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Paul-André Melliès

October 24, 2012



2



Chapter 1

Abstract Rewriting Systems

The original motivation for rewriting is to provide decision procedures for
equational theories. The idea is to orient the equations and to rewrite the
terms to a canonical form. Two syntactic words are then equal if and only if
they are rewritten to the same canonical form. Section 1.1 presents the word
problem on monoids and explains how to solve it with Rewriting. Chapter 2
then introduces two historic rewriting systems: the λ-calculus which is not
normalising, and the calculus of Petri nets which is not confluent.

1.1 Monoids

A monoid is a set M equipped with a law of composition M ×M → M
which is associative, and a unit element. The free monoid on a set Σ, noted
Σ∗, is the set of words or finite sequences of elements of Σ. Composition in
Σ∗ is defined by concatenation and unit is the empty word e.

A presentation of a monoid M consists of

1. a set Σ of generators,

2. a set R of relations r ≈ s where r and s are words in Σ∗

such that M is (isomorphic to) the quotient of Σ∗ by the congruence as-
sociated to R. A rewriting system is a presentation (Σ,R) where every
relation is explictly oriented and considered as a rewrite rule.

Example. The monoid M4 of symmetries of the square1 is presented by

Σ = {σ, τ} and R = {σ4 ≈ e, τ 2 ≈ e, τσ ≈ σ3τ}
1In fact, M4 is not only a monoid, it is a group.
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M4 contains 8 elements which can be enumerated as:

e, σ, σ2, σ3, τ, στ, σ2τ, σ3τ (1.1)

One way to decide the equality of two arbitrary words u and v in Σ∗ is to
orient the relations in R as follows:

σ4 → e τ 2 → e τσ → σ3τ

and to rewrite the words u and v so as to obtain two words [u] and [v] among
the eight canonical words of (1.1) ; then to compare the two canonical forms
[u] and [v]. For instance, if u = τσ2τσ and v = τστ , the series of rewriting
steps on u and v:

u = τσ2τσ → σ3τστσ → σ6τ 2σ → σ2τ 2σ → σ3 = [u]

v = τστ → σ3τ 2 → σ3 = [v]

shows that u ≈ σ3 and v ≈ σ3 in (Σ,R), hence that the two symmetries
τσ2τσ and τστ are equal in M4.

If we try to understand why the procedure for deciding the word equality
in M4 succeeds, we see two reasons:

1. the rewriting procedure terminates: from every word u ∈ Σ∗ there is a
sequence of rewrite steps to a word in normal form, where by normal
form we mean a word on which no rewrite rule operates,

2. The normal form computed from a word u is uniquely determined by
u. Why? Clearly, the canonical words are the only normal forms of the
rewriting system (Σ,R). Then, if a word u had two different normal
forms [u]1 and [u]2 obtained by two different computations u→ · · · →
[u]1 and u → · · · → [u]2, the two normal forms [u]1 and [u]2 would be
canonical and equal in M4, which is impossible.

The properties 1. and 2. are called normalisation and confluence in the
litterature. Next section shows how to formalise them in an abstract setting.

1.2 Abstract Rewriting Systems

An abstract rewriting system is a set A with a binary relation →. We
write a→ b when a, b ∈ A are related by→. The relation

∗→ is the transitive
reflexive closure of → and ≈ is the equivalence relation corresponding to →,
or equivalently the symmetric closure of

∗→.
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Example. The abstract rewriting system (Σ∗,→) interpreting the presen-
tation of M4 in Section 1.1 consists of the monoid Σ∗ considered as a set and
the relation → relating words uLv → uRv precisely when L → R is one of
the three rewriting rules. The relation ≈ is exactly the congruence which
quotients Σ∗ as M4.

An element a of (A,→) is a normal form when there is no b ∈ A such
that a → b. We write nf the set of normal forms. To every a ∈ A is
associated the set nfa defined as

nfa = {b ∈ nf | a ∗→ b}

An abstract rewriting system (A,→) is normalising precisely when

∀a ∈ A,nfa 6= ∅

Exercise?. Prove that the presentation (Σ∗,→) of M4 is normalising.

An abstract rewriting system is strongly normalising when there is no
infinite sequence

a1 → a2 → · · · → an → an+1 → · · ·

Equivalently, the transitive relation
∗→ is a strict well-founded order.

