
Functorial boxes in string diagrams

Paul-André Melliès∗

Equipe Preuves, Programmes, Systèmes
CNRS — Université Paris 7 Denis Diderot

July 20, 2006

Abstract

String diagrams were introduced by Roger Penrose as a handy no-
tation to manipulate morphisms in a monoidal category. In principle,
this graphical notation should encompass the various pictorial sys-
tems introduced in proof-theory (like Jean-Yves Girard’s proof-nets)
and in concurrency theory (like Robin Milner’s bigraphs). This is
not the case however, at least because string diagrams do not acco-
modate boxes — a key ingredient in these pictorial systems. In this
short tutorial, based on our accidental rediscovery of an idea by Robin
Cockett and Robert Seely, we explain how string diagrams may be ex-
tended with a notion of functorial box to depict a functor separating
an inside world (its source category) from an outside world (its target
category). We expose two elementary applications of the notation:
first, we characterize graphically when a faithful balanced monoidal
functor F : C −→ D transports a trace operator from the category D
to the category C, and we then exploit this to construct well-behaved
fixpoint operators in cartesian closed categories generated by models
of linear logic; second, we explain how the categorical semantics of lin-
ear logic induces that the exponential box of proof-nets decomposes
as two enshrined functorial boxes.

∗Invited paper at the conference Computer Science Logic 2006 in Szeged, Hungary.
To appear in the proceedings of the conference. c© Springer Verlag. This research was
partially supported by the ANR Project INVAL “Invariants algébriques des systèmes
informatiques”.

Contents

1 Introduction 2

2 String diagrams 12

3 Functors in string diagrams 15

4 Monoidal functors in string diagrams 16

5 Natural transformations in string diagrams 20

6 Traced monoidal categories 22

7 Transport of trace along a faithful functor 24

8 Decomposing the modal box of linear logic 35

1 Introduction

The origins. Although the process was already initiated in the late 1960s
and early 1970s, very few people could have foreseen that Logic and Com-
puter Science would converge so harmoniously and so far in the two areas of
proof theory and programming language design. Today, about fourty years
later, the two research fields are so closely connected indeed, that any im-
portant discovery in one of them will have, sooner or later, an effect on the
other one. The very existence of the conference Computer Science Logic
bears witness of this important and quite extraordinary matter of fact.

The convergence would not have been as successful without the mediation
of category theory — which made an excellent matchmaker between the two
subjects, by exhibiting the algebraic properties underlying the mathematical
models (or denotational semantics) of both proof systems and programming
languages. At the end of the 1970s, a few people were already aware that:

• intuitionistic logic as articulated in proof theory,

• the λ-calculus as implemented in programming languages,

• cartesian closed categories as investigated in category theory

2

are essentially the same object in three different guises — see for instance
Jim Lambek and Phil Scott’s monograph [34]. The idea circulated widely in
the community, and a few years later, in the mid-1980s, the following trilogy
of concepts has already become prominent:

Cartesian-Closed
Categories

Intuitionistic
Logicλ-calculus

A linear world opens. The year 1985 was then a turning point, with the
discovery of linear logic by Jean-Yves Girard. This single discovery had the
quite extraordinary effect of refurbishing every part of the subject with new
tools, new ideas, and new open problems. In particular, each of the three
concepts in the trilogy above was reunderstood in a linear fashion. In effect,
Jean-Yves Girard [18, 19] introduced simultaneously:

1. a sequent calculus for linear logic, which refines the sequent calculus
for intuitionistic logic defined by Gerhard Gentzen in the 1930s — in
particular, every derivation rule in intuitionistic logic may be translated
as a series of more “atomic” derivation rules in linear logic,

2. a graphical syntax of proofs, called proof-nets, which refines the term
syntax provided by λ-terms — in particular, every simply-typed λ-term
may be translated as a proof-net, in such a way that a β-reduction step
on the original λ-term is mirrored as a series of more “atomic” cut-
elimination steps in the associated proof-net,

3. a denotational semantics of linear logic, based on coherence spaces and
cliques, which refines the model of dI-domains and stable functions de-
fined by Gérard Berry [7] for the purely functional language PCF —
a simply-typed λ-calculus extended with a fixpoint operator, a condi-
tional test on booleans, and the main arithmetic operations. People
like Robert Seely [47], Yves Lafont [31] and François Lamarche [33]
realized very early that the construction amounts to replacing a carte-
sian closed category (of dI-domains and stable maps) by a monoidal

3

closed category (of coherence spaces and cliques) equipped with a par-
ticular kind of comonad to interpret the exponential modality (noted !)
of linear logic.

From these ideas followed a new and refined “linear” trilogy, which became
prominent in our field in the early 1990s:

Monoidal-Closed
Categories

Linear LogicProof-Nets

A puzzle in string diagrams. I started my PhD thesis exactly at that
time, but in a quite different topic: Rewriting Theory, with Jean-Jacques
Lévy at INRIA Rocquencourt. Although I devoted all my energies to ex-
ploring the arcanes of my own subject, this culminating in [38, 39] and the
later published [40], I was astonished by the elegance of linear logic, and by
the extraordinary perspectives opened by its discovery. Indeed, our emerg-
ing field: the semantics of proofs and programs, was suddenly connected
to something like mainstream mathematics: linear algebra, representation
theory, low-dimensional topology, etc.

My interest was reinforced by a discussion with Yves Lafont, who revealed
to me that multiplicative proof-nets, and more generally, his own notion of
interaction nets [32] are specific instances of a graphical notation invented
by Roger Penrose [44, 45] to manipulate morphisms in monoidal categories;
and that this notation is itself connected to the works by Jean Bénabou
on bicategories [4], by Ross Street on computads [49], and by Albert Bur-
roni on polygraphs and higher-dimensional rewriting [13]. Moreover, André
Joyal and Ross Street published at about the same time two remarkable
papers [26, 27] devoted to braided monoidal categories and string diagrams.
Their elegant work finished to convince me... and I will start this tutorial on
string diagrams by giving a very brief and partial account in Section 2 of the
two important articles [26, 27].

Now, it is worth recalling that a proof-net is called multiplicative when it
describes a proof limited to the multiplicative fragment of linear logic. Since

4

multiplicative proof-nets are instances of string diagrams... there remains to
understand the “stringy” nature of general proof-nets — that is, proof-nets
not limited to the multiplicative fragment of linear logic. A serious difficulty
arises at this point: general proof-nets admit exponential boxes which depict
the action of the exponential modality ! on proofs, by encapsulating them.
Recall that the purpose of the modality ! is to transform a “linear” proof
which must be used exactly once, into a “multiple” proof which may be re-
peated or discarded during the reasoning. So, by surrounding a proof, the
exponential box indicates that this proof may be duplicated or erased. The
trouble is that, quite unfortunately, string diagrams do not admit any com-
parable notion of “box”. Consequently, one wishes to extend string diagrams
with boxes... But how to proceed?

