
Typed lambda-calculus in classical Zermelo-Frænkel

set theory

Jean-Louis Krivine
U.F.R. de Mathématiques, Université Paris VII

2 Place Jussieu 75251 Paris cedex 05

e-mail krivine@logique.jussieu.fr

In this paper, we develop a system of typed lambda-calculus for the Zermelo-Frænkel
set theory, in the framework of classical logic. The first, and the simplest system of typed
lambda-calculus is the system of simple types, which uses the intuitionistic propositional
calculus, with the only connective→. It is very important, because the well known Curry-
Howard correspondence between proofs and programs was originally discovered with it,
and because it enjoys the normalization property : every typed term is strongly normal-
izable. It was extended to second order intuitionistic logic, in 1970, by J.-Y. Girard[4],
under the name of system F, still with the normalization property.

More recently, in 1990, the Curry-Howard correspondence was extended to classical
logic, following Felleisen and Griffin[6] who discovered that the law of Peirce corresponds
to control instructions in functional programming languages. It is interesting to notice
that, as early as 1972, Clint and Hoare[1] had made an analogous remark for the law of
excluded middle and controlled jump instructions in imperative languages.

There are now many type systems which are based on classical logic ; among the best
known are the system LC of J.-Y. Girard[5] and the λµ-calculus of M. Parigot[11]. We
shall use below a system closely related to the latter, called the λc-calculus[8, 9]. Both
systems use classical second order logic and have the normalization property.

In the sequel, we shall extend the λc-calculus to the Zermelo-Frænkel set theory. The
main problem is due to the axiom of extensionality. To overcome this difficulty, we first
give the axioms of ZF in a suitable (equivalent) form, which we call ZFε.

1 The ZFε set theory

This theory is written in the first order predicate calculus without equality, with only
three binary relation symbols : ∈, ⊂ (which have their usual meaning), and ε (which
is a kind of “ strong membership ” relation). The formula x = y is an abbreviation
for x ⊂ y ∧ y ⊂ x. We shall use the notation (∀x ε a)F (x) for ∀x(x ε a → F (x)), and
(∃x ε a)F (x) for ∃x(x ε a ∧ F (x)).

The axioms are the following :

1

0. Equality and extensionality axioms.
∀x∀y[x ∈ y ↔ (∃z ε y)x = z] ; ∀x∀y[x ⊂ y ↔ (∀z ε x)z ∈ y].

1. Foundation scheme.
∀a[(∀x ε a)F (x)→ F (a)]→ ∀aF (a) (for every formula F (x, x1, . . . , xn)).

The intuitive meaning of axioms 0 and 1 is that ε is a well founded relation, and that the
relation ∈ is obtained by “ collapsing ” ε into an extensional binary relation.

The following axioms essentially express that the relation ε satisfies the axioms of Zermelo-
Frænkel except extensionality.

2. Comprehension scheme.
∀a∃b∀x[x ε b ↔ (x ε a ∧ F (x))] (for every formula F (x, x1, . . . , xn)).

3. Pairing axiom.
∀a∀b∃x[a ε x ∧ b ε x]

4. Union axiom.
∀a∃b(∀x ε a)(∀y ε x) y ε b.

5. Power set scheme.
∀a∃b∀x(∃y ε b)∀z(z ε y ↔ (z ε a ∧ F (z, x)))
(for every formula F (z, x, x1, . . . , xn)).

6. Collection scheme.
∀a∃b(∀x ε a)[∃y F (x, y)→ (∃y ε b)F (x, y)]
(for every formula F (x, y, x1, . . . , xn)).

7. Infinity scheme.
∀a∃b{a ε b ∧ (∀x ε b)[∃y F (x, y)→ (∃y ε b)F (x, y)]}
(for every formula F (x, y, x1, . . . , xn)).

Remark. These axioms are clearly very redundant : indeed, the power set scheme
contains the comprehension scheme, and the collection scheme could easily be merged in
the infinity scheme. We give the axioms in this manner only in order to show the relation
with ZF .

Let us show that this theory is a conservative extension of ZF + AF (AF is the axiom
of foundation : ∀a(∃x ∈ a)(∀y ∈ x) y /∈ a). In the first place, it is clear that, if ZF ε ` F ,
where F is a formula of ZF (i.e. written only with ∈ et ⊂), then ZF +AF ` F ; indeed,
it is sufficient to notice that, if we replace ε by ∈ in ZFε, we obtain a theory equivalent
to ZF + AF .

Conversely, we must show that each axiom of ZF + AF is a consequence of ZF ε .

Theorem 1. ZF ε ` a ⊂ a (and thus a = a).

We use the foundation scheme (this method is called “ induction on the rank of a ”).
We assume ∀x(x ε a→ x ⊂ x), and we must show a ⊂ a ; therefore, we add the hypothesis
x ε a. It follows that x ⊂ x, then x = x, and therefore ∃y(x = y ∧ y ε a), that is to say
x ∈ a. Thus, we have ∀x(x ε a→ x ∈ a), and therefore a ⊂ a.

q.e.d.

2

Lemma 2. ZF ε ` a ⊂ b, ∀x(x ∈ b→ x ∈ c)→ a ⊂ c.

We must show x ε a→ x ∈ c, which follows from x ε a→ x ∈ b and x ∈ b→ x ∈ c.
q.e.d.

If we replace a with b in lemma 2, we get

Corollary 3. ZF ε ` ∀x(x ∈ b→ x ∈ c)→ b ⊂ c.

Therefore, we have proved, in ZF ε , the first axiom of ZF , namely :

• Extensionality axiom : ∀x∀y(∀z(z ∈ x↔ z ∈ y)→ x = y)).

Theorem 4. ZF ε ` ∀y∀z(y = a, a ∈ z → y ∈ z) ; ∀y∀z(a ⊂ y, z ∈ a→ z ∈ y).

Call F (a), F ′(a) these two formulas. We show F (a) by induction on the rank of a.
Thus, we suppose ∀x(x ε a→ F (x)).

We first show F ′(a) : by hypothesis, we have a ⊂ y, z ∈ a ; thus, there exists a′ such
that z = a′ and a′ ε a, and thus F (a′). From a′ ε a and a ⊂ y, we deduce a′ ∈ y. From
z = a′ and a′ ∈ y, we deduce z ∈ y by F (a′).

Then, we show F (a) : by hypothesis, we have y = a, a ∈ z, thus a = y ′ and y′ ε z for
some y′. In order to show y ∈ z, it is sufficient to show y = y′.

Now, we have y = a, a = y′, and thus y′ ⊂ a, a ⊂ y. From F ′(a), we get ∀z(z ∈ a →
z ∈ y) ; from y′ ⊂ a, we deduce y′ ⊂ y by lemma 2.

