. Clearly
siblings are incomparable. In particular, if two subtrees have sibling roots,
then they are disjoint.

incomparable 12.3.12 Lemma. Let x and y be edges of a tree T. Then the following are equiva-
lent:

1. The ideal subtrees Dx and Dy are disjoint.

2. x and y are incomparable (i.e. neither x ≤ y nor y ≤ x).

3. There exists a subtree in which x and y are leaves.

Proof. If x ≤ y then clearly Dx ⊂ Dy. On the other hand if Dx and Dy
have an edge e in common, then e ≤ x and e ≤ y, and hence x ≤ y or
y ≤ x. Concerning condition (3): if x and y are leaves of a subtree, in
particular they are both minimal, and in particular they are incomparable.
Conversely, if they are incomparable, then we already know that the ideal
subtrees they generate are disjoint, so we can prune at x and y to get a
subtree in which x and y are leaves. !

[Rough draft, version 2009-08-05 23:56.] [Input file: tEmb.tex, 2009-07-29 15:20]

12.3 The category TEmb 283

12.3.13 Root-preserving embeddings. An arrow S → T in TEmb is called
root preserving if the root is mapped to the root. In other words, S viewed
as a subtree of T contains the root edge of T:

T

S

The root preserving subtrees are those that are up-sets in the tree order. It
is easy to check that S → T is root-preserving if and only if the left-hand
square is a pullback.

ideal-root 12.3.14 Lemma. If a tree embedding is both root preserving and ideal, then it is
invertible (i.e. its image is the whole tree).

Proof. Indeed, if it is root preserving then its image contains 1, and because
it is ideal its image contains all other edges, as they are descendants of the
root. !

root-ideal 12.3.15 Proposition. Every arrow φ : S → T in TEmb factors uniquely as a
root-preserving map followed by an ideal embedding.

Proof. Put r : = φ0(root), and consider the ideal subtree Dr ⊂ T. Since the
map preserves childhood relation, it is clear that all edges in S map into
Dr, and this map is root preserving by construction. !

12.3.16 Remark. One can equally well factor every map the other way
around: first an ideal embedding and then a root-preserving embedding.
We will not have any use of that factorisation, though.

frame 12.3.17 Lemma. A subtree is determined by its boundary.

Proof. Let S ⊂ T and S′ ⊂ T be subtrees with common boundary. Suppose
b is a node of S which is not in S′. Since b is in S, for some k we have
σk(t(b)) = root(S) = root(S′). In this chain of nodes and edges, there is
a node b which is in S but not in S′, and such that t(b) is an edge in S′.
This means t(b) is a leaf in S′ and hence a leaf in S, but this in turn implies
that b is not in S, in contradiction with the initial assumption. So the two

[Rough draft, version 2009-08-05 23:56.] [Input file: tEmb.tex, 2009-07-29 15:20]

284 Trees (1)

subtrees contain the same nodes. If they do contain nodes at all then they
are equal by Lemma 12.3.8. If both subtrees are trivial, then they must
coincide because their roots coincide. !

12.3.18 Pushouts in PolyEnd. A polynomial functor P is a diagram in Set
of shape

· ← · → · → ·

While pointwise sums are also sums in PolyEnd , pointwise pushouts are
not in general pushouts in PolyEnd , because of the condition on arrows
that the middle square be cartesian. Only pushouts over polynomial func-
tors of shape ? ← 0 → 0 →? can be computed pointwise. In particular we
can take pushouts over the trivial tree $$$: 1 ← 0 → 0 → 1. The pushout of
the morphisms S ← $$$ → T is the polynomial endofunctor given by

S2 + T2 ! S1 + T1

S0 + T0

$

S0 + T0

!

S0 +1 T0

$

S0 +1 T0,

!

(12.4) pushout-diagram

where S0 +1 T0 denotes the amalgamated sum over the singleton.

pushout 12.3.19 Proposition. Given a diagram of trees and tree embeddings

S $ r
$$$

l ! T

such that r is the root edge in S, and l is a leaf in T, then the pushout in PolyEnd
is again a tree, called the grafting of S onto the leaf of T, and denoted S + $$$ T.

Proof. We check that the polynomial endofunctor (12.4) is a tree by inspec-
tion of the four axioms. Axiom 1: it is obvious the involved sets are finite.
Axiom 2: we check that the right-hand leg is injective: to say that l is a
leaf of T means it is not in the image of t : T1 → T0. So we can write
S1 + T1 = S1 +{l} ({l} + T1), and the map we want to prove injective is
just the inclusion S1 + T1 = S1 +{l} ({l} + T1) ↪→ S1 +{l} T0. Axiom

[Rough draft, version 2009-08-05 23:56.] [Input file: tEmb.tex, 2009-07-29 15:20]

12.3 The category TEmb 285

3: we check that the left-hand leg is injective and has singleton comple-
ment: this follows from the calculation S0 +1 T0 = (S2 + {r}) +{r} T0 =

S2 + T0 = S2 + T2 + 1 (where 1 denotes the root of the bottom tree T)
Axiom 4: we check the walk-to-the-root condition: for x ∈ S0, in a finite
number of steps we arrive at r = e = l, and from here in another finite
number of steps we come down to the root of T. !

12.3.20 Remark. More generally, the pushout of a root-preserving embed-
ding along an ideal embedding is again a tree, and the two resulting maps
are again root-preserving and ideal, respectively, as in this diagram

·
root pres.! ·

·

ideal

"

root pres.

! ·

ideal

"

We will not need or prove this result here.

The following expresses the recursive characterisation of trees.

recursive 12.3.21 Proposition. A tree T is either a nodeless tree, or it has a node b ∈ T1

with t(b) = 1; in this case for each e ∈ (T2)b consider the ideal subtree De
corresponding to e. Then the original tree T is the grafting of all the De onto the
input edges of b.

Proof. The grafting exists by Proposition 12.3.19, and is a subtree in T by
the universal property of the pushout. Clearly every node in T is either b
or a node in one of the ideal subtrees, therefore the grafting is the whole
tree, by Lemma 12.3.8. !

12.3.22 Corollary. An automorphism of a tree amounts to permutation of sib-
lings whose generated ideal subtrees are isomorphic.

Proof. Use the recursive characterisation of trees. By childhood preserva-
tion, an automorphism must send an edge e to a sibling e′. For the same
reason it must map De isomorphically onto De′ . !

[Rough draft, version 2009-08-05 23:56.] [Input file: tEmb.tex, 2009-07-29 15:20]

286 Trees (1)

12.3.23 Inner edges. An inner edge of a tree

T0 s$ T2 p! T1 t! T0

is one that is simultaneously in the image of s and t. In other words, the
set of inner edges is naturally identified with T1 ×T0 T2 considered as a
subset of T0; its elements are pairs (b, e) such that t(b) = s(e).

graft-onenode 12.3.24 Corollary. Every nontrivial tree T is the grafting (indexed by the set of
inner edges T1 ×T0 T2) of its one-node subtrees. !

The elements of a tree T are its nodes and edges. i.e. its elementary
subtrees. These form a poset ordered by inclusion, and we denote this
category el(T). There is an obvious functor el(T) → TEmb . This functor
has a colimit which is just T. Indeed, each edge is included in at most
two one-node subtrees of T, and always as root in one and as leaf in the
other; the colimit is obtained from these pushouts. The general notion of
elements of a polynomial endofunctor will be introduced in Section ??.

12.4 P-trees

The trees studied so far are in a precise sense abstract trees, whereas many
trees found in the literature are structured trees, amounting to a morphism
to a fixed polynomial functor. The structure most commonly found is pla-
narity: a planar structure on a tree T is a linear ordering of the input edges
of each node, i.e. a linear ordering on each fibre of T2 → T1. This amounts
to giving a morphism T → M, where M is the free-monoid monad (1.2.8).

12.4.1 P-trees. Let P be a fixed polynomial endofunctor P0 ← P2 → P1 →P-trees
P0. By definition, the category of P-trees is the comma category TEmb /P

whose objects are trees T with a morphism T → P in PolyEnd . Explicitly,
a P-tree is a tree T0 ← T2 → T1 → T0 together with a diagram

T0 $ T2 ! T1 ! T0

P0
"

$ P2
"

! P1
"

! P0.
"

[Rough draft, version 2009-08-05 23:56.] [Input file: tEmb.tex, 2009-07-29 15:20]

12.4 P-trees 287

Unfolding further the definition, we see that a P-tree is a tree whose edges
are decorated in P0, whose nodes are decorated in P1, and with the addi-
tional structure of a bijection for each node n ∈ T1 (with decoration b ∈ P1)
between the set of input edges of n and the fibre (P2)b, subject to the com-
patibility condition that such an edge e ∈ (P2)b has decoration s(e), and
the output edge of n has decoration t(b). Note that the P0-decoration of
the edges is completely specified by the node decoration together with
the compatibility requirement, except for the case of a nodeless tree. (The
notion of P-tree for a polynomial endofunctor P is closely related to the no-
tion of TS-tree of Baez and Dolan [11, Proof of Thm. 14], but they neglect
to decorate the edge in the nodeless tree.)

If P is the identity monad, a P-tree is just a linear tree. If P is the
free-monoid monad, a P-tree is precisely a planar tree, as mentioned. If
P is the free-nonsymmetric-operad monad on Set/N, the P-trees are the
3-dimensional opetopes, and so on: opetopes in arbitrary dimension are
P-trees for a suitable P, cf. [11], [75, §7.1], [64].

12.4.2 Remark. It is important to note that P-trees are something genuinely
different from just trees, in the sense that TEmb is not equivalent to TEmb /P

for any P. It is true of course that every tree admits a planar structure, i.e. a
decoration by the free-monoid monad M (1.2.8): the possible diagrams

T0 $ T2 ! T1 ! T0

I
"
$ N′

"
! N

"
! 1

"

have to send a node b ∈ T1 to its arity n (the number of input edges), and
then there are n! different choices for mapping the fibre to the n-element
set n, the fibre over n.

The crucial property of P-trees is that they are rigid:

12.4.3 Proposition. P-trees have no nontrivial automorphisms.

Proof. Every automorphism of a tree consists in permuting siblings. Now
in a P-tree, the set of siblings (some set (T2)b) is in specified bijection with
(P2)φ1(b), so no permutations are possible. !

12.4.4 Proposition. P-trees have no automorphisms.

[Rough draft, version 2009-08-05 23:56.] [Input file: tEmb.tex, 2009-07-29 15:20]

288 Trees (1)

Basically the reason is that the input edges of a node can not be permuted because
they are in fixed bijection with some fibre Eb of the decorating endofunctor P.

We should check the details. One might think perhaps that this statement holds more
generally for any slice category Poly/P. But this is not true: if P is the polynomial functor
with only one operation, and this operation is of arity 2 (so it is the one-variable polyno-
mial functor represented by the map E : = {left, right} → {continue}), then we can
take another polynomial functor over it, E × 2 → 2. This polynomial functor has an
involution over P, namely the involution of 2. . .

Even simpler: over the identity functor 1 ← 1 → 1 → 1, the polynomial functor
1 ← 7 → 7 → 1 has 7! auts!

This can not happen for trees: an isomorphism of trees can only permute siblings,
and this is not possible when the siblings are in bijection with some fixed fibre Eb. More
formally, it is not difficult to see that a isomorphism diagram must be compatible with
the walk-to-the-root functions, and hence it can only permute siblings. . .

Here is an example:

1 2 3 4

5 6
y z

7

x

With the bijections to {left, right} as indicated by the orientation of the paper. Let’s try
to interchange y and z, and their subtrees, so we also interchange 1 ↔ 3 and 2 ↔ 4. But
since we interchange y and z we are forced also to interchange their images under the
out-edge map, namely 5 and 6. But this is impossible because they constitute the fibre
over x, and hence they must be in fixed bijection with {left, right}. . .

The basic results about trees, notably grafting (12.3.19) and the recur-
sive characterisation (12.3.21), have obvious analogues for P-trees. We
shall not repeat those results.

12.4.5 The set of P-trees. Let P be a polynomial endofunctor. Denote by
tr(P) the set of isomorphism classes of P-trees, i.e. isomorphism classes of
diagrams

T0 $ T2 ! T1 ! T0

P0
"

$ P2
"

! P1
"

! P0
"

where the first row is a tree. Note that tr(P) is naturally a set over P0 by
returning the decoration of the root edge.

[Rough draft, version 2009-08-05 23:56.] [Input file: tEmb.tex, 2009-07-29 15:20]

12.4 P-trees 289

fix 12.4.6 Theorem. If P is a polynomial endofunctor then tr(P) is a least fixpoint
(i.e. initial Lambek algebra) for the endofunctor

1 + P : Set/P0 −→ Set/P0

X %−→ P0 + P(X).

Proof. The proof uses the recursive characterisation of P-trees analogous to
12.3.21. For short, put W := tr(P). We have

P(W) =

{
(b, f) | b ∈ P1,

(P2)b
f! W

P0

$

!
}

This set is in natural bijection with the set of P-trees with a root node deco-
rated by b ∈ P1. Indeed, given (b, f) ∈ P(W), we first consider the unique
one-node P-tree whose node is decorated by b. (This is well-defined: since
(P2)b is finite, the one-node tree is given as in 12.2.5, and the decorations
are completely determined by the requirement that the node is decorated
by b.) Now for each e ∈ (P2)b we can graft the P-tree f (e) onto the leaf e of
that one-node P-tree as in 12.3.19. The result is a P-tree D with root node
decorated by b. Conversely, given a P-tree D with root node decorated by
b, define f : (P2)b → W by sending e to the ideal sub-P-tree De.

Now, W is the sum of two sets: the nodeless P-trees (these are in bi-
jection with P0) and the P-trees with a root node. Hence we have (1 +
P)(W) ∼→ W, saying that W is a fixpoint.

Finally, we must show that W is a least fixpoint. Suppose V ⊂ W is
also a fixpoint. Let Wn ⊂ W denote the set of P-trees with at most n nodes.
Clearly W0 ⊂ V. But if Wn ⊂ V then also Wn+1 ⊂ V because each tree
with n + 1 nodes arises from some (b, f) where b decorates the root node
and f : (P2)b → Wn. !

12.4.7 Historical remarks: well-founded trees. Theorem 12.4.6 has a long
history: it is a classical observation (due to Lambek) that the elements of
an initial algebra for an endofunctor P are tree-like structures, and that
the branching profile of such trees depends on P. A very general version
of the theorem is due to Moerdijk and Palmgren [81] providing categorical
semantics for the notion of W-types (wellfounded trees) in Martin-Löf type
theory. Briefly, under the Seely correspondence between (extensional) type
theory and locally cartesian closed categories E , the Sigma and Pi types

[Rough draft, version 2009-08-05 23:56.] [Input file: tEmb.tex, 2009-07-29 15:20]

290 Trees (1)

correspond to dependent sums and products (as in (8.1)). The W type
constructor associates to a given combination P of Sigma and Pi types a
new inductive type WP. Under the correspondence, P is a polynomial
endofunctor on E (i.e. with P0 terminal), and WP is its initial algebra.

The new feature of Theorem 12.4.6 (and the treatment leading to it) is to
have trees and endofunctors on a common footing. This makes everything
more transparent. Such a common footing was not possible in [81] because
they only considered polynomial endofunctors P with P0 terminal. Trees
cannot be captured by such, since it is essential to be able to distinguish the
edges in a tree. The case of arbitrary polynomial functors was considered
by Gambino and Hyland [38], corresponding to dependent type theory.

We shall come back to trees, and notably show that the free monad on
a tree A ← M → N → A is given by

P0 ← tr′(P) → tr(P) → P0

[Rough draft, version 2009-08-05 23:56.] [Input file: tEmb.tex, 2009-07-29 15:20]

Chapter 13

Polynomial monads

Ch:II:monads
This chapter has been superseded by Gambino–Kock [39]: In fact you
should rather read that paper.

13.1 The free polynomial monad on a polyno-
mial endofunctor

CONDENSE THIS! SINCE MOST OF THE ARGUMENTS WERE ALREADY
GIVEN IN THE ONE-VARIABLE CASE

13.1.1 Polynomial monads. A polynomial monad is a polynomial endofunc-
tor P : Set/I → Set/I equipped with a composition law µ : P ◦ P → P
with unit η : Id → P, satisfying the usual associativity and unit conditions.
We require the structure maps µ and η to be cartesian natural transforma-
tions (so we should perhaps rather call this notion cartesian polynomial
monad).

13.1.2 Graphical interpretation. The composition law is described graph-
ically as an operation of contracting trees (formal compositions of bou-
quets) to bouquets. If P is given by I ← E → B → I, we shall refer to I as
the set of types of P, and B as the set of operations. Since we have a unit, we
can furthermore think of E as the set of partial operations, i.e. operations all
of whose inputs except one are fed with a unit. The composition law can
be described in terms of partial operations as a map

B ×I E → B,

[Rough draft, version 2009-08-05 23:56.] [Input file: coloured.tex, 2009-07-29 15:25]

292 Polynomial monads

consisting in substituting one operation into one input of another opera-
tion, provided the types match: t(b) = s(e).

Fix a set I, and consider polynomial monads on Set/I. These are just
monoids in the monoidal category PolyFunc(I). Let P : Set/I → Set/I
denote a polynomial functor represented by

I ← E → B → I.

13.1.3 The free monad on a polynomial endofunctor. Given a polynomial
endofunctor P : Set/I → Set/I, a P-algebra is a pair (X, a) where X is an
object of Set/I and a : P(X) → X is an arrow in Set/I (not subject to
any further conditions). A P-algebra map from (X, a) to (Y, b) is an arrow
f : X → Y giving a commutative diagram

P(X)
P(f)! P(Y)

X

a
"

f
! Y.

b
"

Let P-alg/I denote the category of P-algebras and P-algebra maps. The
forgetful functor U : P-alg/I → Set/I has a left adjoint F, the free P-
algebra functor. The monad T : = U ◦ F : Set/I → Set/I is the free monad
on P. This is a polynomial monad, and its set of operations is the set of
P-trees, as we now explain.

Recall that a P-tree is a tree with edge set A, node set N, and node-
with-marked-input-edge set N′, together with a diagram

A $ N′ ! N ! A

I

α
"
$ E

"
! B

β
"

! I

α
"

The P-trees are obtained by freely grafting elements of B onto the leaves
of elements of B, provided the decorations match (and formally adding a
dotless tree for each i ∈ I). More formally, the set of isomorphism classes
of P-trees, which we denote by tr(P), is a least fixpoint for the polynomial
endofunctor

Set/I −→ Set/I
X %−→ I + P(X);

[Rough draft, version 2009-08-05 23:56.] [Input file: coloured.tex, 2009-07-29 15:25]

13.1 The free polynomial monad on a polynomial endofunctor 293

it is given explicitly as the colimit

tr(P) =
⋃

n∈N

(I + P)n(∅).

13.1.4 Explicit description of the free monad on P. A slightly more gen-
eral fixpoint construction characterises the free P-algebra monad T: if A
is an object of Set/I, then T(A) is a least fixpoint for the endofunctor
X %→ A + P(X). In explicit terms,

T(A) =
⋃

n∈N

(A + P)n(∅).

It is the set of P-trees with input edges decorated in A. But this is exactly
the characterisation of a polynomial functor with operation set tr(P): let
tr′(P) denote the set isomorphism classes of P-trees with a marked input
leaf, then T : Set/I → Set/I is the polynomial functor given by

tr′(P) ! tr(P)

I

$

I .

!

The maps are the obvious ones: return the marked leaf, forget the mark,
and return the root edge, respectively. The monad structure of T is de-
scribed explicitly in terms of grafting of trees. In a partial-composition
description, the composition law is

tr(P) ×I tr′(P) → tr(P)

consisting in grafting a tree onto the specified input leaf of another tree.
The unit is given by I → tr(P) associating to i ∈ I the dotless tree with
edge decorated by i. (One can readily check that this monad is cartesian.)

The above should amount to the following theorem:

freeI 13.1.5 Theorem. (cf. [38], [39].) The forgetful functor PolyMnd(I) → PolyFunc(I)
has a left adjoint, denoted P %→ P. The monad P is the free monad on P.

An explicit construction of P is given in 14.1.1.

This involves checking this:

[Rough draft, version 2009-08-05 23:56.] [Input file: coloured.tex, 2009-07-29 15:25]

294 Polynomial monads

13.1.6 Proposition. The free monad on a polynomial functor is cartesian.

Proof. Check if this is not completely general. . . Otherwise, the proof of the
one-variable case carries over almost verbatim. !

I wanted to understand the cartesian condition also in the partial sub-
stitution viewpoint. . .

13.1.7 Alternative fixpoint construction. There is an alternative descrip-
tion of the free monad, which we briefly mention: I HAVE NOT YET
FIGURED OUT THE RELATIONSHIP BETWEEN THE TWO FIXPOINT
CONSTRUCTIONS. The free monad is a least fixpoint for the functor

Γ := ΓP : Polyc(I) −→ Polyc(I)
Q %−→ Id + P ◦ Q.

Let ∅ denote the constant polynomial functor on the empty set (it is given
by ∅ → ∅). One can check that Γ preserves monos, hence there is a se-
quence of monos

∅ ↪→ Γ(∅) ↪→ Γ2(∅) ↪→ . . .

If P is finitary (i.e., p : E → B is a finite map—this will always be the case
below) then it preserves such sequential colimits, and the least fixpoint can
be constructed as

P =
⋃

n≥0
Γn(∅).

The equation satisfied by P,

P = Id + P ◦ P,

expresses the recursive characterisation of P-trees: a P-tree is either a dot-
less tree (decorated by an element in I) or a finite set of P-trees.

Compare this construction with the one in Section 4.3: there we con-
structed an initial algebra for a polynomial endofunctor, i.e. a least fixpoint
for this endofunctor. The result was basically just a set, and typically a set
of dead trees of some sort.

Now we are constructing a new endofunctor, as a fixpoint in Polyc.
This endofunctor then has a set of operations, and the elements in this set
are trees, but trees with non-zero arities, live trees!

[Rough draft, version 2009-08-05 23:56.] [Input file: coloured.tex, 2009-07-29 15:25]

13.2 Monads in the double category setting 295

13.2 Monads in the double category setting

We know what polynomial monads are: they are polynomial endofunctors
M : I ← E → B → I equipped with cartesian natural transformations
IdI ⇒ M ⇐ M ◦ M. So for each I we have a category of polynomial
monads PolyMnd (I). The arrows in this category are monad maps: these
are cartesian natural transformations M0 ⇒ M1 such that this diagram
commutes:

I ⇒ M0 ⇐ M0 ◦ M0

⇓ ⇓

I

⇒ M1 ⇐ M1 ◦ M1

Claim. This can also be expressed in a partial-composition-law fashion:

B0 ×I E0 ! B0 $ I

B1 ×I E1

"
! B1

"
$ I

We established a free-forgetful adjunction PolyFunc(I) !$ PolyMnd (I).

Now we generalise this to the setting of variable types. Let PolyEnd
denote the category whose objects are polynomial functors I ← E → B →
I and whose morphisms are diagrams

I0 $ E0 ! B0 ! I0

I1

α

"
$ E1

"
! B1

"
! I1

α

"

We have established a Grothendieck fibration

PolyEnd → Set

sending a polynomial endofunctor to its set of types. This is actually
the fibration PolyFun → Set × Set pulled back along the diagonal map
Set → Set × Set .

[Rough draft, version 2009-08-05 23:56.] [Input file: coloured.tex, 2009-07-29 15:25]

296 Polynomial monads

To say this is a fibration means that for a fixed arrow α : I → I in Set ,
we have a natural bijection

PolyEnd α(P, Q) = Nat(P, α$Q)

Let PolyMnd denote the category whose objects are polynomial mon-
ads and whose morphisms are monad maps: these are diagrams like the
previous one required to respect the monad structure. This is most eas-
ily expressed in the partial-composition viewpoint where it amounts to
requiring that these two squares commute:

B0 ×I0 E0 ! B0 $ I0

B1 ×I1 E1

"
! B1

"
$ I1

"

ALTERNATIVELY, WE SAY THAT A MORPHISM OF MONADS IS A DI-
AGRAM WHOSE VERTICAL PART IS A MAP OF MONADS IN THE
SINGLE-SORT SETTING.

We should take advantage of the strictly extensional viewpoint here!

Set/I ′
M′

! Set/I ′

⇓

Set/I

u!
"

M
! Set/I

u!
"

We are implicitly referring to the double category PolyFunc. If we re-
strict to a fixed I, then we find a monoidal category PolyFunc(I), and the
monads are just monoids in here.

13.2.1 Proposition. The end-point functor PolyMnd → Set is fibred. The
cartesian lifts are the same as for the for PolyEnd → Set: namely: if Q is a
monad, then α$Q is naturally a monad and the canonical map α$Q → Q is a
monad map.

[Rough draft, version 2009-08-05 23:56.] [Input file: coloured.tex, 2009-07-29 15:25]

13.2 Monads in the double category setting 297

Proof. We show that α$Q is naturally a monad. Let the structure maps of Q
be denoted

IdSet/I ⇒ Q
µ
⇐ QQ

Apply α$:
α! α∗ ⇒ α! · Q · α∗

Precomposing with the unit of the adjunction α! 7 α∗ we get the unit for
the new monad. On the other hand the new composition law is given as
the composite of the old composition law and the counit for the adjunc-
tion:

α! · Q · α∗ · α! · Q · α∗ ⇒ α! · Q · Q · α∗ ⇒ α! · Q · α∗

It is very easy to check that this is again a monad.
If we agree to define monad maps as those whose vertical part is a

monad map, then there is nothing more to prove here.
!

