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First part

Lambda-calculus

The calculus of functions



The pure A-calculus

Terms M = x | MN | Ax.M

The p-reduction:
Ax.M)N — M]Jx:=N]

The n-expansion:
M — Ax.(Mx)

Remark: every term is considered up fo renaming =, of the bound
variables, typically:

AxAyx =4 Az.Ay.z



Occurrences

The set of occurrences of a A-term M is defined by induction:

> occ(x) = {e}
> occ(MN) = {etU{l-0lo€eocc(M)} U {2-0|o€o0cc(N)}
> occ(Ax.M) = {e}U{l-o0|lo€occ(M)}

Notfe that every occurrence of the A-term M is labelled by
> an application node App
> abinder Ax

> Qvariable x



Free variables

The set of free variables of a A-term is defined by induction:

> FV(x) = {x}
> FV(MN) = FV(M)UFV(N)
> FV(Ax.M) = FV(M)\ {x}

Every occurrence of a variable x in a A-fermis

> either free

> or bound by a binder Ax above it in the A-term.



Church-Rosser theorem
Also called confluence theorem.

Given two g-rewriting paths
f: M =P ¢g: M 5 Q

there exists a A-term N and two g-rewriting paths f* and g’

completing the diagram as



The simply-typed A-calculus
It is possible to type the expressions of the A-calculus using simple
types A, B constructed by the grammar:
A,B = a| A= B.

A typing context I' is a finitfe sequence
I' = (xl . Al, e, Xn :An)
where each x; is a variable and each A; is a simple type.

A sequent is a triple
x1:A9,...,Xp Ay P : B
where
X1 :Aq, .., Xn Ay
IS a Typing context, P is a A-term and B is a simple type.



The simply-typed A-calculus

Variable

Abstraction

Application

Weakening

Contraction

Exchange

xX:Arx: A

Ix:A+P:B
I'- Ax.P: A= B

I'+rP:A=B AFQO:A

T,ArPQ:B

I'P:B
Ix:A+rP:B

I',x:A,y:A+P:B
I',z:Av Plx,y < z]:B

I'x:A,y:B,A+P:C
Iy:B,x:A,A+P:C




Subject reduction

A A-term P is simply typed when there exists a sequent

I' v+ P:A

which may be obtained by a derivation tree.

One establishes that the set of simply typed A-terms is closed under
B-réduction:

Subject Reduction:

|fF|—P:AOth—>ﬁQ,ThenFI—Q:A.
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Strong normalization

A A-ferm P is stfrongly normalizihng when there exists no infinite se-
qguence of s-reductions:

Strong normalization:

Every simply typed A-term P is strongly normalizing.

In particular, the A-term AA loops:

AN —p AN —g
Is not simply typed.
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minimal logic

Curry-Howard (1)

Variable
Ar A
. I, A+ B
Abstraction T y—:
Aoolication I'- A=B Ar A
pplicatio T AT =
. I' B
Weakening T Ar B
Contract I, A, A+ B
ontraction T AT z
I, A, BA+r C
Exchange

I, B, AAr C
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simply typed A-calculus

Curry-Howard (1)

Variable
X :AFx:A
, I'x:A+P:B
Abstraction T AP ASE
Abplication I'-P:A=2B AFQ:A
PRICAto T AFDPO B
. I'P:B
Weakening T x ArDB
Contract I''x:A,y:ArP B
ontraction
I',z:Av Plx,y « z] :B
I''x:A,y:B,A+P:C
Exchange

I'y:B,x:AA+P:C
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Algebraic Church-Rosser Theorem

Given two S-rewriting paths
f: M = P g : M — Q
there exists a A-term N and two g-rewriting paths f* and g’

completing the diagram as

where ~ denotes the permutation equivalence on rewriting paths.

Theorem established by Jean-Jacques Lévy in 1978
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Redex

Definition. A g-redexis a pair

(M, 0)

consisting of

>  aA-term M
> an occurrence of the A-termm M such that
M, = (Ax.P)Q

Is a p-reduction pafttern.
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Redex permutations

The tworedexesu : M — Pand v : N — Q are disjoint.
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Redex permutations

(Az.y)P

The redex u erases theredex v : M — P.
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Redex permutations

(A\v.zx)P

(A\z.xx) M

The redex u duplicaftes the redex v : M — P.
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Rewriting paths modulo permutations

An important problem of rewriting theory: compare the several paths
which rewrite a A-term P into its normal form Q.

