Lambda calculs et catégories

Paul-André Melliès

Master Parisien de Recherche en Informatique

Ecole Normale Supérieure

Synopsis of the lecture

- 1 Lambda-calculus
- 2 Categories and 2-categories
- 3 String diagrams
- 4 Adjunctions
- 5 Monads

First part

Lambda-calculus

The calculus of functions

The pure λ -calculus

Terms $M ::= x \mid MN \mid \lambda x.M$

The β -reduction:

 $(\lambda x.M) N \longrightarrow M[x := N]$

The η -expansion:

 $M \longrightarrow \lambda x. (M x)$

Remark: every term is considered up to renaming \equiv_{α} of the bound variables, typically:

 $\lambda x.\lambda y.x \equiv_{\alpha} \lambda z.\lambda y.z$

Occurrences

The set of occurrences of a λ -term *M* is defined by induction:

$$\triangleright \quad \mathbf{occ} (x) = \{ \varepsilon \}$$

- $\triangleright \quad \mathbf{occ}(MN) = \{\varepsilon\} \cup \{1 \cdot o \mid o \in \mathbf{occ}(M)\} \cup \{2 \cdot o \mid o \in \mathbf{occ}(N)\}$
- $\triangleright \quad \mathbf{occ} (\lambda x.M) \quad = \quad \{ \varepsilon \} \cup \{ 1 \cdot o \, | \, o \in \mathbf{occ} (M) \}$

Note that every occurrence of the λ -term M is labelled by

- an application node App
- \triangleright a binder λx
- \triangleright a variable *x*

Free variables

The set of **free variables** of a λ -term is defined by induction:

- $\triangleright \quad FV(x) \quad = \quad \{x\}$
- $\triangleright \quad FV(MN) \quad = \quad FV(M) \cup FV(N)$
- $\triangleright \quad FV(\lambda x.M) \quad = \quad FV(M) \setminus \{x\}$

Every occurrence of a variable x in a λ -term is

- ▷ either free
- > or bound by a binder λx above it in the λ -term.

Church-Rosser theorem

Also called confluence theorem.

Given two β -rewriting paths

$$f : M \xrightarrow{*} P \qquad g : M \xrightarrow{*} Q$$

there exists a λ -term N and two β -rewriting paths f' and g' completing the diagram as

The simply-typed λ -calculus

It is possible to **type** the expressions of the λ -calculus using simple types *A*, *B* constructed by the grammar:

 $A,B ::= \alpha \mid A \Rightarrow B.$

A typing context Γ is a finite sequence

 $\Gamma = (x_1 : A_1, ..., x_n : A_n)$

where each x_i is a variable and each A_i is a simple type.

A sequent is a triple

$$x_1 : A_1, ..., x_n : A_n \vdash P : B$$

where

$$x_1 : A_1, ..., x_n : A_n$$

is a typing context, *P* is a λ -term and *B* is a simple type.

The simply-typed λ -calculus

Variable	$\overline{x:A \vdash x:A}$				
Abstraction	$\frac{\Gamma, x : A \vdash P : B}{\Gamma \vdash \lambda x . P : A \Rightarrow B}$				
Application	$\frac{\Gamma \vdash P : A \Rightarrow B \qquad \Delta \vdash Q : A}{\Gamma, \Delta \vdash PQ : B}$				
Weakening	$\frac{\Gamma \vdash P : B}{\Gamma, x : A \vdash P : B}$				
Contraction	$\frac{\Gamma, x : A, y : A \vdash P : B}{\Gamma, z : A \vdash P[x, y \leftarrow z] : B}$				
Exchange	$\frac{\Gamma, x : A, y : B, \Delta \vdash P : C}{\Gamma, y : B, x : A, \Delta \vdash P : C}$				

Subject reduction

A λ -term *P* is simply typed when there exists a sequent

 $\Gamma \vdash P:A$

which may be obtained by a derivation tree.

One establishes that the set of simply typed λ -terms is closed under β -réduction:

Subject Reduction:

If $\Gamma \vdash P : A$ and $P \longrightarrow_{\beta} Q$, then $\Gamma \vdash Q : A$.