It follows immediately from this description that the forgetful functor
PolyMnd → PolyEnd is fibred over Set and furthermore takes cartesian
arrows to cartesian arrows (by construction).

13.2.2 Proposition. The forgetful functor PolyMnd → PolyEnd has a left
adjoint P %→ P, the free-monad functor. In other words, for each polynomial
endofunctor P and each polynomial monad M, there is a natural bijection

PolyEnd(P, M) = PolyMnd(P, M).

That the bijection is natural in P means that given α : Q → P then the
diagram

PolyEnd (P, M) = PolyMnd (P, M)

PolyEnd (Q, M)

precomp. α
"

= PolyMnd (Q, M)

precomp. Fα
"

commutes.

[Rough draft, version 2009-08-05 23:56.] [Input file: coloured.tex, 2009-07-29 15:25]

298 Polynomial monads

That the bijection is natural in M means that given monad map β :
M′ → M then the diagram

PolyEnd (P, M) = PolyMnd (P, M)

PolyEnd (P, M′)

postcomp. β
#

= PolyMnd (P, M′)

postcomp. Fβ
#

commutes.

Proof. The statement is that the ‘insertion of generators’ P ⇒ P has a
universal property with respect to general variable-sort polynomial mor-
phisms, not just with respect to natural transformations. That is: For ev-
ery monad Q and every morphism P → Q, there is a unique monad map
P → Q such that

P ⇒ P

Q
∃!monad map$

φ !

Let α denote the endpoint map of φ. We know by the fibred property
that the map φ factors through α$Q, and we know by definition of monad
map that the monad maps P → Q are in bijection with vertical monad
maps u : P ⇒ α$Q.

But inside the vertical category we have the universal property saying
that there is only one such map u. (Some easy checks complete this argu-
ment.)

!

13.2.3 Monads in the category of arrows. There is also this viewpoint:
consider the category of arrows Set2. Its objects are set maps I0 → I1. Its
morphisms are squares. It is a locally cartesian closed category. Consider
polynomial functors in here. We can restrict to those for which p = (p0, p1)
is a cartesian square. Now in this category of polynomial functors we can
look at monads. A monad in here will be a set map I0 → I1

SEE SEPARATE NOTES FEB2007

[Rough draft, version 2009-08-05 23:56.] [Input file: coloured.tex, 2009-07-29 15:25]

13.3 Coloured operads and generalised operads 299

relative

If now P is a monad, then there is natural monoidal structure on PolyFunc/P:
the tensor product of Q with R is the composite Q ◦ R with P structure
given by Q ◦ R → P ◦ P → P.

WE CHECKED SOMEWHERE THAT COMPOSITION IS COMPATI-
BLE WITH base change!!!

Let PolyMnd denote the category of all polynomial monads. The ar-
rows in this category are diagrams

E ! B

I

$

I

!

E′
"

! B′

α
"

I ′
"$

I ′
"

!

(13.1) alpha

that respect the monad structure. This is most easily expressed in the
partial-composition viewpoint where it amounts to requiring that these
two squares commute:

B ×I E ! B $ I

B′ ×I ′ E′
"

! B′
"

$ I ′
"

13.3 Coloured operads and generalised operads

13.4 P-spans, P-multicategories, and P-operads
sec:spans-ope

13.4.1 Spans. Let Span denote the bicategory of spans in Set , as intro-
duced in [15]. Under the interpretation of spans as linear polynomials
(cf. Example ??), composition of spans (resp. morphisms of spans) agrees
with composition of polynomials (resp. morphisms of polynomial), so we
can regard Span as a locally full sub-bicategory of Polyc, and view poly-
nomials as a natural ‘non-linear’ generalisation of spans.

[Rough draft, version 2009-08-05 23:56.] [Input file: coloured.tex, 2009-07-29 15:25]

300 Polynomial monads

It is a fundamental observation, due to Bénabou [15], that (small) cat-
egories are precisely monads in the bicategory of spans (in Set). If P is
a cartesian monad on a cartesian category E , there is a notion of P-span,
due to Burroni [24]: a P-span is a diagram PD ← N → C. The P-spans are
the arrows of a bicategory whose objects are those of E . The monads in
here are the P-multicategories in the sense of Leinster [75, 4.2.2]. Monads
on the terminal object of E (if there is one) are the P-operads. The classi-
cal notion of multicategory and (nonsymmetric) operad can be recovered
as special cases of this general definition by taking P to be the list monad
on Set . The category of P-operads is naturally equivalent to the category
of monads over P (i.e. monads equipped with a monad map to P). This
observation goes back to Kelly (see [58]). More generally, the category
of P-multicategories is naturally equivalent to a category of monads with
cartesian colax monad map to P (cf. Leinster [75, Prop. 6.2.3]).

This last result already involves base change subtleties, and it can be
clarified by passing to a double-categorical viewpoint: the two categories
are just categories of monads in two equivalent double categories, and
not only are those two double categories equivalent, their constructions
are essentially the same and amounts to nothing more than the inten-
sive/extensive difference that is a central theme of this work. After es-
tablishing these results, we compare the notion of P-spans with that of
polynomial functors over P, exploiting a direct intensional comparison.

13.4.2 Burroni spans. There is another notion of ‘non-linear’ span, namely
the P-spans of Burroni [24], which is a notion relative to is a cartesian
monad P. This section is dedicated to a systematic comparison between
the two notions, yielding (for a fixed polynomial monad P) an equiva-
lence of framed bicategories between Burroni P-spans and polynomials
over P in the double-category sense. We show how the comparison can
be performed directly at the level of diagrams by means of some pull-
back constructions. Considering monads in these categories, we find an
equivalence between P-multicategories (also called coloured P-operads)
and polynomial monads over P, in the double-category sense.

In this section, strength plays no essential role: everything is carte-
sian relative to a fixed P, eventually assumed to be polynomial and hence
strong, and for all the cartesian natural transformations into P there is a
unique way to equip the domain with a strength in such a way that the
natural transformation becomes strong.

[Rough draft, version 2009-08-05 23:56.] [Input file: coloured.tex, 2009-07-29 15:25]

13.4 P-spans, P-multicategories, and P-operads 301

13.4.3 P-spans. We first need to recall some material on P-spans and their
extension. To avoid clutter, and to place ourselves in the natural level of
generality, we work in a cartesian closed category C , and consider a fixed
cartesian endofunctor P : C → C . We shall later substitute Set/I for C ,
and assume that P is a polynomial monad on Set/I.

13.4.4 P-spans. By definition, a P-span is a diagram in C of the form

P(D) Nd!! c "" C , (13.2) equ:pspan

A morphism of P-spans is a diagram like

P(D′)

P(f)
##

N′d′!! c ""

g
##

C′

h
##

P(D) N c
""

d
!! C ,

(13.3) equ:pspanmorphism

We write P-Span for the category of P-spans and P-span morphisms in C .

13.4.5 Extension of P-spans. Let Slicec
C denote the category whose objects

are cartesian functors between slices of C and whose arrows are diagrams
of the form

C /D′ Q′
""

u!
##

))))## ψ

C /C′

v!
##

C /D
Q

"" C /C ,

(13.4) psi

for u : D′ → D and v : C′ → C in C , and ψ a cartesian natural trans-
formation. Under the identification C = C /1, we can consider P as an
object of Slicec

C , so it makes sense to consider the slice category Slicec
C /P:

its objects are the cartesian functors Q : C /D → C /C equipped with a
cartesian natural transformation

C /D
Q

""

##

****$$ φ

C /C

##

C
P

"" C .

(13.5) equ:cartsq

[Rough draft, version 2009-08-05 23:56.] [Input file: coloured.tex, 2009-07-29 15:25]

302 Polynomial monads

Given two such objects

C /D′ Q′
""

##

))))## φ′

C /C′

##

C
P

"" C

C /D
Q

""

##

++++$$ φ

C /C

##

C
P

"" C ,

a morphism from the former to the latter is a square ψ like (13.4) satisfying

C /D′ Q′
""

##

))))## φ′

C /C′

##

C
P

"" C

=

C /D′ Q′
""

u!
##

****$$ ψ

C /C′

v!
##

C /D
Q

""

##

))))## φ

C /C

##

C
P

"" C .

We now construct a functor Ext : P-SpanC → Slicec
C /P. Its action on

objects is defined by mapping a P-span PD d
←− N c

−→ C to the diagram

C /D
P/D

""

##

C /PD
,,,,##

##

d∗ "" C /N
c! ""

##

C /C

##

C
P

"" C C C .

Here P/D : C /D → C /PD sends f : X → D to P f : PX → PD, and
the outer squares are commutative. The middle square is essentially given
by the counit of the adjunction d! 7 d∗, and is therefore a cartesian natu-
ral transformation. More precisely, it is the mate [60] of the commutative
square

C /PD

##

C /N
d!!!

##

C C .

The action of the functor Ext : P-SpanC → Slicec
C /P on morphisms is

[Rough draft, version 2009-08-05 23:56.] [Input file: coloured.tex, 2009-07-29 15:25]

13.4 P-spans, P-multicategories, and P-operads 303

defined by mapping a diagram like (13.3) to the natural transformation

C /D′

f!

##

P/D′
"" C /PD′

****$$P f!

##

d′∗ "" C /N′

g!

##

c′! "" C /C′

h!

##

C /D
P/D

"" C /PD
d∗

"" C /N c!
"" C /C ,

together with the structure maps to P. The outer squares are just commu-
tative and the middle square (again cartesian) is the mate of the identity
2-cell

C /PD′

(P f)!

##

C /N′d′!!!

g!

##

C /PD C /N .
d!

!!

thm:functofspan 13.4.6 Proposition. The functor Ext : P-SpanC → Slicec
C /P is an equiva-

lence of categories.

Proof. The quasi-inverse is defined by mapping

C /D
Q

""

##

****$$ φ

C /C

##

C
P

"" C

to the P-span

PD QD
φD

!!
Q(1D)

"" C .

The verification of the details is straightforward. !

13.4.7 Change of shape. Given a cartesian natural transformation θ : P ⇒
P′, there is a shape-change functor

P-SpanC −→ P′-SpanC

[PD ← N → C] %−→ [P′D
θD← PD ← N → C] .

[Rough draft, version 2009-08-05 23:56.] [Input file: coloured.tex, 2009-07-29 15:25]

304 Polynomial monads

We also have the functor

Slicec
C /P −→ Slicec

C /P′

[Q ⇒ P] %−→ [Q ⇒ P θ
⇒ P′] .

13.4.8 Lemma. The equivalence Ext of Proposition 13.4.6 is compatible with
change of shape, in the sense that the following diagram commutes:

P-SpanC

Ext ""

##

Slicec
C /P

##

P′-SpanC Ext
"" Slicec

C /P′ .

Proof. The claim amounts to checking

θ∗D ◦ P′
/D = P/D

which follows from the assumption that θ is cartesian. !

In detail, given X → D, apply P′ to get P′X → P′D. Then pullback along θD, which
since θ is cartesian gives PX → PD.

13.4.9 More general change of shape, not needed here. In fact more generally there is
shape-change along maps like

E /I′
T′

! E /I′

↙ θ

E /I

k!
"

T
! E /I

k!
"

Then a T′-span T′D ← N → C on E /I′ is sent to the T-span on E /I given by:

Tk! D ← k! T′D ← k! N → k! C

Similarly, the change functor from Cart/T′ to Cart/T is just given by pasting with θ.

13.4.10 Composition of P-spans and composition of their extensions. We
now assume that P is a cartesian monad, so we have two natural transfor-
mations η : 1 ⇒ P and µ : P ◦ P ⇒ P at our disposal for shape-change.

[Rough draft, version 2009-08-05 23:56.] [Input file: coloured.tex, 2009-07-29 15:25]

13.4 P-spans, P-multicategories, and P-operads 305

As is well known [75], this allows us to define horizontal composition of
P-spans: given composable P-spans

N
c
**-

--
--

-
d
&&''

''
'

CPD

U
t
**-

--
--

-
s
&&''

''
''

B ,PC

we define their composite P-span by applying P to the first P-span, per-
forming a pullback, and using the multiplication map:

PN ×PC U

**-
--

--
-

&&''
''

''

PN
Pd
&&''

''
''

' Pc

**-
--

--
--

U
s
&&''

''
''

' t

**-
--

--
--

PPD
µD

&&''
''

''
'

PC B

PD

(13.6) Pspan-comp

13.4.11 Lemma. This composition is associative (up to those coherences) if T
preserves pullbacks and the natural transformation m : TT → T is cartesian.

13.4.12 Lemma. The unit arrow is the diagram

I

T(I)

u

$
I

!

Proof. It is immediate to check that this works as a unit from the left. To
see that it works as unit from the right, we need to assume that T is a
cartesian monad, precisely we need that the naturality square for the unit

[Rough draft, version 2009-08-05 23:56.] [Input file: coloured.tex, 2009-07-29 15:25]

306 Polynomial monads

is cartesian. Here is the diagram for composing with idJ on the right:

A

T(A)

uA

$
p.b. J

!

T(T(I))
$

T(J)
uJ$

!

J
!

T(I)

mI
"

The fact that the top square is cartesian is precisely because it is the unit
naturality square. To see that the long composite on the left is equal to the
original map f : A → T(I) is a consequence of the fact that the unit is
really a unit for the composition functor M. Precisely we have this com-
mutative square

TA $uA A

TTI
T f "

$
uTI

TI
f"

TI
mI " id$

!

Associativity of the composition law (up to coherent isomorphism) de-
pends on that fact that P preserves pullbacks and that µ is cartesian. It
further follows from the fact that η is cartesian that for each D the P-span

PD D
ηD

!!
1D "" D

is the identity P-spans for the composition law (up to coherent isomor-
phisms). It is clear that these constructions are functorial in vertical maps
between P-spans, yielding altogether a double category of P-spans, de-
noted P-SpanC : the objects and vertical morphisms are those of C , the
horizontal arrows are the P-spans, and the squares are diagrams like (13.3).

[Rough draft, version 2009-08-05 23:56.] [Input file: coloured.tex, 2009-07-29 15:25]

13.4 P-spans, P-multicategories, and P-operads 307

13.4.13 Double category of cartesian functors. We also have a double-
category structure on Slicec

C /P: the horizontal composite of Q ⇒ P with
R ⇒ P is R ◦ Q ⇒ P ◦ P ⇒ P, and the horizontal identity arrow is Id ⇒ P.
Let us verify that the extension of a horizontal composite is isomorphic to
the composite of the extensions: in the diagram

C /C
P/C

++.
..

..
..

.

C /N

c!
,,////////

P/N ++.
..

..
..

.
C /PC

s∗
++.

..
..

..
.

C /PD

d∗
,,////////

P/PD

++.
..

..
..

.
C /PN

(Pc)!
,,////////

++.
..

..
..

.
B.C. C /U

t!

++.
..

..
..

.

C /D

P/D
,,////////

(PP)/D

"" C /PPD
(Pd)∗

,,////////

C /PN ×PC U

,,////////

C /B

the top path is the composite of the extension functors, and the bottom
path is the extension of the composite span. The square marked B.C. is the
Beck-Chevalley isomorphism for the cartesian square (13.6), and the other
squares, as well as the triangle, are clearly commutative. The following
proposition now follows from Proposition 13.4.6.

13.4.14 Proposition. The functor Ext : P-SpanC −→ Slicec
C /P is an equiva-

lence of double categories, in fact an equivalence of framed bicategories.

We just owe to make explicit how the double category of P-spans is a
framed bicategory: to each vertical map u : D′ → D we associate the
P-span

PD′ ηD′
←− D′ u

−→ D .

This is a left adjoint; its right adjoint is the P-span

PD
ηD◦u
←− D′ =

−→ D′

as follows by noting that their extensions are respectively u! and u∗. For
this the important fact is that η is cartesian. With this observation it is clear
that the equivalence is framed.

[Rough draft, version 2009-08-05 23:56.] [Input file: coloured.tex, 2009-07-29 15:25]

308 Polynomial monads

13.4.15 Remark. Another useful formula, although it is not so precise what the types are concerned: recall that for any cartesian natural transfor-
mation θ : S ⇒ T on a cartesian category with 1, we have

S(X) = T(X)×T(1) S(1)

saying that S is determined by its value on 1 and by T. In a variable-sorts setting, given a cartesian natural transformation

E /D
Q! E /C

↙ θ

E /I

α! "
P
! E /J

β!"

(recall that this is like Q ⇒ β∗Pα!) the formula reads

β! Q(X) = Pα! (X)×Pα! (D) β! Q(D)

With this type-sloppy notation, it is clear that Q and the functor defined by the associated span are the same: Q is X %→ P(X) ×P(D) N, and the
functor defined by the associated span is X %→ P(X) %→ P(X)×P(D) N. That’s the same formula.

[Taking the mate of this 2-cell, we get also
Qα∗(Y) = β∗P(Y)×β∗P(I) Qα∗(I)

but we shall not need this one.]
The β! Q should be thought of as q∗z∗, while the fibre product on the right-hand side is to apply d∗ to Pα! getting altogether d∗ f∗ε∗a∗.

Seeing that these are equal is just to use q∗k∗ = d∗ f∗ .

13.4.16 Polynomial functors over P. ADJUST THIS TO WHAT WAS AL-
READY SAID ABOUT THIS Fix a polynomial endofunctor P : Set/I →
Set/I given by I ← E → B → I. Let Poly/P denote the framed bicate-
gory sliced over P. Its objects and vertical arrows are those of Set/I; its
horizontal arrows are polynomial functors Set/D → Set/C over P, like

D $ U ! V ! C

P : I
"
$ E

"
! B

"
! I.

"

and its 2-cells are

D′ $ U′ ! V ′ ! C′

D
"

$ U
"

! V
"

! C
"

P : I
"
$ E

"
! B

"
! I.

"

(13.7) D’D

(i.e. compatible morphisms of polynomial functors compatible with the
structure map to P).

[Rough draft, version 2009-08-05 23:56.] [Input file: coloured.tex, 2009-07-29 15:25]

13.4 P-spans, P-multicategories, and P-operads 309

It is observed in [63] (see a later chapter of these notes) that the subcat-
egory PolyEnd /P ⊂ Poly/P is equivalent to a category of sheaves (on a
certain site of P-trees)—at least in the case E = Set . We do not know how
to generalise that construction to non-endo polynomial functors over P.

13.4.17 Theorem. There is an equivalence of double categories between this one
and the double category of P-spans.

This is clear since both types of diagrams represent the same functors.
We shall describe a direct and very explicit back-and-forth between the

two types of diagrams, without reference to the functors they represent.
(However, in order to prove that these constructions constitute an equiva-
lence of framed bicategories, we shall take advantage of the fact that these
things represent functors.)

13.4.18 Polynomial functors over a base. We now specialise to the case
of interest, where C = Set/I and P is a polynomial monad on Set/I,
represented by

I ← B → A → I .

Since now all the maps involved in the P-spans are over I, a P-span can be
interpreted as a commutative diagram

N
d
&&''

''
' c

**-
--

--
-

C

&&''
''

'
PD

**-
--

--

I .

If C is an object of C , i.e. a map in Set with codomain I, we shall write C
also for its domain, and we have a natural identification of slices C /C +
Set/C. That P : Set/I → Set/I is a polynomial monad, means thanks
to Lemma 10.1.6, that all objects in Slicec

Set/I/P are polynomial again, so
Slicec

Set/I/P ∼= Polyc/P, the category of polynomials cartesian over P in
the double-category sense. In conclusion:

thm:PSpan=Poly/P 13.4.19 Proposition. The functor Ext : P-SpanSet/I → Polyc/P is an equiva-
lence of framed bicategories.

!

[Rough draft, version 2009-08-05 23:56.] [Input file: coloured.tex, 2009-07-29 15:25]

310 Polynomial monads

13.4.20 Comparison of hom categories. It is a natural question whether
there is a direct comparison between P-spans and polynomials over P,
without reference to their extensions. This is indeed the case, as we now
proceed to establish, exploiting the framed structure. Given a polynomial
over P, like

Q : D

u
##

M!!

##

""

!
" N

##

"" C

##

P : I B!! "" A "" I .

Consider the canonical factorisation of this morphism through the source
lift of P along u (cf. 11.1.13):

Q : D M!! ""

##

!
" N c ""

d
##

C

##

(u, id)$P : D ·
!

"
!!

##

f
"" PD ""

##

I

D
u

##

·"
!

##

!!

P : I B!! "" A "" I .

(13.8) QP-poly-span

Now we just read off the associated P-span:

N c ""

d
##

C

##

PD "" I .

Conversely, given such a P-span, place it on top of the rightmost leg of
P ◦ α! = (u, id)$P (the middle row of the diagram, which depends only
on α and P), and let M be the pullback of N → P(D) along the arrow
labelled f . It is easy to see that these constructions are functorial, yielding
an equivalence of hom categories Polyc(D, C)/P + P-SpanSet/I(D, C).

13.4.21 Example. Endo-P-spans PC ← N → C, that is, polynomial end-
ofunctors over P, are called C-coloured P-collections. If furthermore C = I
we simply call them P-collections. These are just polynomial endofunctors

[Rough draft, version 2009-08-05 23:56.] [Input file: coloured.tex, 2009-07-29 15:25]

13.4 P-spans, P-multicategories, and P-operads 311

Q : Set/I → Set/I equipped with a cartesian natural transformation to
P. This category is itself a slice of Set : it is easy to see that the functor

Polyc(I, I)/P −→ Set/P1
Q %−→ [Q1 → P1]

is an equivalence of categories.

13.4.22 Multicategories. Burroni [24], Leinster [75], and Hermida [48] de-
fine P-multicategories (also called coloured P-operads) as monads in the
bicategory of P-spans. P-multicategories are also monads in the double
category of P-spans — this description also provides the P-multifunctors
as (oplax) cartesian monad maps. P-multicategories based at the terminal
object in Set/I are called P-operads. If the base monad P is a polynomial
monad, the equivalence of Proposition 13.4.19 induces an equivalence of
the categories of monads, as summarised in the corollary below.

In the classical example, Set is Set and P is the free-monoid monad M
of Example 1.2.8. In this case, M-multicategories are the classical multi-
categories of Lambek [69], which are also called coloured nonsymmetric
operads. In the one-object case, M-operads are the plain (nonsymmetric)
operads. The other standard example is taking P to be the identity monad
on Set . Then P-multicategories are just small categories and P-operads are
just monoids. Hence small categories are essentially polynomial monads
on some slice Set/C with an oplax cartesian double-categorical monad
map to Id, and monoids are essentially polynomial monads on Set with a
cartesian monad map to Id. In summary, we have the following result.

Definition. Given a cartesian monad T : Set → Set . For each set I there
is a monoidal category (the vertex bicategory) of T-spans from I to I. The
monoidal operation is ◦. A T-multicategory on I is by definition a monoid
in this monoidal category. In other words, it is an endo T-span

A

TI
$

I
!

A T-operad is an T-multicategory on the object 1 ∈ Set .

[Rough draft, version 2009-08-05 23:56.] [Input file: coloured.tex, 2009-07-29 15:25]

312 Polynomial monads

13.4.23 Classical multicategories and classical operads. When T is the
free-monoid monad, then the corresponding notion of multicategory is
the classical notion of Lambek. An arrow a ∈ A goes from a sequence of
elements (x1, . . . , xn) ∈ I∗ to a single element y ∈ I. . .

When furthermore I is the singleton set, then we recover the classical
notion of operad (nonsymmetric). If the monad is the free-monoid monad,
then we get the classical notion of operad. This is because M(1) = N. Then

A

M(1) = N
$

1
!

is just the collection A → N defining a classical operad.

13.4.24 Categories and monoids. Let E denote the identity endofunctor
Set → Set . An E-multicategory on a set S is nothing but a plain category
with object set S. Indeed, then an E-span is nothing but a plain span, and
the statement reduces to the fact that a monoid in the monoidal category
of endospans is the same thing as a category. An E-operad is nothing but
a monoid.

In conclusion, every cartesian monad T : E → E gives rise to a no-
tion of T-operad. there is a monoidal category of T-collections (or T-
endospans): objects are endospans in E :

X

T(1)
$

1
!

Since 1 is terminal, this is just E /T1.

13.4.25 Theorem. (Essentially Leinster [75], Cor. 6.2.4.) There is a natural
equivalence of monoidal categories between Poly/T and T − Coll.

Poly/T is the category of polynomial functors in E with a cartesian
map to T. Since T is a monad, this category acquires a tensor product, see
below.

[Rough draft, version 2009-08-05 23:56.] [Input file: coloured.tex, 2009-07-29 15:25]

13.4 P-spans, P-multicategories, and P-operads 313

Coloured operads

C-coloured operads are monoids in the category of M-endospans based
on C instead of the terminal object. These are spans

X

M(C)
$

C
!

with monoid structure. This is Set/(MC × C) rather than just Set/MC.