We have also y ⊂ a, a ⊂ y′. From F ′(a), we get ∀z(z ∈ a → z ∈ y′) ; from y ⊂ a, we
deduce y ⊂ y′ by lemma 2.

q.e.d.

With corollary 3, we obtain :

Corollary 5. ZF ε ` b ⊂ c↔ ∀x(x ∈ b→ x ∈ c).

It is now easy to deduce the equality axioms of ZF , namely :

• Equality axioms : ∀x(x = x), ∀x∀y(x = y → y = x), ∀x∀y∀z(x = y, y = z → x = z),
∀x∀y∀x′∀y′(x = x′, y = y′ → (x ⊂ y ↔ x′ ⊂ y′) ∧ (x ∈ y ↔ x′ ∈ y′)).

Remark. The equality = is an equivalence relation, which is compatible with the relations
∈ et ⊂ but not with the relation ε.

• Foundation axiom : as is well known, it is equivalent to the scheme
∀a[∀x(x ∈ a→ F (x))→ F (a)]→ ∀aF (a)

(for every formula F (x, x1, . . . , xn) which is written only with ∈ and ⊂).

From axiom scheme 1, it is sufficient to show :
[∀x(x ∈ a→ F (x))→ F (a)]→ [∀x(x ε a→ F (x))→ F (a)], or else
∀x(x ε a→ F (x))→ ∀x(x ∈ a→ F (x)).
From x ∈ a, we deduce x = x′ and x′ ε a for some x′, thus F (x′), and finally F (x), since
F is compatible with =.

• Comprehension scheme : ∀a∃b∀x[x ∈ b↔ (x ∈ a ∧ F (x))]
(for every formula F (x, x1, . . . , xn) written with ⊂, ∈).

From the axiom scheme 2 (comprehension scheme), we get ∀x[x ε b ↔ (x ε a ∧ F (x))]. If
x ∈ b, then x = x′, x′ ε b for some x′. Thus x′ ε a and F (x′). From x = x′ and x′ ε a, we

3

deduce x ∈ a. Since the axioms of equality are satisfied for ⊂ and ∈, and therefore for F ,
we obtain F (x).
Conversely, if we have F (x) and x ∈ a, we have x = x′ and x′ ε a for some x′. Since F is
compatible with equality, we get F (x′), thus x′ ε b and x ∈ b.

• Pairing axiom : ∀x∀y∃z[x ∈ z ∧ y ∈ z].

Trivial consequence of axiom 3, and

Lemma 6. ZFε ` x ε y → x ∈ y.

Trivial consequence of axioms 0 and x = x.
q.e.d.

• Union axiom : ∀a∃b∀x∀y[x ∈ a ∧ y ∈ x→ y ∈ b].

From x ∈ a we have x = x′ and x′ ε a for some x′ ; we have y ∈ x, therefore y ∈ x′, thus
y = y′ and y′ ε x′. From axiom 4, x′ ε a and y′ ε x′, we get y′ ε b ; therefore y ∈ b, by y = y′.

• Power set scheme : ∀a∃b∀x∃y[y ∈ b ∧ ∀z(z ∈ y ↔ (z ∈ a ∧ F (z, x)))]
(for every formula F (z, x, x1, . . . , xn) written with ∈ and ⊂).

From axiom scheme 5, we have y ε b, and thus y ∈ b. If z ∈ y, we have z = z ′ and z′ ε y
for some z′, therefore z′ ε a and F (z′, x), thus z ∈ a and F (z, x) (because F is compatible
with =). Conversely, if z ∈ a and F (z, x), we have z = z ′ and z′ ε a for some z′, therefore
F (z′, x), thus z′ ε y and z ∈ y.

Remark. The usual statement of the power set axiom is the particular case of this axiom
scheme, where F (z, x) is the formula z ∈ x.

• Collection scheme : ∀a∃b∀x[x ∈ a ∧ ∃y F (x, y)→ ∃y(y ∈ b ∧ F (x, y))]
(for every formula F (x, y, x1, . . . , xn) written with ∈ and ⊂).

From x ∈ a and ∃y F (x, y), we get x = x′, x′ ε a for some x′, and thus ∃y F (x′, y) since
F is compatible with = . From axiom scheme 6, we get ∃y(y ε b∧ F (x′, y)), and therefore
∃y(y ∈ b ∧ F (x, y)), because y ε b→ y ∈ b and F is compatible with = .

• Infinity scheme : ∀a∃b{a ∈ b ∧ ∀x[x ∈ b ∧ ∃y F (x, y)→ ∃y(y ∈ b ∧ F (x, y))]}
(for every formula F (x, y, x1, . . . , xn) written with ∈ and ⊂).

Same proof.

Remark. The usual statement of the axiom of infinity is the particular case of this
scheme, where a = ∅, et F (x, y) is the formula y = x ∪ {x}.

q.e.d.

2 The λc-calculus

2.1 λ-terms

We are given a set of λ-variables x, y, . . ., a set of stack constants, and two symbols cc

and A. We define inductively the set Λ of λ-terms by the following rules :

1. Each λ-variable x, and the constant cc are λ-terms.
2. If t, u are λ-terms and x is a λ-variable, then (t)u and λx t are λ-terms.
3. Si t is a λ-term and π a stack constant, then (A)(t)π is a λ-term.

4

We consider α-equivalent λ-terms as identical. The λ-term (t)u will be also denoted by
tu ; the λ-term (. . . ((t)u1) . . . un−1)un will be also denoted by (t)u1 . . . un or tu1 . . . un.

A stack is a finite sequence (t1, . . . , tn, π), where t1, . . . , tn are λ-terms, and π is a stack
constant. The set of stacks is denoted by Π.

An expression like (t)π, where t ∈ Λ and π is a stack constant, is called a program.
Therefore, by rule 3, we have Aτ ∈ Λ for every program τ . If σ = (t1, . . . , tn, π) is a
stack and t is a λ-term, then the program (tt1 . . . tn)π is denoted by (t)σ or tσ. The set
of programs will be denoted naturally by ΛΠ.

Remark. According to the context, an expression like tπ with t ∈ Λ and π ∈ Π may
represent either a program or a stack (obtained by “ pushing ” the λ-term t on the top
of the stack π).

A λ-term built by the only rules 1 and 2, i.e. which does not involve the symbol A,
or equivalently a stack constant, will be called a classical λ-term. The set of these terms
is denoted by Λc. A pure or intuitionistic λ-term is a λ-term which does not involve cc

or A. The set of pure λ-terms is denoted by Λi .

The execution of a program τ ∈ ΛΠ is the weak cc-reduction, denoted by �c, which
is defined as follows (t, u ∈ Λ are arbitrary λ-terms, and π, π ′ ∈ Π are arbitrary stacks) :

(λx u)tπ �c u[t/x]π ;
cc tπ �c (t λx(A)(x)π)π ;
((A)(t)π)π′ �c tπ.