Strong normalization

A λ -term *P* is strongly normalizing when there exists no infinite sequence of β -reductions:

$$P \longrightarrow_{\beta} P_1 \longrightarrow_{\beta} P_2 \longrightarrow_{\beta} \cdots \longrightarrow_{\beta} P_n \longrightarrow_{\beta} \cdots$$

Strong normalization:

Every simply typed λ -term *P* is strongly normalizing.

In particular, the λ -term $\Delta\Delta$ loops:

$$\Delta \Delta \longrightarrow_{\beta} \Delta \Delta \longrightarrow_{\beta} \cdots$$

is not simply typed.

minimal logic

Curry-Howard (1)

Variable	$A \vdash A$				
Abstraction	$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B}$				
Application	$\frac{\Gamma \vdash A \Rightarrow B \qquad \Delta \vdash A}{\Gamma, \Delta \vdash B}$				
Weakening	$\frac{\Gamma \vdash B}{\Gamma, A \vdash B}$				
Contraction	$\frac{\Gamma, A, A \vdash B}{\Gamma, A \vdash B}$				
Exchange	$\frac{\Gamma, A, B, \Delta \vdash C}{\Gamma, B, A, \Delta \vdash C}$				

Curry-How	vard (1)	simply typed λ -calculus		
Variable	$\overline{x:A}$	$\vdash x : A$		
Abstraction	$\frac{\Gamma, x : \mathcal{A}}{\Gamma \vdash \lambda x . \mathcal{A}}$	$\begin{array}{l} A \vdash P : B \\ \hline P : A \implies B \end{array}$		
Application	$\frac{\Gamma \vdash P : A \Rightarrow B}{\Gamma, \Delta \vdash}$	$\Delta \vdash Q : A$ $- PQ : B$		
Weakening	$\frac{\Gamma \vdash}{\Gamma, x : \mathcal{F}}$	$\frac{P:B}{A \vdash P:B}$		
Contraction	$\frac{\Gamma, x : A, y}{\Gamma, z : A \vdash P}$	$y:A \vdash P:B$ $[x, y \leftarrow z]:B$		
Exchange	$\frac{\Gamma, x : A, y}{\Gamma, y : B, x :}$	$:B, \Delta \vdash P : C$ $:A, \Delta \vdash P : C$		

Algebraic Church-Rosser Theorem

Given two β -rewriting paths

$$f : M \xrightarrow{*} P \qquad g : M \xrightarrow{*} Q$$

there exists a λ -term N and two β -rewriting paths f' and g' completing the diagram as

where \sim denotes the permutation equivalence on rewriting paths.

Theorem established by Jean-Jacques Lévy in 1978

Redex

Definition. A β -redex is a pair

(M, o)

consisting of

- \triangleright a λ -term M
- > an occurrence of the λ -term M such that

 $M_{|o} = (\lambda x.P)Q$

is a β -reduction pattern.

Redex permutations

The two redexes $u: M \to P$ and $v: N \to Q$ are disjoint.

Redex permutations

The redex u erases the redex $v: M \to P$.

Redex permutations

The redex u duplicates the redex $v: M \to P$.

Rewriting paths modulo permutations

An important problem of rewriting theory: compare the several paths which rewrite **a** λ -term *P* into its normal form *Q*.

Corollary

Every two rewriting paths to the normal form

 $f,g : P \longrightarrow Q$

are equal modulo a series of redex permutations.

A 2-dimensional hole

The two redexes u and v are not equivalent modulo permutation.

The 2-dimensional hole continued

The two paths $u \cdot w$ and $v \cdot w$ are equivalent modulo permutation.

Geometry of rewriting

A standardization theorem will be established in the course

The λ -calculus with de Bruijn indices

Variable	$\Gamma, A \vdash 1 : A$			
Abstraction	$\frac{\Gamma, A \vdash P : B}{\Gamma \vdash \lambda P : A \Longrightarrow B}$			
Application	$\frac{\Gamma \vdash P : A \Longrightarrow B}{\Gamma \vdash P \ Q}$	$\Gamma \vdash Q : A$ $: B$		
Weakening	$\frac{\Gamma \vdash P : B}{\Gamma, A \vdash P [\uparrow] : B}$			

where $P[\uparrow]$ denotes the λ -term P where each free variable has been incremented.