Corollary

Every two rewriting paths to the normal form

f,g:P—>Q

are equal modulo a series of redex permutations.
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A 2-dimensional hole

(Az.x)(Ay.y)z

The two redexes u and v are not equivalent modulo permutation.
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The 2-dimensional hole continued

(Ax.x)(A\y.y)z > o 2

The two paths u - w and v - w are equivalent modulo permutation.
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Geometry of rewriting

(Az.(\y.z))MQ (A\y.M)Q

(Az.(A\y.z)) M N u (\y.M)N .,

A standardization theorem will be established in the course
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The A-calculus with de Bruijn indices

Variable TArl A

. I'LA+rP:B
Abstraction TP ASE
Aoplicat I'+-P:A=B '-r0:A
pplication T 00 B

. I'P:B
Weak
edkening TAFP[1] B

where P [1] denotes the A-ferm P where each free variable has been
incremented.
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The A-calculus with explicit substitutions

Terms M == 1 | MN | AM | M]s]

Substitutions s

id | 17| M-s | sot

Key idea: replace the g-rule of the A-calculus
(Ax.M)N — M][x:=N]
by the Beta-rule of the Ao-calculus
AM)N — MIN -id]

where the substitution is explicit — and thus similar to a closure.
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The eleven rewriting rules of the Ao-calculus

Beta (AMN - MIN - id]
App (MN)[s] —  MIsIN[s]
Abs (AM)[s] — AM[1-(so1)])
Clos M[s][t] — M]s o t]
VarCons 1[M - 5] — M
Varld 1[id] — 1
Map (M-s)ot —  M][t]-(sot)
IdL idos — S
Ass  (sjosp)osy —  spo(spos3)
ShiftCons To(M-s) — S
Shiftld T oid — 1
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The eleven critical pairs of the Ag-calculus

App + Beta

Clos + App
Clos + Abs

Clos + Varld
Clos + VarCons
Clos + Clos

Ass + Map
Ass + IdL

Ass + Shiftld

(AM)[s](N[s])

(MN)[s o t]
(AM)[s o t]
1[id o s]
1[(M - s) o t]
Ms][t o t']

(M-s)o(tot)
ido(sot)
To(idos)

Ass + ShiftCons To((M-s)ot)

Ass + Ass

(sos’)o(tot)

App
H

Clos
Clos
Clos
Clos

H
Clos

118 1E 118

((AM)N)[s]

(MN)[s]lt]
(AM)[s][¢]
1[id][s]

1[M - s][t]
Ms][t][t']
(M-s)ot)ot
(idos)ot
(Toid)os
(1o (M-5) ot
(sos’)ot)ot’

Beta
H

pp
H

Abs
H

Varld
-
VarCons
-

Clos
%

Map
—_—

IdL
H

Shiftld
H
ShiftCons

-

Ass
—

MIN -id][s]

(M[s](N[s])[t]
(AM[1-s o T]))I[t]
1[s]

M[t]

M][s o t][t']

(M[t]-sot)ot
sot
Tos
sot

(so(s’ot)) ot
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(AP)Q)Is]

Beta

P[Q-

Clos+Map

P[QIs]

IdL

P[Q]s] - 5]

A dangerous critical pair

id][s]

- id o s]

(AP)[s1Q[s] ———

(A(P[1-50T]))QIs]

Beta

P[1-s o T][QIs] - id]

Clos+Map

P[QIs] - (s o T) o (Qls] - id)]

when s=M,-M,-----M,,-id

Ass+Shift

and the M's are in o—normal form

P[QIs] - (s o id)]

This critical pair leads fo a counter-example to strong normalization
of the simply-typed Ao-calculus.
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Second part

Categories and 2-categories

Fonctors and natural fransformations
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Categories
A caftegory % is given by
[0] a class of objects

[1] asef Hom(A, B) of morphisms
f + A — B
for every pair of objects (A, B)