Remark. These rules explain the notation for cc and A, which behave respectively as
the instructions Call/cc and abort, in the language SCHEME (a variant of LISP).

Now we give ourselves a subset ⊥⊥ of ΛΠ, the elements of which will be called executable
programs or briefly executable. We assume that ⊥⊥ is cc-saturated, which means that :

tπ ∈ ⊥⊥, t′π′ �c tπ ⇒ t′π′ ∈ ⊥⊥.

Let Z ⊂ Π ; we denote by Z → ⊥⊥ the set {t ∈ Λ; (∀π ∈ Z) tπ ∈ ⊥⊥}. Such a subset
of Λ will be called a truth value ; we shall denote by <⊥⊥ the set of truth values, i.e.
<⊥⊥ = {Z → ⊥⊥; Z ⊂ Π}.

If X ,Y ⊂ Λ, we define X → Y = {t ∈ Λ; (∀u ∈ X) tu ∈ Y}, which is also a subset
of Λ.
<⊥⊥ is closed by → ; more precisely, if X ⊂ Λ and X ′ ∈ <⊥⊥, then (X → X ′) ∈ <⊥⊥ :

indeed, if X ′ = (Z ′ → ⊥⊥), then (X → X ′) = (Z ′′ → ⊥⊥), with Z ′′ = {tπ; t ∈ X , π ∈ Z ′}.
<⊥⊥ is also closed by arbitrary intersection : indeed, if Xi = (Zi → ⊥⊥), then

⋂
iXi =

(
⋃

iZi → ⊥⊥).
The least truth value is Π→ ⊥⊥ ; it is denoted by |⊥|.

Definitions. The weak head reduction is the least reflexive and transitive binary relation
on Λ, denoted by �, such that (λx u)tt1 . . . tn � u[t/x]t1 . . . tn. A subset X of Λ is called
saturated if t ∈ X , t′ � t ⇒ t′ ∈ X .

Lemma 7. Every truth value is saturated.

Easy consequence of the fact that ⊥⊥ is cc-saturated.
q.e.d.

5

2.2 Types

In our system of typed λ-calculus, the types are the formulas of ZFε written with the only
logical symbols →, ∀ and the three binary relation symbol ε/ , /∈ and ⊂. Notice that ⊥
and = are not symbols of the language. They are defined as follows :

The formula ∀x∀y(x ε/ y) is denoted by ⊥. The formula x ⊂ y, y ⊂ x → F is denoted
by x = y → F ; x = y is thus considered as an ordered pair of formulas : (x ⊂ y, y ⊂ x).

In the same way, the formula A ↔ B is considered as the ordered pair of formulas
(A→ B,B → A).

The formulas x ε/ y → ⊥, x /∈ y → ⊥ and x = y → ⊥ are denoted respectively by x ε y,
x ∈ y and x 6= y.

Let us consider a standard model U of ZF + AF . To each closed type F (a1, . . . , an)
with parameters in U (i.e. first order formula, written with the symbols ∀, →, ε/ , /∈
and ⊂), we associate its truth value, denoted by |F (a1, . . . , an)|, which is an element of
<⊥⊥. We write t ‖−F (a1, . . . , an) for t ∈ |F (a1, . . . , an)| ; this is a first order formula
F ′(t, a1, . . . , an) in the language of ZF (i.e. without ε) which can be interpreted in U .
The definition is given by induction on F :

|F → G| = (|F | → |G|) ; |∀xF | =
⋂

a |F [a/x]|.

Therefore :
t ‖− (F → G) is the formula (∀u ∈ Λ)(u ‖−F → tu ‖−G) ;
t ‖−∀xF is the formula ∀x(t ‖−F).

For atomic formulas, we put :
|a ε/ b| = ({π ∈ Π; (a, π) ∈ b} → ⊥⊥) ; in other words
t ‖− x ε/ y is the formula (∀π ∈ Π)((x, π) ∈ y → tπ ∈ ⊥⊥).

Notice that, if a /∈ Cl(b), then |a ε/ b| = Λ, and therefore |F1, . . . , Fk → a ε/ b| = Λ.
Notice also that |∀x∀y(x ε/ y)| =

⋂
a,b a ε/ b = Π → ⊥⊥ which the least truth value. This

explains the notation |⊥| for this truth value.

The case of the two remaining atomic formulas a /∈ b and a ⊂ b is less simple ; it
will be treated in section 4, by defining the formulas t ‖− x /∈ y, t ‖− x ⊂ y in a manner
analogous to the well known definition of forcing in set theory [7, 10].
Another method is given in section 5, by showing that there exist first order formulas
x ∈ y and x ⊂ y, which satisfy axioms 0, and which are written with the only relation
symbol ε.

Definition. Let F be a closed formula, and t ∈ Λ a classical λ-term (i.e. a λ-term which
does not involve the symbol A). We shall say that t realizes F (notation t |‖−F) if we
have t ‖−F for any choice of U and ⊥⊥.

Remark. In particular, taking ⊥⊥ = ∅, we see that, if F involves only the relation symbols
/∈ and ⊂ and t |‖−F , then U |= F for every universe U , i.e. ZF + AF ` F .

A closed formula F will be said realizable if there exists t ∈ Λ such that t |‖−F .

Realizability is compatible with deduction in classical logic. Indeed, let us define now
a system of typed λ-calculus by the following rules :

1. x1 : A1, . . . , xn : An ` xi : Ai (1 ≤ i ≤ n).

6

2. x1 : A1, . . . , xn : An ` t : A, x1 : A1, . . . , xn : An ` u : A→ B
⇒ x1 : A1, . . . , xn : An ` ut : B.

3. x1 : A1, . . . , xn : An, x : A ` t : B ⇒ x1 : A1, . . . , xn : An ` λx t : A→ B.

4. x1 : A1, . . . , xn : An, k : A→ B ` t : A
⇒ x1 : A1, . . . , xn : An ` (cc)λk t : A.

5. x1 : A1, . . . , xn : An ` t : A ⇒ x1 : A1, . . . , xn : An ` t : ∀xA
if x is a variable which is not free in A1, . . . , An.

6. x1 : A1, . . . , xn : An ` t : ∀xA ⇒ x1 : A1, . . . , xn : An ` t : A[y/x]
for every variable y.

The rules above are exactly the deduction rules of the classical first order predicate cal-
culus. Then we have :

Theorem 8. Let A1, . . . , An, A be formulas, the free variables of which are among y1,
. . . , yp, and let b1, . . . , bp be sets in a model U of ZF +AF . If x1 : A1, . . . , xn : An ` t : A
is obtained with the above rules, and if t1 ‖−A1[b1/y1, . . . , bp/yp], . . . , tn ‖−An[b1/y1, . . . ,
bp/yp], then t[t1/x1, . . . , tn/xn] ‖−A[b1/y1, . . . , bp/yp].