The λ -calculus with explicit substitutions

Terms $M ::= \mathbf{1} | MN | \lambda M | M[s]$ **Substitutions** $s ::= id | \uparrow | M \cdot s | s \circ t$

Key idea: replace the β -rule of the λ -calculus

 $(\lambda x.M)N \longrightarrow M[x := N]$

by the Beta-rule of the $\lambda\sigma$ -calculus

 $(\lambda M)N \longrightarrow M[N \cdot id]$

where the substitution is explicit – and thus similar to a closure.

The eleven rewriting rules of the $\lambda\sigma$ -calculus

Beta	$(\lambda M)N$	\rightarrow	$M[N \cdot id]$
App Abs Clos VarCons	(MN)[s] $(\lambda M)[s]$ M[s][t] $1[M \cdot s]$	$ \begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array} $	$M[s]N[s]$ $\lambda(M[1 \cdot (s \circ \uparrow)])$ $M[s \circ t]$ M
VarId	1 [<i>id</i>]	\rightarrow	1
Map IdL Ass ShiftCons ShiftId	$(M \cdot s) \circ t$ $id \circ s$ $(s_1 \circ s_2) \circ s_3$ $\uparrow \circ (M \cdot s)$ $\uparrow \circ id$	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	$M[t] \cdot (s \circ t)$ s $s_1 \circ (s_2 \circ s_3)$ s \uparrow

The eleven critical pairs of the $\lambda\sigma$ -calculus

App + Beta	$(\lambda M)[s](N[s])$	<i>App</i> ←	$((\lambda M)N)[s]$	$\stackrel{Beta}{\rightarrow}$	$M[N \cdot id][s]$
Clos + App Clos + Abs Clos + VarId Clos + VarCons Clos + Clos	$(MN)[s \circ t]$ $(\lambda M)[s \circ t]$ $1[id \circ s]$ $1[(M \cdot s) \circ t]$ $M[s][t \circ t']$	$\begin{array}{c} Clos\\ \leftarrow\\ Clos\\ \leftarrow\\ Clos\\ \leftarrow\\ Clos\\ \leftarrow\\ Clos\\ \leftarrow\\ Clos\\ \leftarrow\\ \end{array}$	(MN)[s][t] $(\lambda M)[s][t]$ 1[id][s] $1[M \cdot s][t]$ M[s][t][t']	$\begin{array}{c} App \\ \rightarrow \\ Abs \\ \rightarrow \\ VarId \\ \rightarrow \\ VarCons \\ \rightarrow \\ Clos \\ \rightarrow \end{array}$	$(M[s](N[s]))[t]$ $(\lambda(M[1 \cdot s \circ \uparrow]))[t]$ $1[s]$ $M[t]$ $M[s \circ t][t']$
Ass + Map Ass + IdL Ass + ShiftId Ass + ShiftCons Ass + Ass	$(M \cdot s) \circ (t \circ t')$ $id \circ (s \circ t)$ $\uparrow \circ (id \circ s)$ $\uparrow \circ ((M \cdot s) \circ t)$ $(s \circ s') \circ (t \circ t')$	$\begin{array}{c} Ass \\ \leftarrow \\ Ass \\ \leftarrow \end{array}$	$((M \cdot s) \circ t) \circ t'$ $(id \circ s) \circ t$ $(\uparrow \circ id) \circ s$ $(\uparrow \circ (M \cdot s)) \circ t$ $((s \circ s') \circ t) \circ t'$	$\begin{array}{c} Map \\ \rightarrow \\ IdL \\ \rightarrow \\ ShiftId \\ \rightarrow \\ ShiftCons \\ \rightarrow \\ Ass \\ \rightarrow \end{array}$	$(M[t] \cdot s \circ t) \circ t'$ $s \circ t$ $\uparrow \circ s$ $s \circ t$ $(s \circ (s' \circ t)) \circ t'$

This critical pair leads to a counter-example to **strong normalization** of the simply-typed $\lambda\sigma$ -calculus.