[2] a composition law o : Hom(B, C) X Hom(A, B) — Hom(A, C)

[2] an identity morphism
idy @+ A — A
for every object A,

28



Categories
safisfying the following properties:

[3] the composition law o is associative:

VY f € Hom(A, B)
V¢ € Hom(B, () fo(goh)=(fog)oh
Yh € Hom(C, D)

[3] the morphisms id are neutfral elements

Vf € Hom(A, B) foidy = f = idgof

29



A hint of higher-dimensional wisdom
B
/X
A—FrC

The composition law hides a 2-dimensional simplex
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A hint of higher-dimensional wisdom

B—2< __C B— S ¢
h f  _ ok f
A D A D

fo(goh) (fog)oh

The associativity rule hides a 3-dimensional simplex
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Functors

A functor between categories
F : € — 9
is defined as the following data:
[0] an object FA of & for every object A of &,

[1] a function

Fpap : Homg(A,B) — Homgy(FA, FB)
for every pair of objects (A, B) of the category 7.

32



Functors
One requires moreover

[2] that F preserves composition

FAEL rpES pC _ FAL8D pe

[2] that F preserves the identities

Fid 4

FA FA _ FA—UA_pa




lllustration [orders ]

Every ordered set

(X, <)
defines a category

[X, <]

> whose objects are the elements of X

> whose hom-sets are defined as

B {>(-} if Xﬁy
Hom(x,y) = { %) otherwise

In this category, there exists at most one map between two objects
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lllustration [orders |

Exercise: given two ordered sets
(X, <) (Y, <)
a functor
F : [X<] — [Y<]
is the same thing as a monotonic function
F : X)) — (s

pbetween the underlying ordered sets.
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lllustration [ monoids ]

A monoid (M, -, e) is a set M equipped with a binary operation

MxM — M

and a neutral element
e : {¥} —M
safisfying the two properties below:
Associativity law Vx,y,zeM, (x-y)-z=x-(y-2)

Unit law VxeM, X-e=x=e¢e-X.
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lllustration [ monoids ]

Key observation: there is a one-tfo-one relationship
(M,-,e) — X(M,-e)

between
> MonNoids
> cafegories with one object =

obtained by defining X(M,, -, e) as the category with unigue hom-set
X(M,-e) (x,x) = M
and composition law and unit defined as

gof = gf id«=e
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lllustration [ monoids ]

Key observation: given two monoids
(M, -, e) (N,e,u)
a functor
F : XWM,.,e) — X(N,o,u)
is The same thing as a homomorphism
for Mo —  (Neuw

between the underlying monoids.

Recall that a homomorphism is a function f such that

VoyyeM, flx-y) = fx)e f(y) fle) = u
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lllustration [actions|]
The action of a monoid
(M, -, e)
on a set
X
is the same thing as a functor
Y.(M,-,e) —> Set
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lllustration

The action of a monoid

| representations |

(M, '/ 8)

on a vector space

is the same thing as a functor

Y.(M,-,e)

—  Vect

40



Transformations

A transformation

between two functors

EFEG : o — A

Is a family of morphisms

(04 : FA — GA) pcopj(wr)
of the category % indexed by the objects of the category 7.
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Vertical composition of transformations

The transformations compose vertically

N\

1*82 —

and thus define a category

Trans ( &/ , X$ )

for all categories .« and 4.

/e \

X4 G B

\/ W
H

42



Left action

In the following situation: 77 1o ~@p—H ¢
\(—;/

the left action of the functor H on the fransformation
e : F — G : o — A
Is defined as the fransformation
Hoj6 : HoF — HoG : o — €

whose insfance at object A is defined as the morphism

H(04)

H o F(A) H o G(A).
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Properties of the left action [1]

From a diagrammatic point of view, the two equations

Hop (0p%601) = (Hop 0p)*(Hop 07) Hop1p = 1gor
mean that

VATAN

/\ . o z—H 7

\/ o —— P
e/

/\ /H%
o U1f H » = o llpgs P
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Properties of the left action (2)

These tTwo equations mean that

Ho;— : Trans(«/,%) —  Trans(</,%)

8 — HOLQ

defines a functor, while the two equations

(Hl OHz) OLF = Hl OL (H2 OL F) Zd@ OLQ

mean that o; defines an action.