The lessons of categorical semantics. Interestingly, the solution to this
puzzle appears in the categorical semantics of linear logic, in the following
way. In the early 1990s, Martin Hyland and Gordon Plotkin initiated to-
gether with their students and collaborators Andrew Barber, Nick Benton,
Gavin Bierman, Valeria de Paiva, and Andrea Schalk, a meticulous study of
the categorical structure defining a model of linear logic [6, 8, 5, 9, 3, 23].
The research was fruitful in many ways. In particular, it disclosed a com-
mon pattern behind the various categorical axiomatizations of linear logic.
Indeed, every different axiomatization of linear logic generates what appears
to be a symmetric monoidal adjunction

M
L

&&
⊥ L
M

gg (1)

between a symmetric monoidal closed category L and a cartesian category M.
This important notion was introduced and called a Linear-Non-Linear model
by Nick Benton [5, 37]. Here, I will simply call it a linear adjunction. The
notations L and M are mnemonics for Linearize and Multiply. Intuitively, a
proof of linear logic is interpreted as a morphism in the category L or in the
category M, depending whether it is “linear” or “multiple”. Then,

• the functorM transports a “linear” proof into a “multiple” proof, which
may be then replicated or discarded inside the cartesian category M,

5

• conversely, the functor L transports a “multiple” proof into a “linear”
proof, which may be then manipulated as a function inside the sym-
metric monoidal closed category L.

To summarize: there are two “worlds” or “universes of discourse” noted L
and M, each of them implementing a particular policy, and two functors L
and M designed to transport proofs from one world to the other.

An early illustration. Interestingly, this pattern traces back to the very
origin of linear logic: coherence spaces. Indeed, Max Kelly noticed a long
time ago [29, 24] that what one calls “symmetric monoidal adjunction” in (1)
is simply an adjunction L a M in the usual sense, in which one requires
moreover that the left adjoint functor L transports the cartesian structure
of M to the symmetric monoidal structure of L. The detailed proof of this
fact appears for instance in my recent survey on the categorical semantics
of linear logic [41]. Such a structure preserving functor L is called strong
monoidal in the litterature — the precise definition is recalled in Section 4.

Now, the practiced reader will recognize that the linear adjunction (1)
describes precisely how the category M of dI-domains and stable functions
is related to the category L of coherence spaces and cliques. Recall indeed
that a coherence space is simply a reflexive graph, and that the functor L
transforms every dI-domain D into a coherence space L(D) whose nodes are
the compact elements of D, and in which two nodes x ∈ D and y ∈ D are
connected by an edge (that is, are coherent) precisely when there exists an
element z ∈ D such that x ≤ z ≥ y. Since a compact element in the dI-
domain D×E is the same thing as a pair of compact elements in D and E,
and since the tensor product of coherence spaces is the same thing as the
usual product of graphs, the equality follows:

L(D × E) = L(D)⊗ L(E).

Although one should check carefully the conditions of Section 4, it is quite
immediate that the functor L is strict monoidal — hence strong monoidal.
At this point, there only remains to define a right adjoint functor M to the
functor L in the way exposed in [18, 19, 1] in order to find oneself in the
situation of a linear adjunction (1).

The exponential modality decomposed. Although the pattern of linear
adjunction (1) looks familiar from a semantic point of view, it appears to

6

be quite unexpected from the point of view of proof-nets — because the
exponential modality ! is not a primitive anymore: it is deduced instead as
the comonad

! = L ◦ M (2)

generated by the linear adjunction (1) in the category L. In other words, the
exponential modality ! factors into a pair of more atomic modalities L and M .
Nick Benton [5] mirrors this semantic decomposition into a logic and a term
language, which he calls Linear-Non-Linear logic. The decomposition may be
transposed instead into the pictorial language of proof-nets: it tells then that
the exponential box should decompose into a pair of “boxes” interpreting the
two modalities L and M . An important methological point should be raised:
this pictorial decomposition of the box ! will have to follow the principles
of string diagrams, and be nothing more (and nothing less) than a handy
graphical notation for the categorical equality (2).

Functorial boxes. Now, recall that the two modalities L and M in the lin-
ear adjunction (1) are monoidal functors between the monoidal categories L
and M — where the monoidal structure of M is provided by its cartesian
structure. Hence: monoidal functors are precisely what one should try to de-
pict as “boxes” in string diagrams. The task of Sections 3 and 4 is precisely
to explain how monoidal functors are depicted as functorial boxes in string
diagrams — and what kind of box depicts a lax, a colax or a strong monoidal
functor. I rediscover in this way, ten years later, an idea published by Robin
Cockett and Richard Seely [15] in their work on linearly distributive cate-
gories and functors. See also the related article written in collaboration with
Rick Blute [11]. Obviously, all the credit for the idea should go to these au-
thors. On the other hand, I find appropriate to promote here this graphical
notation which remained a bit confidential; and to illustrate how this handy
notation for monoidal functors may be applied in other contexts than linear
logic or linearly distributive categories.

So, I will discuss briefly in Section 8 how the exponential box ! of linear
logic decomposes into a functorial box M enshrined inside a functorial box L.
Categorical semantics indicates that the functor L is strong monoidal whereas
the functor M is lax monoidal — see Section 4 for a definition. Consequently,
the two functorial boxes are of a different nature. One benefit of using string
diagrams instead of proof-nets is that the graphical notation mirrors exactly
the underlying categorical semantics. In particular, I will illustrate how the

7

typical cut-elimination steps in proof-nets are themselves decomposed into
sequences of more atomic rewrite steps in string diagrams. Each of these
rewrite steps depicts a step in the proof of soundness of the categorical
semantics of linear logic implemented by Linear-Non-Linear models.

Trace operators in linear logic. In order to interpret recursive calls in
a programming language like PCF, one needs a cartesian closed category
equipped with a fixpoint operator. Recall that a parametric fixpoint opera-
tor Fix in a cartesian category C is a family of functions

FixUA : C(A× U,U) −→ C(A,U)

making the diagram below commute

A

∆A

��

FixU
A(f)

// U

A× A idA×FixU
A(f)

// A× U

f

OO

for every morphism f : A × U −→ U . The diagram expresses that FixUA is
a parametric fixpoint of the morphism f . A fixpoint operator should also
satisfy a series of naturality properties described in Theorem 3.1 of [20].

A few years ago, Martin Hyland and Masahito Hasegawa [20] have pointed
out independently that the notion of fixpoint operator is closely related to
the notion of trace introduced by André Joyal, Ross Street and Dominic Ver-
ity [28] in the context of balanced monoidal categories — a mild refinement
of braided monoidal categories, see Section 6 for a definition of trace. More
precisely, Martin Hyland and Masahito Hasegawa show that a trace in a
cartesian category C is the same thing as a particularly well-behaved notion
of parametric fixpoint, see [20].

Now, it appears that in many existing models of linear logic, formulated
here as a linear adjunction (1), the symmetric monoidal closed category L
has a trace. This happens typically when the category L is compact-closed
(or more generally, tortile) like the category Rel of sets and relations (with
the usual product of sets as tensor product) or variants recently studied
by Nicolas Tabareau [51] of the category of Conway games introduced by
André Joyal at the end of the 1970s [25]. An interesting question thus is to

8

understand when a trace in the category L may be transported to a trace,
and thus a fixpoint operator, in the cartesian category M.