In particular, if A is a closed formula and ` t : A is obtained by the above rules, then
t |‖−A.

We prove the theorem by induction on the length of the derivation of Γ ` t : A (Γ being
the context x1 : A1, . . . , xn : An). We shall use the notations t′ for t[t1/x1, . . . , tn/xn], and
A′ for A[b1/y1, . . . , bp/yp]. We consider the last rule used ; for the sake of brevity, we shall
consider only the case of rules 3 and 4.

In the case of rule 3, we have t = λx u, A = B → C and Γ, x : B ` u : C. By the
induction hypothesis, u′[v/x] ‖−C ′ and therefore (λx u′)v ‖−C ′ (lemma 7), for every v
such that v ‖−B′. It follows that t′ ‖−B′ → C ′, i.e. t′ ‖−A′.

In the case of rule 4, we have t = (cc)λk u and Γ, k : A → B ` u : A. By the
induction hypothesis, u′[v/k] ‖−A′ and therefore (λk u′)v ‖−A′ (lemma 7), for every v
such that v ‖−A′ → B′. If we set w = λk u, we have w′v ‖−A′ for every such v.

Let |A′| = Z → ⊥⊥, with Z ⊂ Π. If π ∈ Z, we have w′vπ ∈ ⊥⊥ for every v such that
v ∈ |A′ → B′|.
Let v0 = λx(A)(x)π ; if ξ ∈ |A′|, and π′ ∈ Π, then ((v0)ξ)π

′ �c ((A)(ξ)π)π′ �c (ξ)π ∈ ⊥⊥.
Since ⊥⊥ is (cc)-saturated, it follows that ((v0)ξ)π

′ ∈ ⊥⊥ for every π′ ∈ Π ; therefore
v0ξ ∈ |⊥| and thus v0ξ ∈ |B

′|. Finally, we see that v0 ∈ |A
′ → B′|. It follows that

w′v0π ∈ ⊥⊥, in other words (w′ λx(A)(x)π)π ∈ ⊥⊥. Since ⊥⊥ is (cc)-saturated, it follows
that ccw′π ∈ ⊥⊥. Since this is true for every π ∈ Z, it follows that ccw′ ∈ |A′|, which is
the desired result, since t = ccw.

q.e.d.

3 Realization of axioms 1 to 7 of ZF ε

We will show below that the axioms of ZF ε are realizable. It will result that the axioms
of ZF + AF are realizable, since they are consequences of ZF ε in classical logic.

7

We first prove this for the axioms 1 to 7 of ZF ε , because we do not need for this the
definitions of |a /∈ b| and |a ⊂ b|, provided, of course, that t ‖− x /∈ y and t ‖− x ⊂ y are
formulas of ZF .

Notation. We shall write ~t for (t1, . . . , tn) (ti ∈ Λ, n = 2 by default), and ~A for

(A1, . . . , An). Therefore, we shall write ~t ‖− ~A for ti ‖−Ai (i = 1, . . . , n). In particular,
the notation ~t ‖− a = b means t1 ‖− a ⊂ b, t2 ‖− b ⊂ a ; the notation ~t ‖−A ↔ B means
t1 ‖−A→ B, t2 ‖−B → A.

1. Foundation scheme

Theorem 9. Let Y be a fixed point operator, i.e. Yφ � φ.Yφ. For every formula F (x)
with one free variable with parameters (written with the symbols ε/ , /∈, ⊂), we have :

Y ‖−∀a[∀x(F (x)→ x ε/ a), F (a)→ ⊥]→ ∀a(F (a)→ ⊥).

Indeed, let φ ‖−∀a[∀x(F (x)→ x ε/ a), F (a)→ ⊥] ; we show, by induction on the rank
of a, that Yφ ‖−F (a)→ ⊥. In fact, if (x, π) ∈ a for a stack π, we have Yφ ‖−F (x)→ ⊥
by induction hypothesis ; thus Yφ ‖−F (x)→ x ε/ a. If (x, π) /∈ a for every stack π, we have
|x ε/ a| = Λ, and therefore, of course Yφ ‖−F (x)→ x ε/ a. Finally, Yφ ‖−∀x[F (x)→ x ε/ a] ;
thus φ.Yφ ‖−F (a)→ ⊥. Since Yφ � φ.Yφ, we get Yφ ‖−F (a)→ ⊥ by lemma 7.

q.e.d.

Remark. The same result is easily proved for any λ-term which has the same Böhm tree
as Y.

2. Comprehension scheme

Let a be a set, and F (x) a formula with parameters. We put b = {(x, tπ); (x, π) ∈ a,
t ‖−F (x)} ; we show |x ε/ b| = |F (x)→ x ε/ a|. Indeed :

t ‖− x ε/ b ⇔ (∀u; u ‖−F (x))(∀π; (x, π) ∈ a)tuπ ∈ ⊥⊥ ⇔
∀u(u ‖−F (x)→ tu ‖− x ε/ a) ⇔ t ‖−F (x)→ x ε/ a.

Therefore (I, I) ‖−∀x[x ε/ b↔ (F (x)→ x ε/ a)], with I = λx x.

3. Pairing axiom

We consider two sets a and b, and we put c = {a, b}×Π. We have t ‖− a ε/ c⇔ tπ ∈ ⊥⊥ for
every π ∈ Π, therefore |a ε/ c| = |⊥|, thus I ‖− a ε c (a ε c is the formula a ε/ c→ ⊥). In the
same way, I ‖− b ε c.

4. Union axiom

Given a set a, let b = Cl(a) (the least transitive set which contains a). We will show
|y ε/ x → x ε/ a| ⊂ |y ε/ b → x ε/ a| : we may assume x ∈ Cl(a), since, otherwise |x ε/ a| = Λ,
and thus |y ε/ b→ x ε/ a| = Λ. Therefore, we have x ⊂ Cl(a) = b, thus |y ε/ b| ⊂ |y ε/ x|. This
gives immediately the result we are looking for.

It follows that I ‖−∀x∀y[(y ε/ x→ x ε/ a)→ (y ε/ b→ x ε/ a)].

8

5. Power set scheme

Given a set a, let b = P(Cl(a)×Π)×Π. For every set x, we put y = {(z, tπ); (z, π) ∈ a,
t ‖−F (z, x)}. It follows from what we have seen above (comprehension scheme) that
(I, I) ‖−∀z[z ε/ y ↔ (F (z, x)→ z ε/ a)].
Now, it is obvious that y ∈ P(Cl(a)×Π), and therefore (y, π) ∈ b for every π ∈ Π. Thus, if
t ‖− y ε/ b, we have tπ ∈ ⊥⊥ for every π, and so t ∈ ⊥ ; in other words, we have |y ε/ b| = |⊥|.
Therefore I ‖− y ε b, and finally (I, (I, I)) ‖− y ε b ∧ ∀z[z ε/ y ↔ (F (z, x)→ z ε/ a)].