45



Right action

In the following situation: o—H BT 0 ¢

the functor H acts on the transformation
e : F — G : $B — €
and fransports it info the transformation:
OorkH : FoH — GoH : & — %

whose instfance at A is defined as the morphism

0
FoH(A) o) G o H(A).
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Properties of the right action (1)

From a diagrammatic point of view, the two equations

(2% 601)og H = (630 H)* (01 og H) lrorH = 1pey

%
i

/\

FoH
RN

o Vlpoy AB

mean that

H

o H

o
A
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Properties of the right action (2)

The two equations mean that

—or H : Trans(%4, %) — Trans(<7, ¢)

0 = QORH

defines a functor, while the two equations
Oogr(HyoHy) = (0ogHy)ogHy O oR id oy

mean that op defines an action.

0
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Compatibility of the left and right actions

Last equation: in the situation

the order in which one makes the functors
H : & — o Hy : 4 — %#
act on the fransformation 6 does not matter:

(Hp op 0) or Hy - Hjp op (6 og Hyp)

49



Sesqui-category
A sesqui-category 7 is
[0] a class of objects

[1,2] equipped with a category
(A, B)

for every pair of objects (A, B) of the sesqui-category, where
the objects of &7 (A,B) = the morphisms from A to B

equipped with a pair of actions o; and oy safisfying...

50



Sesqui-categories

equipped with a pair of actions o; and oy satisfying the equations

hop(02+01) = (hop03)=*(hop 61) hoply = o
(hiohy)op f = hiop (hpor f) idgo,0 = 0
(O2%01)orh = (O20rh)*(01*rN) lpogh = o
OoR (hpohy) = (0 o hp) or Iy Oopidyy = 0
(hp o 6)og hy = hypop (6 og hy)
Theorem.

Categories, functors and transformations define a sesqui-category.

o1



The sesqui-category of categories and transformations

Fq Fr

Let 6, and 6, be two fransformations in =~ o7~ U, B~ 16, %
\_/ \/

Gq Go

In general, the fransformation obtained by applying 64 then 6,

Fq Fr

o B 10, OF
~—
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Natural transformations

A fransformation 6 : F=G : o —H
is natural when the diagram
FA—4_GA
Ff Gf
FB—Y _GB

commutes for every morphism f : A — B.

Notation. we write
Nat(.o/, $)
for the category of functors and natural fransformations
o : F = G : & — A

53



Exchange law

A pair of 2-cells 6; and 6, in a sesqui-categorie &/

Fq Fr Fq Fr
A 3 A 0
NG ¢4 B0 €
6 6
A A € AL P €
Gy Gy Gy G2

holds.

The order in which one applies 61 and 8, does not matter.
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Definition

A 2-cell
/K
B\UEZ/,C
82
is called central on the left when the exchange law
0 0
A B ¢ _ 4 B %2 ¢
0 0
A\g/B \Ug_z/c A\l{g_l/fB \g_/c
1 2 1 2

is satisfied for every 2-cell 61 of the sesqui-category 9 .
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Exercise
Show that in the sesqui-category with
> categories as objects
> functfors as 1-cells
> fransformations as 2-cells

the natural fransformations are the 2-cells central on the left.

Deduce the existence of a functor

Nat(%,¢) x Nat(«/, ) —> Nat(Z,?)

956



2-categories

A 2-category s a sesqui-category such that
the exchange law is satisfied for every pair of 2-cells

S7



2-categories (alternative definition)
A 2-category &/ is given by
0] a class of objects

1,2] a category 2% (A, B) for every pair of objects (A, B)

2,3,4] a composition law defined as a functor

) (B,C)x T'(A,B) — TI(A,CQ)

[2,3,4] an identity defined as a functor

idy: 1 — J(AA)

this for all objects A, B, C of the 2-category,
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2-categories (alternative definition)

1— such that the composifion law o is associative in the sense that

(C,D)x &/ (B,C)x TV (A,B) o x Z/(AB) 7 (B,D)x (A, B)
I (C,D)x o 0

2(C,D)x &J(A,C) ° (A, D)

commutes.
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2-categories (alternative definition)

2— such that id is a neutral element of o in the sense that

T (A, B) (A, B)
G By x 1L ABXia_ cyia By S aa)
and
(A, B) (A, B)
I x A B _xXTAB g gy A p)

commute for all A and B.
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Notation
One writes

when

0 : f-—g
is a morphism of the category £/ (A, B).