A nice example, suggested to me by Masahito Hasegawa, shows that this
is not possible in general. Consider the powerset monad T on the usual
category Set of sets and functions: the monad associates to every set X the
set TX of its subsets. The monad T induces an adjunction

Rel

L
((

⊥ Set

M

hh (3)

between the category Set and its kleisli category SetT — which is isomorphic
to the category Rel of sets and relations. The powerset monad T being
commutative, or equivalently, symmetric monoidal (in the lax sense), the
adjunction (3) is symmetric monoidal, see [30]. In particular, the kleisli
category SetT inherits its monoidal structure from the cartesian structure
of the category Set ; and the functor L which sends the category Set to the
subcategory of functions in Rel , is strict monoidal. So, the adjunction (3)
is linear, and defines a model of linear logic, in which the category Set is
moreover isomorphic to the category Rel ! of coalgebras generated by the
powerset comonad ! = L ◦M . Now, the category L = Rel is compact-closed,
and thus has a trace. However, there is no fixpoint operator, and thus no
trace, in the cartesian category M = Set .

At this point, it is worth noticing that the functor L is faithful in the
typical models of linear logic, because the category M is either equivalent to
a subcategory of commutative comonoids in L, or equivalent to a subcategory
of coalgebras of the comonad ! = L ◦M — in particular, M is equivalent to
the category of free coalgebras when it is the co-kleisli category associated
to the comonad. Another equivalent statement is the following one: every
component of the unit η of the monad M ◦ L is a monomorphism. This
observation motivates to characterize in Section 7 when a faithful balanced
monoidal functor

C F // D (4)

between balanced monoidal categories transports a trace in the target cate-
gory D to a trace in the source category C. The proof of this result is perfectly
elementary, and offers a nice opportunity to demonstrate how string diagrams
and functorial boxes may be manipulated in order to produce purely diagram-
matic proofs. Of course, the result specializes then to the strong monoidal

9

functor L involved in a typical model of linear logic. This enables to trans-
port a trace in the category L to a well-behaved parametric fixpoint operator
in the category M in several models of interest — including the relational
model of linear logic, and the categories of Conway games mentioned earlier.

String diagrams in computer science and logic: a few perspectives.
My ambition in writing this elementary tutorial is to demonstrate in a few
pictures that categorical semantics is also of a diagrammatic nature. Proof-
nets were invented by a genial mind, but they remain an ad’hoc and slightly
autarchic artefact of proof-theory. On the other hand, string diagrams flour-
ished in the middle of algebra. Categorical semantics is precisely here to
connect the two subjects, with benefits on both sides: in logic and computer
science, as well as in categorical algebra.

Obviously, much work remains to be done in the area. In many re-
spects, the three concepts appearing in the first trilogy (intuitionistic logic,
λ-calculus, cartesian closed categories) were more tightly connected in the
mid-1980s than the three concepts appearing in the second trilogy (linear
logic, proof-nets, monoidal closed categories) are connected today. From
that point of view, the article published recently by Maria Emilia Maietti,
Paola Maneggia, Valeria de Paiva, Eike Ritter [37] is extremely clarifying,
because it establishes that the Linear-Non-Linear term language introduced
by Nick Benton [5] is the internal language of the category of linear ad-
junctions (1). The idea of reformulating this result using string diagrams
(extended with functorial boxes) instead of a term language sustains implic-
itly the discussion in Section 8. Another important work to mention in the
area was published by Rick Blute, Robin Cockett, Robert Seely and Todd
Trimble [12] about coherence in linearly distributive categories. In particu-
lar, the article describes the free linearly distributive category (as well as the
free ∗-autonomous category) over a given category C, using equations on a
variant of Jean-Yves Girard’s multiplicative proof-nets.

I am confident that a broader picture will emerge from the ongoing work
at the interface of linear logic and categorical algebra. In the near future,
we will certainly find natural to extract a language or a logic as the internal
language of a particular categorical pattern, similar to the linear adjunc-
tion (1) and possibly formulated as a 2-dimensional version of a Lawvere
theory [35, 49, 13, 10, 46, 48]. The resulting languages would be equally
expressed with string diagrams, for handy manipulation, or with terms, for

10

easy implementation. The resulting trilogy of concepts:

Categorical
Semantics

Logic and
LanguageString Diagrams

would be broader in scope and more tightly connected than the current one.
It would also integrate the algebraic and pictorial systems formulated for con-
currency theory, like Robin Milner’s bigraphs [42]. The existing categorical
semantics of action calculi [22, 43, 2] indicate for instance a close relationship
with the models of linear logic based on linear adjunctions (1) and with the
key notion of fibred functor between fibred categories.

I should conclude this introduction by observing that functorial boxes in
string diagrams offer a handy 2-dimensional notation for what could be de-
picted alternatively using Ross Street’s 3-dimensional surface diagrams [50].
Surface diagrams are more perspicuous in several ways: for instance, a func-
tor is depicted as a string — instead of a box. On the other hand, the two
notations are not intrinsically different: the practiced reader will easily trans-
late the string diagrams appearing in this tutorial into surface diagrams —
in which strings are replaced by ribbons, in order to accomodate the twists
of balanced monoidal categories. In that respect, this tutorial should be also
an incentive to carry on in the diagrammatic path, and to depict proofs as
surface diagrams. The resulting 3-dimensional notation, added to the ob-
servation [16] that a ∗-autonomous category is essentially the same thing
as a Frobenius algebra in the autonomous category of small categories and
“profunctors” or “distributors” — offers a revitalizing point of view on linear
logic, which remains largely unexplored today.

Acknowledgments. — This short tutorial was stimulated and inspired
by discussions with Martin Hyland and Masahito Hasegawa on trace opera-
tors in models of linear logic, held during the summer 2005 and onwards. I
thank them for their precious insights and advice. I am also grateful to Nico-
las Tabareau for motivating this work by his ongoing study of trace operators

11

in game semantics. Finally, I thank the Research Institute for Mathematical
Science (RIMS) in Kyoto, for hosting me when I wrote this tutorial.

2 String diagrams

In two remarkable papers, André Joyal and Ross Street introduce the notion
of balanced monoidal category [26] and develop a graphical notation, based
on string diagrams, to denote morphisms in these categories [27]. Note that
from a purely topological point of view, these string diagrams are embed-
ded in the 3-dimensional space. The main task of the second paper [27] is
precisely to justify the topological notation, by showing that any two string
diagrams equal modulo continuous deformation denote the same morphism in
a balanced monoidal category. The interested reader will find the argument
in [27].

Recall that a monoidal category [36] is a category C equipped with a
functor

⊗ : C× C −→ C
called the tensor product, and an object I called the unit object ; as well as
three natural isomorphisms

αA,B,C : (A⊗B)⊗ C −→ A⊗ (B ⊗ C)

λA : I ⊗ A −→ A, ρA : A⊗ I −→ A

called the associativity, the left and the right unit constraints respectively;
such that, for all objects A, B, C and D of the category, the following
two diagrams called MacLane’s associativity pentagon and triangle for unit,
commute:

(A⊗B)⊗ (C ⊗D)
α

,,YYYYYYYY

((A⊗B)⊗ C)⊗D
α 22eeeeeeee

α⊗idD
��

A⊗ (B ⊗ (C ⊗D))

(A⊗ (B ⊗ C))⊗D α // A⊗ ((B ⊗ C)⊗D)

idA⊗α
OO

(A⊗ I)⊗B α //

ρ⊗idB ''NNNNNNNNNNN
A⊗ (I ⊗B)

idA⊗λwwppppppppppp

A⊗B

12

A braiding is a natural isomorphism

γA,B : A⊗B −→ B ⊗ A
such that, for all objects A,B and C of the category, the two hexagonal
diagrams below commute:

A⊗ (B ⊗ C)
γ // (B ⊗ C)⊗ A

α
))TTTTTTT

(A⊗B)⊗ C
α 55jjjjjjj

γ⊗C))TTTTTTT
B ⊗ (C ⊗ A)

(B ⊗ A)⊗ C α // B ⊗ (A⊗ C)
B⊗γ

55jjjjjjj

(A⊗B)⊗ C γ // C ⊗ (A⊗B)
α−1

))TTTTTTT

A⊗ (B ⊗ C)

α−1 55jjjjjjj

A⊗γ))TTTTTTT
(C ⊗ A)⊗B

A⊗ (C ⊗B) α−1
// (A⊗ C)⊗B γ⊗B

55jjjjjjj

Finally, a twist is a natural isomorphism

θA : A −→ A

such that
θI = idI

and, for all objects A and B of the category, the diagram below commutes:

A⊗B γA,B //

θA⊗B

��

B ⊗ A
θB⊗θA

��
A⊗B B ⊗ AγB,A

oo

Definition 1 A balanced monoidal category is a monoidal category equipped
with a braiding and a twist.

Note that a symmetric monoidal category is a balanced category in which,
for all objects A and B of the category, the morphism

A⊗B γA,B // B ⊗ A γB,A // A⊗B

13

is equal to the identity morphism idA⊗B; and the twist morphism θA coincides
with the identity morphism idA.

From now on, we suppose for legibility that our balanced monoidal cat-
egory is strict : this means that, for all objects A,B and C of the category,
the component αA,B,C , λA and ρA of the the associativity and unit isomor-
phisms, are identity morphisms. We follow the conventions used in [27] and
thus depict a morphism f : A⊗B ⊗ C −→ D ⊗ E in string diagrams as:

f

A B C

D E

We depict the composite g ◦ f : A −→ C of two morphisms f : A −→ B and
g : B −→ C as:

g

f

AA A

B

CC

=g ◦ f

and the tensor product f⊗g : A⊗C −→ B⊗D of two morphisms f : A −→ B
and g : C −→ D as:

gf

A⊗ C A

B ⊗D

C

B D

=f ⊗ g

Hence, composition and tensor product are depicted as vertical and horizon-
tal composition in string diagrams, respectively. Then, the braiding γA,B and
its inverse γ−1

A,B, the twist θA and its inverse θ−1
A are depicted respectively as:

14

A

A

A

A

B A

BB

B A

A A

A

A

Note that the third dimension of string diagrams enables to depict the braid-
ings, and that drawing ribbons (instead of strings) is convenient to depict
the twists.

3 Functors in string diagrams

Here, we recall the graphical notation introduced by Robin Cockett and
Robert Seely [15] in order to depict a usual functor

F : C −→ D

between balanced monoidal categories. The functor applied to a morphism

f : A −→ B

of the category C is represented as a box tagged by the label F , and drawn
around the morphism f in the following way:

f

F

FA FA

FB

B

FB

A

=Ff

Like any box, the functorial box F is designed to separate an inside world
from an outside world: in that case, the inside world is the source category C
and the outside world is the target category D. This explains why a string
typed FA outside the box (thus, in the category D) becomes a string typed A
(thus, in the category C) when it crosses the frontier and enters the box; and

15

that a string typed B inside the box (in the category C) becomes a string
typed FB (in the category D) when it crosses the frontier and leaves the box.

Given a pair of morphisms f : A −→ B and g : B −→ C, one depicts the
two functorial equalities

F (g ◦ f) = Fg ◦ Ff F (idA) = idFA

in the following way:

F

g

F

f f

F

F

g

FB

FA FA

B

FAFA

C

B

C

FC

B

AA

FA

A

FA

A

FC

==

Note that exactly one string enters and exits each functorial box F .

4 Monoidal functors in string diagrams

In this section, we recall how the graphical notation for functors introduced
in the previous section specializes to monoidal functors, see [15] again. It will
appear that a monoidal functor (in the lax sense) implements a particular
kind of functorial box in which several strings (possibly none) may enter
simultaneously, and from which exactly one string exits. Recall that a lax
monoidal functor

(F,m) : C −→ D

between two monoidal categories is a functor F equipped with a morphism

m[−] : I −→ FI

and a natural transformation

m[A,B] : FA⊗ FB −→ F (A⊗B)

16

such that, for all objects A,B and C, the three “coherence” diagrams below
commute:

(FA⊗ FB)⊗ FC α //

m⊗FC
��

FA⊗ (FB ⊗ FC)

FA⊗m
��

F (A⊗B)⊗ FC
m

��

FA⊗ F (B ⊗ C)

m

��
F ((A⊗B)⊗ C) Fα // F (A⊗ (B ⊗ C)

FA⊗ I ρ //

FA⊗m

��

FA

FA⊗ FI m // F (A⊗ I)

Fρ

OO I ⊗ FB λ //

m⊗FB

��

FB

FI ⊗ FB m // F (I ⊗B)

Fλ

OO

The notion of colax monoidal functor (F, n) is defined in just the same way,
except that the coercion morphisms n go in the other direction:

n[−] : FI −→ I n[A,B] : F (A⊗B) −→ FA⊗ FB

A strong monoidal functor is a lax monoidal functor (F,m) in which the
coercion maps m are all isomorphisms; equivalently, it is a colax monoidal
functor (F, n) in which the coercion maps n are all isomorphisms.

Now, let us explain how to depict monoidal functors in string diagrams.
We will suppose for legibility that the two monoidal categories C and D are
strict. Given k objects in the category C, there may be several ways to
construct a morphism

m[A1,···,Ak] : FA1 ⊗ · · · ⊗ FAk −→ F (A1 ⊗ · · · ⊗ Ak)

by applying a series of structural morphisms m. Then, the definition of a
lax monoidal functor, and more specifically the coherence diagrams recalled
above, ensure that these various ways define the same morphism m[A1,···,Ak] in
the end. This morphism is depicted in string diagrams as a box F in which k
strings labelled A1, · · · , Ak enter simultaneously, join together into a unique
string labelled A1⊗· · ·⊗Ak, which then exits the box. For instance, the two

17

structural morphisms m[A1,A2,A3] and m[−] are depicted as follows:

FI

I

F FA2

FA3FA2

A3A1

FA1

F (A1 ⊗A2 ⊗A3)

A1 ⊗A2 ⊗A3

(5)

More generally, given a morphism

f : A1 ⊗ · · · ⊗ Ak −→ B

in the source category C, one depicts the morphism

F (f) ◦m[A1,···,Ak] : FA1 ⊗ · · · ⊗ FAk −→ F (A1 ⊗ · · · ⊗ Ak) −→ FB

obtained by precomposing the image F (f) with the coercion map m[A1,···,Ak]

in the target category D, as the functorial box below, with k inputs and
exactly one output:

f

F

FA1 FAk

FB

AkA1

B

(6)

Remark. The definition of lax monoidal functor would permit a more
general and delayed form of fusion between boxes (think of surface dia-
grams [50]). Here, we limit ourselves to the specific pattern (5) in which
a series of k boxes F , each one encapsulating a unique string labelled Ai, for
1 ≤ i ≤ k, join together simultaneously in a box F encapsulating a unique
string labelled A1 ⊗ · · · ⊗ Ak. This specific pattern generates boxes of the
shape (6) which are easy to understand and to manipulate, and sufficient to
the purpose of this tutorial.