13.4.26 Coloured operads. A coloured operad, also called a multicategory,
consists of a pair (P, C) where C is a set whose elements are called colours,
and P is a collection of sets indexed by (n + 1)-tuples of colours, n ∈ N. So
for each n and for each (c1, . . . , cn; c) there is a set

P(c1, . . . , cn; c)

of operations of input colours (c1, . . . , cn) and output colour c. These sets
together have operad structure, so that you can substitute n operations
into a given n-ary operation provided the colours match. This composi-
tion law is required to be associative and unital. Note that there is a unit
operation for each colour, 1c ∈ P(c; c).

More stuff about this. Reference to Berger–Moerdijk [18].

Algebras for a coloured operad.

13.4.27 Burroni version. A I-coloured operad is just a monoid in the
monoidal category whose objects are I-based M-endospans:

X

M(I)
$

I
!

The set X is the total set of operations. The map to M(I) sends each opera-
tion to its list of input colours, and the map to I returns the output colour.

[Rough draft, version 2009-08-05 23:56.] [Input file: coloured.tex, 2009-07-29 15:25]

314 Polynomial monads

Polynomial monads and coloured operads

13.4.28 Theorem. A coloured operad is essentially the same thing as a polyno-
mial monad over M:

I $ X′ ! X ! I

1
"
$ N′

"
! N

"
! 1

"

Here X′ := N′ ×N X is the set of operations with one input marked, and the map
X′ → I returns the colour of that input slot.

13.4.29 Change of colours. If (Q, D) is a coloured operad and α : C → D
is a map of sets, then we can construct a C-coloured operad α∗Q where

α∗Q(c1, . . . , cn; c) := Q(α(c1), . . . , α(cn); α(c)).

Change-of-colours for coloured operads corresponds precisely to base
change in the theory of polynomial functors.

13.4.30 Corollary. There are natural equivalences of categories

P-Multicat + PolyMnd/P P-Operad + PolyMnd(1)/P
Multicat + PolyMnd/M PlainOperad + PolyMnd(1)/M

Cat + PolyMnd/Id Monoid + PolyMnd(1)/Id .

13.4.31 Examples. The double category of polynomials is very convenient
for reasoning with P-multicategories. The role of the base monad P for
P-multicategories is to specify a profile for the operations. This involves
specifying the shape of the input data, and it may also involve type con-
straints on input and output. In the classical case of P = M, the fibres of
N′ → N (Example 1.2.8) are finite ordinals, expressing the fact that inputs
to an operation in a classical multicategory must be given as a finite list
of objects. In this case there are no type constraints imposed by P on the
operations.

For a more complicated example, let P : Set/N → Set/N be the free-
plain-operad monad, which takes a collection (i.e. an object in Set/N) and

[Rough draft, version 2009-08-05 23:56.] [Input file: coloured.tex, 2009-07-29 15:25]

13.4 P-spans, P-multicategories, and P-operads 315

returns the free plain operad on it [75, p.135, p.145, p.155]. This monad is
polynomial (cf. [64]): it is represented by

N Tr•s!!
p

"" Tr t "" N ,

where Tr denotes the set of (isomorphism classes of) finite planar rooted
trees, and Tr• denotes the set of (isomorphism classes of) finite planar
rooted trees with a marked node. The map s returns the number of in-
put edges of the marked node; the map p forgets the mark, and t returns
the number of leaves. A P-multicategory Q has a set of objects and a set
of operations. Each operation has its input slots organised as the set of
nodes of some planar rooted tree, since this is how the p-fibres look like.
Furthermore, there are type constraints: each object of Q must be typed in
N, via a number that we shall call the degree of the object, and a compatibil-
ity is required between the typing of operations and the typing of objects.
Namely, the degree of the output object of an operation must equal the
total number of leaves of the tree whose nodes index the input, and the
degree of the object associated to a particular input slot must equal the
number of incoming edges of the corresponding node in the tree. All this
is displayed with clarity by the fact that Q is given by a diagram

Q : D

α
##

M!!

##

""

!
" N

β
##

"" D

α
##

P : N Tr•!! "" Tr "" N

The typing of the operations is concisely given by the map β, and the or-
ganisation of the inputs in terms of the fibres of the middle map of P is
just the cartesian condition on the middle square. The typing of objects
is encoded by α and the compatibility conditions, somewhat tedious to
formulate in prose, are nothing but commutativity of the outer squares.

Finite planar rooted trees can be seen as M-trees, where M : Set → Set
is the free-monoid monad (1.2.8).

[Rough draft, version 2009-08-05 23:56.] [Input file: coloured.tex, 2009-07-29 15:25]

316 Polynomial monads

[Rough draft, version 2009-08-05 23:56.] [Input file: coloured.tex, 2009-07-29 15:25]

Chapter 14

Trees (2)

Ch:trees
This chapter is mostly copied verbatim from the paper Polynomial functors
and trees [63].

In this chapter we construct a bigger category of trees than the one we
had.

We found the following explicit construction of the free monad on P: if
P is given by the diagram A ← M → N → A, then the free monad on P is
given by

A ← tr′(P) → tr(P) → A

where tr′(P) denotes the set of isomorphism classes of P-trees with a marked
leaf (14.1.2). The monad structure is given by grafting P-trees. We are par-
ticularly interested in free monads on trees. Since maps between trees are
embeddings, the free monad on a tree T = (A ← M → N → A) is given
by

A ← sub′(T) → sub(T) → A

(where sub(T) (resp. sub′(T)) denotes the set of subtrees of T (resp. sub-
trees with a marked leaf)).

We now define Tree to be the category whose objects are trees and
whose arrows are maps between their free monads (14.2.1). In other words,
Tree is a full subcategory of PolyMnd (the category of polynomial mon-
ads): it is the Kleisli category of TEmb with respect to the free-monad
monad on PolyEnd . (It is shown that any map in PolyEnd between free
monads on trees is a monad map (14.2.2).) In explicit terms, morphisms
send edges to edges and subtrees to subtrees. The category Tree is equiv-
alent to the category Ω of Moerdijk and Weiss [83], whose presheaves are

[Rough draft, version 2009-08-05 23:56.] [Input file: trees.tex, 2009-07-29 15:21]

318 Trees (2)

called dendroidal sets. Its construction in terms of polynomial functors
reveals important properties analogous to properties of ∆. In fact, ∆ is
equivalent to the full subcategory in Tree consisting of the linear trees.

The main intrinsic features of the category Tree are expressed in terms
of three factorisation systems: Tree is shown to have has surjective/injective
factorisation, generic/free factorisation, as well as root-preserving/ideal-
embedding factorisation. The generic maps are precisely the boundary-
preserving maps, and the generic/free factorisation system plays an im-
portant role in the second part of the paper. The compatibilities between
the three factorisation systems are summarised in this figure:

surjective injective

generic free

root preserving ideal

As suggested by the figure, every arrow factors essentially uniquely as a
surjection followed by a generic injection, followed by a free root-preserving
map followed by an ideal embedding. Explicit descriptions are derived
for each of the four classes of maps: the surjections consist in deleting
unary nodes, the generic injections are node refinements (and of course
the free maps are the tree embeddings). The ideal embeddings are those
corresponding to subtrees containing all descendants—this is the notion
of subtree most relevant to computer science and linguistics.

The subcategory of generic tree maps is opposite to the category of
trees studied by Leinster [75, §7.3]. On Leinster’s side of the duality, tree
maps can be described in terms of set maps between the sets of nodes.
On our side of the duality, tree maps are described in terms of set maps
between the sets of edges. The category of generic injections is roughly
the opposite of the category of trees studied1 by Ginzburg and Kapranov
in their seminal paper [41]; the difference is that they exclude all trees with
nullary nodes. In fact, most of the time they also exclude trees with unary
nodes, and call the remaining trees reduced.

1It seems that the category they study is not the same as the category they define:
their definition 1.1.4 does not seem to exclude contraction of external edges. I mention
this curiosity as an illustration of the subtlety of formalising arguments with trees.

[Rough draft, version 2009-08-05 23:56.] [Input file: trees.tex, 2009-07-29 15:21]

14.1 P-trees and free monads 319

14.1 P-trees and free monads

14.1.1 Construction of free monads. Let tr′(P) denote the set of (isomor-freemonad-constr
phism classes of) P-trees with a marked input leaf, i.e. the set of diagrams

1 $ 0 ! 0 ! 1

T0
"

$ T2
"

! T1
"

! T0
"

P0
"

$ P2
"

! P1
"

! P0
"

modulo isomorphism. (The cartesianness of the upper right-hand square
says the edge is a leaf.) The set tr′(P) is naturally an object of Set/P0, the
structure map tr′(P) → P0 returning the decoration of the marked leaf.
There is also the natural projection to tr(P) given by forgetting the mark.
We get altogether a polynomial functor

P0 ← tr′(P) → tr(P) → P0

which we denote by P. Its value on a set X → P0 is the set of P-trees with
leaves decorated in X. More precisely, for a P-tree S, denote by LS the set
of leaves of S, then

P(X) =

{
(S, f) | S ∈ tr(P),

LS

f ! X

P0

$

!

}
.

The polynomial functor P is naturally a monad: the multiplication map
P P(X) → P(X) sends a P-tree T with leaves decorated by other P-trees
to the P-tree obtained by grafting the other P-trees onto the leaves of T.
Note that the compatibility condition on the decorations states that the
root edges of the decorating trees are precisely the leaves of the bottom
tree, so the grafting makes sense. The unit for the multiplication is the map
P0 → P(P0) sending an edge x to the trivial P-tree decorated by x ∈ P0.

The construction P %→ P is clearly functorial. If α : Q → P is a mor-
phism of polynomial endofunctors, it is clear that α1 : tr(Q) → tr(P) sends
trivial trees to trivial trees, and it is also clear it is compatible with grafting.
Hence α is a monad map.

[Rough draft, version 2009-08-05 23:56.] [Input file: trees.tex, 2009-07-29 15:21]

320 Trees (2)

freemonad 14.1.2 Proposition. Let P be a polynomial endofunctor. The monad P given by

P0 ← tr′(P) → tr(P) → P0

is the free monad on P.

Proof. Given X → P0, put WX := P(X), the set of P-trees with leaves deco-
rated in X. In other words,

WX = P(X) =

{
(S, f) | S ∈ tr(P),

LS

f ! X

P0

$

!

}
,

where LS denotes the set of leaves of a tree S. It follows from the argument
of Lemma 12.4.6 that WX is a least fixpoint for the endofunctor X + P,
i.e. an initial object in (X+P)-alg + X↓P-alg . Via the inclusion P ⊂ X + P

it also becomes a P-algebra. The construction X %→ WX is clearly functorial
and defines a functor

F : Set/P0 −→ P-alg

X %−→ WX.

To say that WX is initial in (X+P)-alg + X↓P-alg is equivalent to saying
that F is left adjoint to the forgetful functor U : P-alg → Set/P0, and
therefore (e.g. by Barr-Wells [13, Theorem 4, p.311]), the generated monad
X %→ WX is the free monad on P. !

14.1.3 The free monad on a tree. We are particularly interested in the
case where the polynomial endofunctor is itself a tree T. In this case we
write sub(T) instead of tr(T), as we know that all maps between trees are
injective. We restate this special case for emphasis:

14.1.4 Corollary. Let T be a tree. The monad T given by

T0 ← sub′(T) → sub(T) → T0

is the free monad on T.

14.1.5 Example. As an example of a computation of the free monad on a polynomial end-
ofunctor, let us compute the free monad on the endofunctor associated to a tree. This is
an easy example since it is a finite computation. So start with the polynomial endofunctor
corresponding to some small tree, and compute the free monad. Let’s take the tree

[Rough draft, version 2009-08-05 23:56.] [Input file: trees.tex, 2009-07-29 15:21]

14.1 P-trees and free monads 321

1

2

3

4

5

6 7

x

y z

w

of example 12.2.13. WRITE OUT WHAT P IS
This is our first example with non-trivial types. As always, in the first round, where

we compute the polynomial functor Id + P ◦ 0, we pick up all the nullary operations, and
then add an unary operation for each type.

1 2 3 4 5 6 7

w

5

These correspond together to all the one-edge subtrees in the original tree.
In the next step of the iteration, we glue all these trees on top of all the nodes (the

original operations), in all possible ways. In this way we get all the subtrees with edge-
length 2, and again we add formally all the dotless trees, so altogether we get the subtrees
of edge-length at most 2: Then the operations of the composite polynomial functor is the
set of all ways of decorating the four bouquets

x

1

2 3 4

y

2

5
w

y

2

5
z

4

6 7

w

5 1 2 3 4 5 6 7

Next iteration we get also those with edge-length at most 3, which in this case is the
set of all subtrees in the original tree.

In general, there will be only a finite number of steps in the iteration; after that it
stabilises. This phenomenon is characteristic for trees: although the free-monad con-
struction usually goes on infinitely, for trees it stops after step n where n is the height of
the original tree.

Examples of polynomial monads from trees

14.1.6 Concrete description. Let us work out concretely what this polynomial functor
does. The polynomial functor will have a variable Xi for each edge i ∈ I, and it will
also have an output component Pj for each edge j ∈ I. The component Pj will be a sum
indexed by all subtrees of T with root edge j.

(
Xi | i ∈ I

)
%→

(
Pj(x) | j ∈ I

)

where each Pj is a sum over all subtrees with root j. For each such subtree with root j, the
corresponding monomial is the product of all the variables corresponding to the leaves

[Rough draft, version 2009-08-05 23:56.] [Input file: trees.tex, 2009-07-29 15:21]

322 Trees (2)

of that subtree. Given one such subtree S, say with set of leaves L, the corresponding
monomial is the product

∏
l∈L

Xl ,

the product of all the variables of the leaves of S.
If for example S is the subtree

j

a
c db

then
Pj = XaXbXcXd.

All this is just the general description of what a polynomial functor does:
(
Xi | i ∈ I

)
%→

(
Pj(x) | j ∈ I

)

with
Pj = ∑

b∈Bj

∏
e∈Eb

Xs(e)

Note that Xs(e) is the variable corresponding to leaf e of b ∈ Bj, where s(e) runs through
the leaves of the subtree b (which has root edge j). So the description follows directly
from the general description of polynomial functor.

14.1.7 Example. Many example, including the example linear trees give linear polynomials.
We already saw in an example that the linear tree with n dots gives rise to the linear
(directed) graph (with n + 1 vertices and n edges. Now if we take the free monad on
that one, that corresponds precisely to taking the free category on this graph it gives us
precisely the category [n] (the categorical n-simplex).

To be explicit, if the linear tree is

a
b

c
0
1
2
3

then the polynomial functor is the linear functor

{0, 1, 2, 3} ← {a, b, c} → {0, 1, 2, 3}

there the two maps are input-edge and output-edge, respectively.

[Rough draft, version 2009-08-05 23:56.] [Input file: trees.tex, 2009-07-29 15:21]

14.2 The category Tree 323

This corresponds to the directed graph 0 a
→ 1 b

→ 2 c
→ 3.

Taking the free monad on this functor gives us a set of operations

{00, 11, 22, 33, 01, 12, 23, 02, 13, 03}

which are precisely the set of all arrows in the categorical 3-simplex [3], which is the free
category on the previous graph.

14.2 The category Tree
Sec:Tree

14.2.1 The category Tree. We define a larger category of trees Tree as theTree
full subcategory of PolyMnd consisting of the free monads T, where T

is a tree. This means taking the objects from TEmb and the morphisms
from PolyMnd . More precisely the category Tree is given by the Gabriel
factorisation (identity-on-objects/fully-faithful) of TEmb → PolyMnd :

Tree
f.f. ! PolyMnd

TEmb

i.o.

#

! PolyEnd

free
#
7 forgetful

"

(14.1) Gab

The category Tree is equivalent to the category Ω introduced by Moerdijk
and Weiss [83], whose presheaves are called dendroidal sets. The category
Tree is also described as the Kleisli category of the free-forgetful adjunc-
tion restricted to TEmb . The arrows in the category Tree are by definition
monad maps S → T. By adjunction these correspond to maps of endofunc-
tors S → T, and many properties of the category Tree can be extracted in
this viewpoint, without ever giving an explicit description of the monad
maps. However, remarkably, the following result holds:

allmaps 14.2.2 Proposition. All maps of endofunctors S → T are monad maps. In other
words, the forgetful functor Tree → PolyEnd is full.

This means that the maps in Tree have this surprisingly easy description:
they are just commutative diagrams

S0 $ sub′(S) ! sub(S) ! S0

T0
"

$ sub′(T)
"

! sub(T)
"

! T0.
"

(14.2) mapinTree

[Rough draft, version 2009-08-05 23:56.] [Input file: trees.tex, 2009-07-29 15:21]

324 Trees (2)

Proof of the Proposition. Since the monad structure is defined in terms of
unit trees and grafting, the assertion follows from the following two lem-
mas which are of independent interest.

!

unittounit 14.2.3 Lemma. Any map of polynomial endofunctors S → T maps trivial sub-
trees to trivial subtrees.

Proof. If z is the root edge of a trivial subtree in S, then that trivial tree must
map to a subtree of T with root φ(z), by commutativity of the right-hand
square in (14.2). On the other hand, z is also the unique leaf of that trivial
tree, and by commutativity of the left-hand square in (14.2), the unique
leaf of the image tree must be φ(z). Hence the image tree has the property
that its root is equal to its unique leaf, hence it is trivial. !

graft-pres 14.2.4 Proposition. Every morphism φ : S → T respects grafting. In other
words, if a subtree R ∈ sub(S) is a grafting R = A + $$$ B then the image subtree
φ1(R) ∈ sub(T) is given by φ1(R) = φ1(A) +φ1($$$) φ1(B).

Proof. The root of A is $$$ which is also a certain leaf of B. Hence the root of
the image tree φ1(A) is equal to φ1($$$) which is also a leaf of φ1(B). Hence
the grafting exists in T. It has root φ0(root(B)) as required, and set of
leaves φ0(leaves(A) + leaves(B) ! { $$$ }). So it has the same boundary as
the image of R, so by Lemma 12.3.17 they agree. !

edge-map 14.2.5 Lemma. A map of polynomial endofunctors S → T is completely deter-
mined by its value on the edge set.

Proof. Let R ⊂ S be an element of sub(S). The root of φ1(R) must be the
image of the root of R, by commutativity of the right-hand square of the
representing diagram. Similarly, the set LR of leaves of R is in bijection
with the set of leaves of the image tree φ1(R), by the cartesian condition
on the middle square, but the latter set is also the image set φ(LR), by
commutativity of the left-hand square. Hence the set of leaves of φ1(R)
are fixed, so altogether the boundary of φ1(R) is completely determined,
and we conclude by Lemma 12.3.17. !

14.2.6 Corollary. If S is nontrivial, every map S → T is determined by its value
on one-node subtrees. More precisely, the map is the grafting of maps on those
one-node trees, indexed by the inner edges of S.

[Rough draft, version 2009-08-05 23:56.] [Input file: trees.tex, 2009-07-29 15:21]

14.2 The category Tree 325

Proof. The first statement follows because the images of the nodes deter-
mine the images of their output and input edges, hence all edges have
their image determined by the images of the nodes. For the more precise
statement, note that the tree S is the grafting of its one-node trees indexed
by its inner edges (cf. 12.3.24). The inner edges map to edges again, and
since grafting is preserved, the whole map φ : S → T is the grafting of the
restrictions of φ to the one-node subtrees (indexed by the inner edges of
S). !

14.2.7 Proposition. Let φ be an arrow in Tree. Then φ0 preserves the tree order:

x ≤ y ⇒ φ0(x) ≤ φ0(y).

Furthermore, if x and y are incomparable, then φ0(x) and φ0(y) are incompara-
ble.

Proof. Suppose x ≤ y. Let S denote the minimal subtree with y as root edge
and x as a leaf. Having x as marked leaf makes S an element in sub′(T).
By construction, s(S) = x and t(p(S)) = y. Now apply φ and use the fact
that φ commutes with each of the structure maps. Hence φ1(S) has φ0(y)
as root and φ0(x) as marked leaf, and in particular φ0(x) ≤ φ0(y). For
the second assertion, if x and y are incomparable, then by Lemma 12.3.12
there is a subtree in which x and y are leaves. Then φ0(x) and φ0(y) are
leaves of the image subtree, and in particular incomparable. !

Note that φ0 is not distance preserving, though, and that it is not necessar-
ily injective. When it is injective it also reflects the tree order.

14.2.8 Remark. We should be more formal about the notion of minimal subtree spanned
by two edges in ancestor relation, to avoid relying on intuition from geometric trees. Let
the tree T be given by A ← N′ → N → A. Suppose we have two edges in T in ancestor
relation, so that ρk(e) = r for some k ∈ N. If e = r is the root of T, then the minimal
subtree is the one consisting only of the root. We aim at construction a subset K ⊂ N
with k elements, which intuitively is the set of dots in the path from e to r. Formally, for
0 ≤ i < k the edge ρi(e) is not the root, so we can consider it as an element in N′. The
wanted set K is the set

K := {p(ρi(e)) | 0 ≤ i < k}.

Now define K′ : = N′ ×N K (this means we take all the input edges of all the dots we
have), and finally let the set of edges be K′ + {r}.

subtosub 14.2.9 Lemma. If φ : S → T is a map of trees, then φ1 : sub(S) → sub(T) is
inclusion preserving.

[Rough draft, version 2009-08-05 23:56.] [Input file: trees.tex, 2009-07-29 15:21]

326 Trees (2)

Proof. The statement is that if Q ⊂ R are elements in sub(S) then we have
φ1(Q) ⊂ φ1(R) in sub(T). One way to see this is to observe that Q is de-
termined by a subset of the nodes in R, cf. 12.3.8, and R is obtained from
Q by grafting those complementary one-node trees onto Q. By preserva-
tion of grafting (14.2.4), φ1(R) is therefore obtained from φ1(Q) by grafting
certain subtrees onto it, and in particular φ1(Q) ⊂ φ1(R). !

We have now gathered some basic knowledge of what general maps in
Tree look like, and we already had a firm grip on the maps in TEmb . The
following proposition summarises various characterisations of the maps
in TEmb from the viewpoint of Tree , that is, it characterises the free maps:

free7 14.2.10 Proposition. The following are equivalent for a map φ : S → T.

1. φ is free (i.e. of the form α : S → T).

2. φ0 is distance preserving.

3. The image of a one-node subtree is a one-node subtree.

4. For every subtree R ⊂ S, the image subtree φ1(R) ⊂ T is isomorphic to R.

5. φ is injective, and if R ∈ sub(T) is hit by φ1 then all the subtrees of R are
hit too.

6. φ is injective, and if R ∈ sub(T) is hit by φ1 then all edges of R are hit by
φ0.

7. φ is injective, and all edges in φ1(S) are hit by φ0.

Proof. Straightforward verifications—omitted. !

14.2.11 Corollary. In Tree, every isomorphism is free. !

Another way to formulate Lemma 14.2.9 is that a map S → T restricts
to any subtree R ⊂ S to give a map R → φ(R). This is in fact a key obser-
vation, featured in the next proposition.

14.2.12 Boundary preserving maps. A map φ : S → T is called boundary
preserving if it takes the maximal subtree to the maximal subtree. Equiva-
lently, it takes leaves to leaves (bijectively) and root to root. It is clear that
the composite of two boundary-preserving maps is boundary preserving,
and that every isomorphism is boundary preserving.

[Rough draft, version 2009-08-05 23:56.] [Input file: trees.tex, 2009-07-29 15:21]

14.2 The category Tree 327

surj 14.2.13 Lemma. Every surjection in Tree is boundary preserving.

Proof. If φ1 : sub(S) → sub(T) is surjective, in particular the maximal
subtree T ∈ sub(T) is hit, and since φ1 is inclusion preserving by 14.2.9,
T ∈ sub(T) must be hit by S ∈ sub(S). !

14.2.14 Proposition. Every map of trees φ : S → T factors essentially uniquely
(i.e. uniquely up to unique isomorphism) as a boundary-preserving map followed
by a free map. More precisely, the classes of boundary-preserving maps and free
maps form an orthogonal factorisation system.

We shall see in ?? that the boundary-preserving maps are precisely the
generic maps in the sense of Weber [104] (defined in ?? below). Generic
maps are characterised by a universal property. The proposition states that
Tree has generic factorisations, an important property for a Kleisli category.

Proof. The first statement will be a special case of Proposition ??, but here
is the main argument: let M : = φ1(S) ∈ sub(T) denote the image of the
maximal subtree in S, and let α : M → T be the inclusion—this is an map
in TEmb . Now α : M → T is the second factor in the wanted factori-
sation. Since φ1 is inclusion preserving by Lemma 14.2.9, we get also a
map S → M which is boundary preserving by construction. It is easy to
see that this factorisation is unique (up to a unique isomorphism). Finally,
since both classes of maps contain the isomorphisms and are closed under
composition, we have an orthogonal factorisation system. !

14.2.15 Remark. There is a strong analogy between this boundary-preserving/free
factorisation system in Tree and the root-preserving/ideal factorisation
system in TEmb : in both cases the left-hand component is characterised
in terms of a certain max-preservation, while the right-hand component
is characterised in terms of stability with respect to smaller elements, or
equivalently in terms of preservation of certain minimal elements. Com-
pare Lemma 12.3.10 with Proposition 14.2.10. We shall not pursue the
analogy further.

We shall now describe the boundary-preserving maps in explicit terms.
The main point of the analysis is Proposition 14.2.4 which says that any
map out of a nontrivial tree is the grafting of its restriction to the one-node
subtrees (also via Corollary 12.3.24). This is also just the content of the
adjunction: to give a map S → T is equivalent to giving S → T, so we just
have to say where each node goes.