6. Collection Scheme

Given a set a, and an arbitrary formula F (x, y), let :
b =

⋃
{Φ(x, p)×Cl(a); x ∈ Cl(a), p ∈ Λ}, with

Φ(x, p) = {y of minimum rank ; p ‖−F (x, y)}, or Φ(x, p) = ∅ if there is no such y.
We show that |∀y(F (x, y)→ y ε/ b)| ⊂ |∀y(F (x, y)→ x ε/ a)| :
Suppose indeed that τ ‖−∀y(F (x, y) → y ε/ b) and p ‖−F (x, y). By definition of Φ(x, p),
there exists y′ ∈ Φ(x, p). Let π ∈ Π such that (x, π) ∈ a ; then x, π ∈ Cl(a), and therefore
(y′, π) ∈ b ; it follows that |y′ ε/ b| ⊂ |x ε/ a|. But y′ ∈ Φ(x, p), and therefore p ‖−F (x, y′) ;
thus τp ‖− y′ ε/ b, and finally τp ‖−x ε/ a.
We have proved that I ‖−∀y(F (x, y)→ y ε/ b)→ ∀y(F (x, y)→ x ε/ a).

7. Infinity scheme

Given a set a, we define b = the least set such that {a}×Π ⊂ b and ∀x(∀π ∈ Π)
[(x, π) ∈ b ⇒ Φ(x, p)×Π ⊂ b]. We have {a}×Π ⊂ b, thus |a ε/ b| = |⊥|, and therefore
I ‖− a ε b.
We now show that |∀y(F (x, y) → y ε/ b)| ⊂ |∀y(F (x, y) → x ε/ b)| : let us assume that
τ ‖−∀y(F (x, y) → y ε/ b), and p ‖−F (x, y). By definition of Φ(x, p), there exists y ′ ∈
Φ(x, p). We want to show that τp ‖− x ε/ b ; we may assume (x, π) ∈ b for some π ∈ Π, since
otherwise |x ε/ b| = Λ. It follows that (y′, π) ∈ b for every π ∈ Π, thus |y′ ε/ b| = |⊥|. Now,
we have p ‖−F (x, y′) and therefore τp ‖− y′ ε/ b. Therefore τp ‖−⊥ and thus, obviously,
τp ‖− x ε/ b.
It follows that I ‖−∀y(F (x, y)→ y ε/ b)→ ∀y(F (x, y)→ x ε/ b) and therefore :

(I, I) ‖− a ε b ∧ ∀x[∀y(F (x, y)→ y ε/ b)→ ∀y(F (x, y)→ x ε/ b)].

4 Realization of axioms 0 of ZF ε

We define |a /∈ b| and |a ⊂ b| in the following way :

|a /∈ b| =
⋂

c∈Cl(b)

(|a ⊂ c|, |c ⊂ a| → |c ε/ b|)

|a ⊂ b| =
⋂

c∈Cl(a)

(|c /∈ b| → |c ε/ a|)

which is a correct definition, by induction on (rk(a) ∪ rk(b), rk(a) ∩ rk(b)) (rk(a) is the
rank of a).

9

Then we have :

|a /∈ b| = |∀x(a = x→ x ε/ b)| = |∀x(a ⊂ x, x ⊂ a→ x ε/ b)|;
|a ⊂ b| = |∀x(x /∈ b→ x ε/ a)|.

Indeed
|∀x(a ⊂ x, x ⊂ a→ x ε/ b)| =

⋂

c

(|a ⊂ c|, |c ⊂ a| → |c ε/ b|)

=
⋂

c∈Cl(b)

(|a ⊂ c|, |c ⊂ a| → |c ε/ b|)

since |c ε/ b| = Λ when c /∈ Cl(b).
Therefore, we have

(I, I) ‖− a /∈ b↔ ∀x(a = x→ x ε/ b) and
(I, I) ‖− a ⊂ b↔ ∀x(x /∈ b→ x ε/ a)

which is the desired result.
From these definitions, we get the following equivalences :

p ‖− a /∈ b ⇔ ∀x∀~r[~r ‖− a = x→ p~r ‖− x ε/ b] ;
q ‖− a ⊂ b ⇔ ∀x∀p[p ‖− x /∈ b→ qp ‖− x ε/ a].

or else

p ‖− a /∈ b ⇔ ∀~r∀x∀π[~r ‖− a = x, (x, π) ∈ b→ p~rπ ∈ ⊥⊥] ;
q ‖− a ⊂ b ⇔ ∀p∀x∀π[p ‖− x /∈ b, (x, π) ∈ a→ qpπ ∈ ⊥⊥].

With these definitions, we can find λ-terms which realize any given theorem of ZF +
AF , since the axioms of ZF + AF have been seen to be consequences of ZF ε . Let us
give two simple examples, namely theorems 1 and 4. We simply follow the proof of these
theorems.

Theorem 10. Let θ ∈ Λ such that θp � pθθ. Then θ |‖− ∀x(x ⊂ x).

The proof of θ ‖− a ⊂ a is done by induction on rk(a). Let p ∈ Λ, p ‖− x /∈ a ;
we must show that θp ‖− x ε/ a. This is obvious if rk(x) ≥ rk(a), since |x ε/ a| = Λ. If
rk(x) < rk(a), we have θ ‖− x ⊂ x by induction hypothesis, and therefore (θ, θ) ‖−x = x.
Since p ‖− x /∈ a, we deduce pθθ ‖−x ε/ a, and thus θp ‖− x ε/ a since θp � pθθ (lemma 7).

q.e.d.

Notation. The λ-term λfλgλx(f)(g)x is denoted by f◦g.

Lemma 11. λrλx r◦x ‖−∀abc[a ⊂ b, ∀x(x /∈ c→ x /∈ b)→ a ⊂ c].

The proof is immediate, if we notice that |a ⊂ b| is |∀x(x /∈ b→ x ε/ a)|, and |a ⊂ c| is
|∀x(x /∈ c→ x ε/ a)|.

q.e.d.

It follows that λx θ◦x ‖−∀x(x /∈ c→ x /∈ b)→ b ⊂ c (put a = b in lemma 11).

Theorem 12. Let ξ, η ∈ Λ be such that ξrp~s � (r)(η)p~s and ηp~r~s � p. r1◦ξs1. s2◦ξr2.
Then ξ |‖− ∀xyz[x ⊂ y, z /∈ y → z /∈ x] and η |‖−∀xyz[y /∈ z, y = x→ x /∈ z].