18

The coherence properties required by the definition of a monoidal functor
ensure that we may safely “merge” two monoidal boxes in a string diagram:

g

F

f

C

FAk

A1

B

Ak

FAj

AjAi

FAiFA1

FC

=

F

F

g

f

FA1

FC

C

B

FB

AkA1

FAj FAk

AjAi

FAi

B

(7)

Note that a colax monoidal functor may be depicated in a similar fashion,
as a functorial box in which exactly one string enters, and several strings
(possibly none) exit. Now, a strong monoidal functor is at the same time a
lax monoidal functor (F,m) and a colax monoidal functor (F, n). It is thus
depicted as a functorial box in which several strings may enter, and several
strings may exit. Besides, the coercion maps m are inverse to the coercion
maps n. Two diagrammatic equalities follow, which enable to split a “strong
monoidal” box horizontally:

g

F

f

B1

FCkFC1

Ck

FAi

AiA1

FA1

C1

Bj =

g

F

f

F

FCkFC1

Ck

FAi

AiA1

FA1

C1

FBjFB1 (8)

19

as well as vertically:

g

F

f

FD1

FCk

CkC1

FC1

DlBjB1

FBkFB1

FAi

AiA1

FA1

D1

FDl

=
F

g

F

f

FD1

FCk

CkC1

FC1

DlBjB1

FBkFB1

FAi

AiA1

FA1

D1

FDl

(9)

These equalities will be illustrated in the series of diagrammatic manipula-
tions exposed in Sections 7 and 8.

5 Natural transformations in string diagrams

Although we do not use natural transformations very much in the two el-
ementary exercises exposed in Sections 7 and 8, we find useful to explain
briefly how they interact pictorially with functorial boxes. Recall that a
natural transformation

θ : F −→ G : C −→ D

between two functors F and G from the category C to the category D is
defined as a family of morphisms

θA : FA −→ GA

indexed by the objects of the category C, satisfying that the diagram

FA
θA //

Ff

��

GA

Gf

��
FB

θB // GB

20

commutes, for every morphism f : A −→ B in the category C. This is
depicted as the diagrammatic equality:

θ

f

F

FA

B

FB

GB

A

=

θ

f

G

FA

B

GA

GB

A

Suppose that the two categories C and D are monoidal, and that the two
functors F and G are lax monoidal, with structural coercions noted m. By
definition, the natural transformation θ is monoidal when the diagrams

FA⊗ FB θA⊗θB //

m

��

GA⊗GB

m

��
F (A⊗B)

θA⊗B // G(A⊗B)

I

m

���������������

m

��2222222222222

FI
θ // GI

commute, for all objects A and B of the category C. These coherence dia-
grams ensure the diagrammatic equality:

θ

f

F

FAk
FA1

B

FB

Ak

GB

A1

=

θθ

f

G

FAkFA1

GAkGA1

B

A1

GB

Ak

in which the natural transformation θ “transforms” the lax monoidal box F
into the lax monoidal box G, and “replicates” as one natural transforma-
tion θ on each of the k strings A1, . . . , Ak entering the lax monoidal boxes F

21

and G. The notion of monoidal natural transformation between colax mo-
noidal functors leads to a similar pictorial equality, which the reader will
easily guess by turning the page upside down.

6 Traced monoidal categories

In a remarkable article, André Joyal, Ross Street and Dominic Verity [28]
define a trace in a balanced monoidal category C as a natural family of
functions

TrUA,B : C(A⊗ U,B ⊗ U) −→ C(A,B)

satisfying three axioms:

vanishing (monoidality in U)

TrU⊗VA,B (g) = TrUA,B(TrVA⊗U,B⊗U(g)), TrIA,B(f) = f.

superposing

TrUA,B(f)⊗ g = TrUA⊗C,B⊗D((idB ⊗ γ−1
D,U) ◦ (f ⊗ g) ◦ (idA ⊗ γC,U))

= TrUA⊗C,B⊗D((idB ⊗ γD,U) ◦ (f ⊗ g) ◦ (idA ⊗ γ−1
C,U))

yanking

TrUU,U(γU,U ◦ (θ−1 ⊗ idU)) = idU = TrUU,U(γ−1
U,U ◦ (θ ⊗ idU)).

A balanced monoidal category equipped with a trace is called a traced mo-
noidal category. String diagrams for balanced monoidal categories extend to
traced monoidal categories by depicting the trace as follows:

() ff =

AA

U

B BU

U

TrU
A,B

22

The small arrow embroidered on the ribbon recalls that this part of the string
diagram depicts a trace, which expresses intuitively a notion of feedback.
Thanks to this ingenious notation for traces, the algebraic axioms of a trace
are depicted as a series of elementary topological deformations on ribbons,
recalled here from [28]:

sliding (naturality in U)

u

u

ff =

AA

B B

V

U

U

V

tightening (naturality in A,B)

a

b

a

b

f f=

vanishing (monoidality in U)

f f=

U ⊗ V

V

U

f f=

I

23

superposing

gff gf g ==

yanking

UUU

= =

7 Transport of trace along a faithful functor

Recall [28] that a balanced monoidal functor F : C −→ D between balanced
monoidal categories is a strong monoidal functor satisfying that, for all ob-
jects A and B, the diagram below commutes

FA⊗ FB γA,B //

mA,B

��

FB ⊗ FA
mB,A

��
F (A⊗B)

F (γA,B)
// F (B ⊗ A)

and the equality FθA = θFA holds. This may be depicted as the two
equalities:

F

F

FA

FAFB

FB FA

FAFB

FB FA

FA FA

FA

= =

24

When C and D are traced monoidal, one says that F : C −→ D is traced
monoidal when F is balanced monoidal, and preserves traces in the expected
sense that, for all objects A,B and U and for all morphism f : A ⊗ U −→
B ⊗ U of the category C, the following equality holds:

F (TrUA,B(f)) = TrFUFA,FB(m−1
[A,B] ◦ Ff ◦m[A,B]).

This equality is depicted as follows:

U

FU

FAFA

FB FB

F

ff =

F

An elementary exercise in string diagrams with functorial boxes follows. It
consists in establishing in a purely diagrammatic fashion a mild but useful
generalization of a statement (Proposition 2.4) formulated in [28].

Proposition 1 (Transport along a faithful balanced functor)
Suppose that F : C −→ D is a faithful, balanced monoidal functor with D
traced monoidal. Then, there exists a trace on C for which F is a traced mo-
noidal functor iff for all objects A,B, U of the category C, and all morphism

f : A⊗ U −→ B ⊗ U
there exists a morphism g : A −→ B such that

F (g) = TrFUFA,FB(m−1
[A,B] ◦ F (f) ◦m[A,B]) (10)

where Tr denotes the trace in D. The equality is depicted as follows:

FU

FAFA

A

FB

FB

B

F

fg

F

=

25

Moreover, if this trace on C exists, it is unique: it is called the trace on the
category C transported from the category D along the functor F .