[Rough draft, version 2009-08-05 23:56.] [Input file: trees.tex, 2009-07-29 15:21]

328 Trees (2)

14.2.16 Boundary-preserving maps out of a one-node tree. Let E denote
a one-node tree with n leaves, and suppose φ : E → R is boundary pre-
serving. By the cartesian condition, R necessarily has n leaves, and for any
such R there are precisely n! boundary-preserving maps from E to R.

There are three cases to consider, depending on the number of nodes
in R: If R has at least two nodes, then it has an inner edge, and since the
map is boundary preserving this inner edge is not hit by φ0, so φ is not
surjective. Since in R the root is different from any leaf, φ0 and hence φ is
injective. Here is a picture of such a node refinement:

E

!

R

If R has precisely one node, clearly the map is an isomorphism. (This
is not worth a picture.)

Finally there is a special case which occurs only for n = 1: then the tree
R may be the trivial tree. In this case the two edges of E are both sent to
the unique edge of R, and the node is sent to the maximal subtree (also
trivial) by the boundary-preservation assumption. In this case, φ is clearly
surjective (and not injective). Here is a picture of such a unary-node deletion:

E

!

R

14.2.17 Boundary-preserving maps, general case. Consider now a gen-
eral boundary-preserving map S → T, and assume S is nontrivial. We
know the map is the grafting of its restrictions to the one-node subtrees
of S. Let E be a one-node subtree of S. We can factor the composite
E → S → T into boundary-preserving followed by free:

E ! S

R

b.pres.
"

free
! T.

"

[Rough draft, version 2009-08-05 23:56.] [Input file: trees.tex, 2009-07-29 15:21]

14.2 The category Tree 329

The subtree R ∈ sub(T) is the image of the subtree E ∈ sub(S). The map
E → R is either a node refinement or an unary-node deletion or an isomor-
phism. The original map S → T is the grafting of all the maps E → R for E

running over the set of nodes in S. Here is a picture:

S

E2

E1

E3

E4

!

T

R2

R1

R3

R4

In conclusion, every boundary-preserving map S → T is the grafting of
node refinements, unary-node deletions, and isomorphisms, indexed over
the set of nodes in S. It is clear that we can realise the grafting by refining
(or deleting) the nodes one by one in any order, and in particular we can
first do all the unary-node deletions (this amounts to a surjection), then all
the node refinements (this amounts to an injection).

Since surjections are boundary-preserving (14.2.13), and since node re-
finements are not surjective we find:

14.2.18 Lemma. Every map in Tree factors essentially uniquely as a surjection
followed by an injection. The surjections are generated by the unary-node dele-
tions.

!

Combining the two factorisation systems we get a double factorisation
system:

14.2.19 Proposition. Every morphism in Tree factors essentially uniquely as
a surjection (a sequence of node deletions), followed by a boundary-preserving
injection (a sequence of node refinements), followed by a free map (essentially a
subtree inclusion). !

14.2.20 Description of boundary-preserving injections into a given tree.
To finish this first part of the paper, we show how to break the boundary-
preserving injections into primitive maps. We already observed that we
can refine one node at the time, but these are not the primitive maps.

[Rough draft, version 2009-08-05 23:56.] [Input file: trees.tex, 2009-07-29 15:21]

330 Trees (2)

In order to characterise the primitive boundary-preserving injections, we
change the viewpoint, looking at maps into a given tree instead of out of
it:

Fix a tree T, and suppose it has an inner edge x = t(b) = s(e). We
construct a new tree T/x by contracting the edge x, and exhibit a canonical
boundary-preserving injection φx : T/x → T:

T0 ! {x} $ T2 ! {x} ! T1/(b = p(e)) ! T0 ! {x}

T0
"

$ sub′(T)
"

! sub(T)
"

! T0
"

(14.3) contraction

The maps are all obvious, except possibly T1/(b = p(e)) → sub(T): this
map sends the node b = p(e) to the two-node subtree containing b and
p(e), and sends all other nodes to their corresponding one-node subtree.
It is clear that φX is boundary preserving and injective. The tree T/x has
one inner edge less than T. We can now repeat the process for any subset
of the inner edges in T, and for each subset we get a different boundary-
preserving injection into T.

Conversely, every boundary-preserving injection S → T arises in this
way. Indeed, we already know that these boundary-preserving injections
are glued together from node refinements. The inner edges of the image
trees form precisely the subset of edges we need to contract in order to
recover the tree S.

In conclusion, we have derived explicit descriptions for each of the four
classes of maps. The surjections can be described more explicitly as dele-
tion of unary nodes, and each surjection can be broken into a composite of
maps deleting just one node. The boundary-preserving injections are de-
scribed as node refinements, and each boundary-preserving injection can
be broken into a sequence of ‘primitive’ refinements adding just one new
node. The free maps are the ‘arity-preserving’ tree embeddings, which
also can be given add-one-node wise. The new node is added either at a
leaf (in which case the map is root preserving), or at the root (in which case
the map is an ideal embedding).

14.2.21 Linear trees. A linear tree is one in which every node has pre-
cisely one input edge. The full subcategory of Tree consisting of the linear

[Rough draft, version 2009-08-05 23:56.] [Input file: trees.tex, 2009-07-29 15:21]

14.3 Trees of trees, constellations, and the Baez-Dolan construction 331

trees is equivalent to the simplex category ∆. The factorisation systems
restrict to ∆, recovering the well-known fact that every map in ∆ factors
uniquely as a surjection followed by a top-and-bottom-preserving injec-
tion, followed by distance-preserving injection. The primitive maps corre-
spond to degeneracy and face maps in ∆, which motivates the terminology
employed by Moerdijk and Weiss [83]. They call the unary-node deletions
degeneracy maps. The primitive node refinements they call inner face maps,
and the primitive tree embeddings outer face maps. The inner face maps
play a crucial role in their theory, to express horn-filling conditions for
dendroidal sets [82].

14.2.22 Remark. The factorisation of an injection into a generic injection followed by a
free map has uniqueness. One can also always factor into free followed by generic in-
jection, but this factorisation is not unique: if the generic injection ε is an expansion that
takes place away from the subtree we first included (via ι), then that subtree will also be
a subtree (with inclusion ι′) in the expanded tree, so that

ε ◦ ι = id ◦ι′.

14.3 Trees of trees, constellations, and the Baez-
Dolan construction

The following is mostly copied from [64].

To a given polynomial monad P : Set/I → Set/I, represented by I ←
E → B → I we shall associate another polynomial monad P+ : Set/B →
Set/B. The construction is originally due to Baez and Dolan [11], later
given an elegant reformulation by Leinster [75]. The version here, for
polynomial functors is from [64]. First we give a formal treatment, then an
explicit graphical version, which also serves to establish that the output of
the first version is polynomial.

Throughout this subsection, we fix a polynomial monad P, represented
by

E ! B

I

$

I.

!

[Rough draft, version 2009-08-05 23:56.] [Input file: trees.tex, 2009-07-29 15:21]

332 Trees (2)

14.3.1 The Baez-Dolan construction for polynomial monads, formal ver-
sion. Denote by PolyMnd (I) the category of polynomial monads on Set/I,BD-formal
i.e. the category of monoids in Polyc(I). Since P is a monad, the slice
category Polyc(I)/P has a natural monoidal structure: the composite of
Q → P with R → P is R ◦ Q → P ◦ P → P and the unit is Id →
P. Let PolyMnd (I)/P denote the category of polynomial monads over
P, i.e. monoids in Polyc(I)/P. The forgetful functor PolyMnd (I)/P →
Polyc(I)/P has a left adjoint, the free P-monad functor, hence generating
a monad T : Polyc(I)/P → Polyc(I)/P. The Baez-Dolan construction
consists in reinterpreting this as a monad on Set/B and observing that it
is polynomial, cf. [64].

The key point is that there is a natural equivalence of categories

Polyc(I)/P ∼→ Set/B, (14.4)

given by evaluation at the terminal object I → I, which we denote by 1.
(See 10.3.)

Here we should really observe that at first we arrive at the slice cate-
gory of Set/I over B/I, but then we reinterpret this as Set/B.

In detail, if Q → P is an object in Polyc(I)/P, the associated object
in Set/B is simply Q(1) → P(1) = B. The inverse equivalence basically
takes an object C → B in Set/B to the object in Polyc(I)/P given by the
fibre square

E ×B C ! C

I $ E
"

! B
"

! I.

The promised monad, the Baez-Dolan construction on P, denoted P+ :
Set/B → Set/B is simply the monad corresponding to T : Polyc(I)/P →
Polyc(I)/P under this equivalence. We shall describe this monad explic-
itly in a moment and see that it is polynomial.

To compare with Leinster’s version of the Baez-Dolan construction [75],
note that the above equivalence induces a monoidal structure on Set/B
which is the tensor product of P-collections, for which the monoids are the
P-operads, in the sense of [75]. The substitutional tensor product on Set/B
is not the usual one (which we know corresponds to one-variable polyno-
mial functors given just by E → B) but rather some coloured version. Is it

[Rough draft, version 2009-08-05 23:56.] [Input file: trees.tex, 2009-07-29 15:21]

14.3 Trees of trees, constellations, and the Baez-Dolan construction 333

true at all that coloured operads are monoids in some monoidal category?
YES, IN A BURRONI THING

Hence we also get an equivalence of categories between PolyMnd (I)/P
and the category of P-operads, and the free P-monad functor on Polyc(I)/P
corresponds to the free P-operad functor used in Leinster’s version of the
Baez-Dolan construction.

MORE INFO:

14.3.2 The Baez-Dolan construction for a polynomial monad, explicit
graphical version. Starting from our polynomial monad P, we describeBD
explicitly a new polynomial monad P+, shown afterwards to coincide
with the one constructed above. The idea is to substitute into dots of trees
instead of grafting at the leaves. Specifically, with B∗ the set of P-trees,
define U∗ to be the set of P-trees with one marked node. There is now a
polynomial functor

U∗ ! B∗

B

$

P+ B

!

where U∗ → B∗ is the forgetful map, U∗ → B returns the bouquet around
the marked dot, and t : B∗ → B comes from the monad structure on P—it
amounts to contracting all dots back to the root dot (or setting a new dot
in the dotless tree). Graphically:

*

{ } { }

(14.5) slice1

[Rough draft, version 2009-08-05 23:56.] [Input file: trees.tex, 2009-07-29 15:21]

334 Trees (2)

(In this diagram as well as in the following diagrams of the same type, a
symbol

{ }
is meant to designate the set of all bouquets like this (with

the appropriate decoration), but at the same time the specific figures rep-
resenting each set are chosen in such a way that they match under the
structure maps.)

This polynomial endofunctor P+ is naturally a monad: the substitution
law can be described in terms of a partial composition law

B∗ ×B U∗ → B∗

defined by substituting a P-tree into the marked dot of an element in U∗,
as indicated in this figure:

F

a b c

a
f

b

p

h
c

resulting in

a b c
p

h

(14.6) BD-subst

Of course the substitution makes sense only if the decorations match. This
means that t(F), the ‘total bouquet’ of the tree F, is the same as the lo-
cal bouquet of the node f . (The letters in the figure do not represent the
decorations—they are rather unique labels to express the involved bijec-
tions.) The unit is given by the map B → B∗ interpreting a bouquet as a
tree with a single dot. (One can check again that this monad is cartesian.)

14.3.3 Comparison between the two versions of the construction. We
wish to compare the two monads T and P+ under the equivalence of
categories Polyc(I)/P ∼→ Set/B. The explicit description of P+ allows
us to compute its value on an object C → B of Set/B: the result is the
set of P-trees with each node decorated by an element of C, compati-
bly with the arity map C → B (being a P-tree means in particular that
each node already has a B-decoration; these decorations must match). We
claim that this is the same thing as a Q-tree, where Q is the polynomial
functor corresponding to C → B under the key equivalence, i.e. given by

[Rough draft, version 2009-08-05 23:56.] [Input file: trees.tex, 2009-07-29 15:21]

14.3 Trees of trees, constellations, and the Baez-Dolan construction 335

I ← E×B C → C → I. Indeed, since the tree is already a P-tree, we already
have I-decorations on edges, as well as bijections for each node between
the input edges and the fibre Eb over the decorating element b ∈ B. But if
c ∈ C decorates this same node, then the cartesian square specifies a bijec-
tion between the fibre over c and the fibre Eb and hence also with the set
of input edges. So in conclusion, P+ sends C to the set of C-trees. On the
other hand, T sends the corresponding polynomial functor Q to the free
monad on Q, with structure map to P given by the monad structure on P.
Specifically, T produces from Q the polynomial monad

! C∗

E∗
"

! B∗
"

E
"

! B
"

where C∗ denotes the set of Q-trees, so the two endofunctors agree on
objects. The same argument works for arrows, so the two endofunctors
agree.

To see the monad structures agree, note that the set of operations for
P+ ◦ P+ is the set of P-trees with nodes decorated by P-trees in such a way
that the total bouquet of the decorating tree matches the local bouquet of
the node it decorates. The composition law P+ ◦ P+ ⇒ P+ consists in
substituting each tree into the node it decorates. On the other hand, to
describe the monad T it is enough to look at the base sets, since each top
set is determined as fibre product with E over B. In this optic, T sends B
to B∗, and T ◦ T sends B to B∗∗ which is the set of P∗-trees, which is the
same as P-trees with nodes decorated by P-trees, and edges decorated in
I, subject to the usual compatibility conditions. Clearly the composition
law T ◦ T ⇒ T corresponds precisely to the one we described for P+.
For both monads, the unit is described as associating to a bouquet the
corresponding one-dot tree.

In conclusion, the two constructions agree, and, in particular, produce
a polynomial functor.

MORE STUFF FROM ZOOM

[Rough draft, version 2009-08-05 23:56.] [Input file: trees.tex, 2009-07-29 15:21]

336 Trees (2)

[Rough draft, version 2009-08-05 23:56.] [Input file: trees.tex, 2009-07-29 15:21]

Part III

Categorical polynomial functors

[Rough draft, version 2009-08-05 23:56.] [Input file: trees.tex, 2009-07-29 15:21]

14.4 Introduction 339

14.4 Introduction

As we have mentioned at several occasions in Part II, the notion of poly-
nomial functor makes sense quite generally in any locally cartesian closed
category E . However, one context where it would be really nice to have
polynomial functors is in Cat , and Cat is not locally cartesian closed (cf. anal-
ysis below). Nevertheless there are several useful ways of making sense
of the notion of polynomial functors in Cat .

We are also quite interested in the case of polynomial functors in the
category of groupoids (not locally cartesian closed either), because with
groupoids we can fix some of the problems we had with sets, related to
automorphisms. With groupoids we will be able to ‘represent’ structures
we could not deal with effectively in Set . In example 15.3.1 below we
study the family functor which helps making the notion of symmetric op-
erad representable, a thing we could not handle in Set . We will also be
able to incorporate species into the picture.

There are at least two versions of this notion of polynomial functor for
Cat . One is the slice viewpoint (Chapter 15) where diagrams of categories
and functors like

I s$ E p! B t! J (14.7) shape

define functors between slices like this:

Cat/I s∗! Cat/E p∗! Cat/B t!! Cat/J

Here a special condition is required on the functor p : E → B in order for
the pushforth p∗ to exist. This is the Conduché condition which we study
in detail in 15.1.

The other viewpoint is about presheaves (Chapter ??), where a diagram
(14.7) defines a functor between presheaf categories

PrSh (I) s∗! PrSh (E)
p∗! PrSh (B) t!! PrSh (J)

In this case, the adjoint functors are different, but they still have the same
formal properties. The presheaf category setting is closely related to a spe-
cial variant of the slice viewpoint: a presheaf on a category I is the same
thing as a discrete fibration F → I, which is a special case of an object in
Cat/I. However, the functors do not quite agree. . .

There is an intermediate possibility which is to look at groupoid-valued
presheaves, or rather prestacks. . .

[Rough draft, version 2009-08-05 23:56.] [Input file: categorical.tex, 2009-08-03 07:31]

340

In any case this second viewpoint relies on the notions of left Kan extension, final
functors (and the factorisation system consisting of final functors and discrete fibrations).
There are two formulations of this theory: in terms of presheaves and in terms of discrete
fibrations. For presheaves the adjunctions are straightforward to use. In the discrete-
fibration viewpoint the pushforth functor is not the usual one because the pushforth of
a discrete fibration is not in general a discrete fibration again. You need to factor it into
final followed by discrete. . . This slightly more complicated pushforth corresponds to the
usual pushforth of presheaves.

[Rough draft, version 2009-08-05 23:56.] [Input file: categorical.tex, 2009-08-03 07:31]

Chapter 15

[Polynomial functors for slices of
Cat]

Ch:Cat/I

Cat is not locally cartesian closed

Another way of formulating the problem with Cat is to say that there are
functors p : E → B for which the pullback functor

p∗ : Cat/B −→ Cat/E
X %−→ E ×B X

does not have a right adjoint. Clearly this is a serious problem, since the
whole construction of polynomial functors is based on such right adjoints.

Here is an example which in a precise sense is the initial example—
the example that has precisely what it takes to exhibit the problem, and
nothing more than that.

It is not difficult to see that a pullback functor has a right adjoint if and
only if it preserves all colimits. Indeed, any functor that has a right adjoint
preserves all colimits, and the converse is true if just some mild conditions
about generators is satisfied. Find an exact formulation and reference of
this. . . BORCEUX??

First we’ll need some simplicial notions and notations.

15.0.1 Notation. Let [n] denote the category freely generated by a string
of n arrows. It is the category corresponding to the totally ordered set
[n] = {0 < 1 < · · · < n}. The full subcategory of Cat consisting of these
categories is ∆.

[Rough draft, version 2009-08-05 23:56.] [Input file: categorical.tex, 2009-08-03 07:31]

342 [Polynomial functors for slices of Cat]

15.0.2 Example. This is an example of a functor p : E → B such thattriangle
p∗ does not preserve colimits, and in particular p∗ cannot have a right
adjoint. Let E be the category [1], and let B be [2], and let the functor
p : E → B be the functor [1] → [2] which preserves the endpoints:

[1] → [2]

So this is the inclusion of the hypotenuse 0 → 2 in the triangle.

0 ! 2

1
$

!

We claim that the corresponding pullback functor,

p∗ : Cat/B → Cat/E

does not preserve colimits: we exhibit a concrete pushout square which is
not preserved:

[1] ! [2]

[0]

#

! [1]

#
(15.1) Segal-square

These four maps are maps in Cat/B. Now pull back this square to Cat/E.
We get

[0] ! [1]

∅
"

! [0]
"

which is clearly not a pushout, because the pushout of • with • over the
empty set is just the disjoint union of two points, whereas in [1] there is an
arrow between the two points.

[Rough draft, version 2009-08-05 23:56.] [Input file: categorical.tex, 2009-08-03 07:31]

15.1 Conduché fibrations 343

15.1 Conduché fibrations
Sec:Conduche

Question: when does the pullback functor p∗ : Cat/B → Cat/E have
a right adjoint? The problem in the example we just saw is that there is a
factorisation in the bottom space that cannot be lifted to the top space. The
Conduché condition will preclude this sort of problem:

15.1.1 The Conduché condition. Let p : E → B be a functor. The Conduché
condition states that for every triangle h = g ◦ f in B, every lifting of the
hypotenuse h to E extends to a lift of the whole triangle. Furthermore,
this lift is unique in the sense that if there are two such lifts, then there
is a chain of vertical arrows comparing them. In other words, if triangle
h′ = g′ ◦ f ′ and h′ = g′′ ◦ f ′′ both lie over h = g ◦ f , then there is a vertical
arrow i such that f ′′ = i ◦ f ′ and g′′ = i ◦ g′, or possibly i is not a single
vertical arrow but a zigzag of vertical arrows

·
h′ ! ·

· g′

!

f ′ !

·...
·

·

g′′

!

f ′′

!

Clearly, Example 15.0.2 above does not satisfy the Conduché condition.
Examples of functors that satisfy Conduché condition are fibrations

and opfibrations.

15.1.2 Example. A Grothendieck fibration p : E → B is a Conduché fi-
bration. Indeed, given a triangle γ = ψ ◦ ϕ in B and a lift to E of the
hypotenuse γ. We need to lift the rest of the triangle. Take the cartesian
lift of ψ to the target of the lift of γ. By the cartesian property, there is then
a unique lift of ϕ to complete the triangle above. So every factorisation
lifts. To see uniqueness, if we are given any other lift of the triangle then
the cartesian property of the first one we have ensures that there is a com-
parison. So between any two lifts of the triangle there is a comparison to
the cartesian lift, and hence a zigzag of comparisons.

15.1.3 Theorem. For a functor p : E → B the following are equivalent.

[Rough draft, version 2009-08-05 23:56.] [Input file: categorical.tex, 2009-08-03 07:31]

344 [Polynomial functors for slices of Cat]

(i) The pullback functor p∗ : Cat/B → Cat/E has a right adjoint.
(ii) p∗ preserves colimits (i.e. p∗ is cocontinuous).

(iii) p satisfies the Conduché condition.

This theorem is due to Giraud, who gave a very detailed proof in the
beginning of the sixties. Unfortunately the result was buried deep in the
long and very dry memoir Méthode de la descente [44]. Ten years later the
result was rediscovered by Conduché [29] (unaware that the result was
already in [44]), and today the condition bears his name.

15.1.4 Remark. To say that p∗ has a right adjoint is equivalent to saying
that the functor J %→ HomE(p∗ J, X) is representable for every X. To prove
that a functor Catop → Set is representable, there are some tricks, ex-
tracted from Giraud [44]. It is enough to prove that all colimits are pre-
served, and some of them are automatic in our case (I think that coprod-
ucts are preserved, and also coequalisers along a regular epi, or something
of the sort, see [44] Section 2.) Under these condition, it only remains to
see that pushouts like Diagram (15.1) are preserved. Perhaps a theorem
like this can be extracted: for a functor F : Catop → Set preserving certain
colimits, you can check if it preserves all colimits by restricting to the trun-
cated ∆2 = {[0], [1], [2]} and see if this truncated simplicial set is the nerve
of a category. The Segal condition is more or less equivalent to the Con-
duché condition. . . ? NOT SURE IF ANYTHING IS GOING TO COME
OUT OF THIS PARAGRAPH

15.1.5 The Conduché condition in simplicial terms. Let us see what the
Conduché condition has to do with the issue. First let us describe some
subcategories in E. We are interested in what happens above this triangu-
lar subcategory of B

b0
γ ! b2

t

b1

ψ

!

ϕ !

We see this subcategory t ⊂ B as the image of a functor [2] → B, and we
will use the pushout description of the category [2] given in Diagram (15.1)
in Example 15.0.2. This means that b1 is the image of [0], and that the
arrows ϕ and ψ are images of the two copies of [1].

[Rough draft, version 2009-08-05 23:56.] [Input file: categorical.tex, 2009-08-03 07:31]

15.1 Conduché fibrations 345

We consider the three fibre categories Eb0, Eb1, and Eb2. For each of
the three arrows we also consider the category of arrows lying over the
arrow (to be described in more detail in a moment), let us describe the
subcategory Eϕ ⊂ E of arrows lying over some ϕ : b0 → b1. The objects of
Eϕ are the union Eb0 (Eb1. The arrows are those that either lie over ϕ or
lie over the identity arrows of b0 and b1. A more concise description goes
as follows. Note first that the set of arrows (or the category of arrows) in B
can be described as the set (or category) of functors I → B, where I = ∆[1]
is the interval category with two objects and a single non-identity arrow.
For an arrow ϕ : b0 → b1 in B we will use the same letter ϕ to denote the
corresponding map I → B. Now Eϕ is simply the pullback

Eϕ ! E

I
"

ϕ
! B

"

Obviously Eϕ contains Eb0 and Eb1 as full subcategories. In simplicial
terms, this is just the pullback square (here shown for b0):

Eb0
! Eϕ ! E

∆[0]
"

0
! ∆[1]

"

ϕ
! B

"

Finally we consider the category Et whose arrows are those lying over
some arrow in the triangle.

So here is a picture of the seven categories. All the arrows between
them are full inclusions:

Eb0
! Eγ $ Eb2

Et

"

Eϕ

!

!
Eψ

$

$

Eb1

!

$

[Rough draft, version 2009-08-05 23:56.] [Input file: categorical.tex, 2009-08-03 07:31]

346 [Polynomial functors for slices of Cat]

(The Conduché condition says that the bottom square is a pushout, as we
shall now explain.)

Each of these categories can be described as a pullback

Ei ! E

[i]
"

! B
"

for i = 0, 1, 2. For i = 0 it just says that E0 is the fibre over the object
singled out by [0] → B. For an arrow, . . . and finally for a triangle.

Suppose the right adjoint p∗ exists. Then p∗ preserves all colimits. In
particular it preserves the square (15.1) mapping into B singling out the
triangle t. So we get a pushout diagram

p∗[1] ! p∗[2]

p∗[0]

#

! p∗[1]

#

In other words,

Eϕ ! Et

Eb1

#

! Eψ

#

Claim (WHICH CURRENTLY I DON’T UNDERSTAND WHY IS TRUE)
To say that this is a pushout is equivalent to saying that the natural map
of distributors

Eϕ ⊗Eb1
Eψ → Eγ

is an isomorphism, where γ is the composite ψ ◦ ϕ.
This in turn is to say that the Conduché condition holds!
So concerning the claim: by the universal property of the pushout,

there is always a map Eϕ (Eb1
Eψ → Et.

