
Lambda calculs et catégories

Paul-André Melliès

Master Parisien de Recherche en Informatique

Ecole Normale Supérieure

1

Synopsis of the lecture

1 – Lambda-calculus

2 – Categories and 2-categories

3 – String diagrams

4 – Adjunctions

5 – Monads

2

First part

Lambda-calculus

The calculus of functions

3

The pure λ-calculus

Terms M ::= x | M N | λx.M

The β-reduction:

(λx.M) N −→ M [x := N]

The η-expansion:

M −→ λx. (M x)

Remark: every term is considered up to renaming ≡α of the bound
variables, typically:

λx.λy.x ≡α λz.λy.z

4

Occurrences

The set of occurrences of a λ-term M is defined by induction:

B occ (x) = { ε }

B occ (MN) = { ε } ∪ { 1 · o | o ∈ occ (M) } ∪ { 2 · o | o ∈ occ (N) }

B occ (λx.M) = { ε } ∪ { 1 · o | o ∈ occ (M) }

Note that every occurrence of the λ-term M is labelled by

B an application node App

B a binder λx

B a variable x

5

Free variables

The set of free variables of a λ-term is defined by induction:

B FV(x) = { x }

B FV(MN) = FV(M) ∪ FV(N)

B FV(λx.M) = FV(M) \ {x}

Every occurrence of a variable x in a λ-term is

B either free

B or bound by a binder λx above it in the λ-term.

6

Church-Rosser theorem

Also called confluence theorem.

Given two β-rewriting paths

f : M ∗
−→ P g : M ∗

−→ Q

there exists a λ-term N and two β-rewriting paths f ′ and g′

completing the diagram as

M
f

��

g

��

P

g′
��

Q

f ′
��

N

7

The simply-typed λ-calculus

It is possible to type the expressions of the λ-calculus using simple
types A,B constructed by the grammar:

A,B ::= α | A⇒ B.

A typing context Γ is a finite sequence

Γ = (x1 : A1, ..., xn : An)

where each xi is a variable and each Ai is a simple type.

A sequent is a triple

x1 : A1, ..., xn : An ` P : B

where

x1 : A1, ..., xn : An

is a typing context, P is a λ-term and B is a simple type.

8

The simply-typed λ-calculus

Variable
x : A ` x : A

Abstraction
Γ, x : A ` P : B

Γ ` λx.P : A⇒ B

Application
Γ ` P : A⇒ B ∆ ` Q : A

Γ,∆ ` PQ : B

Weakening Γ ` P : B
Γ, x : A ` P : B

Contraction
Γ, x : A, y : A ` P : B

Γ, z : A ` P[x, y← z] : B

Exchange
Γ, x : A, y : B,∆ ` P : C
Γ, y : B, x : A,∆ ` P : C

9

Subject reduction

A λ-term P is simply typed when there exists a sequent

Γ ` P : A

which may be obtained by a derivation tree.

One establishes that the set of simply typed λ-terms is closed under
β-réduction:

Subject Reduction:

If Γ ` P : A and P −→β Q, then Γ ` Q : A.

10

Strong normalization

A λ-term P is strongly normalizing when there exists no infinite se-
quence of β-reductions:

P −→β P1 −→β P2 −→β · · · −→β Pn −→β · · ·

Strong normalization:

Every simply typed λ-term P is strongly normalizing.

In particular, the λ-term ∆∆ loops:

∆∆ −→β ∆∆ −→β · · ·

is not simply typed.