Second part

Categories and 2-categories

Fonctors and natural transformations

Categories

- [0] a class of **objects**
- [1] a set Hom(A, B) of morphisms

 $f : A \longrightarrow B$ for every pair of objects (A, B)

- [2] a composition law \circ : Hom $(B, C) \times$ Hom $(A, B) \longrightarrow$ Hom(A, C)
- [2] an **identity** morphism

$$id_A : A \longrightarrow A$$

for every object A,

Categories

satisfying the following properties:

[3] the composition law \circ is associative:

 $\forall f \in \mathbf{Hom}(A, B) \\ \forall g \in \mathbf{Hom}(B, C) \\ \forall h \in \mathbf{Hom}(C, D)$

 $f \circ (g \circ h) = (f \circ g) \circ h$

[3] the morphisms *id* are neutral elements

 $\forall f \in \mathbf{Hom}(A, B) \qquad \qquad f \circ id_A = f = id_B \circ f$

A hint of higher-dimensional wisdom

The composition law hides a 2-dimensional simplex

A hint of higher-dimensional wisdom

The associativity rule hides a 3-dimensional simplex

Functors

A functor between categories

 $F : \mathscr{C} \longrightarrow \mathscr{D}$

is defined as the following data:

[0] an object FA of \mathscr{D} for every object A of \mathscr{C} ,

[1] a function

 $F_{A,B}$: $\operatorname{Hom}_{\mathscr{C}}(A,B) \longrightarrow \operatorname{Hom}_{\mathscr{D}}(FA,FB)$ for every pair of objects (A,B) of the category \mathscr{C} .

Functors

One requires moreover

[2] that F preserves composition $FA \xrightarrow{Ff} FB \xrightarrow{Fg} FC = FA \xrightarrow{F(g \circ f)} FC$

[2] that *F* preserves the identities

$$FA \xrightarrow{Fid_A} FA = FA \xrightarrow{id_{FA}} FA$$

Illustration [orders]

Every ordered set

 (X, \leq)

defines a category

 $[X,\leq]$

- \triangleright whose objects are the elements of X
- whose hom-sets are defined as

$$Hom(x, y) = \begin{cases} \{*\} & \text{if } x \le y \\ \emptyset & \text{otherwise} \end{cases}$$

In this category, there exists at most one map between two objects

Illustration [orders]

Exercise: given two ordered sets

 $(X, \leq) \qquad (Y, \leq)$

a functor

 $F \quad : \quad [X, \leq] \quad \longrightarrow \quad [Y, \leq]$

is the same thing as a monotonic function

 $F \quad : \quad (X, \leq) \quad \longrightarrow \quad (Y, \leq)$

between the underlying ordered sets.
Illustration [monoids]

A monoid (M, \cdot, e) is a set M equipped with a binary operation

 $\cdot : M \times M \longrightarrow M$

and a neutral element

 $e \quad : \quad \{*\} \quad \longrightarrow M$

satisfying the two properties below:

Associativity law $\forall x, y, z \in M$, $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ Unit law $\forall x \in M$, $x \cdot e = x = e \cdot x$.

Illustration [monoids]

Key observation: there is a one-to-one relationship $(M, \cdot, e) \mapsto \Sigma(M, \cdot, e)$

between

▷ monoids

categories with one object *

obtained by defining $\Sigma(M, \cdot, e)$ as the category with unique hom-set

 $\Sigma(M,\cdot,e) (*,*) = M$

and composition law and unit defined as

$$g \circ f = g \cdot f \qquad id_* = e$$

Illustration [monoids]

Key observation: given two monoids (M, \cdot, e) (N, \bullet, u) a functor

 $F : \Sigma(M, \cdot, e) \longrightarrow \Sigma(N, \bullet, u)$

is the same thing as a homomorphism

 $f \quad : \quad (M, \cdot, e) \quad \longrightarrow \quad (N, \bullet, u)$

between the underlying monoids.

Recall that a homomorphism is a function f such that

 $\forall x, y \in M, \quad f(x \cdot y) = f(x) \bullet f(y) \qquad \qquad f(e) = u$

Illustration [actions]

The action of a monoid

 (M, \cdot, e)

on a set

Х

is the same thing as a functor

 $\Sigma(M, \cdot, e) \longrightarrow \mathbf{Set}$

Illustration [*representations*]

The action of a monoid

 (M, \cdot, e)

on a vector space

V

is the same thing as a functor

 $\Sigma(M, \cdot, e) \longrightarrow$ **Vect**

Transformations

A transformation

$$\theta \quad : \quad F \xrightarrow{\cdot} G$$

between two functors

$$F, G : \mathscr{A} \longrightarrow \mathscr{B}$$

is a family of morphisms

$$(\theta_A: FA \longrightarrow GA)_{A \in Obj(\mathscr{A})}$$

of the category \mathscr{B} indexed by the objects of the category \mathscr{A} .