Et contains three full subcats: Eϕ and Eψ and Eγ. In fact Et can be
characterised(?) as the smallest one containing these three subcats. So if

[Rough draft, version 2009-08-05 23:56.] [Input file: categorical.tex, 2009-08-03 07:31]

15.1 Conduché fibrations 347

we can just show that the pushout does contain Eγ too, then we should
be done. . . But indeed, every arrow in Eγ is a lift of γ so to say that every
arrow in Eγ arises as composite of arrows from Eϕ and Eψ then we are
done, partly. In conclusion, if Et = Eϕ (Eψ, then at least it shows that
every arrow over γ can be factored.

15.1.6 Concrete description of p∗X. Here is the description of the cate-explicit-construction
gory p∗X, which is a category over B. The objects over b ∈ B are diagrams

X

Eb

s
!

⊂ E
"

(i.e., E-arrows Eb → X). So an object is a pair (b, s), where b ∈ B and where
s is as described.

The arrows are diagrams

X

Eϕ

Φ

!

⊂ E
"

The source of such a Φ are given by restricting to Eb0 ⊂ Eϕ, and the target
is given by restricting to Eb1 ⊂ Eϕ.

So we can describe the arrows of p∗X in this more general manner
(without favouring a particular b): the arrows are diagrams

X

[1] ×[0] E !

s
!

E
"

[1]
"

! B
"

Let us describe composition of arrows in p∗X. Given two composable
arrows (ϕ, Φ) and (ψ, Ψ) lying over our fixed composable pair ψ ◦ ϕ = γ

[Rough draft, version 2009-08-05 23:56.] [Input file: categorical.tex, 2009-08-03 07:31]

348 [Polynomial functors for slices of Cat]

in B. Then we have a diagram

Eϕ ! Et + Eϕ BEb1
Eψ

Eb1

#

! Eψ

#

It is the Conduché condition that guarantees the isomorphism Et + Eϕ BEb1
Eψ. Note that Eγ sits inside Et. . .

Now by the universal property of the pushout, our maps Φ : Eϕ → X
and Ψ : Eψ → X glue to a map on Eϕ (Ex1

Eψ = Et (still a E-map). Finally
restrict this map Et → X to Eγ ⊂ Et.

Checking associativity of this composition law is straightforward and
unenlightening, and describing the identity arrows is also trivial.

15.1.7 In terms of distributors. A category D with a functor to I = [1] can
be interpreted as a distributor. Namely, it contains two full subcategories
D0 and D1. (The category D0 is a sieve in D, which means that if an arrow

f
→ is in D0 then any composition →

f
→ is in D0 too.) There may be arrows

from an object in D0 to an object in D1, but no arrows in the other direction.
These arrows express a correspondence, which is equivalent to giving

a distributor Dop
0 × D1 → Set . We also call this distributor D.

Recall what is the tensor product of distributors: given D : Aop × B →
Set and E : Bop × C → Set , then we can form D ⊗B E. It is the set of pairs
where f goes from A to B, and g goes from B → C, and we identify f ⊗ ug
with f u ⊗ g.

The Conduché condition states precisely that for every triangle γ =
ψ ◦ ϕ in B, the natural map Eϕ ⊗Eb1

Eψ → Eγ is an isomorphism.
If a category X has a functor to [2], then there are defined three distrib-

utors D01, D12, and D02, which are the pullback of X along the face maps
inclusions [1] ↪→ [2]. And then there is a composition law D01 ⊗D1 D12 →
D02. (Under the conditions or always?) To say that the square image of
15.1 is a pushout is equivalent to saying that this natural map is an iso-
morphism.

15.1.8 More advanced proof of the Theorem. This proof identifies the
Conduché maps as generators for the localisation sSet → Cat .

[Rough draft, version 2009-08-05 23:56.] [Input file: categorical.tex, 2009-08-03 07:31]

15.1 Conduché fibrations 349

We fix a functor p : E → B. We want to find the conditions under
which p∗ has a right adjoint.

Let N : Cat → sSet be the nerve functor. Consider the square

Cat/E $ p∗
Cat/B

sSet/NE

N
"

$
(Np)∗

sSet/NB

N
"

Now the bottom map always has a right adjoint because we are talking
slices of a presheaf category. Now we cannot use N to compare this to fact
to a statement about p∗ because N is not cocontinuous. Instead we shall
use the left adjoint to N, the fundamental category functor

τ1 : sSet → Cat

Since this is a left adjoint it is cocontinuous. So now the relevant diagram
is

Cat/E $ p∗
Cat/B

sSet/NE

τ1

#

$
(Np)∗

sSet/NB

τ1

#
(15.2) tau-square

Definition. An arrow in sSet is called a quasi-isomorphism if its image in
Cat under τ1 is an isomorphism.

Now we shall invoke some general theory about localisation of cocom-
plete categories (note that both Cat , sSet , and their slices are cocomplete).

Let F : C → D be a cocontinuous functor between cocomplete cate-
gories. Let Σ denote the class of arrows in C which are sent to isomor-
phisms in D . Then there is a cocomplete category Σ−1C with a cocontin-
uous functor C → Σ−1C such that for every functor that inverts Σ factors
uniquely through Σ−1C .

Recall that for an arrow f : A → B, an object X is (strictly) orthogonal
to f , written f⊥X, if

A ! X

B

f
" ∃!

!

[Rough draft, version 2009-08-05 23:56.] [Input file: categorical.tex, 2009-08-03 07:31]

350 [Polynomial functors for slices of Cat]

Now let C ′ ⊂ C denote the full subcategory whose objects are the X or-
thogonal to all f ∈ Σ.

15.1.9 Theorem. (See Borceux, Thm 5.4.8 or something EXACT REFERENCE?)
The category C ′ is a reflexive subcategory in C , and the reflection r : C → C ′ is
the localisation with respect to Σ.

That is, for every C → D (cocontinuous between cocomplete categories)
which inverts the arrows in Σ, there is a factorisation

C ! D

C ′

∃!

!

!

So much for the general theory. In our case, τ1 : sSet → Cat is the
localisation and the reflector is N. Sigma is the set of map

Ik → [k]

where the simplicial set Ik is the graph consisting of k arrows in a sequence
(but without their composites), while [k] is the simplicial set ∆[k], the k-
simplex, which is a category. Another way of describing Ik is as the co-
product in sSet of intervals. The maps Ik ⊂ [k] describe the principal
edges of a simplex.

Claim: (Np)∗ preserves quasi-isomorphisms provided the Conduché
condition holds.

If this is the case, both ways around in the diagram (15.2) invert quasi-
isomorphisms.

Now consider the maps

(Np)∗X ! N(p∗τ1X) X
ε ! Nτ1X

NE
Np

!

$

!

B

$

!

The map ε is a quasi-isomorphism (check this!). Hence the map (Np)∗X −→
N(p∗τ1X) is an isomorphism. This shows that at least the Diagram (15.2)
commutes up to isomorphism.

[Rough draft, version 2009-08-05 23:56.] [Input file: categorical.tex, 2009-08-03 07:31]

15.2 Polynomial functors in Cat 351

It remains to show that p∗ preserves colimits. Consider some colimit
(Si)i∈I → S in Cat/B, and consider also the colimit (NSi)i∈I → T in
sSet/NB. Note that this is not the image of the first under N, because
N does not preserve colimits. However, taking τ1 on this second colimit
reproduces the first. So going the two ways around in Diagram (15.2) we
get some diagram which is a colimit by going the lower way around, and
which is p∗ of the original colimit the upper way around. Hence p∗ pre-
serves the colimit. End of proof.

15.1.10 Remark. One could ask other questions: for example given any
functor p : E → B ask whether the pseudo-pullback has a right adjoint.
And the notion of right adjoint might be weakened as follows: instead of
requiring a bijection of hom sets,

HomE(p∗Y, X) + HomB(Y, p∗X),

see if we cannot define a condition where instead some hom cats should
be equivalent . . .

15.2 Polynomial functors in Cat

Definition. A polynomial functor Cat/I → Cat/J is one of the form

Cat/I
s∗! Cat/E

p∗! Cat/B
t!! Cat/J

for a diagram

E
p ! B

I

s

$

J

t!

where p is a Conduché fibration.
A polynomial functor in one variable is just the special case where I

and J are the terminal category. In other words, it is a functor of the form

Cat −→ Cat

C %−→ p∗(C ×B E)

[Rough draft, version 2009-08-05 23:56.] [Input file: categorical.tex, 2009-08-03 07:31]

352 [Polynomial functors for slices of Cat]

15.2.1 Beck-Chevalley conditions. The Beck-Chevalley conditions hold
for the adjunction p! 7 p∗, and consequently it holds also for the adjunc-
tion p∗ 7 p∗ whenever this last functor exists.

The Beck-Chevalley condition ensures that most things can be checked
fibrewise. Some squares to draw:

Cat/Eb ! Cat/E

Cat

#

! Cat/B

#

Eb ! E

1
"

!b"
! B

p
"

15.2.2 Lemma. The pullback of a Conduché fibration is again a Conduché fibra-
tion.

The trickier point is whether there is a distributivity law. But this
should be true.

15.2.3 Proposition. The distributive law holds in the same form as in 8.3.3.

The fibrewise argument allows us to reduce to the case C = 1 again.
Then B → 1 is a discrete category. Then all the fibre arguments should
work again.

15.2.4 More abstract approach. In fact all this may work in a more abstract
setting. Let C be a category with pullbacks. Define a notion of proper
map: a map ϕ is proper if pullback along it has a right adjoint and if the
same if true for every pullback of ϕ. Then it should be possible to deduce
Beck-Chevalley and distributivity.

The terminology ‘proper map’ is perhaps not necessary. Perhaps we
should just use the word exponentiable.

[Note that in the treatment of representable natural transformations
(10.1.8), we used lowerstarring along some map w which appeared in be-
tween two exponentiable maps. So we would like to have the property

[Rough draft, version 2009-08-05 23:56.] [Input file: categorical.tex, 2009-08-03 07:31]

15.3 The family functor 353

that is q = p ◦ w, and if p and q are exponentiable, then also w is. . . This
property holds for discrete fibrations, for example, or any class that is the
right-hand class of a factorisation system.]

One possible way to argue is this: consider the Yoneda embedding
y : C → Ĉ . In Ĉ everything works. If we can just show that p∗ is sent to
∗. (in analogy with the fact that y preserves exponentiation: it preserves
all those exponentiation that exist. In the same way, it should be true that
y preserves all those lowerstars that happen to exist. . .

one reason this works is that the sum map is just composition. In other
contexts it might be something more complicated, and then it might not
work. Suppose for example we work in the category of discrete fibrations.
Then the left adjoint might involve some factorisation (every functor fac-
tors as a final map followed by a discrete fibration), and the lowershriek
would be this last part only. In such cases where the sum map is not pure
composition we might get trouble Another example: sheaves: lowershriek
of a sheaf is not just composition: we need to sheafify afterwards!

15.3 The family functor

15.3.1 Finite sets and bijections. Let B denote the category of finite setsBij
and bijections, let E denote the category of pointed finite sets and bijections
preserving the basepoint, and denote the forgetful functor

p : E → B.

Given an arrow ϕ : I → J (i.e., a bijection) and a marked point e in J
(i.e., a point in the fibre EJ , then there is a unique way of picking a marked
point in I such that ϕ becomes a mark-preserving map—indeed since ϕ
is a bijection just take the inverse image of e. This shows that arrows in
B have unique lifts to E, which is one characterisation of being a discrete
fibration, and hence a Conduché fibration.

Hence p∗ exists and there is defined a polynomial functor

Cat −→ Cat

C %→ p∗(C ×B E)

which we shall now describe in detail. The category F(C) := p∗(C ×B E)
will be the category of families in C.

[Rough draft, version 2009-08-05 23:56.] [Input file: categorical.tex, 2009-08-03 07:31]

354 [Polynomial functors for slices of Cat]

15.3.2 Objects of F(C). According to our description in 15.1.6, the objects
in F(C) lying over an object I ∈ B are diagrams like

C ×B E

EI

s

!

⊂ E
"

so it is just any set map EI → C. Note that the fibre EI is canonically
identified with I itself, so the objects of F over I are maps

ι : I → C.

We also think of such a map as a family (Ci | i ∈ I).

15.3.3 Arrows of F(C). To describe the arrows lying over some bijection
ϕ : I ∼→ J, we first describe the full subcategory Eϕ ⊂ E. The object set of
Eϕ is the disjoint union of EI and EJ . In other words,

obj(Eϕ) = I B J.

The (non-identity) arrows in Eϕ must lie over ϕ: this means that they are
arrows in E going from an object of EI to an object in EJ . Now the objects
in EI and EJ are just the elements in I and J, and the arrows from an object
in EI to an object in EJ lying over ϕ is just to give a pair (i, j) ∈ I × J such
that ϕ(i) = j. In other words, the set of all the arrows over ϕ are just the
correspondence between the elements in I and J expressed by the bijection
ϕ. (This is to say that for a given ϕ : I → J and given an object in the fibre
over J, there is a unique overlying arrow—this is just the formulation of
E → B being a discrete fibration.)

Now an arrow in F(C) lying over ϕ is a diagram

C ×B E

Eϕ

Φ

!

⊂ E
"

which amounts to giving ι : I → C and : J → C and a family of arrows

Φi : ι(i) → (ϕ(i))

[Rough draft, version 2009-08-05 23:56.] [Input file: categorical.tex, 2009-08-03 07:31]

15.3 The family functor 355

15.3.4 The category of families in C. In summary, F(C) is the category of
families of objects in C: The objects are functors ι : I → C where I is a finite
set, and where an arrow from (I, ι) to (J,) is a pair (ϕ, Φ) consisting of a
bijection ϕ : I ∼→ J and a family Φ = (Φi | i ∈ I) of arrows Φi : ι(i) →
(ϕ(i)).

The category F(C) can also be described as the free symmetric monoidal
category on C . THIS OUGHT TO BE EXPLAINED HERE.

15.3.5 Trees. Now the category of trees T is the least fixpoint for the func-groupoid-of-trees
tor

Poly(1) −→ Poly(1)

Q %−→ Id + P ◦ Q

One checks that T is a groupoid.
!!!! F : Cat → (Cat , +, 0) the free-finite-sums functor, which is left

adjoint to the forgetful functor.!!!!!

Another construction, more like the free algebra construction, without
the need of a category of polynomial functors: let F be an endofunctor
of Cat . An F-category is a category C equipped with a functor F(C) →
C . The forgetful functor from F-categories to categories has a left adjoint
(provided F is sufficiently nice, e.g. it should certainly be enough that it is
a polynomial functor whose product part is given by a discrete fibration).
Let T : Cat → Cat denote the corresponding monad. Then T(1) is the
groupoid of (non-planar) trees.

MANY THINGS TO INVESTIGATE: HOW ABOUT WEAK ENDO-
FUNCTORS? WEAK F-CATEGORIES?

The groupoid of trees is not rigid. I.e. between two trees there can be
many different isomorphisms.

Now if we pass to P-trees for some polynomial endofunctor (monad?)
then we do get a rigid groupoid of P-trees. The decoration involves spec-
ified bijections between the set of children of each node and some fixed
set!

The category of (non-planar) constellations is the least fixpoint for the
functor

Cat/T1 −→ Cat/T1
X %−→ 1 + F(X)

[Rough draft, version 2009-08-05 23:56.] [Input file: categorical.tex, 2009-08-03 07:31]

356 [Polynomial functors for slices of Cat]

where F denotes the free symmetric operad on a categorical collection X.
MANY QUESTIONS TO ANSWER HERE: I don’t think there is presently

a truly rigorous treatment of fixed point for endofunctors of Cat . If F :
Cat → Cat is an endofunctor, how do we define F-Cat , the category of
F-objects? A morphism of F-objects should involve an (invertible) 2-cell.
Suppose that two endofunctors F : Cat → Cat and G : Cat → Cat are
connected by a natural transformation a : F → G which is an equivalence
(I mean that the functor aX : F(X) → G(X) is an equivalence of categories
for every X). In this case, can we show that the least fixed point of F is
equivalent to the least fixed point of G?.

15.4 Final functors and discrete fibrations

[Rough draft, version 2009-08-05 23:56.] [Input file: categorical.tex, 2009-08-03 07:31]

Chapter 16

[Polynomial functors for presheaf
categories]

16.1 Some prelims

Kan extensions

A left Kan extension of some functor f : C → D along another functor
i : C → C is a functor lani f : C → D with a natural transformation

C
i ! C

⇒

D

lani f$

f !

with the following universal property: for any other natural transforma-
tion

C
i ! C

⇒

D

g

$

f !

there is a unique natural transformation lani f ⇒ g making the obvious
pasting of 2-cells commute.

[Rough draft, version 2009-08-05 23:56.] [Input file: lan.tex, 2009-04-19 00:18]

358 [Polynomial functors for presheaf categories]

There is also the notion of pointwise left Kan extension: for each object
X ∈ C, consider the lax pullback square

C↓X ! 1

⇒

C
"

i
! C

!X"

"

Now ask that the pasting

C↓X ! 1

⇒

C
"

i
! C

!X"

"

⇒

D

lani f
"

f !

have the universal property.
If something is a pointwise left Kan extension then it is also a left Kan

extension. This is true in Cat – note that all these notions make sense in
any 2-category. If C is cocomplete then the two notions agree.

Check out Mac Lane. . .

Categories of elements

16.1.1 Introduction. The elements of a set are just of one kind, and that’s
what we usually understand by elements. For a graph, there are two kinds
of elements: vertices and edges, and these two kinds of elements are re-
lated by certain incidence relations. These considerations make sense for
any presheaf category: for each object of a presheaf category there is a
category of elements which is important in many constructions. (Recall
that a graph (by which we mean an oriented, non-reflexive graph) is just a
presheaf on the category G1 = {0 !! 1}.)

Let C be a small category, and let Ĉ : = PrSh (C) : = Fun(Cop, Set)
denote the category of presheaves on C. We have the Yoneda embedding

y : C −→ Ĉ

C %−→ Hom(_, C).

[Rough draft, version 2009-08-05 23:56.] [Input file: elements.tex, 2009-05-03 22:13]

16.1 Some prelims 359

The Yoneda embedding is fully faithful, and we just write C for y(C) un-
less there is a special reason to distinguish the two.

Recall the Yoneda Lemma: for F ∈ Ĉ, there is a natural bijection

F(C) = Hom(C, F)

Think of F as a geometric object assembled together from basic build-
ing blocks, namely the objects of C. Each object C of C is thought of as a
generic shape, or a generic figure. They are generic in the sense that they
can realised in any F: a C-figure in F is by definition a morphism

C → F

in Ĉ. It is also called an element of F of shape C. In other words, an element
in the set F(C).

The elements of F assemble into a category denoted el(F). The objects
are arrows C → F where C is an object of C, and a morphism from C → F
to C′ → F is an arrow C → C′ in C such that the triangle commutes:

C ! C′

F

$

!

In other words, el(F) is just the comma category y/F, which in turn could
be defined as the 2-pullback

y/F ! 1

⇒

C
"

y
! Ĉ

!F"

"

16.1.2 Example. Let F be a graph, i.e. a presheaf on G1 = {0 !! 1}.
Hence the set of vertices of F is F0 = F(0) which we see as the set of
presheaf maps 0 → F, and the set of edges of F is F1 = F(1) which we see
as the set of presheaf maps 1 → F. So the set of objects of el(F) is F0 + F1.
What is a morphism in el(F)? Well, by definition, these are arrows in G1

[Rough draft, version 2009-08-05 23:56.] [Input file: elements.tex, 2009-05-03 22:13]

360 [Polynomial functors for presheaf categories]

compatible with the elements. So for example, to have an arrow

0
s ! 1

F

e

$

v !

from vertex v to edge e is to say that v is the source vertex of e. In other
words, for each edge 1 → F there are two morphisms in el(F) ending
there: one coming from the source of the edge, and one coming from the
target of the edge. So we can think of the category of elements of a graph
as its barycentric subdivision, with all the half-edges oriented towards the
midpoint.

(If we do not want to take this highly Yoneda viewpoint, an element is
a pair (C, e) where C is an object of C, and e is an element of F(C). In the
present case, there is a morphism (0, v) → (1, e) for each α : 0 → 1 such
that α∗e = v.)

16.1.3 Example. If C is a representable object of Ĉ, then we have

el(C) = C/C,

as it easily follows from the Yoneda lemma.

16.1.4 Remark. The natural projection functor el(F) → C is a discrete fi-
bration. Conversely, given a discrete fibration F → C we get a presheaf
by associating to an object C ∈ C its fibre. This gives an equivalence of
categories between PrSh (C) and the category of discrete fibrations over
C.

The main property of the category of elements of F is that it is a canon-
ical recipe for describing F as a colimit of generic figures. More precisely:

16.1.5 Theorem. The composite functor

el(F) → C → Ĉ

has colimit F.

[Rough draft, version 2009-08-05 23:56.] [Input file: elements.tex, 2009-05-03 22:13]

16.1 Some prelims 361

See Reyes-Reyes-Zolfaghari [93], Theorem. 4.2.2.

Proof. The functor takes an element e : C → F to the representable C. It
is clear that each such image object has a map to F, namely e, and that
all these maps are compatible. Hence F is a cocone. Let now Q be any
other cocone. This means that for each e : C → F (object in the indexing
category) we have a map Φe : C → Q in Ĉ compatible with the arrows in
el(F). This means that for each diagram

C ! C′

F

e′

$

e !

we have

C ! C′

Q
Φe′$

Φe !

in Ĉ. Now it is easy to see there is a unique map F → Q: pointwise there
is no choice but one: at the object C ∈ C, our map F(C) → Q(C) must be
given by sending e : C → F to Φe : C → Q. On arrows: given α : C → C′,
we have α∗ : F(C′) → F(C) given by sending e′ : C′ → F to the composite
C → C′ → F. We send this to the composite C → C′ → Q, which is well-
defined because of the cocone compatibility condition on Q. It is clearly
the only way to define the value on objects and arrows of F → Q, and it
is clearly natural (i.e. defines a morphism in the category of presheaves).
Hence there is a unique morphism F → Q !

Try to use the notation

y↓F ! 1

⇒

C
"

y
! Ĉ

!F"

"

For the canonical cocone (which we claim is a colimit cocone). The claim
is that for any other cocone

y↓F ! 1

⇒
Φ

C
"

y
! Ĉ

!Q"

"

[Rough draft, version 2009-08-05 23:56.] [Input file: elements.tex, 2009-05-03 22:13]

362 [Polynomial functors for presheaf categories]

there is a unique 2-cell !F" ⇒ !Q". That is, a unique map F → Q in Ĉ.
This is just to say, for each e : C → F an element of Q, but this element has
to be Φe : C → Q. . .

16.1.6 Proposition. For any presheaf F ∈ Ĉ there is a natural equivalence

Ĉ/F + PrSh(el(F)).

Remark: for a representable, this just says that Ĉ/C + Ĉ/C.

Proof. Given a presheaf Q on el(F), consider its category of elements

el(Q) → el(F) → C

These are discrete fibrations, and in particular the first functor is a carte-
sian fibred functor, and hence corresponds to a presheaf G over F.

Conversely, given a presheaf G over F, considering it as a morphism
in Ĉ we apply the functor el to get el(G) → el(F) → C. Since the com-
posite and the second part are discrete fibrations, so is the first part, hence
corresponds to a presheaf Q on el(F). !

All this is sort of abstract. Here is a direct construction using fibres and
sums:

Proof. Given a presheaf X : Cop → Set over F with structure map p : X →
F, define a presheaf

Q : el(F)op −→ Set[
e : C → F

]
%−→ {x : C → X | x.p = e}.

In other words, it is the set of liftings

X

C
e

!

!

F

p
"

In other words still, we are sending e : C → F to the fibre of p(C) : X(C) →
F(C) over e.

[Rough draft, version 2009-08-05 23:56.] [Input file: elements.tex, 2009-05-03 22:13]

16.1 Some prelims 363

Conversely Given a presheaf Q : el(F)op → Set , that means that for
each e : C → F we have a set Q(C, e). Now define a presheaf

Cop −→ Set

C %−→ ∑
e:C→F

Q(C, e).

Clearly this comes equipped with a map of presheaves to F. [Check func-
toriality — that’s routine.]

!

16.1.7 Proposition.
colim F = π0 el(F).

(or is that only for covariant functors?)

Nerves

Let F : C → D be any functor. There is an associated ‘nerve’ functor

N : D −→ Ĉ

D %−→ HomD(F−, D).

These two functors are related by the Yoneda embedding and a natural
transformation:

C
F ! D

χF

⇒

Ĉ

N

$

y !

whose components simply are the values of F on arrows: for fixed C we
have a map of presheaves χF(C) : hC ⇒ N(F(C)), and at X ∈ C this
amounts to HomC(X, C) → HomD(FX, FC).

Hence χF is invertible if and only if F is fully faithful.
See Weber [104] for more usage of such Yoneda structures.