11

Curry-Howard (1) .
minimal logic

Variable
x :A ` x :A

Abstraction
Γ, x :A ` P :B

Γ ` λx.P :A⇒ B

Application
Γ ` P :A⇒ B ∆ ` Q :A

Γ,∆ ` PQ :B

Weakening Γ ` P :B
Γ, x :A ` P :B

Contraction
Γ, x :A, y :A ` P :B

Γ, z :A ` P[x, y← z] :B

Exchange
Γ, x :A, y :B,∆ ` P :C
Γ, y :B, x :A,∆ ` P :C

12

Curry-Howard (1) .
simply typed λ-calculus

Variable
x :A ` x :A

Abstraction
Γ, x :A ` P :B

Γ ` λx.P :A⇒ B

Application
Γ ` P :A⇒ B ∆ ` Q :A

Γ,∆ ` PQ :B

Weakening Γ ` P :B
Γ, x :A ` P :B

Contraction
Γ, x :A, y :A ` P :B

Γ, z :A ` P[x, y← z] :B

Exchange
Γ, x :A, y :B,∆ ` P :C
Γ, y :B, x :A,∆ ` P :C

12

Algebraic Church-Rosser Theorem

Given two β-rewriting paths

f : M ∗
−→ P g : M ∗

−→ Q

there exists a λ-term N and two β-rewriting paths f ′ and g′

completing the diagram as

M
f

��

g

��

P

g′
��

∼ Q

f ′
��

N

where ∼ denotes the permutation equivalence on rewriting paths.

Theorem established by Jean-Jacques Lévy in 1978

13

Redex

Definition. A β-redex is a pair

(M, o)

consisting of

B a λ-term M

B an occurrence of the λ-term M such that

M|o = (λx.P) Q

is a β-reduction pattern.

14

Redex permutations

MQ

PQ

PN

MN

u′

u v′

v

The two redexes u : M→ P and v : N→ Q are disjoint.

15

Redex permutations

y

(λx.y)P

(λx.y)M

u′v

u

The redex u erases the redex v : M→ P.

16

Redex permutations

MP

(λx.xx)P

PP

MM

(λx.xx)M

u′

v2

v1

u

v

The redex u duplicates the redex v : M→ P.

17

Rewriting paths modulo permutations

An important problem of rewriting theory: compare the several paths
which rewrite a λ-term P into its normal form Q.

Corollary

Every two rewriting paths to the normal form

f , g : P −→ Q

are equal modulo a series of redex permutations.

18

A 2-dimensional hole

(λy.y)z

(λx.x)z
(λx.x)(λy.y)z

v

u

The two redexes u and v are not equivalent modulo permutation.

19

The 2-dimensional hole continued

z

(λx.x)z

(λx.x)(λy.y)z

v

w

u

The two paths u · w and v · w are equivalent modulo permutation.

20

Geometry of rewriting

M

(λy.M)N

(λy.M)Q(λx.(λy.x))MQ

(λx.(λy.x))MN

c

b

vu

a

A standardization theorem will be established in the course

21

The λ-calculus with de Bruijn indices

Variable
Γ,A ` 1 : A

Abstraction
Γ,A ` P : B

Γ ` λ P : A⇒ B

Application
Γ ` P : A⇒ B Γ ` Q : A

Γ ` P Q : B

Weakening Γ ` P : B
Γ,A ` P [↑] : B

where P [↑] denotes the λ-term P where each free variable has been
incremented.

22

The λ-calculus with explicit substitutions

Terms M ::= 1 | MN | λM | M[s]

Substitutions s ::= id | ↑ | M · s | s ◦ t

Key idea: replace the β-rule of the λ-calculus

(λx.M) N −→ M [x := N]

by the Beta-rule of the λσ-calculus

(λM) N −→ M [N · id]

where the substitution is explicit – and thus similar to a closure.

23

The eleven rewriting rules of the λσ-calculus

Beta (λM)N → M[N · id]

App (MN)[s] → M[s]N[s]
Abs (λM)[s] → λ(M[1 · (s ◦ ↑)])
Clos M[s][t] → M[s ◦ t]

VarCons 1[M · s] → M
VarId 1[id] → 1

Map (M · s) ◦ t → M[t] · (s ◦ t)
IdL id ◦ s → s
Ass (s1 ◦ s2) ◦ s3 → s1 ◦ (s2 ◦ s3)

Shi f tCons ↑ ◦ (M · s) → s
Shi f tId ↑ ◦ id → ↑

24

The eleven critical pairs of the λσ-calculus

App + Beta (λM)[s](N[s])
App
← ((λM)N)[s] Beta

→ M[N · id][s]

Clos + App (MN)[s ◦ t] Clos
← (MN)[s][t]

App
→ (M[s](N[s]))[t]

Clos + Abs (λM)[s ◦ t] Clos
← (λM)[s][t] Abs

→ (λ(M[1 · s ◦ ↑]))[t]

Clos + VarId 1[id ◦ s] Clos
← 1[id][s] VarId

→ 1[s]