We prove, by induction on rk(a) that :
ξ ‖−∀yz[a ⊂ y, z /∈ y → z /∈ a] and η ‖−∀yz[y /∈ z, y = a→ a /∈ z].

10

1. Let us suppose that r ‖− a ⊂ y, p ‖− z /∈ y, and ~s ‖− z = z ′ ; we want to show
ξrp~s ‖− z′ ε/ a. This is clear when rk(z′) ≥ rk(a), since |z′ ε/ a| = Λ. If rk(z′) < rk(a), we
have ηp~s ‖− z′ /∈ y by the induction hypothesis. But r ‖− a ⊂ y and ηp~s ‖− z ′ /∈ y, thus
(r)(η)p~s ‖− z′ ε/ a, which gives the desired result by lemma 7, since ξrp~s � (r)(η)p~s.

2. Let us suppose that p ‖− y /∈ z, ~r ‖− y = a and ~s ‖− a = y ′ ; we want to show
ηp~r~s ‖− y′ ε/ z. But we have r1 ‖− y ⊂ a and s1 ‖− a ⊂ y′. By 1, we get ξs1 ‖−∀z[z /∈ y

′ →
z /∈ a]. From lemma 11, it follows that r1◦ξs1 ‖− y ⊂ y′.
In the same manner, we have s2 ‖− y

′ ⊂ a et r2 ‖− a ⊂ y. From 1, we get ξr2 ‖−∀z[z /∈
y → z /∈ a]. From lemma 11, it follows that s2◦ξr2 ‖− y

′ ⊂ y.
We have proved that (r1◦ξs1, s2◦ξr2) ‖− y = y′. Since p ‖− y /∈ z, we have :

p. r1◦ξs1. s2◦ξr2 ‖− y
′ ε/ z,

which gives the desired result by lemma 7, since (η)p~r~s � p. r1◦ξs1. s2◦ξr2.
q.e.d.

5 Definition of ∈ and ⊂ by means of ε

This section is not used in the sequel, and may be skipped at first reading. It is devoted
to a method of defining the formulas x ∈ y and x ⊂ y by means of ε, which is due
to H. Friedman[2], and which was pointed out to me by G. Gonthier. We will use an
improvement due to him of the proof in [2].
The advantage of this method is that it does not make use of the foundation axiom. Its
drawback is that the λ-terms obtained in this way for axioms 0 of ZF ε are much more
complicated than with the preceding method. It is the reason why we do not use it in the
following sections.

It is interesting to notice that, with this method, we can define the notion of forcing in
set theory without using the axiom of foundation.

We consider a first order theory, which we call ZF−, which is written with the only relation
symbol ε. Its axioms are the axioms 2 to 7 of the theory ZFε, but, of course, in the axiom
schemes 2, 5, 6 and 7, the variable formula F is now written with the only relation
symbol ε.

Therefore, the theory ZF− is essentially the theory ZF without extensionality. We
neither assume the foundation axiom.

We shall show below, following H. Friedman[2], that this theory is equiconsistent with
ZF . As a corollary of this proof, we obtain two formulas C(x, y) and E(x, y) with two
free variables, written with the only relation symbol ε, such that

ZF− ` ∀x∀y[C(x, y)↔ (∀z ε x)E(z, y)] and
ZF− ` ∀x∀y[E(x, y)↔ (∃z ε y)(C(x, z) ∧ C(z, x)]

Therefore, if we define |x ∈ y| = |E(x, y)| and |x ⊂ y| = |C(x, y)|, then axioms 0 of
ZFε are realized : indeed, we have already realized the axioms of ZF − (when we realized
axioms 2 to 7 of ZFε, in section 3) and we know that realizability is compatible with
classical deduction.

We begin by defining a predicate of equality ≡ in ZF−. Let x ≡ y be the formula
∀z(x ε z → y ε z) (Leibniz equality). Then we have :

11

a ≡ b→ (F (a)→ F (b)) for every formula F (x) with parameters.

Indeed, if a ≡ b and F (a), take c such that a ε c by the pairing axiom. Then take d such
that x ε d ↔ x ε c ∧ F (x) by the comprehension scheme. Then a ε d, therefore b ε d, and
thus we get F (b).
Now, if we take for F (x) the formula x ≡ a, we obtain a ≡ b→ b ≡ a. Therefore, ≡ is an
equivalence relation which satisfy the axioms of equality.

We define now the following formulas :

a ⊆ b is (∀x ε a) x ε b (a is a subset of b) ;
c ∼ {a, b} is ∀x(x ε c↔ x ≡ a ∨ x ≡ b) (given a and b, c is some pair {a, b}) ;
b ∼ ∪a is ∀x(x ε b↔ (∃y ε a) x ε y) (given a, b is some union of all the elements of a) ;
b ∼ {x ε a ; F (x)} is ∀x(x ε b↔ x ε a ∧ F (x)).

Lemma 13. i) ZF− ` ∀a∃b(b ∼ ∪a).
ii) ZF− ` ∀a∀b∃c(c ∼ {a, b}).
iii) ZF− ` ∀a∃b(b ∼ {x ε a ; F (x)}).

i) Follows immediately from the union axiom and the comprehension scheme.
ii) Follows immediately from the pairing axiom and the comprehension scheme, applied
to the formula x ≡ a ∨ x ≡ b.
iii) It is the comprehension scheme.

q.e.d.

Lemma 14. ZF− ` ∀a∃b(a ⊆ b ∧ (∀x ε b)(∀y ε x) y ε b) (every set is a subset of some
transitive set).

By lemma 13(i), we have ZF− ` ∀x∃y(y ∼ ∪x). Therefore, it follows from the infinity
scheme that, for every set a, there exists a set b such that a ε b and (∀x ε b)(∃y ε b)(y ∼ ∪x).
Let c be such that c ∼ ∪b. Then a ⊆ c and c is transitive : if x′ ε x ε c, we have x ε y ε b, so
there exists z ε b such that z ∼ ∪y. Since x′ ε x ε y, we have x′ ε z and z ε b, and therefore
x′ ε c.

q.e.d.

Taking a such that b ε a and c ε a by the pairing axiom, we deduce that, given any two
sets b, c, there exists a transitive set d such that b ε d and c ε d.

For every set u, we define the reflexive and symmetric binary relation 'u in the
following way : x 'u y is x ≡ y ∨ (∃a ε u)(x ε a ∧ y ε a).

Let D(u) be the formula : ∀x∀y[x 'u y → (∀x′ ε x)(∃y′ ε y)x′ 'u y
′].

Then, we define the binary relation ' : x ' y is the formula ∃u(D(u) ∧ x 'u y).
The relation ' is clearly symmetric. It is also reflexive, as can be seen by taking for u an
empty set : then we have x 'u y ↔ x ≡ y, and thus D(u).