Vertical composition of transformations

The transformations compose vertically

for all categories \mathscr{A} and \mathscr{B} .

Left action

In the following situation:

the **left action** of the functor H on the transformation

 $\theta \quad : \quad F \quad \longrightarrow \quad G \quad : \quad \mathscr{A} \quad \longrightarrow \quad \mathscr{B}$

is defined as the transformation

 $H \circ_L \theta \quad : \quad H \circ F \quad \longrightarrow \quad H \circ G \quad : \quad \mathscr{A} \quad \longrightarrow \quad \mathscr{C}$

whose instance at object A is defined as the morphism

$$H \circ F(A) \longrightarrow H \circ G(A).$$

Properties of the left action [1]

From a diagrammatic point of view, the two equations

 $H \circ_L (\theta_2 * \theta_1) = (H \circ_L \theta_2) * (H \circ_L \theta_1) \qquad H \circ_L 1_F = 1_{H \circ F}$

mean that

Properties of the left action (2)

These two equations mean that

 $H \circ_{L} - : \operatorname{Trans}(\mathscr{A}, \mathscr{B}) \longrightarrow \operatorname{Trans}(\mathscr{A}, \mathscr{C})$ $\theta \longmapsto H \circ_{L} \theta$

defines a functor, while the two equations

 $(H_1 \circ H_2) \circ_L F = H_1 \circ_L (H_2 \circ_L F) \qquad id_{\mathscr{B}} \circ_L \theta = \theta$

mean that \circ_L defines an action.

Right action

Properties of the right action (1)

From a diagrammatic point of view, the two equations

 $(\theta_2 * \theta_1) \circ_R H = (\theta_2 \circ_R H) * (\theta_1 \circ_R H) \qquad 1_F \circ_R H = 1_{F \circ H}$ mean that

Properties of the right action (2)

The two equations mean that

$$\begin{split} - \circ_R H &: \mathbf{Trans}(\mathscr{B}, \mathscr{C}) \longrightarrow \mathbf{Trans}(\mathscr{A}, \mathscr{C}) \\ \theta &\mapsto \theta \circ_R H \end{split}$$

defines a functor, while the two equations

 $\theta \circ_R (H_2 \circ H_1) = (\theta \circ_R H_2) \circ_R H_1 \qquad \theta \circ_R id_{\mathscr{A}} = \theta$

mean that \circ_R defines an action.

Compatibility of the left and right actions

Last equation: in the situation

the order in which one makes the functors

 $H_1 : \mathscr{A}' \longrightarrow \mathscr{A} \qquad H_2 : \mathscr{B} \longrightarrow \mathscr{B}'$ act on the transformation θ does not matter:

 $(H_2 \circ_L \theta) \circ_R H_1 = H_2 \circ_L (\theta \circ_R H_1)$

Sesqui-category

A sesqui-category 🧭 is

[0] a class of objects

[1,2] equipped with a category

 $\mathcal{D}(A,B)$

for every pair of objects (A, B) of the sesqui-category, where

the objects of $\mathscr{D}(A, B)$ = the morphisms from A to B

equipped with a pair of actions \circ_L and \circ_R satisfying...

Sesqui-categories

equipped with a pair of actions \circ_L and \circ_R satisfying the equations

Theorem.

Categories, functors and transformations define a sesqui-category.

The sesqui-category of categories and transformations

Let θ_1 and θ_2 be two transformations in

In general, the transformation obtained by applying θ_1 then θ_2

is not the same as the transformation obtained by applying θ_1 then θ_2 :

Natural transformations

A transformation $\theta : F \Rightarrow G : \mathscr{A} \longrightarrow \mathscr{B}$ is **natural** when the diagram

commutes for every morphism $f : A \longrightarrow B$.

Notation. we write

$Nat(\mathscr{A}, \mathscr{B})$

for the category of functors and natural transformations

 $\theta \quad : \quad F \quad \Rightarrow \quad G \quad : \quad \mathscr{A} \quad \longrightarrow \quad \mathscr{B}$

Exchange law

A pair of 2-cells θ_1 and θ_2 in a sesqui-categorie \mathscr{D}

satisfy the exchange law when the equality

holds.

The order in which one applies θ_1 and θ_2 does not matter.