Clos + VarCons 1[(M · s) ◦ t] Clos
← 1[M · s][t] VarCons

→ M[t]

Clos + Clos M[s][t ◦ t′] Clos
← M[s][t][t′] Clos

→ M[s ◦ t][t′]

Ass + Map (M · s) ◦ (t ◦ t′) Ass
← ((M · s) ◦ t) ◦ t′

Map
→ (M[t] · s ◦ t) ◦ t′

Ass + IdL id ◦ (s ◦ t) Ass
← (id ◦ s) ◦ t IdL

→ s ◦ t

Ass + Shi f tId ↑ ◦ (id ◦ s) Ass
← (↑ ◦ id) ◦ s

Shi f tId
→ ↑ ◦ s

Ass + Shi f tCons ↑ ◦ ((M · s) ◦ t) Ass
← (↑ ◦ (M · s)) ◦ t

Shi f tCons
→ s ◦ t

Ass + Ass (s ◦ s′) ◦ (t ◦ t′) Ass
← ((s ◦ s′) ◦ t) ◦ t′ Ass

→ (s ◦ (s′ ◦ t)) ◦ t′

25

A dangerous critical pair

((λP)Q)[s]

Beta

��

App
// (λP)[s]Q[s] Lam // (λ(P[1 · s ◦ ↑]))Q[s]

Beta

��

P[Q · id][s]

Clos+Map

��

P[1 · s ◦ ↑][Q[s] · id]

Clos+Map

��

P[Q[s] · id ◦ s]

IdL

��

P[Q[s] · (s ◦ ↑) ◦ (Q[s] · id)]

Ass+Shi f t

��

P[Q[s] · s] P[Q[s] · (s ◦ id)]when s=M1·M2·····Mn·id
and the M′

is are in σ−normal f orm
oo

This critical pair leads to a counter-example to strong normalization
of the simply-typed λσ-calculus.

26

Second part

Categories and 2-categories

Fonctors and natural transformations

27

Categories

A category C is given by

[0] a class of objects

[1] a set Hom(A,B) of morphisms

f : A −→ B

for every pair of objects (A,B)

[2] a composition law ◦ : Hom(B,C) ×Hom(A,B) −→ Hom(A,C)

[2] an identity morphism

idA : A −→ A

for every object A,

28

Categories

satisfying the following properties:

[3] the composition law ◦ is associative:

∀ f ∈ Hom(A,B)
∀g ∈ Hom(B,C)
∀h ∈ Hom(C,D)

f ◦ (g ◦ h) = (f ◦ g) ◦ h

[3] the morphisms id are neutral elements

∀ f ∈ Hom(A,B) f ◦ idA = f = idB ◦ f

29

A hint of higher-dimensional wisdom

B

g

��

A

f

FF

f ◦ g
//C

The composition law hides a 2-dimensional simplex

30

A hint of higher-dimensional wisdom

B
g

//C

f

��

A

h

FF

f ◦ (g ◦ h)
//

g ◦ h

99

D

=

B
g

//

f ◦ g

%%

C

f

��

A

h

FF

(f ◦ g) ◦ h
//D

The associativity rule hides a 3-dimensional simplex

31

Functors

A functor between categories

F : C −→ D

is defined as the following data:

[0] an object FA of D for every object A of C ,

[1] a function

FA,B : HomC (A,B) −→ HomD (FA,FB)

for every pair of objects (A,B) of the category C .

32

Functors

One requires moreover

[2] that F preserves composition

FA
F f

//FB
Fg

//FC = FA
F(g◦ f)

//FC

[2] that F preserves the identities

FA FidA //FA = FA idFA //FA

33

Illustration [orders]

Every ordered set

(X,≤)

defines a category

[X,≤]

B whose objects are the elements of X

B whose hom-sets are defined as

Hom(x, y) =

{
{∗} if x ≤ y
∅ otherwise

In this category, there exists at most one map between two objects

34

Illustration [orders]

Exercise: given two ordered sets

(X,≤) (Y,≤)

a functor

F : [X,≤] −→ [Y,≤]

is the same thing as a monotonic function

F : (X,≤) −→ (Y,≤)

between the underlying ordered sets.