A— B
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Godement law

In a 2-category
D (oA, B)

the two canonical ways o compose the 2-cells

/\/\
\/\/

(B2xag)o(Br*ay) = (B20p1)*(az0ay)

coincide:
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Suspension

The notion of monoidal category will be defined very soon.

Every strict monoidal category @ may be seen as the 2-category (%)
> which contains only one 0-cell,

> whose 1-cells are the 0-cells of ¢

> whose 2-cells are the 1-cells of ¢

equipped with the induced compaosition laws.

A sesqui-category X(%) with one object is
the same thing as a premonoidal category (¢, ®,1).
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Useful equality

In a 2-category &/ (<7, $), the two canonical ways fo compose the 2-cells

N\
N

(Baraz)o(Br*a1) = (B2of1)*(az0a)

commute:
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The 2-category of sets and relations

The 2-category 2/ is defined as follows:
> its 0-cells are the sefs,
> ifs 1-cells are the relations between sefts,
A—t8 g - a4 S g &

relationally composed:

alf-glc < dbeB, alflb et blg]c.

> ifs 2-cells are inclusions:

In particular, the categories 22/ (A, B) are order categories.
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String diagrams

A notation infroduced by Roger Penrose
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Two key ideas

1. apply the Poincaré duality on the original pasting diagrames:

F G
lLo Is depicted as

4

B

S
H

C

String diagrams

0

GoF = H
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String diagrams

Two key ideas

2. hide the identity 1-cells in the picture:

o
B
F G
(I, is depicted as
q
id
O : GoF = i

68




String diagrams

More generally, a 2-dimensional cell

& : Fio---oFp = Gpo---0(Gy

is depicted as

o

—
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Exercise

Draw the exchange law and explain the connection fo concurrency
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Adjunctions

A notion of dudlity between functors
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Adjunction

An adjunction is a friple (L, R, ¢) where L and R are fwo functors
L:of — A R:%# — o
and ¢ is a family of bijections, for all objects A in <7 and B in 4,
bap: B(LAB) = (A RB)

natural in A et B. One also writes
A —> 7 RB (PA’B
One says that L is left adjoint to R, noted L 4 R.

The 2-dimensional version of isomorphism
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The naturality of the bijection ¢

Natural in A and B means that the family of bijections

¢ap : HB(LAB) = (A RB)
transforms every commutative diagram

LA g B
Lhy hp
LA’ B’
f
infto a commutative diagram
A $4,B(8) RE
hA RhB
A’ RB’

Parp(f)
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Example: the free vector space

Set 1 Vect

where

o/ = Set : the caftegory of sets and functions
% = Vect : the category of vector spaces on a field k

the « forgetful » functor V- U(V)
the « free vector space » functor X — kX

~ =

kX = { Z Ay x | Ay € knull almost everywhere. }

xeX
/4



lllustration: the tensor algebra

Vect i Alg

where

o/ = Vect : the category of vector spaces

# =Alg : the category of algebras and homomorphisms,
R the « forgetful » functor A — U(A).
L the « free algebra » functor V- TV.

TV = @ e

nelN
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Definition of a Lie algebra
Vector space g equipped with a Lie bracket

Anti-symmetry:

[x/ ]/] — _[y/x]

Jacobi identity:

X vzl + lylzxll + lzlxyll = 0

Example: the vector space of vector fields on a ssmooth manifold.
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lllustration: the enveloping algebra of a Lie algebra

Lie 1 Alg
i et

where
o/ =Lie : the category of Lie algebras,
% = Alg : the category of algebras,

equips A with the canonical Lie bracket [a, b] = ab — ba,
« enveloping algebra » functor g — U(g).