Definition

A 2-cell

is called **central on the left** when the exchange law

is satisfied for every 2-cell θ_1 of the sesqui-category \mathscr{D} .

Exercise

Show that in the sesqui-category with

- categories as objects
- ▷ functors as 1-cells
- ▷ transformations as 2-cells

the natural transformations are the 2-cells central on the left.

Deduce the existence of a functor

 $\operatorname{Nat}(\mathscr{B}, \mathscr{C}) \times \operatorname{Nat}(\mathscr{A}, \mathscr{B}) \longrightarrow \operatorname{Nat}(\mathscr{A}, \mathscr{C})$

2-categories

A 2-category \bigcirc is a sesqui-category such that the **exchange law** is satisfied for every pair of 2-cells

2-categories (alternative definition)

A 2-category \bigcirc is given by

- [0] a class of **objects**
- [1,2] a category $\mathscr{D}(A,B)$ for every pair of objects (A,B)

[2,3,4] a **composition law** defined as a functor $\circ: \mathscr{D}(B,C) \times \mathscr{D}(A,B) \longrightarrow \mathscr{D}(A,C)$

[2,3,4] an **identity** defined as a functor $id_A : \mathbb{1} \longrightarrow \mathscr{D}(A,A)$

this for all objects A, B, C of the 2-category,

2-categories (alternative definition)

1— such that the composition law \circ is associative in the sense that

commutes.

2-categories (alternative definition)

2— such that *id* is a neutral element of \circ in the sense that

and

commute for all A and B.

Notation

One writes

$$\theta \quad : \quad f \quad \Rightarrow \quad g \quad : \quad A \longrightarrow B$$

when

 $\theta : f \longrightarrow g$ is a morphism of the category $\mathscr{D}(A, B)$.

Godement law

In a 2-category

$\mathcal{D}(\mathcal{A},\mathcal{B})$

the two canonical ways to compose the 2-cells

coincide:

$$(\beta_2 * \alpha_2) \circ (\beta_1 * \alpha_1) = (\beta_2 \circ \beta_1) * (\alpha_2 \circ \alpha_1)$$

Suspension

The notion of monoidal category will be defined very soon.

Every strict monoidal category \mathscr{C} may be seen as the 2-category $\Sigma(\mathscr{C})$

- \triangleright which contains only one 0-cell,
- \triangleright whose 1-cells are the 0-cells of \mathscr{C}
- \triangleright whose 2-cells are the 1-cells of \mathscr{C}

equipped with the induced composition laws.

A sesqui-category $\Sigma(\mathscr{C})$ with one object is the same thing as a premonoidal category $(\mathscr{C}, \otimes, I)$.

Useful equality

In a 2-category $\mathscr{D}(\mathscr{A},\mathscr{B})$, the two canonical ways to compose the 2-cells

commute:

$$(\beta_2 * \alpha_2) \circ (\beta_1 * \alpha_1) = (\beta_2 \circ \beta_1) * (\alpha_2 \circ \alpha_1)$$

The 2-category of sets and relations

The 2-category \mathcal{R}_{el} is defined as follows:

▷ its 0-cells are the sets,

▷ its 1-cells are the relations between sets,

$$A \xrightarrow{f \cdot g} B = A \xrightarrow{f} B \xrightarrow{g} C$$

relationally composed:

 $a [f \cdot g] c \iff \exists b \in B, \quad a [f] b \in b [g] c.$

▷ its 2-cells are inclusions:

In particular, the categories $\mathcal{Rel}(A, B)$ are order categories.

A notation introduced by Roger Penrose

Two key ideas

1. apply the Poincaré duality on the original pasting diagrams:

$$\theta \quad : \quad G \circ F \quad \Rightarrow \quad H$$

Two key ideas

2. hide the identity 1-cells in the picture:

$$\theta \quad : \quad G \circ F \quad \Rightarrow \quad id$$

More generally, a 2-dimensional cell

 $\theta \quad : \quad F_1 \circ \cdots \circ F_p \quad \Rightarrow \quad G_1 \circ \cdots \circ G_q \quad : \quad \mathscr{A} \quad \longrightarrow \quad \mathscr{B}$ is depicted as