35

Illustration [monoids]

A monoid (M, ·, e) is a set M equipped with a binary operation

· : M ×M −→ M

and a neutral element

e : {∗} −→M

satisfying the two properties below:

Associativity law ∀x, y, z ∈M, (x · y) · z = x · (y · z)

Unit law ∀x ∈M, x · e = x = e · x.

36

Illustration [monoids]

Key observation: there is a one-to-one relationship

(M, ·, e) 7→ Σ (M, ·, e)

between

B monoids

B categories with one object ∗

obtained by defining Σ(M, ·, e) as the category with unique hom-set

Σ(M, ·, e) (∗, ∗) = M

and composition law and unit defined as

g ◦ f = g · f id ∗ = e

37

Illustration [monoids]

Key observation: given two monoids

(M, ·, e) (N, •,u)

a functor

F : Σ (M, ·, e) −→ Σ (N, •,u)

is the same thing as a homomorphism

f : (M, ·, e) −→ (N, •,u)

between the underlying monoids.

Recall that a homomorphism is a function f such that

∀x, y ∈M, f (x · y) = f (x) • f (y) f (e) = u

38

Illustration [actions]

The action of a monoid

(M, ·, e)

on a set

X

is the same thing as a functor

Σ (M, ·, e) −→ Set

39

Illustration [representations]

The action of a monoid

(M, ·, e)

on a vector space

V

is the same thing as a functor

Σ (M, ·, e) −→ Vect

40

Transformations

A transformation

θ : F ·
−→ G

between two functors

F,G : A −→B

is a family of morphisms

(θA : FA −→ GA)A∈Obj(A)

of the category B indexed by the objects of the category A .

41

Vertical composition of transformations

The transformations compose vertically

A

F

��

⇓ θ1∗θ2

H

FFB = A

F

��

G //

H

FF

⇓ θ1

⇓ θ2

B

and thus define a category

Trans (A , B)

for all categories A and B.

42

Left action

In the following situation: A
F

((
⇓θ

G

66B H //C

the left action of the functor H on the transformation

θ : F −→ G : A −→ B

is defined as the transformation

H ◦L θ : H ◦ F −→ H ◦ G : A −→ C

whose instance at object A is defined as the morphism

H ◦ F(A)
H(θA)

// H ◦ G(A).

43

Properties of the left action [1]

From a diagrammatic point of view, the two equations

H ◦L (θ2 ∗ θ1) = (H ◦L θ2) ∗ (H ◦L θ1) H ◦L 1F = 1H◦F

mean that

A
��

GG
//

⇓ θ1

⇓ θ2

B H //C =
A

��
//

⇓ θ1
B H //C

A GG
//

⇓ θ2

B H
//C

A

F

��

F

CC⇓ 1F A H //B = A

H◦F

��

H◦F

CC⇓ 1H◦F B

44

Properties of the left action (2)

These two equations mean that

H ◦L − : Trans(A ,B) −→ Trans(A ,C)

θ 7→ H ◦L θ

defines a functor, while the two equations

(H1 ◦H2) ◦L F = H1 ◦L (H2 ◦L F) idB ◦L θ = θ

mean that ◦L defines an action.

45

Right action

In the following situation: A H //B
F

''
⇓θ

G

77C

the functor H acts on the transformation

θ : F −→ G : B −→ C

and transports it into the transformation:

θ ◦R H : F ◦H −→ G ◦H : A −→ C

whose instance at A is defined as the morphism

F ◦H (A)
θH(A)

// G ◦H (A).

46

Properties of the right action (1)

From a diagrammatic point of view, the two equations

(θ2 ∗ θ1) ◦R H = (θ2 ◦R H) ∗ (θ1 ◦R H) 1F ◦R H = 1F◦H

mean that

A H //B
��

GG
//

⇓ θ1

⇓ θ2

C =
A H //B

��
//

⇓ θ1
C

A H
//B GG

//

⇓ θ2

C

A H //B

F

��

F

DD⇓ 1F B = A

F◦H

��

F◦H

CC⇓ 1F◦H B

47

Properties of the right action (2)

The two equations mean that

− ◦R H : Trans(B,C) −→ Trans(A ,C)

θ 7→ θ ◦R H

defines a functor, while the two equations

θ ◦R (H2 ◦H1) = (θ ◦R H2) ◦R H1 θ ◦R idA = θ

mean that ◦R defines an action.