Proof. The direction (⇒) follows immediately from the very definition of a
traced monoidal functor. Hence, we only establish here the converse direc-
tion (⇐). We suppose from now on that for every morphism f : A⊗ U −→
B ⊗ U there exists a morphism g : A −→ B satisfying Equation (10). Note
that the morphism g is unique because the functor F is faithful. This defines
a family of functions noted

trUA,B : C(A⊗ U,B ⊗ U) −→ C(A,B).

We establish that tr satisfies the equational axioms of a trace. To that
purpose, we introduce a handy notation for the morphism trUA,B(f):

()f f=

A A

U

BB U

U

trU
A,B

By definition, the morphism trUA,B(f) satisfies the diagrammatic equality:

U

FU

FAFA

FB FB

F

ff =

F

We establish each equational axiom by a series of elementary manipulations
on string diagrams. Although the proof is diagrammatic, it is absolutely
rigorous, and works for weak monoidal categories C and D as well as strict
ones.

26

Sliding (naturality in U). We want to show the equality

u

ff

u

=

AA

V

B

U

B

U
V

Because the functor F is faithful, it is sufficient to establish that the two
morphisms A −→ B have the same image FA −→ FB in the target cate-
gory D:

u

ff

u

F F

=

FAFA

V

FB FB

U
V

U

Once the definition of tr applied, we separate the box in two parts, using
Equation (7) for the lax monoidal functor F :

f

u

F

FA

FB

V

U
= f

u
F

FA

FB
FV

U
=

u

F

f

F

FA

FV

FB

U

FU

Then, after applying the sliding axiom of the trace Tr in the target cate-
gory D, we reunify the two separate boxes, using the variant of Equation (7)
satisfied by colax monoidal functors. The definition of tr concludes the proof.

27

u

F

f

F

FA

FU

FB

V

FV

= f

u

F

FA

FB
FU

V

=

u

f

F

FA

FB

U
V

Tightening (Naturality in A and B). The proof is very similar to the proof
of the sliding equality. Because the functor F is faithful, we will deduce the
equality

a

b

a

b

f f=

from the equality by F of the image of the two morphisms in the target
category:

a

b

a

b

f f

F F

=

FAFA

FBFB

This is established as follows. Once the definition of tr applied, we separate
the box in three parts, using Equation (7) for lax monoidal functors, and its
colax variant:

28

a

b

f

F

FA

FB

=

b

a

f

F

FA

FB

=

b

a

F

f

F

F

FA

FB

Then, we apply the tightening axiom of the trace Tr in the category D,
followed by the definition of tr, and finally reunify the three boxes together,
using Equation (7) for lax monoidal functors, and its colax variant.

b

a

F

f

F

F

FA

FB

=

b

a

F

f

F

F

FA

FB

=

a

b

f

F

FA

FB

Vanishing (monoidality in U). We will proceed here just as in the two
previous proofs, and deduce the two diagrammatic equalities formulated in
the source category C,

f U ⊗ V = f V U f I = f

29

from the two diagrammatic equalities below, formulated in the target cate-
gory D:

f

F

U ⊗ V = f

F

V U f

F

I = f

F

The first equation is established as follows. After applying the definition
of tr, we split the string U ⊗ V in two strings U and V .

f

F

U ⊗ V

=
F

f

F (U ⊗ V)

=

f

F

U

U ⊗ V

F (U ⊗ V)

U ⊗ V

V

Then, we separate the box in two parts, using Equation (8) for the strong
monoidal functor F , and apply together the sliding and vanishing axioms of
the trace Tr in the category D:

f

F

F

FU

U ⊗ V

U ⊗ V

F (U ⊗ V)

FV

=

F

f

F

U ⊗ V

U ⊗ V

FUFV

30

Finally, we reunify the two boxes using Equation (8), and conclude by ap-
plying the definition of tr twice.

f

F

U ⊗ V

U ⊗ V

= f

F

FV

FU

=
f

F

V U

The second equation is established exactly as the previous one, except that
we are dealing now with the nullary case instead of the binary one. After
applying the definition of tr, we split the string I, and separate the box in
two parts, using Equation (8) for the strong monoidal functor F :

f

F

I =

FI

f

F

=

f

F

F (I)

I

I

=

f

F

F

F (U ⊗ V)

I

I

Then, just as for the binary case, we apply the sliding and vanishing axioms
of the trace Tr and reunify the two boxes, before concluding.

F

f

F

I

I

= f

F

I

I

= f

F

31

Note that we need the hypothesis that the functor F is strong monoidal in
order to perform the manipulations for vanishing — while we needed only
that it is lax and colax monoidal in the arguments devoted to sliding and
tightening.

Superposing. We will establish only the first of the two equalities below
— since the second one is proved in exactly the same way.

f g = gf = gf

Because the functor F is faithful, this reduces to showing that the two mor-
phisms have the same image in the category D — which we establish by
the series of equalities below. First, we separate the box in two parts, using
Equation (9) for the strong monoidal functor F ; and apply the definition
of tr in one of the two boxes.

f g

F

=

F

f g

F

=

F

f g

F

Then, after applying the superposing axiom of the trace Tr in the target
category D, we merge the two boxes, using again Equation (9) for the strong
monoidal functor F ; we insert the two braidings inside the box, using the
hypothesis that the functor F is balanced; and finally conclude using the
definition of tr.

F

f g

F

= f g

F

= f g

F

=

F

gf

32

Yanking. The diagrammatic proof follows easily from the hypothesis that
the functor F is faithful, and balanced monoidal. The proof is left to the
reader as exercise.

From this, we conclude that tr defines a trace in the source category C.
The fact that the functor F is traced monoidal follows then immediately from
the very definition of tr. This concludes the proof of Proposition 1. 2

Application to models of linear logic. In a typical model of linear logic
based on a linear adjunction (1) the category M is a full subcategory of the
category of Eilenberg-Moore coalgebras of the comonad ! = L ◦ M in the
category L — and the functor L is the associated forgetful functor. In that
case, Proposition 1 ensures that the category M is traced when the category L
is traced, and when, moreover, the trace

TrLULA,LB(f) : LA −→ LB (11)

of every coalgebraic morphism

f : LA⊗ LU −→ LB ⊗ LU (12)

is coalgebraic. This is precisely what happens in the relational model of
linear logic, where:

• L is the category Rel of sets and relations, with tensor product defined
as usual set-theoretic product,

• M is the co-kleisli category of the comonad ! which transports every
set A to the free commutative comonoid !A with finite multisets of
elements of A as elements, and multiset union as coproduct. Note that
the co-kleisli category M is understood here as the full subcategory of
free coalgebras of the exponential comonad.

This establishes that the category M has a well-behaved parametric fixpoint
operator. A similar method applies to construct well-behaved parametric
fixpoint operators in categories of games and strategies [51].

Another application: Masahito Hasegawa observed (private communica-
tion) that the category M is traced whenever it is the co-kleisli category of
an idempotent comonad ! = L ◦M in a traced monoidal category L. This
interesting fact may be deduced from Proposition 1 in the following way.

33

By definition, a comonad (!, ε, δ) is idempotent when the component of the
comultiplication

δA : !A −→ !!A

is an isomorphism, for every object A of the underlying category. In that
case, the two morphisms ε!A and !εA qualify as the inverse of the morphism δA,
and are thus equal isomorphisms.