Lemma 15. Let R(x, y) be a reflexive and symmetric relation such that ∀x∀y[R(x, y)→
(∀x′ ε x)(∃y′ ε y)R(x′, y′)]. Then R(x, y)→ x ' y.

Suppose R(x0, y0) ; let A be a transitive set such that x0, y0 εA (lemma 14). Let B be a
set such that (∀x, y εA)(∃z εB)(z ∼ {x, y}) (which is obtained by lemma 13(ii) and the

12

collection scheme). Let u ∼ {z εB; (∀x, y ε z)(x, y εA ∧ R(x, y))}, which is obtained by
the comprehension scheme. Then we have :

(?) x 'u y ↔ (x ≡ y) ∨ (x, y εA ∧R(x, y)).

Indeed, if x 'u y et x 6≡ y, we have x, y ε z ε u, thus x, y εA∧R(x, y) by definition of u.
Conversely, if x, y εA∧R(x, y), there exists z εB such that z ∼ {x, y}, and we have z ε u
by definition of u (we have R(x, x), R(y, y), R(x, y) and R(y, x) because R is reflexive
and symmetric) thus x 'u y.

It follows that we have x0 'u y0. Therefore, it is sufficient to prove D(u) in order
to deduce x0 ' y0. But, if x 'u y and x 6≡ y, we have x, y εA and R(x, y). If x′ ε x,
by hypothesis on R, there exists y′ ε y such that R(x′, y′). Since A is transitive, we have
x′, y′ εA, and therefore x′ 'u y

′ by (?).
q.e.d.

Theorem 16. i) We have x ' y ↔ (∀x′ ε x)(∃y′ ε y)(x′ ' y′)∧ (∀y′ ε y)(∃x′ ε x)(x′ ' y′).
ii) The relation ' is an equivalence relation.

i) Proof of → : obvious by definition of '.
Proof of ← : let us define

R(x, y) ≡ (∀x′ ε x)(∃y′ ε y)(x′ ' y′) ∧ (∀y′ ε y)(∃x′ ε x)(x′ ' y′).

We check the hypothesis of lemma 15 : R is clearly reflexive and symmetric. If we
have R(x, y) and x′ ε x, then there exists y′ ε y such that x′ ' y′. But we have just shown
(proof of →) that x′ ' y′ → R(x′, y′). Therefore we have (∀x′ ε x)(∃y′ ε y)R(x′, y′).
From lemma 15, we get R(x, y)→ x ' y, which is the desired result.

ii) It is sufficient to prove that ' is transitive. Let us define R(x, y) by the formula
∃z(x ' z ∧ z ' y). We check the hypothesis of lemma 15 : R is clearly reflexive and
symmetric. If R(x, y) and x′ ε x, then x ' z and z ' y. Thus, there exists z′ ε z such that
x′ ' z′, and y′ ε y such that z′ ' y′. Therefore we get R(x′, y′).
From lemma 15, we have R(x, y)→ x ' y, which is the desired result.

q.e.d.

We can now write the two formulas :

E(x, y) : (∃y′ ε y)(x ' y′) and
C(x, y) : (∀x′ ε x)E(x′, y).

Then C(x, y) is the formula (∀x′ ε x)(∃y′ ε y) x′ ' y′, and therefore x ' y is equivalent to
C(x, y)∧C(y, x) by theorem 16. Therefore, we have E(x, y)↔ (∃y ′ ε y)(C(x, y′)∧C(y′, x)).

We have x ε y → E(x, y) since ' is reflexive. Therefore, if we define x ∈ y by E(x, y)
and x ⊂ y by C(x, y), it is easy to show that the axioms of ZF (without foundation) are
satisfied : you only have to repeat the proof, already done, that the axioms of ZF are
consequences of ZFε, beginning at the comprehension scheme.

6 Typed λ-calculus in ZF

We add the following symbols of function to the language of ZFε : ∪, P (unary symbols),
{} (binary symbol), φF , ψF , χF (for each formula F), the arity of which depends on F :
if F is written F (x, x1, . . . , xn) with a particular variable x (x1, . . . , xn are parameters),

13

then φF has the arity n+1. For brevity, we write F (x) for F (x, x1, . . . , xn), and φF (a) for
φF (a, x1, . . . , xn). In the same way, if F is written F (x, y, x1, . . . , xn) with two particular
variables x and y (we write it F (x, y)), then ψF is of arity (n + 1) (we write ψF (a) for
ψF (a, x1, . . . , xn)) ; the same for χF .
We take the typing rules of the λc-calculus (at the end of section 2), with the sixth rule
modified in the following way :

6. x1 : A1, . . . , xn : An ` t : ∀xA ⇒ x1 : A1, . . . , xn : An ` t : A[τ/x]
for every term τ built with the function symbols ∪, P, {}, φF , ψF , χF .

We add the following rules, one for each axiom of ZFε ; we use the symbol `ε to denote
this new system of types ; x is a λ-variable ; a, b, y, z are set theoretic variables :

0. Equality and extensionality axioms
x : a /∈ b `ε x : ∀z(a ⊂ z, z ⊂ a→ z ε/ b) and x : ∀z(a ⊂ z, z ⊂ a→ z ε/ b) `ε x : a /∈ b ;
x : a ⊂ b `ε x : ∀z(z /∈ b→ z ε/ a) and x : ∀z(z /∈ b→ z ε/ a) `ε x : a ⊂ b.

1. Foundation scheme
`ε Y : ∀a[∀z(F (z) → z ε/ a), F (a)→ ⊥]→ ∀a(F (a)→ ⊥)
(for every formula F (z, x1, . . . , xn)).

2. Comprehension scheme
x : z ε/ φF (a) `ε x : F (z)→ z ε/ a and x : F (z)→ z ε/ a `ε x : z ε/ φF (a)
(for every formula F (z, x1, . . . , xn)).

3. Pairing axiom
x : a ε/ {a, b} `ε x : ⊥ and x : b ε/ {a, b} `ε x : ⊥.

4. Union axiom
x : y ε/ z → z ε/ a `ε x : y ε/ ∪ a→ z ε/ a.

5. Power set scheme
x : φF (a) ε/P(a) `ε x : ⊥ (for every formula F (z, x1, . . . , xn)).

6. Collection scheme
x : ∀z(F (y, z)→ z ε/ ψF (a)) `ε x : ∀z(F (y, z)→ y ε/ a)
(for every formula F (y, z, x1, . . . , xn)).

7. Infinity scheme
x : a ε/ χF (a) `ε x : ⊥ ;
x : ∀z(F (y, z)→ z ε/ χF (a)) `ε x : ∀z(F (y, z)→ y ε/ χF (a))
(for every formula F (y, z, x1, . . . , xn)).

From the above, it follows that theorem 8 remains true with these new typing rules. In
particular :

Theorem 17. If A is a closed formula and `ε t : A, then t |‖−A.