48

Compatibility of the left and right actions

Last equation: in the situation

A ′
H1 //A

F
##

⇓θ

G

<<B
H2 //B′

the order in which one makes the functors

H1 : A ′ −→ A H2 : B −→ B′

act on the transformation θ does not matter:

(H2 ◦L θ) ◦R H1 = H2 ◦L (θ ◦R H1)

49

Sesqui-category

A sesqui-category D is

[0] a class of objects

[1, 2] equipped with a category

D (A,B)

for every pair of objects (A,B) of the sesqui-category, where

the objects of D (A,B) = the morphisms from A to B

equipped with a pair of actions ◦L and ◦R satisfying...

50

Sesqui-categories

equipped with a pair of actions ◦L and ◦R satisfying the equations

h ◦L (θ2 ∗ θ1) = (h ◦L θ2) ∗ (h ◦L θ1) h ◦L 1 f = 1h◦ f
(h1 ◦ h2) ◦L f = h1 ◦L (h2 ◦L f) idB ◦L θ = θ
(θ2 ∗ θ1) ◦R h = (θ2 ◦R h) ∗ (θ1 ∗R h) 1 f ◦R h = 1 f◦h
θ ◦R (h2 ◦ h1) = (θ ◦R h2) ◦R h1 θ ◦R idA = θ

(h2 ◦L θ) ◦R h1 = h2 ◦L (θ ◦R h1)

Theorem.
Categories, functors and transformations define a sesqui-category.

51

The sesqui-category of categories and transformations

Let θ1 and θ2 be two transformations in A

F1
''

⇓θ1

G1

77B

F2
''

⇓θ2

G2

77C

In general, the transformation obtained by applying θ1 then θ2

A

F1
''

⇓θ1 77B

F2
''
C

A

G1

77B
''

⇓θ2

G2

77C

is not the same as the transformation obtained by applying θ1 then θ2:

A

F1
''
B

F2
''

⇓θ2 77C

A
''

⇓θ1

G1

77B

G2

77C

52

Natural transformations

A transformation θ : F⇒ G : A −→B

is natural when the diagram

FA

F f

��

θA //GA

G f

��

FB θB //GB

commutes for every morphism f : A −→ B.

Notation. we write

Nat(A ,B)

for the category of functors and natural transformations

θ : F ⇒ G : A −→ B

53

Exchange law

A pair of 2-cells θ1 and θ2 in a sesqui-categorie D

A
F1

&&
⇓θ1

G1

88B
F2

&&
⇓θ2

G2

88C

satisfy the exchange law when the equality

A
F1

&&
⇓θ1 88B

F2
&&C

A
G1

88B &&
⇓θ2

G2

88C
=

A
F1

&&B
F2

&&
⇓θ2 88C

A &&
⇓θ1

G1

88B
G2

88C

holds.

The order in which one applies θ1 and θ2 does not matter.

54

Definition

A 2-cell

B ⇓θ2

g2

88

f2
&&C

is called central on the left when the exchange law

A
f1

&&
⇓θ1 88B

f2
&&C

A
g1

88B &&
⇓θ2

g2

88C
=

A
f1

&&B
f2

&&
⇓θ2 88C

A &&
⇓θ1
g1

88B
g2

88C

is satisfied for every 2-cell θ1 of the sesqui-category D .

55

Exercise

Show that in the sesqui-category with

B categories as objects

B functors as 1-cells

B transformations as 2-cells

the natural transformations are the 2-cells central on the left.

Deduce the existence of a functor

Nat(B,C) ×Nat(A ,B) −→ Nat(A ,C)

56

2-categories

A 2-category D is a sesqui-category such that
the exchange law is satisfied for every pair of 2-cells

A
f1

&&
⇓θ1
g1

88B
f2

&&
⇓θ2

g2

88C

57

2-categories (alternative definition)

A 2-category D is given by

[0] a class of objects

[1, 2] a category D (A,B) for every pair of objects (A,B)

[2, 3, 4] a composition law defined as a functor

◦ : D (B,C) ×D (A,B) −→D (A,C)

[2, 3, 4] an identity defined as a functor

idA : 1 −→D (A,A)

this for all objects A,B,C of the 2-category,

58

2-categories (alternative definition)

1— such that the composition law ◦ is associative in the sense that

D (C,D) ×D (B,C) ×D (A,B) ◦ ×D (A,B)
//

D (C,D)× ◦
��

D (B,D) ×D (A,B)

◦

��

D (C,D) ×D (A,C) ◦ //D (A,D)

commutes.