16.1.8 Lemma. N preserves all limits.

[Rough draft, version 2009-08-05 23:56.] [Input file: nerve.tex, 2009-06-27 09:34]

364 [Polynomial functors for presheaf categories]

Proof. Let G : I → D be a functor admitting a limit in D. Now N(lim G) =
lim(N ◦ G) because we can compute pointwise:

N(lim G)(C) = HomD(FC, lim G) = lim HomD(FC, G−) = lim(N ◦G)(C).

!

16.1.9 Lemma. Let D be an object of D. Then the category of elements of ND is

y↓ND + F↓D.

Proof. This is a direct computation: the category of elements has as objects
pairs (C, α) where C ∈ C and α ∈ ND(C) = HomD(FC, D). An arrow
from (C′, α′) to (C, α) is given by an arrow φ : C′ → C in C such that
ND(φ) : ND(C) → ND(C′) sends α to α′. But ND(φ) consists in precom-
posing with Fφ, so the condition is that this triangle commutes:

FC′ Fφ ! FC

D

α

$

α′ !

It is clear that the category we have just described is precisely F↓D. !

The fundamental property of categories of elements is the following:

16.1.10 Proposition. There is an equivalence of categories:

PrSh(y↓F) + PrSh(C)↓F.

Given presheaf Q : (y↓F)op → Set , define

X : Cop −→ Set

C %−→ ∑
α:C→F

Q(C, α).

Clearly this presheaf has a natural map to F.
Conversely, given X : Cop → Set with a natural transformation X ⇒ F,

define

Q : (y↓F)op −→ Set

[α : C → F] %−→ X(C)α ,

[Rough draft, version 2009-08-05 23:56.] [Input file: nerve.tex, 2009-06-27 09:34]

16.1 Some prelims 365

the fibre of X(C) → F(C) = HomC(C, F) over α.
If we take F = ND and combine with the above lemma we get:

PrSh (F↓D) + PrSh (y↓ND) + PrSh (C)↓ND.

(In this result, if we take D = C and take F to be Yoneda, then N is the
identity functor, and we recover the basic result.)

Let us prove the equivalence

PrSh (F↓D) + PrSh (C)↓ND

directly.
Given presheaf Q : (F↓D)op → Set , define

X : Cop −→ Set

C %−→ ∑
α:FC→D

Q(C, α)

We should also explain what X does on arrows: given φ : C′ → C, let α′

denote the composite

FC′ Fφ! FC α! D.

This is the unique way to make φ into an arrow in the category F↓D. Now
Q(φ) goes from Q(C, α) to Q(C′, α′), and we have defined X(φ). It is clear
that X has a natural transformation to ND, hence we have constructed an
object in PrSh (C)↓ND.

Conversely, given X : Cop → Set with a natural transformation X ⇒
ND, define

Q : (F↓D)op −→ Set

[α : FC → D] %−→ X(C)α ,

the fibre of X(C) → ND(C) = HomD(FC, D) over α.

Generic morphisms

16.1.11 Generic maps The notion of generic map was introduced by We-
ber [103] extending the notion of [55]. What we call generic is what in [103]
is called strict generic. Our terminology agrees with Weber [104].

[Rough draft, version 2009-08-05 23:56.] [Input file: generic.tex, 2009-07-29 15:21]

366 [Polynomial functors for presheaf categories]

Let T : D → C be a functor. An arrow g : X → TD in C is called generic
(with respect to T) if for every commutative square

X ! TC

TD

g
"

T(b)
! TY

T(c)
"

there exists a unique arrow u : D → C such that

C

D
b

!

u
!

Y

c
"

and

X ! TC

TD

g
" T(u)

!

The functor T is said to admit generic factorisations if every A → TY
admits a factorisation into a generic map followed by one of the form T().
Such a factorisation is then necessarily unique up to unique isomorphism.

16.1.12 Parametric right adjoints. A functor T : D → C is called a para-
metric right adjoint if for every object Y of D, the induced functor

D/Y −→ C/TY
[X → Y] %−→ [TX → TY]

is a right adjoint.
Observe that if T is a right adjoint itself, then it is also a parametric

right adjoint.

16.1.13 Proposition. A functor T : D → C is a parametric right adjoint if and
only if it admits generic factorisations.

Proof. Fix an object Y of D, and suppose every map X → TY has a generic
factorisation (and suppose one such factorisation has been chosen). We
will construct a left adjoint to

D/Y −→ C/TY
[X → Y] %−→ [TX → TY]

On objects, the left adjoint is given by sending B → TY to the map D → Y
appearing in the generic factorisation B → TD → TY. !

[Rough draft, version 2009-08-05 23:56.] [Input file: generic.tex, 2009-07-29 15:21]

16.1 Some prelims 367

If T = U ◦ F for a free-forgetful adjunction F 7 U, we suppress U from the notation
and call a map FA → FB generic if it corresponds to a generic map A → FB under
adjunction. This leads to the notion of generic/free factorisation system.

FOR THIS TO BE TRUE, MUST REQUIRE THAT THE FREE MAPS CONTAIN ALL
ISOMORPHISMS. THERE WILL BE A FACTORISATION SYSTEM IN ANY CASE, BUT
ONE MAY NEED TO SATURATE THE CLASS OF FREE MAPS BY THE ISOS.

Recall that a functor G : D → C is a right adjoint if and only if for
all objects X ∈ C , the comma category X↓G has an initial object. (In this
category, the objects are pairs (D, α) with D ∈ D and α : X → GD. An
arrow from (D, α) to (D′, α′) is an arrow φ : D → D′ in D such that

X

GD
Gφ

!

α

$

GD′

α′

!

End of reminder.)

Now a functor G : D → C is a local right adjoint if for each object D ∈ D

the sliced functor

GD : D/D −→ C /GD
[A → D] %−→ [GA → GD]

is a right adjoint. In other words, for each x : X → GD, the comma cate-
gory x↓GD has an initial object. (To spell out what this comma category is:
its objects are pairs (m, α) where m : M → D is in D/D and α : x → Gm,
so altogether an object is a triangle

X

GM

α

!

GD

x

"
Gm

$

[Rough draft, version 2009-08-05 23:56.] [Input file: generic.tex, 2009-07-29 15:21]

368 [Polynomial functors for presheaf categories]

In other words, factorisations of x : X → GD into X α
→ GM Gm

→ GD.
Arrows in this category are the obvious maps of factorisations,

X

GM
Gφ

!

α

$

GM′

α′

!

GD

Gm′

$

Gm !

To say that each such category has an initial object is practically the
same as having generic factorisations. To establish that those initial factori-
sations have indeed generic first part amounts to establishing a stronger
universal property: to say it is initial refers only to maps with a fixed tar-
get GD. To say it is generic involves arbitrary targets. . . It is a bit tricky
to show that the first-components in the initial factorisations are in fact
generic.

The category of factorisations of x : X → GD is the comma category

x↓GD ! D/D

⇒

1
"

!x"
! C /GD.

GD

"

This refers to a fixed x. We can consider a bigger category where x varies:

(C/GD)↓GD ! D/D

⇒

C /GD
"

id
! C /GD.

GD

"

In the category (C/GD)↓GD, the objects are triples (x, m, α) with x : X →

[Rough draft, version 2009-08-05 23:56.] [Input file: generic.tex, 2009-07-29 15:21]

16.1 Some prelims 369

GD, m : M → D and α : x → Gm. In other words, they are triangles
X

GM

α

!

GD

x

"
Gm

$
with variable X. The morphisms are now diagrams

X
φ ! X′

GM

α

" Gψ ! GM′

α′

"

GD

Gm′

$

Gm !

(This is just like a category of arrows, except that some of the lower parts
of the diagrams come from another category.)

This category is fibred over C by returning the X. The cartesian arrows
are those (φ, ψ) for which ψ is an isomorphism. The fibre over an object
X is precisely the original category of factorisations with fixed start vertex
X.

Monads with arities

16.1.14 Monads with arities. (Cf. Weber [104].) A monad with arities on
a category C (not required to be a presheaf category or even to have a
terminal object) consists of a monad F (not required to be cartesian) and a
full subcategory i0 : Θ0 ⊂ C required to be dense and small, such that the
following condition is satisfied: the left Kan extension

Θ0
i0 ! C

id
⇒

C

id

$

i0 !

[Rough draft, version 2009-08-05 23:56.] [Input file: arities.tex, 2009-07-29 15:21]

370 [Polynomial functors for presheaf categories]

is preserved by the composite

C
F! C

N0! PrSh (Θ0)

(cf. the proof of Proposition 16.1.16 below).

As above, denote by Θ the Kleisli category of F restricted to Θ0, i.e. the
full subcategory consisting of algebras that are free on an object of Θ0, as
in this diagram:

Θ
i ! F-Alg

Θ0

j

#

i0
! C .

free
#
7 forgetful

"

and let N : F-Alg → PrSh (Θ) and N0 : C → PrSh (Θ0) be the nerve
functors induced by i and i0 respectively.

16.1.15 General nerve theorem. (Cf. Weber [104, Thm. 4.10].) If (F, Θ0)general-nerve
is a monad with arities, then N is fully faithful, and X : Θop → Set is in the
essential image of N if and only if its restriction to Θ0 is in the essential image of
N0.

The following theorem should also be attributed to Weber [104]. It is
analogous to his Prop.4.22.

arities 16.1.16 Proposition. Let F be a monad on an arbitrary category C , and let i0 :
Θ0 → C be fully faithful and dense (with Θ0 small). If the functor i0↓Fi0↓F −→
i0↓F has non-empty connected fibres then Θ0 provides F with arities.

Let us spell out what those comma categories are: the first category
i0↓Fi0↓F is the category of factorisations: the objects are quintuples (A, M, P, g, m)
where A ∈ Θ0, M ∈ Θ0, P ∈ C , and g : A → M in Θ0 and m : i0M → P in
C . The arrows are diagrams

i0A
i0(g)! Fi0M

Fm! FP

i0A′

i0(u)
"

i0(g′)
! Fi0M′

Fi0(v)
"

Fm′
! FP′

F(w)
"

[Rough draft, version 2009-08-05 23:56.] [Input file: arities.tex, 2009-07-29 15:21]

16.1 Some prelims 371

where u, v, and w are arrows in C .
The second category i0↓F consists of triples (A, P, f) where A ∈ Θ0,

P ∈ C , and f : i0A → FP. The functor

i0↓Fi0↓F −→ i0↓F

just returns the composite arrow (i.e. undoes the factorisation). To say that
it has non-empty fibres means that every map f : i0A → FP admits a
factorisation, and connectedness means that all the possible factorisations
are connected by arrows.

Proof. We need to establish that the left Kan extension

Θ0
i0 ! C

id
⇒

C

id

$

i0 !

is preserved by the composite

C
F! C

N0! PrSh (Θ0).

We will show it is a pointwise extension, i.e. that for each P ∈ C , the left
Kan extension

Θ0/P ! 1
λ
⇒

Θ0

"
! C

!P"

"

is preserved by N0 ◦ F.
The claim is that (for fixed X ∈ PrSh (Θ0)) each natural transformation

Θ0/P ! 1
φ
⇒

Θ0

"
! C

F
! C

N0

! PrSh (Θ0)

!X"

!

[Rough draft, version 2009-08-05 23:56.] [Input file: arities.tex, 2009-07-29 15:21]

372 [Polynomial functors for presheaf categories]

factors uniquely as

Θ0/P ! 1
λ
⇒ ⇒

ψ

Θ0

"
! C

!P"

"

F
! C

N0

! PrSh (Θ0).

!X"

!

We shall first spell out in detail what we know about φ. The component
of φ at a P-element a : i0A → P is a map of presheaves φa : N0Fi0A → X,
i.e. for each object T ∈ Θ0 a natural map

φa,T : C (i0T, Fi0A) → X(T).

The φa are presheaf maps, which means they are natural in T: given an
arrow u : T′ → T in Θ0 we have a naturality square

C (i0T, Fi0A)
φa,T! X(T)

C (i0T′, Fi0A)

u∗
"

φa,T′

! X(T′)

u∗
"

We record the formula we need

φa,T′(h ◦ u) = u∗
(
φa,T(h)

)
, (16.1) nat-u

for every h : i0T → Fi0 A. Finally we shall need the naturality of φ in a:
given an arrow in Θ0↓P, i.e. a triangle

i0A
i0q ! i0A′

P

a′

$

a !

we have a naturality square

N0Fi0 A
φa ! X

N0Fi0 A′
"

φa′
! X

id
"

[Rough draft, version 2009-08-05 23:56.] [Input file: arities.tex, 2009-07-29 15:21]

16.1 Some prelims 373

hence for each T a commutative diagram

C (i0T, Fi0 A)
φa,T! X(T)

C (i0T, Fi0A′)

(Fi0q)∗
" φa′,T! X(T)

id
"

We extract the equation we’ll need:

φa,T(h) = φa′,T(Fi0q ◦ h), (16.2) nat-a

for each h : i0T → Fi0 A.
To specify ψ : N0FP → X we need for each object T ∈ Θ0 a natural

map
ψT : C (i0T, FP) → X(T).

Finally, the component of N0 ◦ F ◦ λ at a P-element a : i0A → P and an
object T ∈ Θ0 is

C (i0T, Fi0A) −→ C (i0T, FP)

z %−→ Fa ◦ z.

Now the key point is that every f ∈ C (T, FP) is in the image of this map
for a suitable a: since the category of factorisations of f is non-empty we
can write a factorisation

T
f ! FP

Fi0M
Fm

!

g !

Now it is clear that we have

f = (N0 ◦ F ◦ λ)m,T(g).

So if ψ is going to give φ after pasting with λ we are forced to define

ψT(f) := φm,T(g) ∈ X(T).

[Rough draft, version 2009-08-05 23:56.] [Input file: arities.tex, 2009-07-29 15:21]

374 [Polynomial functors for presheaf categories]

We claim that the value of ψ does not depend on which factorisation we
choose for f . So suppose we have two factorisations of f . By connected-
ness of the category of factorisations we can assume the two factorisations
are linked by an arrow:

T
g′! FM′

FM

g
"

Fm
!

Fq

!

FP

Fm′

"

Now we can compute

φm,T(g) = φm′,T(Fq ◦ g) = φm′,T(g′).

where the first equality was naturality (16.2) of φ in m. So in conclusion,
our definition of ψ is independent of choice of factorisation, if just the
space of factorisations is connected.

Now we should verify that ψ is in fact natural in T. So let there be
given an arrow u : T′ → T in Θ0. We need to establish the commutativity
of the square

C (i0T, FP)
ψT ! X(T′)

C (i0T′, FP)

u∗
"

φa,T′

! X(T′)

u∗
"

So let us check this at some f : i0T → FP. Let f ′ = f ◦ u. Factor f as g
followed by Fm and factor f ′ as g′ followed by Fm′. By connectedness of
the category of factorisations we can assume there is a map q : M → M′

connecting the two factorisations:

T′ u! T
g! FM

FM′

g′

"

Fm′
!

Fq

!

FP

Fm
"

[Rough draft, version 2009-08-05 23:56.] [Input file: arities.tex, 2009-07-29 15:21]

16.2 Distributors and mixed fibrations 375

Now we can compute

φm′,T′(g′) = φm◦q,T′(g′) = φm,T′(Fq ◦ g′) = φm,T′(g ◦ u) = u∗(φm,T(g)),

where the second equality expresses naturality (16.2) of φ in m, and the
last equality is naturality (16.1) of φm in T. !

16.2 Distributors and mixed fibrations

16.2.1 Spans. Let A and B be categories. An span from A to B is a diagram
of categories

A $ p
V

q ! B,

and a morphism of spans is a diagram

V

A
$

B
!

W

u

"
!

$

Denote by Span(A, B) the category of spans from A to B.

16.2.2 Mixed fibrations. A mixed fibration from category A to category B is
a span

M

A

q
$

B

p!

such that q is an opfibration, p is a fibration, and for each pair of objects
(A, B) ∈ A× B, the fibre

(q × p)−1(A, B) ⊂ M

is discrete.
Are there more axioms to list, or are they consequences?
It follows that the opcartesian arrows for q are precisely the vertical ar-

rows for p, and the cartesian arrows for p are precisely the vertical arrows
for q. We should therefore think of a mixed fibration like this:

[Rough draft, version 2009-08-05 23:56.] [Input file: distributors.tex, 2009-07-29 15:21]

376 [Polynomial functors for presheaf categories]

mixedfib-from-distr 16.2.3 Proposition. Given a cospan (a, b) as in the diagram below, construct
the comma square

b↓a

A

q
$

⇐ B

p!

§
b$a !

then the span (q, p) is a mixed fibration.

Proof. This should be a direct check. !

16.2.4 Left adjoint between presheaf categories, and distributors. (See
Bénabou [16] for more details.) A distributor from A to B (also called an
(A, B)-bimodule) is a functor

M : Bop ×A → Set .

Equivalently, it is a functor
A → B̂.

By left Kan extension, this is equivalent to a cocontinuous functor

Â → B̂.

We write it
A +! B

In each case the morphisms are the natural transformations. Denote by
(A, B)-Mod the category of (A, B)-bimodules.

The cocontinuous-functor viewpoint tells us how distributors compose.
That’s precisely the tensor product of bimodules.

[Rough draft, version 2009-08-05 23:56.] [Input file: distributors.tex, 2009-07-29 15:21]

16.2 Distributors and mixed fibrations 377

16.2.5 From spans to bimodules. A span (as above) defines a left adjoint

B̂
q∗ ! V̂

p! ! Â,

and a morphism of spans as above defines a natural transformation which
is essentially the counit u! ◦ u∗ ⇒ id. This defines a functor

L : Span(A, B) ! (A, B)-Mod .

16.2.6 Span representation for distributors. Given a distributor in the
form of " : A → B̂, we can form a span by the following comma square
construction:

y↓"

A

q
$

⇐ B

p!

B̂
y$"

!

Then the left adjoint L : Â → B̂ is given as

L = q∗p!

If θ : " ⇒ "′ is a natural transformation between bimodules, the uni-
versal property of the comma object provides a span map y↓" → y↓"′, so
we have a functor

R : (A, B)-Mod → Span(A, B).

So any distributor can be represented by a mixed fibration.

16.2.7 Proposition. The functors L and R form an adjoint pair

L 7 R,

and the counit L ◦ R ⇒ Id is an isomorphism. In other words, R is fully faithful
and makes (A, B)-Mod a full reflexive subcategory of Span(A, B).

[Rough draft, version 2009-08-05 23:56.] [Input file: distributors.tex, 2009-07-29 15:21]

378 [Polynomial functors for presheaf categories]

Proof. Applying R to the bimodule m : B → Â gives the span

A $ p
y↓m

q ! B.

Applying now L gives p! ◦ q∗ ◦ yB, and it is easy to check that this functor
is naturally isomorphic to m. This accounts for the invertible counit of the
adjunction.

To describe the unit we shall invoke the universal property of the comma
object: starting from an arbitrary span

A $ p
V

q ! B,

we consider L(V) as a functor B → Â, denoting it m := p! ◦ q∗ ◦ yB. We
shall exhibit a natural transformation

V
q ! B

⇑

A

p

"

yA

! Â,

m
"

then the universal property will give us a span map V → y↓m, which
will be the V-component of the unit. For each v ∈ V we need a natural
transformation

yA(pv) ⇒ mqv.

By Yoneda, this is equivalent to giving an element of the set

(mqv)(pv) = (p! q∗yB(qv))(pv) = (p∗p! q∗yB(qv))(v).

Since we have the unit Id ⇒ p∗p! , it is enough to give an element in

(q∗yB(qv))(v) = B(qv, qv),

and in here we have of course the element q(idv). This describes the unit
of the claimed adjunction.

We omit the remaining verifications. !

[Rough draft, version 2009-08-05 23:56.] [Input file: distributors.tex, 2009-07-29 15:21]

16.2 Distributors and mixed fibrations 379

16.2.8 Note that a distributor can be represented by many different dis-
tributors (which are then said to be Morita equivalent). For example the
identity functor can be represented by the identity span, but it can also
be represented by the category of arrows (the comma cat id ↓ id). Clearly
these two spans are not isomorphic. Notice however that although the
identity span looks like the canonical representation, in fact the category-
of-arrows representation has an advantage: it is a mixed fibration. Clearly
the identity span is not a mixed fibration!

Claim: although many different spans can represent the same distrib-
utor, there is only one mixed fibration that can represent it.

16.2.9 Remark. It follows that the subcategory of all spans inducing the
same bimodule M is connected. In fact, since the unit for the adjunction
is given by a universal property, this subcategory has a terminal object
R(M).

Here is an easy example to show that the unit is not an isomorphism,
or even an equivalence of categories: consider the trivial span A ← A →
A. The corresponding bimodule is the ‘trivial’ bimodule, namely the one
corresponding to the left adjoint id : Â → Â, and the Yoneda embedding
y : A → Â. Taking R on this bimodule we get

y↓y,

which by the Yoneda lemma is easily seen to coincide with the category of
arrows of A, clearly not equivalent to A itself (in general).

16.2.10 Remark. The reflection of a span via R ◦ L gives a notion of nor-
mal form for a span. This normal form is characterised by being a mixed
fibration: this means that the left leg is a Grothendieck fibration, the right
leg is a Grothendieck opfibration, and the functor V → A × B has discrete
fibres.

16.2.11 Instead of invoking the Yoneda embedding, the exact same mixed
fibration can be constructed using another important construction: the join
category of a distributor. Perhaps it is rather called the collage. Let A +! B
be a distributor, given by M : Bop × A → Set . Construct a new category
J := B ∗

M
A:

[Rough draft, version 2009-08-05 23:56.] [Input file: distributors.tex, 2009-07-29 15:21]

380 [Polynomial functors for presheaf categories]

this category J has as object set the disjoint union of the object sets of B
and A. The hom sets are

J(x, y) :=

A(x, y) for x, y ∈ A
B(x, y) for x, y ∈ B
M(x, y) for x ∈ B, y ∈ A
∅ for x ∈ A, y ∈ B

Composition inside each of the two parts is given by the original compo-
sitions, and composition with the elements in M make sense by functori-
ality of M. We should think of M as being a left-B-module and a right-A-
module.

Now if we consider the two inclusion functors and take the comma
square we arrive at the same span as in the Yoneda embedding construc-
tion above.

j↓i

B

q
$

⇒ A

p!

B ∗
M

A
i$j

!

16.3 The free-category monad

A key example of a polynomial functor so far has been the free-monoid
monad on the category of sets. Moving beyond Set , it is obvious to look
at presheaf categories, and as a basic example we shall study the free-
category monad on the category of (non-reflexive) directed graphs. We
shall soon see that this monad is not polynomial in the sense of slices and
locally cartesian closed categories, but that it is polynomial in the presheaf
sense, where lowershriek and lowerstar denote the left and right Kan ex-
tensions to the pullback functor.

Observe that we already (8.7) described the free-category monad in the
fixed object case. In a sense that accounts for everything, because of course
the free category on a graph with vertex set S will have object set S again.

[Rough draft, version 2009-08-05 23:56.] [Input file: freecat.tex, 2009-07-29 15:21]

16.3 The free-category monad 381

However, that construction which we analysed in terms of slices, is very
different from the construction we shall now perform.

Let G denote the category 0 !! 1. Here is a picture of G:

--
..

A (non-reflexive) directed graph is a presheaf on G. In this section we just
say graph, but beware that later on we shall consider more general no-
tions of graphs. Every small category has an underlying graph whose ver-
tices are the objects and whose edges are the arrows. The forgetful functor
Cat → PrSh (G) has a left adjoint, the free-category functor: the free cat-
egory on a graph G has the vertices of G as objects, and the paths in G
as arrows. A path is just a map of graphs from a linear graph into G, and
source and target of a path are given as the images of the endpoints of the
linear graphs. Linear graphs are pictured as

Particularly important for us is the free category on the terminal graph.
The terminal graph 1 is a single loop: it has one vertex an one edge (nec-
essarily a loop on the unique vertex). The paths in 1 have no choice but
running around in the loop, so there is one path for each n ∈ N, counting
how many time it winds around. So T1 is the category with only one ob-
ject and N as set of arrows. Clearly composition of arrows is just addition
in N, so altogether, F1 is the monoid N, considered as a category.

In complete generality we can factor T as

Ĝ
T ! Ĝ

Ĝ/T1

!

!

Recall the fundamental isomorphism of categories Ĝ/T1 + PrSh (el(T1))
and that the forgetful functor Ĝ/T1 → Ĝ then becomes identified with t! ,
where t : el(T1) → G is the discrete fibration corresponding to the fact
that T1 is a presheaf on G. Hence we have already found the last leg of the
bridge diagram that is going to represent T.