Now, suppose that the comonad ! = L ◦ M generated by a linear ad-
junction (1) is idempotent; and that the category L is traced monoidal, with
trace noted Tr. For general reasons related to adjunctions, it appears that
for every morphism

f : A× U −→ B × U (13)

in the category M, the morphism

h = TrLULA,LB(m−1
[A,B] ◦ Lf ◦m[A,B]) : LA // LB

is equal in the category L to the morphism

LA
Lη // LMLA

LMh // LMLB
εLB // LB. (14)

where η denotes the unit of the monad M ◦L. The equality is nicely depicted
in string diagrams:

LU

LA

LB

f

L

=

LU

MLA

LMLB

LB

LA

LA

A

LB

ε

f

L

M

η

L

34

Here, Proposition 1 applies, and the category M is thus traced, whenever the
functor L is faithful, and for every morphism f in (13), the morphism defined
in (14) is the image L(g) in the category L of a morphism g : A −→ B in
the category M.

This is precisely what happens when the category M is defined as the co-
kleisli category associated to an idempotent comonad ! = L◦M . In that case,
indeed, the object B is the free coalgebra B = MB′ of an object B′ of the
category L, and the morphism εLB = ε!B′ is equal to the image LMεB′ =!εB′
of the morphism MεB′ : MLB −→ B. The morphism g is thus defined as:

g = A
η // MLA

Mh // MLB
MεB′ // B.

A nice problem remains open. A few years ago, Ryu Hasegawa [21] con-
structed a trace related to the Lagrange-Good inversion formula, in a cate-
gory of analytic functors. This category, which is cartesian, is the co-kleisli
category associated to a specific model of linear logic. Interestingly, the dia-
grammatic account exposed in this tutorial does not seem to apply (at least
directly) to Ryu Hasegawa’s construction. It would be extremely satisfactory
to devise alternative algebraic conditions to cover this important example.
We leave this open here.

8 Decomposing the modal box of linear logic

The decomposition ! = L ◦ M of the exponential modality of linear logic
illustrates the general diagrammatic principle that every functorial box sep-
arates an inside world (the source category) from an outside world (the target
category), each world implementing his own (eg. cartesian, monoidal closed)
policy. We take the freedom of considering here a “balanced” version of linear
logic, whose categorical model is defined as a balanced monoidal adjunction

M
L

&&
⊥ L
M

gg (15)

between a balanced monoidal category L and a cartesian category M. Note
that in such an adjunction, the functor L is balanced monoidal.

In that setting, the exponential box ! with its auxiliary doors labelled by
the formulas !A1, ..., !Ak and with its principal door labelled by the formula !B

35

is translated as a lax monoidal box M enshrined inside a strong monoidal
box L, in the following way:

!

f

!B

B

Ak

!Ak!A1

A1

=

L

M

f

MB

MAkMA1

B

LMAk

AkA1

LMA1

LMB

Now, the category M enshrined “inside” the functorial box L is cartesian,
with binary product noted × here. Hence, every object X of the category M
is equipped with a “diagonal” morphism

∆X : X −→ X ×X

natural in X. In particular, every object A of the category L induces a
diagonal morphism

∆MA : MA −→MA×MA.

The contraction of linear logic is defined as the morphism L(∆MA) depicted
as the diagonal string ∆MA enshrined inside the strong monoidal box L:

c

!A

!A !A

=
∆

L

MA

MA

LMA

LMA LMA

MA

If one translates in string diagrams the usual cut-elimination step of linear
logic between a contraction rule and an introduction rule of the exponential
box, this decomposes the step in a series of more atomic steps. First, the
box L which encapsulates the diagonal ∆MA merges with the box L which
encapsulates the content f of the exponential box. This releases the diago-
nal ∆MA inside the cartesian category M enshrined in the exponential box.

36

L

∆

M

L

f

MB

LMB

MB

LMB

MAkMA1

LMB

B

LMAk

AkA1

LMA1

MBMB

=

L

∆

M

f

MB

MB

LMB

MAkMA1

LMB

B

LMAk

AkA1

LMA1

MB

Then, the diagonal ∆MA replicates the content f of the exponential box —
or more precisely the morphism f encapsulated by the lax monoidal box M .
Note that the duplication step is performed in the cartesian category M
enshrined by the functorial box L, and that the equality follows from the
naturality of ∆.

M

L

ff

∆

M

∆

MB

MA1
MAk

MA1

LMAk

AkA1

LMA1

MAk

MAkMA1

MB

LMB LMB

B

AkA1

B

Once the duplication performed, the strong monoidal box is split in three
horizontal parts using Equation (8).

37

L

f

L

M

L

f

M

∆ ∆

MA1

MB

MAk

MA1

B

LMAk

AkA1

LMA1

MAk

MAkMA1

MB

LMB LMB

B

AkA1

MAk
MA1

The intermediate box may be removed, because the functor L is balanced.

f

M

L

f

L

M

∆∆

MAkMA1

MB

MA1 MAk

B

LMAk

AkA1

LMA1

LMB

MAkMA1

MB

LMB

LMA1

B

AkA1

LMAk

Finally, the remaining monoidal boxes L are split vertically, using Equa-
tion (9).

38

L

L

f

L

M

f

L

M

∆ ∆

MB

MAk

MA1

B

LMAk

Ak

A1

LMA1

LMB

MA1

MB

MAk

LMB

B

Ak

A1

LMA1 LMAk

This completes the categorical and diagrammatical transcription of this par-
ticular cut-elimination step. The other cut-elimination steps of linear logic
involving the exponential box ! are decomposed in a similar fashion.

References

[1] R. Amadio and P.-L. Curien. Domains and Lambda-Calculi. Cam-
bridge University Press, 1998.

[2] A. Barber, P. Gardner, M. Hasegawa, G. Plotkin. From ac-
tion calculi to linear logic. Proceedings of Computer Science Logic ’97,
Aarhus, Denmark. Volume 1414 of Lecture Notes in Computer Science,
Springer Verlag. 1997.

[3] A. Barber. Linear Type Theories, Semantics and Action Calculi.
PhD Thesis of the University of Edinburgh. LFCS Technical Report
CS-LFCS-97-371. 1997.

[4] J. Bénabou. Introduction to bicategories. Reports of the Midwest
Category Seminar. Volume 47 of Lecture Notes in Mathematics,
Springer Verlag. 1967.

[5] N. Benton. A Mixed Linear and Non-Linear Logic: Proofs, Terms
and Models. Proceedings of Computer Science Logic ’94, Kazimierz,
Poland. Volume 933 of Lecture Notes in Computer Science, Springer
Verlag. June 1995.

39

[6] N. Benton, G. Bierman, V. de Paiva, M. Hyland. Term assign-
ment for intuitionistic linear logic. Technical Report 262, Computer
Laboratory, University of Cambridge, 1992.

[7] G. Berry. Stable models of typed lambda-calculi. Proceedings of the
5th International Colloquium on Automatas, Languages and Program-
ming, number 62 in Lecture Notes in Computer Science. Springer Ver-
lag 1978.

[8] G. Bierman. On intuitionistic linear logic. PhD Thesis. University of
Cambridge Computer Laboratory, December 1993.

[9] G. Bierman. What is a categorical model of intuitionistic linear logic?
Proceedings of the Second International Conference on Typed Lambda
Calculus and Applications. Volume 902 of Lecture Notes in Computer
Science, Springer Verlag. Edinburgh, Scotland, April 1995. Pages 73-
93.