59

2-categories (alternative definition)

2— such that id is a neutral element of ◦ in the sense that

D (A,B)

�

��

D (A,B)

D (A,B) × 1
D (A,B) × idA //D (A,B) ×D (A,A)

◦

OO

and

D (A,B)

�

��

D (A,B)

1 ×D (A,B) idB ×D (A,B)
//D (B,B) ×D (A,B)

◦

OO

commute for all A and B.

60

Notation

One writes

θ : f ⇒ g : A −→ B

when

θ : f −→ g

is a morphism of the category D (A,B).

61

Godement law

In a 2-category

D (A ,B)

the two canonical ways to compose the 2-cells

⇓α1 ⇓α2

A

f1

��

g1 //

h1

EEB

f2

��

g2 //

h2

EEC

⇓β1 ⇓β2

coincide:

(β2 ∗ α2) ◦ (β1 ∗ α1) = (β2 ◦ β1) ∗ (α2 ◦ α1)

62

Suspension

The notion of monoidal category will be defined very soon.

Every strict monoidal category C may be seen as the 2-category Σ(C)

B which contains only one 0-cell,

B whose 1-cells are the 0-cells of C

B whose 2-cells are the 1-cells of C

equipped with the induced composition laws.

A sesqui-category Σ(C) with one object is
the same thing as a premonoidal category (C ,⊗, I).

63

Useful equality
In a 2-categoryD (A ,B), the two canonical ways to compose the 2-cells

⇓α1 ⇓α2

A

f1

��
g1 //

h1

FFB

f2

��
g2 //

h2

FFC

⇓β1 ⇓β2

commute:
(β2 ∗ α2) ◦ (β1 ∗ α1) = (β2 ◦ β1) ∗ (α2 ◦ α1)

64

The 2-category of sets and relations

The 2-category Rel is defined as follows:

B its 0-cells are the sets,

B its 1-cells are the relations between sets,

A
f ·g

//B = A
f

//B
g

//C

relationally composed:

a [f · g] c ⇐⇒ ∃ b ∈ B, a [f] b et b [g] c.

B its 2-cells are inclusions:

A
f

&&
⇓

g
88B ⇐⇒ f ⊆ g

In particular, the categories Rel (A,B) are order categories.

65

String diagrams

A notation introduced by Roger Penrose

66

String diagrams

Two key ideas

1. apply the Poincaré duality on the original pasting diagrams:

B
G

��
⇓ θ

A

F
77

H
33C

is depicted as
FG

H

θ

θ : G ◦ F ⇒ H

67

String diagrams

Two key ideas

2. hide the identity 1-cells in the picture:

B
G

��
⇓ θ

A

F
77

id
22A

is depicted as
FG

θ

θ : G ◦ F ⇒ id

68

String diagrams

More generally, a 2-dimensional cell

θ : F1 ◦ · · · ◦ Fp ⇒ G1 ◦ · · · ◦ Gq : A −→ B

is depicted as

F

G

θ



q

Fp

G

69

Exercise

Draw the exchange law and explain the connection to concurrency

70

Adjunctions

A notion of duality between functors

71

Adjunction

An adjunction is a triple (L,R, φ) where L and R are two functors

L : A −→B R : B −→ A

and φ is a family of bijections, for all objects A in A and B in B,

φA,B : B(LA,B) � A (A,RB)

natural in A et B. One also writes

LA −→B B
A −→A RB

φA,B

One says that L is left adjoint to R, noted L a R.

The 2-dimensional version of isomorphism

72

The naturality of the bijection φ

Natural in A and B means that the family of bijections

φA,B : B(LA,B) � A (A,RB)

transforms every commutative diagram

LA
g

//B

hB
��

LA′

LhA

OO

f
//B′

into a commutative diagram

A
φA,B(g)

//RB

RhB
��

A′

hA

OO

φA′,B′(f)
//RB′

73

Example: the free vector space

Set

L
&&

⊥ Vect

R

ee

where

A = Set : the category of sets and functions
B = Vect : the category of vector spaces on a field k

R : the « forgetful » functor V 7→ U(V)
L : the « free vector space » functor X 7→ kX

kX :=
{ ∑

x∈X
λx x | λx ∈ k null almost everywhere.