Exercise

Draw the exchange law and explain the connection to concurrency

Adjunctions

A notion of duality between functors
Adjunction

An **adjunction** is a triple (L, R, ϕ) where L and R are two functors

 $L: \mathscr{A} \longrightarrow \mathscr{B} \qquad \qquad R: \mathscr{B} \longrightarrow \mathscr{A}$

and ϕ is a family of bijections, for all objects A in \mathscr{A} and B in \mathscr{B} ,

 $\phi_{A,B}: \mathcal{B}(LA,B) \cong \mathcal{A}(A,RB)$

natural in A et B. One also writes

$$\frac{LA \longrightarrow_{\mathscr{B}} B}{A \longrightarrow_{\mathscr{A}} RB} \quad \phi_{A,B}$$

One says that *L* is left adjoint to *R*, noted $L \dashv R$.

The 2-dimensional version of isomorphism

The naturality of the bijection ϕ

Natural in A and B means that the family of bijections

 $\phi_{A,B}$: $\mathscr{B}(LA,B) \cong \mathscr{A}(A,RB)$

transforms every commutative diagram

into a commutative diagram

Example: the free vector space

where

- $\mathscr{A} = \mathbf{Set}$: the category of sets and functions
- $\mathscr{B} = \mathbf{Vect}$: the category of vector spaces on a field k
 - R : the « forgetful » functor $V \mapsto U(V)$
 - *L* : the « free vector space » functor $X \mapsto kX$

$$kX := \left\{ \sum_{x \in X} \lambda_x x \mid \lambda_x \in k \text{ null almost everywhere.} \right.$$

Illustration: the tensor algebra

where

- $\mathscr{A} =$ **Vect** : the category of vector spaces
- $\mathscr{B} = Alg$: the category of algebras and homomorphisms,
 - *R* : the « forgetful » functor $A \mapsto U(A)$.
 - L : the « free algebra » functor $V \mapsto TV$.

$$TV := \bigoplus_{n \in \mathbb{N}} V^{\otimes n}$$

Definition of a Lie algebra

Vector space ${\mathfrak g}$ equipped with a Lie bracket

Anti-symmetry:

$$[x,y] = -[y,x]$$

Jacobi identity:

$$[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0$$

Example: the vector space of vector fields on a smooth manifold.

Illustration: the enveloping algebra of a Lie algebra

where

- $\mathscr{A} = Lie$: the category of Lie algebras,
- $\mathscr{B} = Alg$: the category of algebras,
 - R : equips A with the canonical Lie bracket [a, b] = ab ba,
 - L : « enveloping algebra » functor $g \mapsto U(g)$.

$$U(\mathfrak{g}) := T\mathfrak{g} / I(\mathfrak{g})$$

where I(g) is the ideal generated by ab - ba - [a, b].

Illustration: the free category

where

- Solution = Graph : the category of graphs,
 Solution = Cat : the category of categories and functors,
 R : the « forgetful » functor
 - *L* : the « free category » functor

Illustration : the terminal object

where

- $\mathscr{A} = \mathscr{C}$: any category equipped with a terminal object 1 $\mathscr{B} = \mathbb{1}$: the singleton category
 - R : the functor whose image is the terminal object 1
 - *L* : the canonical (and unique) functor

Adjunction in the 2-category Cat

A bijection ϕ between the natural transformations

Adjunction in the 2-category Cat

A bijection ϕ between the natural transformations

A 2-dimensional naturality condition

One reformulates the naturality conditionin that way:

Adjunction in the 2-category Cat

This point of view leads to a more satisfactory definition of adjunction:

A bijection ϕ between the natural transformations

Adjunction in the 2-category Cat

One reformulates the naturality condition as follows:

Algebraic presentation of the adjunction

An **adjonction** is a quadruple $(L, R, \eta, \varepsilon)$ where L and R are functors

 $L \quad : \quad \mathscr{A} \longrightarrow \mathscr{B} \qquad \qquad R \quad : \quad \mathscr{B} \longrightarrow \mathscr{A}$

and η and ε are natural transformations:

 $\eta \quad : \quad Id_{\mathscr{A}} \xrightarrow{\cdot} RL \qquad \qquad \varepsilon \quad : \quad LR \xrightarrow{\cdot} Id_{\mathscr{B}}$

such that the composite are the identities: (of L and R respectively).