Remark. i) In this system of types, for every formula A we have :
x : ⊥ `ε λx1 . . . λxn x : A for some integer n.

This is easily proved by induction on A, remembering that ⊥ is ∀x∀y(x ε/ y) : for an atomic
formula A, this is trivial if A is t ε/ u, and this follows from rules 0 above if A is t /∈ u or
t ⊂ u. The cases where A ≡ B → C or A ≡ ∀xB are trivial.
But, since |⊥| ⊂ |A| for every formula A, we might use the following simpler rule :

14

x : ⊥ `ε x : A for every formula A
and the theorem 17 remains valid.
ii) In this type system, the axioms of ZFε are “ inhabited ” by very simple λ-terms, in fact
λx x or Y. But this is no longer the case for the axioms of ZF + AF , since these axioms
are theorems of ZFε which are not completely trivial. For example, the power set axiom
of ZF can be written as ∀x(x ⊂ a → x ∈ P(a)), and it appears that no intuitionistic
λ-term (i.e. not involving cc) realizes it.

7 Normalization properties

It is easy to see that no general normalization theorem is possible for this typed λ-calculus.
Consider, for example, the following simple theorem, which uses only the comprehension
scheme :

Theorem 18. Let F (y) be the formula y ε/ y, and δ = λx(x)x. Then :
`ε δδ : ∀x(φF (x) ε/ x).

Let b be φF (a) ; then, we have x : y ε/ b `ε x : y ε/ y → y ε/ a. Therefore x : b ε/ b `ε x :
b ε/ b → b ε/ a. Thus, x : b ε/ b `ε xx : b ε/ a, and therefore `ε δ : b ε/ b → b ε/ a. It follows that
`ε δ : b ε/ b, and thus `ε δδ : b ε/ a.

q.e.d.

In fact, it can be proved that, if any λ-term τ is such that `ε τ : ∀x(φF (x) ε/ x), this
typing being obtained without using the foundation scheme, then τ has the same reduction
behaviour as δδ.

Nevertheless, the important fact is that this typed λ-calculus leads to correct computations,
as far as data types are concerned. This is shown by the following theorems, about
booleans and integers.

Consider first two symbols of constant 0 and 1, that we add to the language of ZFε. The
formula ∀X(1 ε/X, 0 ε/X → x ε/X) is denoted by Bool(x) (read “ x is a Boolean ”).

Theorem 19. If `ε τ : Bool(1), then for any λ-terms t, u and any stack π, we have
τtuπ �c tπ. In other words, τ behaves like the boolean λxλy x. Of course, the same result
holds for the formula Bool(0).

We take a model U such that 0 6= 1. Define ⊥⊥ = {ξ ∈ ΛΠ ; ξ �c tπ}, and X = {(1, π)}.
Then t ‖− 1 ε/X, and every λ-term realizes 0 ε/X. From theorem 17, we get τ ‖−Bool(1).
It follows that τtu ‖− 1 ε/X, which means that τtuπ ∈ ⊥⊥.

q.e.d.

Consider now a symbol of constant 0, and a unary function symbol s, that we add to
the language of ZFε. The formula ∀X[∀y(y ε/X → sy ε/X), 0 ε/X → x ε/X] is denoted by
Int(x) (read “ x is an integer ”).

A simple method for computing classical integers has been given by M. Parigot, in
the framework of second order logic and λµ-calculus. The following theorem shows that
it remains valid in the typed λ-calculus in ZF .

15

Theorem 20. Let n ∈ N and τ ∈ Λ. If `ε τ : Int(sn0), then τ represents the classical
Church integer n in the sense of [8, 9]. In particular, ((τ)λf f◦σ)φtπ �c ((φ)(σ)nt)π for
every λ-terms σ, φ, t and every stack π.

Let us only prove the last assertion. Take a model U in which the interpretation of s
and 0 are such that sy 6= 0 and sy = sk+10 → y = sk0 for all y. Define ⊥⊥ = {ξ ∈ ΛΠ ;
ξ �c ((φ)σnt)π} and X = {(0, σntπ), . . . (sk0, σn−ktπ), . . . , (sn0, tπ)}.

Therefore, we have φ ‖− 0 ε/X. Let us show that λf f◦σ ‖−∀y(y ε/X → sy ε/X) :
this is clear if sy 6= 0, . . . , sn0, since then |sy ε/X| = Λ. If sy = sj0, then j = k + 1 et y =
sk0(0 ≤ k < n). Suppose that u ‖− y ε/X ; thus, we have ((u)σn−kt)π ∈ ⊥⊥. But, if we set
v = (λf f◦σ)u, we have ((v)σn−k−1t)π �c ((u)σn−kt)π, and therefore ((v)σn−k−1t)π ∈ ⊥⊥.
This shows that v ‖− sk+10 ε/X, and we have proved that λf f◦σ ‖− sk0 ε/X → sk+10 ε/X.

From theorem 17, we get τ ‖− Int(sn0). It follows that (τλf f◦σ)φ ‖− sn0 ε/X, and
therefore (τλf f◦σ)φtπ ∈ ⊥⊥, which is the desired result.

q.e.d.

References

[1] M. Clint and C.A. Hoare. Program proving: Jumps and functions. Acta informatica 1,
214-224 (1972).

[2] H. Friedman. The consistency of classical set theory relative to a set theory with
intuitionistic logic. Journal of Symb. Logic, 38 n◦ 2, 315-319 (1973).

[3] H. Friedman. Classically and intuitionistically provably recursive functions. In:
Higher set theory. Springer Lect. Notes in Math., n◦ 669, 21-27 (1977).

[4] J.-Y. Girard. Une extension de l’interprétation de Gödel à l’analyse. In: Proc. 2nd
Scand. Logic Symp. p. 63-92. North Holland Pub. Co. (1971).

[5] J.-Y. Girard. A new constructive logic : classical logic. Mathematical Structures in
Computer Science, 1, p. 255-296 (1991).

[6] T. Griffin. A formulæ-as-type notion of control. In Conference Record of the 17th
A.C.M. Symposium on principles of Programming Languages (1990).

[7] T.J. Jech. Set theory. Academic Press, 1978.

[8] J.-L. Krivine. Classical logic, storage operators and second order λ-calculus. Ann. of
Pure and Appl. Log. 68, p. 53-78 (1994).

[9] J.-L. Krivine. A general storage theorem for integers in call-by-name λ-calculus.
Theor. Comp. Sc. 129, p. 79-94 (1994).

[10] J.-L. Krivine. Théorie des ensembles. Cassini, éd. (1998).

[11] M. Parigot. λµ-calculus: an algorithmic interpretation of classical natural deduction.
Proc. Logic Progr. and Autom. Reasoning, St Petersbourg. L.N.C.S. 624, p. 190-201
(1992).

16