}
74

Illustration: the tensor algebra

Vect

L
''

⊥ Alg

R

ee

where

A = Vect : the category of vector spaces
B = Alg : the category of algebras and homomorphisms,

R : the « forgetful » functor A 7→ U(A).
L : the « free algebra » functor V 7→ TV.

TV :=
⊕
n∈N

V⊗n

75

Definition of a Lie algebra

Vector space g equipped with a Lie bracket

Anti-symmetry:

[x, y] = −[y, x]

Jacobi identity:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

Example: the vector space of vector fields on a smooth manifold.

76

Illustration: the enveloping algebra of a Lie algebra

Lie

L
&&

⊥ Alg

R

ee

where

A = Lie : the category of Lie algebras,
B = Alg : the category of algebras,

R : equips A with the canonical Lie bracket [a, b] = ab − ba,
L : « enveloping algebra » functor g 7→ U(g).

U(g) := Tg / I(g)

where I(g) is the ideal generated by ab − ba − [a, b].
77

Illustration: the free category

Graph

L
''

⊥ Cat

R
gg

where

A = Graph : the category of graphs,
B = Cat : the category of categories and functors,

R : the « forgetful » functor
L : the « free category » functor

78

Illustration : the terminal object

C

L
##

⊥ 1

R

cc

where

A = C : any category equipped with a terminal object 1
B = 1 : the singleton category

R : the functor whose image is the terminal object 1
L : the canonical (and unique) functor

79

Adjunction in the 2-category Cat
A bijection φ between the natural transformations

A

L

��

1

[A] 11

[B] --

⇓

B

φA,B
7−→

A

1

[A] 11

[B] --

⇓

B

R

OO

Here, a morphism X −→ Y in the category C
is seen as a natural transformation [X] −→ [Y].

1

[Y]

::⇓

[X]

$$
C

80

Adjunction in the 2-category Cat

A bijection φ between the natural transformations

A

L

��

1

A 22

B ,,

⇓

B

φA,B
7−→

A

1

A 22

B ,,

⇓

B

R

OO

Here, a morphism X −→ Y in the category C
seen as a natural transformation [X] −→ [Y].

1

Y

99⇓

X
%%

C

81

A 2-dimensional naturality condition

One reformulates the naturality conditionin that way:

The bijection φ is natural with respect to the natural transformations α and β.

A

L

��

1

A′

&&

B′

88

//

⇓α

⇓β

1

A
11

B --

⇓θ

B

φA′,B′

7−→

A

1

A′

&&

B′

88

//

⇓α

⇓β

1

A
11

B --

⇓ζ

B

R

OO

82

Adjunction in the 2-category Cat
This point of view leads to a more satisfactory definition of adjunction:

A bijection φ between the natural transformations

A

L

��

C

A
11

B --

⇓

B

φA,B
7−→

A

C

A
11

B --

⇓

B

R

OO

83

Adjunction in the 2-category Cat

One reformulates the naturality condition as follows:

The bijection φ is natural with respect to the natural transformations α et β.

A

L

��

D

A′

''

B′

88

//

⇓α

⇓β

C

A
11

B --

⇓θ

B

φA′,B′

7−→

A

D

A′

''

B′

88

//

⇓α

⇓β

C

A
11

B --

⇓ζ

B

R

OO

84

Algebraic presentation of the adjunction
An adjonction is a quadruple (L,R, η, ε) where L and R are functors

L : A −→B R : B −→ A

and η and ε are natural transformations:

η : IdA
·
−→ RL ε : LR ·

−→ IdB

such that the composite are the identities: (of L and R respectively).

R
ηR

//RLR Rε //R L
Lη

// LRL εF // L

The situation is depicted as follows:

A L //

IdA

""

B R //

IdB

<<

⇓η

A L //

⇓ε

B

85

Dual definition (but equivalent) of adjunction

By duality, an adjunction is given by a family of bijections ψ between
the sets of 2-cells

A A

��

L

��

C⇓θ

B B

GG

ψA,B
7−→

A A

��

C⇓ζ

B B

GGR

OO

natural in A and B.