~ =

U = Tg /| Ig)

where I(g) Is the ideal generated by ab — ba — [a, b].
77



where

2/ = Graph
% = Cat

=~ =

lllustration: the free category

the category of graphs,

the category of categories and functors,

the « forgetful » functor
the « free category » functor
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lllustration : the terminal object

any category equipped with a ferminal object 1
the singleton category

the functor whose image is the ferminal object 1
the canonical (and unique) functor
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Adjunction in the 2-category Cat

A bijection ¢ between the natural fransformations

Here, a morphism X — Y in the category ¢
is seen as a natural transformation [X] — [Y].
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Adjunction in the 2-category Cat

A bijection ¢ between the natural fransformations

1

-
S

o

L

B

Here, a morphism X — Y in the category ¢
seen as a natural transformation [X] — [Y].

N

|

~_

Y
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A 2-dimensional naturality condition

One reformulates the naturality conditionin that way:

The bijection ¢ is natural with respect o the natural transformations o and g.
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Adjunction in the 2-category Cat

This point of view leads to a more satisfactory definition of adjunction:

A bijection ¢ between the natural fransformations
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Adjunction in the 2-category Cat

One reformulates the naturality condition as follows:

The bijection ¢ is natural with respect to the natural fransformations a et g.

84



Algebraic presentation of the adjunction

An adjonction is a quadruple (L, R, 1, ¢) where L and R are functors
L : o — A R : B— o
and n and ¢ are natural fransformations:
n : Idy— RL e : LR—Idy
such that the composite are the identities: (of L and R respectively).

nR

R RLR —Re R L I [RL—<F L

The situation is depicted as follows:
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Dual definition (but equivalent) of adjunction

By duality, an adjunction is given by a family of bijections ¢ between
the sets of 2-cells

natural in A and B.
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The 2-dimensional topology of adjunctions

The unit and counit of the adjunction L 4 R are depicted as

n:ld= RolL e:LoR=1d

\ .
" m




A typical 2-cell generated by an adjunction

E R
L
*

s
B,

As we will see, deep connections with game semantics
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A purely diagrammatic composition
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The 2-dimensional dynamics of adjunctions

R R

As we will see, deep connections with knot theory
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lllustration: the 2-category of sets and relations

Show that a relation
f + A — B
is left adjoint if and only if it is functional:

Yae A. A!beB. alflb

Show that its right adjoint ¢ is the relafion defined as

Yae A. VbeB. alflb < Db[g]a.
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Monads

Kleisli category, Eilenberg-Moore category
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Monads
Suppose given a 0-cell ¢ in a 2-category W.

A monad T on a 0-cell ¥ is a 1-cell

T : € — €

equipped with a multiplication

u : ToT = T : € — €
and with a unif

n : ldy = T : € — €

satisfying the expected associativity and unit laws.

Q3



>

>

Monads

Associativity law:;

ToToT— M ToT
ToT a T

Left and right unit laws:

ToT

VAN AN
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Every adjunction defines a monad

(with a graphical proof)
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lllustration: the state monad

Every set S induces a monad

X > S§=(5xX) : Set — Set

called the state monad. This monad is induced by the adjunction

L
RN
Set 1 Set

‘\R/

where

L : X §S§xX
R : X § =X,
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Algebra
Suppose given a monad T on a category %
An algebra of the monad (T, w1, 1) is a pair (A, ) consisting of
> an object A of the category ¢

> A morphism

h : TA— A
making the diagrams
TA T2A_HA _TA
NA h
/ \ Th h
A — A TA A

commute.
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Algebra homomorphism

An algebra homomorphism

f : (AlhA) — (B/hB)
IS a Mmorphism

making the diagram

TA If TB
ha hp
A B
f

commute in the category %
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Kleisli category
The Kleisli category é1 of a monad (T, u, n) is the category ¢
>  with the same objects as the category %,

> with The morphisms
A— TB
in the category 4 as morphisms

A—» B

in the Kleisli category.
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Kleisli category

The identities

dgy :+ A—>A
are given by the morphisms
nag : A—TA
The two morphisms
f:A—>B g:B—»C
are composed as follows
TTC
/ e
gog f = TB TC
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Exercise

Show that:

> that the identities of the Kleisli category are identities
> that ifs composition is associative.

Remark: checking associativity requires to consider the diagram

B TC TD

s

B C

and to show that the two maps from A to TD coincide.
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