[Rough draft, version 2009-08-05 23:56.] [Input file: freecat.tex, 2009-07-29 15:21]

382 [Polynomial functors for presheaf categories]

The category of elements B := el(T1) has the following explicit descrip-
tion: there is one object # corresponding to the unique 0-element of T1 (the
vertex), and then there is one object n for each n ∈ N, corresponding to the
1-elements of T1. Finally, for each n there are two arrows # → n (source
and target). The projection t : el(T1) → G sends # to 0 and all the other
objects to 1. We should be explicit in deriving the arrows in el(T1): the
elements are maps of presheaves

hk → T1

(where hk is the representable presheaf represented either by 0 or by 1. The
arrows are commutative triangles of presheaf maps

h0 ! h1

T1

n

$

!

where we have already substituted 0 and 1 for k, because all the maps in
G are like that: there are two maps 0 !! 1. The claim is that in each case
both these maps are valid (i.e. make the triangle commute). This we can
check pointwise, and it is easy: a level 0 we have that T1(0) is singleton, so
every triangle ending here will commute. At level 1 we have h0(1) = ∅,
so every triangle starting here will commute. So in B there will be the
‘same maps’ as in G, but spread out and copied as necessary, just like in
this figure:

0 1 2 3 · · ·

Now the way we described T in terms of paths means that the 1-elements
in T1 are actually images of linear graphs — it is only winded up at a sin-
gle vertex although it was constructed as a linear graph. We can construct
a functor

ET : B = el(T1) → Ĝ

which ‘unwinds’ each element — i.e. remembers it path shape. Hence ET
maps # to the terminal graph, and it maps each n to the linear graph with

[Rough draft, version 2009-08-05 23:56.] [Input file: freecat.tex, 2009-07-29 15:21]

16.3 The free-category monad 383

n edges. It is clear where the morphisms go: each pair #
!! n is sent

to the inclusion of the terminal graph into the first and the last vertex of
the length-n linear graph — that was the intention with our definition of
free category that the new set of edges (arrows) between two given objects
should be the start and finish of the path.

In fact we will take the liberty of already building this description of
ET into our picture of el(T1):

· · ·

(This drawing is a mixture of the category el(T1) and its image in Ĝ: it is
in fact a picture of el(T1) but the objects are drawn in terms of their images
in Ĝ.)

The projection to G is obvious. Note that in B there are two maps from
to 0, this may seem strange. The formal answer is that if you actually
compute the category of elements, this is what you find. Some more prag-
matic answers are: there have to be two arrows in order for the projection
to G to be a fibration! And finally, while # represents an object, 0 will
represent an arrow, and an arrow has both a source and a target (even an
identity arrow has both source and target).

The left Kan extension of ET we denote

L : B̂ → Ĝ.

By construction (theory of distributors) this is cocontinuous, hence is a left
adjoint. We can give a span representation of this functor

E

G

s

$

B

p

!

Now
L = p∗ ◦ s! .

The corresponding right adjoint R = s∗p∗ is what we need: it should
now not be too difficult to show that T = s∗p∗t! , so that the free-category

[Rough draft, version 2009-08-05 23:56.] [Input file: freecat.tex, 2009-07-29 15:21]

384 [Polynomial functors for presheaf categories]

monad T is presheaf polynomial, represented by

E
p ! B

G

s
$

T G

t!

So the whole functor is captured by giving it value on 1, and then the
spine functor ET : el(T1) → Ĝ. This is what characterises local right ad-
joints between presheaf categories. The check that in this case the con-
struction does indeed give the free-category monad is the proof that the
free-category monad is a local right adjoint — and in particular presheaf
polynomial.

The category E has a explicit description, which is the key to see that
the polynomial functor defined is really the free-category monad. To con-
struct it, use distributor theory: ET defines a distributor from B to G, and
we construct the canonical span representation (a mixed fibration). By the
general construction 16.2.3, the middle object E is a sort of a variable cat-
egory of elements of B. This means that for each object B ∈ B, the fibre
EB is the category of elements of ET(B). So the fibre over # is the category
of elements of the graph with one vertex and no edges. This category is
the terminal category. The fibre over n is the category whose objects the
linear graphs n with one marked vertex or one marked edge. There are
maps from the vertex-marked linear graphs to the edge-marked graphs,
so that the marked vertex go into the endpoints of the marked edge. Here
is a picture of the fragment of E lying over #

!! 3:

[Rough draft, version 2009-08-05 23:56.] [Input file: freecat.tex, 2009-07-29 15:21]

16.3 The free-category monad 385

fibre over #

fibre over 3

The fibre over # is #, and the opcartesian lifts are the inclusions of # into
the endpoint-vertex marked graphs.

On the other hand, the projection to G = 0 !! 1: we know that the
vertical maps for the projection to B should be the cartesian map for the
projection to G.

The projection to B sends # and all the vertex-marked graphs to 0, and
it sends all the edge-marked graphs to 1. This is a fibration: the cartesian
arrows are the inclusions of the vertex-marked graphs into the adjacent
edge-marked ones.

Note that each object in E is really a morphism from some representable
graphs to a linear graph (and then there is this extra copy of #). If we look
at the fibre over n and then take the image of that fibre down in G we
find precisely the canonical diagram of n, i.e. its canonical expression as a
colimit of representables.

This is also how we go back and forth between the span representation
and ET: We claimed that the left Kan extension of ET was p! ◦ q∗. So its
value on a representable n is: take colimit over the fibre over n.

Perhaps it is helpful to perform a example computation: how do we
know that the maps in E out of # are precisely those two we claimed?

Remember that E is constructed so that its objects are triples (g, b, α)
where g is an object in G, b is an object in B, and α : g → b is an arrow in

[Rough draft, version 2009-08-05 23:56.] [Input file: freecat.tex, 2009-07-29 15:21]

386 [Polynomial functors for presheaf categories]

Ĝ (really from y(g) to ET(b)).
Well the object # is really #G → #B (it’s a #-shaped element of the sec-

ond star), while the vertex-marked graphs are really α : #G → n (a #-
shaped element of n). By definition of morphism in the comma category,
we must give a map # → # in G (this has to be the identity of course)
together with a map # → n in B such that the obvious diagram in Ĝ com-
mutes. But this means that the map α must necessarily be one of the two
maps that exist in B from # to n, and these are the endpoint inclusions.

Another way to construe E is as the twisted category of elements of ET.

Now that we have understood the construction in the viewpoint of di-
rected graphs and categories, notice that although we talk about graphs
and categories, the pictures do not involve any graphs more complicated
than the linear ones. These are the building blocks, and the whole func-
tor is expressed at this level, without passing to presheaves (the graphs).
Now, to anticipate the next example, the free-multicategory monad, let us
change the pictorial interpretation of the categories G, B, and E: instead
of a dot we draw a line segment (a string), and instead of the edge be-
tween two dots we draw a one-dot linear tree — a dot sitting between two
strings.

Here is the new picture of the fragment of E sitting over #
!! 3:

fibre over #

fibre over 3

[Rough draft, version 2009-08-05 23:56.] [Input file: freecat.tex, 2009-07-29 15:21]

16.3 The free-category monad 387

The picture of B is:

· · ·

The free-multicategory monad

Now we are ready to generalise this to the free-multicategory monad.
We are now considering presheaves on the category of elementary pla-
nar trees. So here we have an object # which is the trivial tree, and then
we have a tree n for each n ∈ N. For each n we have one map from # corre-
sponding to the output edge of n, and further n maps # → n corresponding
to the input edges.

We are first interested in the free multicategory on the terminal presheaf.
This is again a presheaf, and its value on # is singleton, and its value on n

is the set of all planar trees with n leaves. So we can calculate its category
of elements

B := el(T1) :

It’s object set is the disjoint union of all the sets we just described: so its
object set is the set of all planar trees, together with one special copy of the
trivial tree which we denote #. Arguing exactly like in the free-category
case, it is easy to see that the arrows in B are these: hey all have # as
domain, and for each tree there t there is one arrow # → t (corresponding
to the output edge), and furthermore n maps # → t if t has n leaves. Note
that there are two maps from # to the trivial tree!

The description of the elements of T1 as trees already anticipates the
spine functor ET : B → Î. Using this, we can no easily construct E: the
fibre over a tree t ∈ B is the set of its elements: i.e. one object for each
inclusion of an edge into t, and one object for each inclusion of a one-dot
tree into t. The fibre over the special object # ∈ B is singleton, and we
denote it # again. There are only a few arrows in E from #: namely one
arrow to an edge-marked tree if the marked edge is a leaf and one arrow
to an edge marked tree if the marked edge is the root edge. Note that this
description was carefully formulated so as to give two arrows in the special
case of the edge-marked trivial tree!

[Rough draft, version 2009-08-05 23:56.] [Input file: freecat.tex, 2009-07-29 15:21]

388 [Polynomial functors for presheaf categories]

Altogether: I is the category of elementary planar trees.
B is the category whose objects are the planar trees, together with one

special object #, and whose morphisms are one from # to a tree for each of
its leaves, and one from # to a tree for its root edge.

E is the category whose objects are maps e → t where e is an elementary
tree and t is a tree. The arrows between these objects are the commutative
triangles: i.e. maps between elementary trees commuting with the maps
to a fixed tree. In addition to all that, there is one special object #, and
an arrow from this to each leaf-marked tree, and also to each root-marked
tree. (This makes two arrows from # to the trivial tree (with the unique
edge marked.) So the free-multicategory monad is presheaf polynomial,
given by

E
p ! B

I

s

$

T I

t!

Note that in this case t is a discrete fibration: in the fibre over an elemen-
tary tree n, we have all the trees with n leaves, but no morphisms between
them. So the free-multicategory monad is a local right adjoint.

The free-coloured-operad monad

Also called free-symmetric-multicategory monad.
The pictures are mostly the same as in the previous case, but care is

required with the morphisms, since there are symmetries to keep track of.
Already I is more complex since it has for each n, a whole groupoid

Sn of automorphisms. But the main difference comes in the description
of B: it is no longer a discrete fibration over I. This is because the fibre
over an elementary tree n is still the category of trees with n leaves, and
morphisms that fix those leaves, but since we have nullary operations at
our disposal, there are still automorphisms inside the fibre.

So, B is the category whose objects are trees, and with one special extra
object #. The maps are: all the isomorphisms of trees. And also maps from
to trees precisely as before.

Now the category E: we already know how it works: objects are ele-
ments of the trees in B (via the map ET : B → Î that we did not make
explicit). So objects are maps e → t where e is an elementary tree and t is

[Rough draft, version 2009-08-05 23:56.] [Input file: freecat.tex, 2009-07-29 15:21]

16.4 Local right adjoints 389

a tree. In addition to those objects, there is one special object #. For a fixed
tree t, the fibre over t is simply the slice I/t. Notice that if t has a ternary
node, then there are 3! different objects in E lying over t. However, these 3!
objects are linked by isomorphisms. The morphisms involving the special
object # all go from # to some object of the form e → t where e is the trivial
tree, included into t as a leaf or the root. And as before, there are two maps
from # to the trivial (edge-marked) tree.

So once again, this monad T is polynomial, represented by

E
p ! B

I

s

$

T I

t!

But in this case t is not a discrete fibration: in the fibre over an elementary
tree n, we have all the trees with n leaves, and all the isomorphisms be-
tween them that fix the leaves. In the presence of nullary this may give
non-trivial automorphisms. So the free-symmetric-multicategory monad
is not a local right adjoint.

16.4 Local right adjoints

COPY MANY INTERESTING THINGS FROM MARK’S PAPERS [103] and
notably [104].

Among the polynomial functors

PrSh (I) s∗! PrSh (E)
p∗! PrSh (B) t!! PrSh (J)

a particularly useful and well-behaved class are the local right adjoint poly-
nomial functors.

A local right adjoint is a functor F : D → C such that for every object
X ∈ D , the sliced functor

D/X −→ C /FX
[D → X] %−→ [FD → FX]

16.4.1 Proposition. A polynomial functor is a local right adjoint if and only if t
is a discrete fibration, I THINK.

[Rough draft, version 2009-08-05 23:56.] [Input file: categorical.tex, 2009-05-03 17:56]

390 [Polynomial functors for presheaf categories]

This is NOT true: let C be a category which is not Cauchy complete,
and let i : C → C be the inclusion into its Cauchy completion. Then i! is
an equivalence, and in particular a local right adjoint. But it seems that i is
not equivalent to a discrete fibration.

On a category with a terminal object, the condition for being a local
right adjoint can be measured on 1 alone: the condition is that D → C /F1
is a right adjoint.

16.4.2 Proposition. Every local right adjoint functor between presheaf categories
is presheaf polynomial (with t a discrete fibration).

Proof. In the factorisation of F : PrSh (I) → PrSh (J) through PrSh (J)/F1 =
PrSh (el(F1)) we already found a discrete fibration B := el(F1) → J. This
is the last leg of the bridge. Now we have a right adjoint PrSh (I) →
PrSh (B). This is equivalent to having a left adjoint PrSh (B) → PrSh (I)
and this is equivalent to having a functor B → PrSh (I). This in turn is
equivalent to having a distributor Iop × B → Set , and we find E as the
apex of the associated mixed fibration. See 16.2.3 for details. !

16.4.3 Lemma. Let p : E → B be a discrete fibration. Then p! : Ê → B̂
preserves and reflects all connected limits.

Proof. Since p is a discrete fibration, the formula for p! (usually a coend
formula) reduces to a sum:

(p! X)(b) = ∑
e∈Eb

X(e).

Now limits are computed pointwise, and sums commute with connected
limits in Set , hence connected limits are preserved. To see that they are
also reflected, it is enough to observe that Ê has all limits, and that p! is
conservative. !

16.4.4 Lemma. If F : D̂ → Ĉ is a local right adjoint then F preserves all con-
nected limits.

Proof. Factor F as

D̂
F ! Ĉ

êl(F1)

p!

!

F1

!

[Rough draft, version 2009-08-05 23:56.] [Input file: categorical.tex, 2009-05-03 17:56]

16.4 Local right adjoints 391

where p : el(F1) → C is a discrete fibration. But F1 is a right adjoint so
it preserves all limits, and p! preserves connected limits by the previous
lemma. !

16.4.5 Lemma. If a category C has wide pullbacks and a terminal object, then it
has all limits. (And if a functor out of C preserves wide pullbacks and the terminal
object, then it preserves all limits.)

Proof. Arbitrary limits can be constructed from products and equalisers,
but products can be constructed as wide pullbacks over the terminal ob-
ject, and equalisers can be constructed from pullbacks and products—the
equaliser of f , g : x ⇒ y is the pullback

· ! x

x
"

(x, f)
! x × y.

(x,g)

"

!

16.4.6 Lemma. If F : D̂ → Ĉ preserves wide pullbacks, then it is a local right
adjoint.

Proof. Factor F as

D̂
F ! Ĉ

Ĉ/F1

p!

!

F1 !

= êl(F1).
By the first lemma p! reflects connected limits and in particular wide pull-
backs. Therefore already F1 preserves wide pullbacks. But since it obvi-
ously preserves the terminal object, by the previous lemma F1 preserves
all limits, and is therefore a right adjoint. !

Note. The characterisation of local right adjoints between presheaf cat-
egories as connected-limit preserving functors is quoted by Weber [104],
Thm.2.13, but assuming F has a rank. He refers to Weber [103], but here
the theorem is formulated and proved in terms of wide pullbacks (and
still with a rank assumption). In the above sequence of lemmas I don’t
see where the rank assumption should come in. In [103] the proof is quite
complicated and not limited to presheaf categories. . .

[Rough draft, version 2009-08-05 23:56.] [Input file: categorical.tex, 2009-05-03 17:56]

392 [Polynomial functors for presheaf categories]

[Rough draft, version 2009-08-05 23:56.] [Input file: categorical.tex, 2009-05-03 17:56]

Chapter 17

[Generalised species and
polynomial functors]

[35]

[Rough draft, version 2009-08-05 23:56.] [Input file: categorical.tex, 2009-05-03 17:56]

Chapter 18

Appendices

A Pullbacks

A pullback is characterised by the property that the fibres are isomorphic. . .
Spell this out.

Some pullback formulae.

pullback-rightcancel A.1 Lemma. Given a diagram

· ! ·

·
"

! ·
"

·
"

! ·
"

in which the big square and the bottom square are pullback squares, the top one is
too.

Suppose F 7 G, with F : C → D and G : D → C . This means we have
natural bijections HomD (FX, Y) = HomC (X, GY). Suppose we have a

[Rough draft, version 2009-08-05 23:56.] [Input file: app.tex, 2009-06-28 00:07]

396 Appendices

cartesian square
FX′ ! Y′

FX

Fα

"
! Y

β

"
(18.1) sq1

Then if the unit η is a cartesian natural transformation, then the corre-
sponding square

X′ ! GY′

X

α

"
! GY

Gβ

"
(18.2) sq2

is again cartesian. (This follows by first applying G to the square (since
G is a right adjoint it preserves pullbacks), and then pre-pasting with the
naturality square for η, which we assumed cartesian.)

Conversely, given a cartesian square like (18.2), if we assume that F
preserves pullbacks and that the counit ε is a cartesian natural transforma-
tion, then the corresponding square (18.1) is again cartesian. (This follows
by a similar argument.)

[Rough draft, version 2009-08-05 23:56.] [Input file: app.tex, 2009-06-28 00:07]

Bibliography

Abbott [1] MICHAEL ABBOTT. Categories of Containers. PhD
thesis, University of Leicester, 2003. Available from
www.mcs.le.ac.uk/~ma139/docs/thesis.pdf.

Abbott-et-al:fossacs03 [2] MICHAEL ABBOTT, THORSTEN ALTENKIRCH, and NEIL GHANI.
Categories of containers. In Foundations of software science and computa-
tion structures, vol. 2620 of Lecture Notes in Comput. Sci., pp. 23–38.
Springer, Berlin, 2003.

Abbott-Altenkirch-Ghani:nested [3] MICHAEL ABBOTT, THORSTEN ALTENKIRCH, and NEIL GHANI.
Representing nested inductive types using W-types. In J. Díaz,
J. Karhumäki, A. Lepistö, and D. Sannella, editors, Automata, lan-
guages and programming, vol. 3142 of Lecture Notes in Comput. Sci.,
pp. 59–71. Springer, Berlin, 2004.

Abbott-Altenkirch-Ghani:strictly-positive [4] MICHAEL ABBOTT, THORSTEN ALTENKIRCH, and NEIL GHANI.
Containers: constructing strictly positive types. Theoret. Comput. Sci.
342 (2005), 3–27.

Abbott-et-al:tlca03 [5] MICHAEL ABBOTT, THORSTEN ALTENKIRCH, NEIL GHANI, and
CONOR MCBRIDE. Derivatives of Containers. In Typed Lambda Cal-
culi and Applications, TLCA, 2003.

Abbott-et-al:jpartial [6] MICHAEL ABBOTT, THORSTEN ALTENKIRCH, NEIL GHANI, and
CONOR MCBRIDE. ∂ for Data. Fundamentae Informatica 65 (March
2005), 1 – 28. Special Issue on Typed Lambda Calculi and Applica-
tions 2003.

Adamek-Trnkova [7] JIŘÍ ADÁMEK and VĚRA TRNKOVÁ. Automata and algebras in cate-
gories, vol. 37 of Mathematics and its Applications (East European
Series). Kluwer Academic Publishers Group, Dordrecht, 1990.

[Rough draft, version 2009-08-05 23:56.] [Input file: app.tex, 2009-06-28 00:07]

398 BIBLIOGRAPHY

Morris-Altenkirch:lics09 [8] THORSTEN ALTENKIRCH and PETER MORRIS. Indexed Containers.
In Twenty-Fourth IEEE Symposium in Logic in Computer Science (LICS
2009), 2009. to appear.

Awodey:Cat [9] STEVE AWODEY. Category theory, vol. 49 of Oxford Logic Guides.
The Clarendon Press Oxford University Press, New York, 2006.

Baez:counting [10] JOHN BAEZ. The mysteries of counting: Euler characteristic ver-
sus homotopy cardinality. Talk given at the Conference in honour
of Ross Street’s sixtieth birthday: Categories in Algebra, Geometry
and Mathematical Physics, Sydney, July 2005. Slides available from
http://math.ucr.edu/home/baez/counting.

Baez-Dolan:9702 [11] JOHN C. BAEZ and JAMES DOLAN. Higher-dimensional algebra. III. n-
categories and the algebra of opetopes. Adv. Math. 135 (1998), 145–206.
ArXiv:q-alg/9702014.

Baez-Dolan:finset-feynman [12] JOHN C. BAEZ and JAMES DOLAN. From finite sets to Feynman
diagrams. In B. Engquist and W. Schmid, editors, Mathematics
unlimited—2001 and beyond, pp. 29–50. Springer-Verlag, Berlin, 2001.
ArXiv:math.QA/0004133.

Barr-Wells [13] MICHAEL BARR and CHARLES WELLS. Toposes, triples and theo-
ries. No. 278 in Grundlehren der Mathematischen Wissenschaften.
Springer-Verlag, 1985. Corrected reprint in Reprints in Theory and
Applications of Categories, 12 (2005) (electronic).

Barr-Wells:computing [14] MICHAEL BARR and CHARLES WELLS. Category theory for comput-
ing science. Prentice Hall International Series in Computer Science.
Prentice Hall International, New York, 1990.

Benabou:bicat [15] JEAN BÉNABOU. Introduction to bicategories. In Reports of the Midwest
Category Seminar, no. 47 in Lecture Notes in Mathematics, pp. 1–77.
Springer-Verlag, Berlin, 1967.

Benabou:distributors [16] JEAN BÉNABOU. Distributors at work, 2000. notes by Thomas Stre-
icher.

Berger:Adv [17] CLEMENS BERGER. A cellular nerve for higher categories. Adv. Math.
169 (2002), 118–175.

[Rough draft, version 2009-08-05 23:56.] [Input file: app.tex, 2009-06-28 00:07]

BIBLIOGRAPHY 399

Berger-Moerdijk:0512 [18] CLEMENS BERGER and IEKE MOERDIJK. Resolution of coloured oper-
ads and rectification of homotopy algebras. In Categories in algebra, geom-
etry and mathematical physics, vol. 431 of Contemp. Math., pp. 31–58.
Amer. Math. Soc., Providence, RI, 2007. ArXiv:math/0512576.

Bergeron-Labelle-Leroux [19] FRANÇOIS BERGERON, GILBERT LABELLE, and PIERRE LEROUX.
Combinatorial species and tree-like structures, vol. 67 of Encyclopedia
of Mathematics and its Applications. Cambridge University Press,
Cambridge, 1998. Translated from the 1994 French original by Mar-
garet Readdy, With a foreword by Gian-Carlo Rota.

Bisson-Joyal:Dyer-Lashof [20] TERRENCE BISSON and ANDRÉ JOYAL. The Dyer-Lashof algebra in
bordism (extended abstract). C. R. Math. Rep. Acad. Sci. Canada 17
(1995), 135–140.

Borceux1 [21] FRANCIS BORCEUX. Handbook of categorical algebra. 1: Basic category
theory. Cambridge University Press, Cambridge, 1994.

Brown-Mosa [22] RONALD BROWN and GHAFAR H. MOSA. Double categories, 2-
categories, thin structures and connections. Theory Appl. Categ. 5
(1999), No. 7, 163–175 (electronic).

Brun:0304495 [23] MORTEN BRUN. Witt vectors and Tambara functors. Adv. Math. 193
(2005), 233–256. ArXiv:math/0304495.

Burroni:1971 [24] ALBERT BURRONI. T-catégories (catégories dans un triple). Cahiers
Topologie Géom. Différentielle 12 (1971), 215–321.

Carboni-Johnstone [25] AURELIO CARBONI and PETER JOHNSTONE. Connected limits, famil-
ial representability and Artin glueing. Math. Structures Comput. Sci. 5
(1995), 441–459. With Corrigenda in Math. Structures Comput. Sci.
14 (2004), 185–187.

Carboni-Lack-Walters [26] AURELIO CARBONI, STEPHEN LACK, and ROBERT F. C. WALTERS.
Introduction to extensive and distributive categories. J. Pure Appl. Alge-
bra 84 (1993), 145–158.

Cockett:1990 [27] J. ROBIN B. COCKETT. List-arithmetic distributive categories: locoi. J.
Pure Appl. Algebra 66 (1990), 1–29.

[Rough draft, version 2009-08-05 23:56.] [Input file: app.tex, 2009-06-28 00:07]

400 BIBLIOGRAPHY

Cohn:Universal [28] PAUL MORITZ COHN. Universal algebra. Harper & Row Publishers,
New York, 1965.

Conduche’ [29] FRANÇOIS CONDUCHÉ. Au sujet de l’existence d’adjoints à droite aux
foncteurs “image réciproque” dans la catégorie des catégories. C. R. Acad.
Sci. Paris Sér. A-B 275 (1972), A891–A894.

Crane-Yetter:categorification [30] LOUIS CRANE and DAVID N. YETTER. Examples of categorification.
Cah. Topol. Géom. Différ. Catég. 39 (1998), 3–25.

Dedekind:dieZahlen [31] RICHARD DEDEKIND. Was sind und was sollen die Zahlen? Braun-
schweig, 1888.

Diers:thesis [32] YVES DIERS. Catégories localisables. PhD thesis, Université de Paris
VI, 1977.

Eilenberg-MacLane:group-extensions [33] SAMUEL EILENBERG and SAUNDERS MACLANE. Group extensions
and homology. Ann. of Math. (2) 43 (1942), 757–831.

Figueroa-GraciaBondia:0408145 [34] HÉCTOR FIGUEROA and JOSÉ M. GRACIA-BONDÍA. Combinatorial
Hopf algebras in quantum field theory. I. Rev. Math. Phys. 17 (2005),
881–976. ArXiv:hep-th/0408145.

Fiore-Gambino-Hyland-Winskel:Esp [35] MARCELO FIORE, NICOLA GAMBINO, MARTIN HYLAND, and
GLEN WINSKEL. The Cartesian closed bicategory of generalised species of
structures. J. Lond. Math. Soc. (2) 77 (2008), 203–220.