86

The 2-dimensional topology of adjunctions

The unit and counit of the adjunction L a R are depicted as

η : Id⇒ R ◦ L ε : L ◦ R⇒ Id

η

LR

L R

ε

87

A typical 2-cell generated by an adjunction

L

L

L L

L

R

R

RR

R

As we will see, deep connections with game semantics

88

A purely diagrammatic composition

R

L

89

The 2-dimensional dynamics of adjunctions

ε

η

=

R

R

R

R

ε

η

=

L

L

L

L

As we will see, deep connections with knot theory

90

Illustration: the 2-category of sets and relations

Show that a relation

f : A −→ B

is left adjoint if and only if it is functional:

∀a ∈ A. ∃ ! b ∈ B. a [f] b

Show that its right adjoint g is the relation defined as

∀a ∈ A. ∀b ∈ B. a [f] b ⇐⇒ b [g] a.

91

Monads

Kleisli category, Eilenberg-Moore category

92

Monads

Suppose given a 0-cell C in a 2-categoryW.

A monad T on a 0-cell C is a 1-cell

T : C −→ C

equipped with a multiplication

µ : T ◦ T ⇒ T : C −→ C

and with a unit

η : IdC ⇒ T : C −→ C

satisfying the expected associativity and unit laws.

93

Monads

B Associativity law:

T ◦ T ◦ T
T◦µ

+3

µ◦T
��

T ◦ T

µ

��

T ◦ T
µ

+3T

B Left and right unit laws:

T ◦ T
µ

�&
T id +3

η◦T
8@

T

T ◦ T
µ

�&
T id +3

T◦η
8@

T

94

Every adjunction defines a monad

(with a graphical proof)

95

Illustration: the state monad

Every set S induces a monad

X 7→ S ⇒ (S × X) : Set −→ Set

called the state monad. This monad is induced by the adjunction

Set

L
&&

⊥ Set

R

ee

where

L : X 7→ S × X
R : X 7→ S ⇒ X.

96

Algebra

Suppose given a monad T on a category C .

An algebra of the monad (T, µ, η) is a pair (A, h) consisting of

B an object A of the category C

B a morphism
h : TA −→ A

making the diagrams

TA

h

A

ηA

>>

id
//A

T2A
µA //

Th

��

TA

h

��

TA h
//A

commute.
97

Algebra homomorphism

An algebra homomorphism

f : (A, hA) −→ (B, hB)

is a morphism

f : A −→ B

making the diagram

TA

hA

��

T f
//TB

hB

��

A f
//B

commute in the category C .

98

Kleisli category

The Kleisli category CT of a monad (T, µ, η) is the category C

B with the same objects as the category C ,

B with the morphisms

A −→ TB

in the category C as morphisms

A −→−→ B

in the Kleisli category.

99

Kleisli category

The identities

idA : A −→−→ A

are given by the morphisms

ηA : A −→ TA.

The two morphisms

f : A −→−→ B g : B −→−→ C

are composed as follows

g ◦K f :=

TTC

µC
��

TB

Tg
77

TC

A

f
88

B

g
77

100

Exercise

Show that:

B that the identities of the Kleisli category are identities

B that its composition is associative.

Remark: checking associativity requires to consider the diagram

T3D
Tµ

��

T2C

T2h
77

µ
��

T2D
µ
��

TB

Tg
77

TC

Th
77

TD

A

f 88

B

g
77

C

h
66

D

and to show that the two maps from A to TD coincide.

101

Short bibliography of the course

On categorical semantics of linear logic and 2-categories:
Categorical semantics of linear logic.
Survey published in
« Interactive models of computation and program behaviour ».
Pierre-Louis Curien, Hugo Herbelin, Jean-Louis Krivine, Paul-André Melliès.
Panoramas et Synthèses 27, Société Mathématique de France, 2009.

On string diagrams:
Christian Kassel
Quantum groups
Graduate Texts in Mathematics 155
Springer Verlag 1995.

Peter Selinger
A survey of graphical languages for monoidal categories.
New Structures for Physics
Springer Lecture Notes in Physics 813, pp. 289-355, 2011.

Functorial boxes in string diagrams
Proceedings of CSL 2006.
Lecture Notes in Computer Science 4207.

102