 $R \xrightarrow{\eta R} RLR \xrightarrow{R\varepsilon} R \qquad L \xrightarrow{L\eta} LRL \xrightarrow{\varepsilon F} L$

The situation is depicted as follows:

Dual definition (but equivalent) of adjunction

By duality, an adjunction is given by a family of bijections ψ between the sets of 2-cells

natural in A and B.

The 2-dimensional topology of adjunctions

The **unit** and **counit** of the adjunction $L \dashv R$ are depicted as

 $\varepsilon: L \circ R \Rightarrow Id$

A typical 2-cell generated by an adjunction

As we will see, deep connections with game semantics

A purely diagrammatic composition

The 2-dimensional dynamics of adjunctions

As we will see, deep connections with knot theory

Illustration: the 2-category of sets and relations

Show that a relation

 $f : A \longrightarrow B$

is left adjoint if and only if it is functional:

 $\forall a \in A. \quad \exists \, ! \, b \in B. \qquad a \, [f] \, b$

Show that its right adjoint g is the relation defined as

 $\forall a \in A. \quad \forall b \in B. \qquad a[f]b \iff b[g]a.$

Monads

Kleisli category, Eilenberg-Moore category

Monads

Suppose given a 0-cell \mathscr{C} in a 2-category \mathscr{W} .

A monad T on a 0-cell \mathscr{C} is a 1-cell

 $T : \mathscr{C} \longrightarrow \mathscr{C}$

equipped with a multiplication

 $\mu \quad : \quad T \circ T \quad \Rightarrow \quad T \quad : \quad \mathscr{C} \quad \longrightarrow \quad \mathscr{C}$

and with a unit

 $\eta \quad : \quad Id_{\mathscr{C}} \quad \Rightarrow \quad T \quad : \quad \mathscr{C} \quad \longrightarrow \quad \mathscr{C}$

satisfying the expected associativity and unit laws.

Monads

▷ Associativity law:

▷ Left and right unit laws:

Every adjunction defines a monad

(with a graphical proof)

Illustration: the state monad

Every set *S* induces a monad

 $X \mapsto S \Rightarrow (S \times X) :$ Set \longrightarrow Set

called the state monad. This monad is induced by the adjunction

where

$$\begin{array}{rcl} L & : & X \mapsto S \times X \\ R & : & X \mapsto S \Rightarrow X \end{array}$$

Algebra

Suppose given a monad T on a category \mathscr{C} .

An algebra of the monad (T, μ, η) is a pair (A, h) consisting of

- ▷ an object A of the category \mathscr{C}
- ▷ a morphism

$$h : TA \longrightarrow A$$

making the diagrams

commute.

Algebra homomorphism

An algebra homomorphism

$$f : (A, h_A) \longrightarrow (B, h_B)$$

is a morphism

$$f : A \longrightarrow B$$

making the diagram

commute in the category \mathscr{C} .

Kleisli category

The Kleisli category \mathscr{C}_T of a monad (T, μ, η) is the category \mathscr{C}

- \triangleright with the same objects as the category \mathscr{C} ,
- with the morphisms

 $A \longrightarrow TB$

in the category \mathscr{C} as morphisms

 $A \longrightarrow B$

in the Kleisli category.

Kleisli category

The identities

 $id_A : A \longrightarrow A$

are given by the morphisms

$$\eta_A : A \longrightarrow TA.$$

The two morphisms

$$f: A \longrightarrow B \qquad g: B \longrightarrow C$$

are composed as follows

Exercise

Show that:

- b that the identities of the Kleisli category are identities
- ▶ that its composition is associative.

Remark: checking associativity requires to consider the diagram

and to show that the two maps from A to TD coincide.

Short bibliography of the course

On categorical semantics of linear logic and 2-categories:

Categorical semantics of linear logic.

Survey published in « Interactive models of computation and program behaviour ». Pierre-Louis Curien, Hugo Herbelin, Jean-Louis Krivine, Paul-André Melliès. Panoramas et Synthèses 27, Société Mathématique de France, 2009.

On string diagrams:

Christian Kassel **Quantum groups** Graduate Texts in Mathematics 155 Springer Verlag 1995.

Peter Selinger **A survey of graphical languages for monoidal categories**. New Structures for Physics Springer Lecture Notes in Physics 813, pp. 289-355, 2011.

Functorial boxes in string diagrams Proceedings of CSL 2006. Lecture Notes in Computer Science 4207.