Fiore:0608760 [36] THOMAS M. FIORE. Pseudo algebras and pseudo double categories. J.
Homotopy Relat. Struct. 2 (2007), 119–170. ArXiv:math/0608760.

Freyd:1972 [37] PETER FREYD. Aspect of topoi. Bull. Austral. Math. Soc. 7 (1972), 1–76.

Gambino-Hyland [38] NICOLA GAMBINO and MARTIN HYLAND. Wellfounded Trees and De-
pendent Polynomial Functors. In S. Berardi, M. Coppo, and F. Dami-
ani, editors, TYPES 2003, vol. 3085 of Lecture Notes in Computer
Science, pp. 210–225. Springer Verlag, Heidelberg, 2004.

Gambino-Kock:0906.4931 [39] NICOLA GAMBINO and JOACHIM KOCK. Polynomial functors and
polynomial monads. Preprint, arXiv:0906.4931.

Gentzen:consistency [40] GERHARD GENTZEN. Die Widerspruchfreiheit der reinen Zahlentheorie.
Math. Ann. 112 (1936), 493–565.

[Rough draft, version 2009-08-05 23:56.] [Input file: app.tex, 2009-06-28 00:07]

BIBLIOGRAPHY 401

Ginzburg-Kapranov [41] VICTOR GINZBURG and MIKHAIL KAPRANOV. Koszul duality for op-
erads. Duke Math. J. 76 (1994), 203–272. ArXiv:0709.1228.

Girard:1971 [42] JEAN-YVES GIRARD. Une extension de l’interprétation de Gödel à
l’analyse, et son application à l’élimination des coupures dans l’analyse et
la théorie des types. In Proceedings of the Second Scandinavian Logic Sym-
posium (Univ. Oslo, Oslo, 1970), pp. 63–92. Studies in Logic and the
Foundations of Mathematics, Vol. 63. North-Holland, Amsterdam,
1971.

Girard:1988 [43] JEAN-YVES GIRARD. Normal functors, power series and λ-calculus.
Ann. Pure Appl. Logic 37 (1988), 129–177.

Giraud:mem [44] JEAN GIRAUD. Méthode de la descente. Bull. Soc. Math. France Mém.
2 (1964). Available from http://www.numdam.org.

Grandis-Pare:adjoints [45] MARCO GRANDIS and ROBERT PARÉ. Adjoint for double categories.
Cah. Topol. Géom. Différ. Catég. 45 (2004), 193–240.

SGA1 [46] ALEXANDER GROTHENDIECK. SGA 1: Revêtements Étales et Groupe
Fondamental. No. 224 in Lecture Notes in Mathematics. Springer-
Verlag, Berlin, 1971. Available electronically as math.AG/0206203.

Hancock-Setzer:OLG [47] PETER HANCOCK and ANTON SETZER. Interactive programs and
weakly final coalgebras in dependent type theory. In From sets and types
to topology and analysis, vol. 48 of Oxford Logic Guides, pp. 115–136.
Oxford Univ. Press, Oxford, 2005.

Hermida:repr-mult [48] CLAUDIO HERMIDA. Representable multicategories. Adv. Math. 151
(2000), 164–225.

Hyland-Power:univ-alg [49] MARTIN HYLAND and JOHN POWER. The category theoretic under-
standing of universal algebra: Lawvere theories and monads. In Computa-
tion, meaning, and logic: articles dedicated to Gordon Plotkin, vol. 172 of
Electron. Notes Theor. Comput. Sci., pp. 437–458. Elsevier, Amster-
dam, 2007.

Hyvernat:thesis [50] PIERRE HYVERNAT. A logical investigation of interaction systems. PhD
thesis, Chalmers University, 2005.

[Rough draft, version 2009-08-05 23:56.] [Input file: app.tex, 2009-06-28 00:07]

402 BIBLIOGRAPHY

Jay:1995 [51] C. BARRY JAY. A semantics for shape. Sci. Comput. Programming 25
(1995), 251–283. ESOP ’94 (Edinburgh, 1994).

Jay-Cockett [52] C. BARRY JAY and J. ROBIN B. COCKETT. Shapely types and shape
polymorphism. In Programming languages and systems—ESOP ’94 (Ed-
inburgh, 1994), vol. 788 of Lecture Notes in Comput. Sci., pp. 302–
316. Springer, Berlin, 1994.

Johnstone:cartesian-monads [53] PETER JOHNSTONE. Cartesian monads on toposes. J. Pure Appl. Alge-
bra 116 (1997), 199–220. Special volume on the occasion of the 60th
birthday of Professor Peter J. Freyd.

Joyal:1981 [54] ANDRÉ JOYAL. Une théorie combinatoire des séries formelles. Adv. Math.
42 (1981), 1–82.

Joyal:foncteurs-analytiques [55] ANDRÉ JOYAL. Foncteurs analytiques et espèces de structures. In Com-
binatoire énumérative (Montréal/Québec, 1985), vol. 1234 of Lecture
Notes in Mathematics, pp. 126–159. Springer, Berlin, 1986.

Kelly:unified [56] G. MAX KELLY. A unified treatment of transfinite constructions for free
algebras, free monoids, colimits, associated sheaves, and so on. Bull. Aus-
tral. Math. Soc. 22 (1980), 1–83.

Kelly:basic-enriched [57] G. MAX KELLY. Basic concepts of enriched category theory, vol. 64
of London Mathematical Society Lecture Note Series. Cambridge
University Press, Cambridge, 1982. Reprinted in Repr. Theory Appl.
Categ. 10 (2005), vi+137 pp. (electronic).

Kelly:clubs92 [58] G. MAX KELLY. On clubs and data-type constructors. In Applications
of categories in computer science (Durham, 1991), vol. 177 of London
Math. Soc. Lecture Note Ser., pp. 163–190. Cambridge Univ. Press,
Cambridge, 1992.

Kelly:operads [59] G. MAX KELLY. On the operads of J. P. May. Repr. Theory Appl.
Categ. (2005), 1–13 (electronic). Written 1972.

Kelly-Street:2cat [60] G. MAX KELLY and ROSS STREET. Review of the elements of 2-
categories. In Category Seminar (Proc. Sem., Sydney, 1972/1973), no.
420 in Lecture Notes in Mathematics, pp. 75–103. Springer, Berlin,
1974.

[Rough draft, version 2009-08-05 23:56.] [Input file: app.tex, 2009-06-28 00:07]

BIBLIOGRAPHY 403

Knuth:9207 [61] DONALD E. KNUTH. Convolution polynomials. Mathematica Journal
2 (1992), 67–78. ArXiv:math/9207221.

Kock:strong1972 [62] ANDERS KOCK. Strong functors and monoidal monads. Arch. Math.
(Basel) 23 (1972), 113–120.

Kock:0807 [63] JOACHIM KOCK. Polynomial functors and trees. Preprint,
arXiv:0807.2874.

zoom [64] JOACHIM KOCK, ANDRÉ JOYAL, MICHAEL BATANIN, and JEAN-
FRANÇOIS MASCARI. Polynomial functors and opetopes. Preprint,
arXiv:0706.1033.

Kontsevich-Soibelman:0001 [65] MAXIM KONTSEVICH and YAN SOIBELMAN. Deformations of algebras
over operads and the Deligne conjecture. In Conférence Moshé Flato 1999,
Vol. I (Dijon), vol. 21 of Math. Phys. Stud., pp. 255–307. Kluwer Acad.
Publ., Dordrecht, 2000. ArXiv:math.QA/0001151.

Lack-Street:formal-monads-II [66] STEPHEN LACK and ROSS STREET. The formal theory of monads. II. J.
Pure Appl. Algebra 175 (2002), 243–265. Special volume celebrating
the 70th birthday of Professor Max Kelly.

Lamarche:thesis [67] FRANÇOIS LAMARCHE. Modelling polymorphism with categories. PhD
thesis, McGill University, 1988.

Lambek:fixpoint [68] JOACHIM LAMBEK. A fixpoint theorem for complete categories. Math.
Z. 103 (1968), 151–161.

Lambek:deductiveII [69] JOACHIM LAMBEK. Deductive systems and categories. II. Standard con-
structions and closed categories. In Category Theory, Homology Theory
and their Applications, I (Battelle Institute Conference, Seattle, Wash.,
1968, Vol. One), pp. 76–122. Springer, Berlin, 1969.

Lang [70] SERGE LANG. Algebra. Addison-Wesley, Reading, Mass., 1971.

Lawvere:thesis [71] F. WILLIAM LAWVERE. Functorial semantics of algebraic theories and
some algebraic problems in the context of functorial semantics of alge-
braic theories. Repr. Theory Appl. Categ. (2004), 1–121 (electronic).
Reprinted from Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 869–872 and
Reports of the Midwest Category Seminar. II, 41–61, Springer, Berlin,
1968.

[Rough draft, version 2009-08-05 23:56.] [Input file: app.tex, 2009-06-28 00:07]

404 BIBLIOGRAPHY

Lawvere-Rosebrugh [72] F. WILLIAM LAWVERE and ROBERT ROSEBRUGH. Sets for mathemat-
ics. Cambridge University Press, Cambridge, 2003.

Lazard:analyseurs [73] MICHEL LAZARD. Lois de groupes et analyseurs. Ann. Sci. Ecole Norm.
Sup. (3) 72 (1955), 299–400.

Leinster:ten [74] TOM LEINSTER. A survey of definitions of n-category. Theory Appl.
Categ. 10 (2002), 1–70 (electronic). ArXiv:math.CT/0107188.

Leinster:0305049 [75] TOM LEINSTER. Higher Operads, Higher Categories. London Math.
Soc. Lecture Note Series. Cambridge University Press, Cambridge,
2004. ArXiv:math.CT/0305049.

MacLane:categories [76] SAUNDERS MAC LANE. Categories for the working mathematician, sec-
ond edition. No. 5 in Graduate Texts in Mathematics. Springer-Verlag,
New York, 1998.

Macdonald [77] IAN G. MACDONALD. Symmetric functions and Hall polynomials. The
Clarendon Press Oxford University Press, New York, 1979. Oxford
Mathematical Monographs.

Manes [78] ERNEST G. MANES. Algebraic theories. No. 26 in Graduate Texts in
Mathematics. Springer-Verlag, New York, 1976.

Manes-Arbib:1986 [79] ERNEST G. MANES and MICHAEL A. ARBIB. Algebraic approaches
to program semantics. Texts and Monographs in Computer Science.
Springer-Verlag, New York, 1986. AKM Series in Theoretical Com-
puter Science.

Martins-Ferreira:0604 [80] NELSON MARTINS-FERREIRA. Pseudo-categories. J. Homotopy Relat.
Struct. 1 (2006), 47–78 (electronic). ArXiv:math/0604549.

Moerdijk-Palmgren:Wellfounded [81] IEKE MOERDIJK and ERIK PALMGREN. Wellfounded trees in categories.
Annals of Pure and Applied Logic 104 (2000), 189–218.

Moerdijk-Weiss:0701295 [82] IEKE MOERDIJK and ITTAY WEISS. On inner Kan complexes in the
category of dendroidal sets. Preprint, arXiv:math/0701295, To appear
in Adv. Math.

Moerdijk-Weiss:0701293 [83] IEKE MOERDIJK and ITTAY WEISS. Dendroidal sets. Alg. Geom. Top.
(2007), 1441–1470. ArXiv:math/0701293.

[Rough draft, version 2009-08-05 23:56.] [Input file: app.tex, 2009-06-28 00:07]

BIBLIOGRAPHY 405

Moggi [84] EUGENIO MOGGI. Notions of computation and monads. Inform. and
Comput. 93 (1991), 55–92. Selections from the 1989 IEEE Symposium
on Logic in Computer Science.

Moggi-Belle-Jay [85] EUGENIO MOGGI, GIANNA BELLÈ, and C. BARRY JAY. Monads,
shapely functors and traversals. In CTCS ’99: Conference on Category
Theory and Computer Science (Edinburgh), vol. 29 of Electron. Notes
Theor. Comput. Sci., pp. Paper No. 29017, 22 pp. (electronic). Else-
vier, Amsterdam, 1999.

Nordstrom-Petersson-Smith:programming [86] BENGT NORDSTRÖM, KENT PETERSSON, and JAN M. SMITH. Pro-
gramming in Martin-Löf type theory: an introduction, vol. 7 of Interna-
tional Series of Monographs on Computer Science. The Clarendon
Press Oxford University Press, New York, 1990.

Nordstrom-Petersson-Smith:MLTT [87] BENGT NORDSTRÖM, KENT PETERSSON, and JAN M. SMITH.
Martin-Löf’s type theory. In S. Abramsky, D. M. Gabbay, and T. S. E.
Maibaum, editors, Handbook of logic in computer science, Vol. 5, pp.
1–37. Oxford University Press, New York, 2000.

Peano:arithmetic [88] GIUSEPPE PEANO. Arithmetices principia, nova methodo exposita. Au-
gustae Taurinorum, Ed. Fratres Bocca, 1889 (1889).

Petersson-Synek [89] KENT PETERSSON and DAN SYNEK. A set constructor for inductive
sets in Martin-Löf type theory. In D. E. Rydeheard, P. Dybjer, A. M.
Pitts, and A. Poigné, editors, Category Theoy and Computer Science
(Manchester 1989), vol. 389 of Lecture Notes in Computer Science,
pp. 128–140. Springer, 1989.

Pirashvili:survey [90] TEIMURAZ PIRASHVILI. Polynomial functors over finite fields (after
Franjou, Friedlander, Henn, Lannes, Schwartz, Suslin). In Séminaire
Bourbaki, Vol. 1999/2000, vol. 276 of Astérisque, pp. 369–388. Société
Mathématique de France, 2002.

Propp:0203 [91] JAMES PROPP. Euler measure as generalized cardinality. Preprint,
arXiv:math.CO/0203289.

Propp:0204 [92] JAMES PROPP. Exponentiation and Euler measure. Algebra Univer-
salis 49 (2003), 459–471. ArXiv:math.CO/0204009, Dedicated to the
memory of Gian-Carlo Rota.

[Rough draft, version 2009-08-05 23:56.] [Input file: app.tex, 2009-06-28 00:07]

406 BIBLIOGRAPHY

Reyes-Reyes-Zolfaghari [93] MARIE LA PALME REYES, GONZALO E. REYES, and HOUMAN
ZOLFAGHARI. Generic figures and their glueings — a constructive ap-
proach to functor categories. Polimetrica, 2004.

Reynolds:1974 [94] JOHN C. REYNOLDS. Towards a theory of type structure. In Program-
ming Symposium (Proc. Colloq. Programmation, Paris, 1974), pp. 408–
425. Lecture Notes in Comput. Sci., Vol. 19. Springer, Berlin, 1974.

Schanuel:negative [95] STEPHEN H. SCHANUEL. Negative sets have Euler characteristic and
dimension. In Category theory (Como, 1990), no. 1488 in Lecture Notes
in Mathematics, pp. 379–385. Springer, Berlin, 1991.

Seely:lccc [96] ROBERT A. G. SEELY. Locally cartesian closed categories and type theory.
Mathematical Proceedings of the Cambridge Philosophical Society
95 (1984), 33–48.

Shulman:0706 [97] MICHAEL SHULMAN. Framed bicategories and monoidal fibrations. The-
ory Appl. Categ. 20 (2008), 650–738 (electronic). ArXiv:0706.1286.

Spencer:1977 [98] CHRISTOPHER B. SPENCER. An abstract setting for homotopy pushouts
and pullbacks. Cahiers Topologie Géom. Différentielle 18 (1977), 409–
429.

Strachey:1967 [99] CHRISTOPHER STRACHEY. Fundamental concepts in programming
languages. Lecture notes for the International Summer School in
Computer Programming, Copenhagen, August 1967.

Street:formal-monads [100] ROSS STREET. The formal theory of monads. J. Pure Appl. Algebra 2
(1972), 149–168.

Tambara:CommAlg [101] DAISUKE TAMBARA. On multiplicative transfer. Comm. Algebra 21
(1993), 1393–1420.

Taylor:quantitativedomains [102] PAUL TAYLOR. Quantitative domains, groupoids and linear logic. In
Category theory and computer science (Manchester, 1989), vol. 389 of
Lecture Notes in Comput. Sci., pp. 155–181. Springer, Berlin, 1989.
See also http://www.paultaylor.eu/stable/.

Weber:TAC13 [103] MARK WEBER. Generic morphisms, parametric representations and
weakly Cartesian monads. Theory Appl. Categ. 13 (2004), 191–234
(electronic).

[Rough draft, version 2009-08-05 23:56.] [Input file: app.tex, 2009-06-28 00:07]

BIBLIOGRAPHY 407

Weber:TAC18 [104] MARK WEBER. Familial 2-functors and parametric right adjoints. The-
ory Appl. Categ. 18 (2007), 665–732 (electronic).

Wood:proarrowII [105] RICHARD J. WOOD. Proarrows. II. Cahiers Topologie Géom. Dif-
férentielle Catég. 26 (1985), 135–168.

[Rough draft, version 2009-08-05 23:56.] [Input file: app.tex, 2009-06-28 00:07]

Index

affine functor, 25
algebra

for Lawvere theory, 193
algebraic theory, 193
analyseur, 7
analytic functor, 139
ancestor, 275

base change, 245
behaviour, 137
Bell polynomials, 214
bimodule, 376
boundary, 272, 273
boundary preserving, 326
bounded polyhedral sets, 69
Burnside semiring, 13

cartesian, 48, 105
category of families of objects in C, 355
C-coloured P-collection, 310
child, 270, 275
classifying map, 12, 28
clone, 7
cobase change, 245
collage, 379
collection, 115
coloured operad, 313
colours, 313
compositeur, 7
Conduché condition, 343
constant term, 24
constructible sets, 74
core, 270

cotransporter, 244

dead trees, 89
decorations, 23
degeneracy maps, 331
degree, 315
dependent products, 154
descendant, 275
dimension, 73
dimension semiring, 73
directed graph, 381
discrete category, 61
distance, 275
distributive category, 13
distributive law, 160
distributor, 376
dots, 270

edges, 273
elementary symmetric polynomial, 207
elementary tree, 274
elements, 286
Euler measure, 69, 72
Euler operator, 204
exceptions monad, 26

family, 11
F-category, 355
finitary, 20, 118, 179
finite, 44, 191
finite rooted tree with boundary, 272
finite polynomial functor, 57
fixpoint, 82

[Rough draft, version 2009-08-05 23:56.] [Input file: app.tex, 2009-06-28 00:07]

410 INDEX

flat, 140
framed bicategory, 244
free P-algebra functor, 292
free monad, 99, 110, 292, 293
free monoid, 26
free monoid endofunctor, 27

generic, 366
graph, 270

homogeneous, 202
homogeneous of degree F, 26
homomorphism

of models for Lawvere theory, 193
horizontal arrows, 243

ideal subtree, 280
incident, 270
induction axiom, 85
infinity axiom, 86
injective, 263
inner edge, 286
inner face maps, 331
input edges, 270, 273
input vertices, 270

join, 379

labelling, 23
Lambek algebras, 81
Lawvere theory, 193
least fixpoint, 82
leaves, 270, 272, 273
linear functor, 25, 186
linear tree, 330
list endofunctor, 134
local right adjoint, 367, 389
locally cartesian closed, 154
Lucas sets, 190

mixed fibration, 375
model, 193

monad, 105
monad with arities, 369
monomial functor, 19
morphism of P-spans, 301
morphism of operads, 115
multicategory, 313

node refinement, 328
nodes, 273
normal functor, 179
nullary dots, 270

object
of a double category, 243

one-node tree, 274
operad, 114
operations, 106, 291, 313
outer face maps, 331
output edge, 270, 273
output vertex, 270

P-algebra, 81, 292
P-algebra map, 292
parametric right adjoint, 366
partial operations, 106, 291
path, 381
P-collections, 310
Peano-Lawvere axiom, 85
polyhedral map, 69
polyhedral set, 69
polymorphic data types, 126
polymorphic functions, 126
polynomial, 21
polynomial functor, 20, 21, 146
polynomial monad, 106, 291
P-operad, 332
positive data types, 135
proper, 352
P-span, 301
P-tree, 110, 286
pure d-cell, 69

[Rough draft, version 2009-08-05 23:56.] [Input file: app.tex, 2009-06-28 00:07]

INDEX 411

representable natural transformation
(1-variable), 47

represents, 20
rig, 17
rigid, 61
root, 273
root dot, 270
root edge, 270, 272
root preserving, 283

shapely functor, 133
shapely type, 134
siblings, 275
signatures, 6
simple closed path, 270
source lift, 249
species, 139
squares, 243
static trees, 89
stream, 132
subtree, 271
surjective, 263
symmetric functor, 208

Tambara functors, 192
tensor product of P-collections, 332
T-multicategory, 311
T-operad, 311
trace, 190
transporter, 244
tree, 273
tree order, 270, 275
trivial tree, 274
types, 291

unary-node deletion, 328
unit tree, 270

vertical arrows, 243
vertices, 270

[Rough draft, version 2009-08-05 23:56.] [Input file: app.tex, 2009-06-28 00:07]

412 INDEX

lastpage

[Rough draft, version 2009-08-05 23:56.] [Input file: app.tex, 2009-06-28 00:07]

	Preface
	Introduction
	Historical remarks

	I Polynomial functors in one variable
	Prologue: natural numbers and finite sets
	Basic theory of polynomials in one variable
	Definition
	Examples
	Other viewpoints
	Basic operations on polynomials
	Composition of polynomials (substitution)
	Differential calculus
	Properties of polynomial functors

	Categories of polynomial functors in one variable
	The category Set[X] of polynomial functors
	Cartesian morphisms

	Sums, products
	Algebra of polynomial functors: categorification and Burnside semirings
	Composition
	The subcategory Poly: only cartesian natural transformations
	Products in Poly
	Differentiation in Poly

	Aside: Polynomial functors and negative sets
	Negative sets
	The geometric series revisited
	Moduli of punctured Riemann spheres

	Algebras
	Initial algebras, least fixpoints
	Functoriality of least fixpoints

	Natural numbers, free monoids
	Tree structures as least fixpoints
	Induction, well-founded trees
	Transfinite induction
	Free-forgetful

	Polynomial monads and operads
	Polynomial monads
	Cartesian monads
	The free monad on a polynomial endofunctor (one variable)
	Examples

	Classical definition of operads
	The monoidal category of collections
	Finitary polynomial functors and collections
	Equivalence of monoidal categories

	The free operad on a collection
	P-operads

	[Polynomial functors in computer science]
	Data types
	Shapely types

	Program semantics

	[Species…]
	Introduction to species and analytical functors
	Polynomial functors and species

	II Polynomial functors in many variables
	Polynomials in many variables
	Introductory discussion
	The pullback functor and its adjoints
	Coherence

	Beck-Chevalley and distributivity
	Further Beck-Chevalley gymnastics
	The twelve ways of a square
	The six ways of a pair of squares
	One more lemma

	Composition
	Rewrite systems and coherence

	Basic properties
	Examples
	The free-category functor on graphs with fixed object set

	Examples
	Linear functors (matrices)
	Finite polynomials: the Lawvere theory of comm. semirings
	Lawvere theories
	Proof of Tambara's theorem

	Differential calculus of polynomial functors
	Introduction
	Partial derivatives
	Homogeneous functors and Euler's Lemma

	Classical combinatorics
	Polynomial functors on collections and operads
	The free-operad functor
	Linear differential operators are linear

	Bell polynomials

	Categories and bicategories of polynomial functors
	Natural transformations between polynomial functors
	Basic properties of PolyFun(I,J): sums and products
	Misc
	Polyc(I,J): the cartesian fragment
	Sums and products in Polyc(I,J)

	Horizontal composition and the bicategory of polynomial functors
	Some preliminary exercises in the cartesian fragment
	Horizontal composition of 2-cells

	Double categories of polynomial functors
	Summary
	Reminder on double categories
	The double category of polynomial functors
	Lifts
	old calculations

	Horizontal composition
	Cartesian
	Horizontal composition of cartesian 2-cells
	Misc issues in the cartesian fragment
	Surjection-injection factorisation in Poly
	Sums and products in the variable-type categories
	Coherence problems

	Trees (1)
	Trees
	From trees to polynomial endofunctors
	Examples of trees

	The category TEmb
	P-trees

	Polynomial monads
	The free polynomial monad on a polynomial endofunctor
	Monads in the double category setting
	relative

	Coloured operads and generalised operads
	P-spans, P-multicategories, and P-operads
	Coloured operads
	Polynomial monads and coloured operads

	Trees (2)
	P-trees and free monads
	Examples of polynomial monads from trees

	The category Tree
	Trees of trees, constellations, and the Baez-Dolan construction

	III Categorical polynomial functors
	Introduction
	[Polynomial functors for slices of Cat]
	Cat is not locally cartesian closed
	Conduché fibrations
	Polynomial functors in Cat
	The family functor
	Final functors and discrete fibrations

	[Polynomial functors for presheaf categories]
	Some prelims
	Kan extensions
	Categories of elements
	Nerves
	Generic morphisms
	Monads with arities

	Distributors and mixed fibrations
	The free-category monad
	The free-multicategory monad
	The free-coloured-operad monad

	Local right adjoints

	[Generalised species and polynomial functors]
	Appendices
	Pullbacks

	Index