[10] H. Blackwell, M. Kelly, and A. J. Power. Two dimensional
monad theory. Journal of Pure and Applied Algebra, 59:1–41, 1989.

[11] R. Blute, R. Cockett, R. Seely. The logic of linear functors. Math-
ematical Structures in Computer Science,12 (2002)4 pp 513-539.

[12] R. Blute, R. Cockett, R. Seely, T. Trimble. Natural Deduction
and Coherence for Weakly Distributive Categories. Journal of Pure
and Applied Algebra, 113(1996)3, pp 229-296.

[13] A. Burroni. Higher Dimensional Word Problem, Category The-
ory and Computer Science, Lecture Notes in Computer Science 530,
Springer-Verlag, 1991.

[14] R. Cockett, R. Seely. Linearly Distributive Categories. Journal of
Pure and Applied Algebra, 114(1997)2, pp 133-173.

[15] R. Cockett, R. Seely. Linear Distributive Functors. In The Bar-
rfestschrift, Journal of Pure and Applied Algebra, Volume 143, Issue
1-3, 10 November 1999.

[16] B. J. Day and R. Street. Quantum categories, star autonomy, and
quantum groupoids. Galois Theory, Hopf Algebras, and Semiabelian

40

Categories. Fields Institute Communications 43 (American Math. Soc.
2004) 187-226.

[17] G. Gentzen. Investigations into logical deduction (1934). An en-
glish translation appears in The Collected Papers of Gerhard Gentzen.
Edited by M. E. Szabo, North-Holland 1969.

[18] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50: 1-102,
1987.

[19] J.-Y. Girard. Linear logic: its syntax and semantics. In Advances in
Linear Logic, London Mathematical Society Lecture Note Series 222,
pp. 1–42, Cambridge University Press, 1995.

[20] M. Hasegawa. Recursion from cyclic sharing: traced monoidal cat-
egories and models of cyclic lambda-calculi. Proceeding of the 3rd
International Conference on Typed Lambda-Calculi and Applications,
Springer Verlag, Lecture Notes in Computer Science 1210, (1997).

[21] R. Hasegawa. Two applications of analytic functors. Theoretical
Computer Science 272 (2002) 113-175.

[22] C. Hermida and J. Power. Fibrational control structures. Proceed-
ings of CONCUR 1995. Springer Lecture Notes in Computer Science
962. pp 117–129, 1995.

[23] M. Hyland and A. Schalk. Glueing and orthogonality for models
of linear logic. Theoretical Computer Science 294(1/2): 183-231, 2003.

[24] G. B. Im and M. Kelly. A universal property of the convolution
monoidal structure, J. Pure Appl. Algebra 43, pp. 75-88, 1986.

[25] A. Joyal. Remarques sur la théorie des jeux à deux personnes. Gazette
des Sciences Mathématiques du Québec, volume 1, number 4, pp 46–52,
1977.

[26] A. Joyal and R. Street. Braided Tensor Categories, Advances in
Mathematics 102, 20–78, 1993.

[27] A. Joyal and R. Street. The geometry of tensor calculus, I. Advances
in Mathematics 88, 55–112, 1991.

41

[28] A. Joyal, R. Street and D. Verity. Traced monoidal categories.
Math. Proc. Camb. Phil. Soc. 119, 447–468, 1996.

[29] M. Kelly. Doctrinal adjunction. Lecture Notes in Math. 420, pp. 257-
280, 1974.

[30] S. Lack. Limits for lax morphisms. Applied Categorical Structures.
13(3):189-203, 2005.

[31] Y. Lafont. Logiques, catégories et machines. PhD thesis, Université
Paris 7, 1988.

[32] Y. Lafont. From Proof Nets to Interaction Nets, In Advances in Lin-
ear Logic, London Mathematical Society Lecture Note Series 222, pp.
225–247, Cambridge University Press, 1995.

[33] F. Lamarche Sequentiality, games and linear logic, Unpublished
manuscript. 1992.

[34] J. Lambek and P. Scott. Introduction to Higher Order Categorical
Logic. Cambridge Studies in Advanced Mathematics Vol. 7. Cambridge
University Press, 1986.

[35] F. W. Lawvere. Ordinal sums and equational doctrines. Springer
Lecture Notes in Mathematics No. 80, Springer, Berlin, 1969, pp. 141-
155.

[36] S. Mac Lane. Categories for the working mathematician. Graduate
Texts in Mathematics 5. Springer Verlag 2nd edition, 1998.

[37] M. Maietti, P. Maneggia, V. de Paiva, E. Ritter. Relating cate-
gorical semantics for intuitionistic linear logic. Applied Categorical
Structures 13(1): 1-36, 2005.

[38] P.-A. Melliès. Typed lambda-calculi with explicit substitutions may
not terminate Proceedings of the Second International Conference on
Typed Lambda Calculi and Applications, Edinburgh, Lecture Notes in
Computer Science 902, pp. 328-334, Springer, 1995.

[39] P.-A. Melliès. Axiomatic Rewriting 4: a stability theorem in rewrit-
ing theory. Proceedings of Logic in Computer Science 1998, IEEE Com-
puter Society Press, 1998.

42

[40] P.-A. Melliès. Axiomatic Rewriting Theory I: An axiomatic stan-
dardisation theorem. Chapter in the Jan Willem Klop Festschrift,
called Processes, Terms and Cycles: Steps on the Road to Infinity.
Edited by Aart Middeldorp, Vincent van Oostrom, Femke van Raams-
donk and Roel de Vrijer. Lecture Notes in Computer Science 3838,
Springer Verlag. 2006.

[41] P.-A. Melliès. Categorical semantics of linear logic: a survey. To
appear in Panoramas et Synthèses, Société Mathématique de France,
2007.

[42] R. Milner. Pure bigraphs: structure and dynamics. Information and
Computation, Volume 204, Number 1, January 2006.

[43] D. Pavlovic. Categorical logic of names and abstraction in action
calculi. Mathematical Structures in Computer Science, 7 (6) (1997)
619–637.

[44] R. Penrose. Applications of negative dimensional tensors, in Combi-
natorial Mathematics and its Applications, D. J. A. editor, pp. 221-244,
Academic Press, New York, 1971.

[45] R. Penrose. Spinors and Space-Time, Vol. 1, pp. 68-71, 423-434,
Cambridge University Press, Cambridge, U. K., 1984.

[46] A. J. Power. Enriched Lawvere Theories. In Theory and Applications
of Categories, pp. 83–93, 2000.

[47] R. Seely. Linear logic, ∗-autonomous categories and cofree coalgebras.
Applications of categories in logic and computer science, Contempo-
rary Mathematics, 92, 1989.

[48] S. Schanuel and R. Street. The free adjunction. Cahiers topologie
et géométrie différentielle catégoriques 27 (1986) pp. 81-83.

[49] R. Street. Limits indexed by category-valued 2-functors. J. Pure
Appl. Algebra 8 (1976) 149-181.

[50] R. Street. Functorial calculus in monoidal bicategories. Applied Cate-
gorical Structures 11 (2003) 219-227.

43

[51] N. Tabareau. De l’opérateur de trace dans les jeux de Conway.
Mémoire de Master 2. Master Parisien de Recherche en Informatique,
Université Paris 7, Septembre 2005.

44