1.3 Confluence

An abstract rewriting system is confluent or Church-Rosser when for
every (a, b, c) ∈ A3 such that b

∗← a
∗→ c, there exists d ∈ A such that

b
∗→ d

∗← c.

∀(a, b, c) ∈ A3

a
∗ //

∗
��

b

c

⇒ ∃d ∈ A,
a

∗ //

∗
��

b

∗
��

c ∗
// d

Figure 1.1: The confluence or Church-Rosser property

Exercise. Prove that confluence implies that for every a ∈ A, the set nfa
contains at most one normal form.

Confluence may be difficult to prove on a particular rewriting system.
We review two cases when confluence derives from very simple properties:
strong confluence in the one case, strong normalisation and local confluence
in the other case.
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1.3.1 Confluence from strong confluence

An abstract rewriting system (A,→) is strongly confluent when for every
(a, b, c) ∈ A3 such that b← a→ c, there exists d ∈ A such that b→ d← c.

∀(a, b, c) ∈ A3

a //

��

b

c

⇒ ∃d ∈ A,
a //

��

b

��
c // d

Figure 1.2: The strong confluence property

Proposition 1 Assume that (A,→) is strongly confluent. Then (A,→) is
confluent.

Proof. easy induction on the size of the two rewriting paths defining the
confluence diagram.

However, the following exercise shows that the proposition above does not
treat the monoidal presentation of M4.

Exercise. Show that (Σ∗,→) is not strongly confluent.

This leads us to consider a weaker notion of confluence: local confluence.

1.3.2 Confluence from local confluence

An abstract rewriting system (A,→) is locally confluent when for every

(a, b, c) ∈ A3 such that b← a→ c, there exists d ∈ A such that b
∗→ d

∗← c.

∀(a, b, c) ∈ A3

a //

��

b

c

⇒ ∃d ∈ A,
a //

��

b

∗
��

c ∗
// d

Figure 1.3: The local confluence property

Exercise. Show that (Σ∗,→) is locally confluent.

Unfortunately, local confluence does not imply confluence. An example of
a not confluent yet locally confluent rewriting system is the λ-calculus with
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surjective pairing, see Klop’s survery2 However, a locally confluent rewrit-
ing system (A,→) is confluent when it verifies a finiteness condition on its
reduction sequence.

Proposition 2 (Newman) Assume that (A,→) is locally confluent and
strongly normalising. Then (A,→) is confluent.

Proof. Every nonempty set in a well-founded order has a minimal element.
Let us call confluent any a ∈ A such that whenever b

∗← a
∗→ c for some b and

c, there exists d ∈ A such that b
∗→ d

∗← c. Suppose that the locally confluent
and strongly normalising (A,→) is not confluent. Then the set N ⊂ A of

non confluent elements is nonempty and in particular contains a
∗→-minimal

element a. In particular there are two elements b and c such that b
∗→ d

∗← c
but which cannot be rewritten as b

∗→ d
∗← c for any element d ∈ A.

We reason on the number of rewrite steps in a
∗→ b and a

∗→ c, which is
non null in both cases. We suppose without loss of generality that a→ b′

∗→ b
and a → c′

∗→ c. By minimality of a ∈ N the elements b′ and c′ are not in
N , thus they are confluent. By local confluence and b′ ← a→ c′ there exists
an element e ∈ A such that b′

∗→ e
∗← c′. By confluence of b′ and b

∗← b′
∗→ e,

there exists f ∈ A such that b
∗→ f

∗← e. Symmetrically, there exists g ∈ A
such that e

∗→ g
∗← c. By confluence of e (which follows minimality of

a ∈ N), there exists d ∈ A such that f
∗→ d

∗← g. We conclude b
∗→ d

∗← c,
a contradiction. The strongly normalising and locally confluent (A,→) is
therefore confluent.

Exercise?. Prove that the presentation (Σ∗,→) of M4 is strongly normal-
ising. Use Newman’s lemma to prove that (Σ∗,→) is confluent. Conclude
that the word problem in M4 is decidable.

2Jan Willem Klop. Term Rewriting Systems. Handbook of Logic in Computer Sci-
ence, Volume 2, in S. Abramsky, Dov M. Gabbay, T.S.E. Maibaum, editors, Oxford Sci-
ence Publications, 1992.
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Chapter 2

Rewriting graphs

We have seen in Section 1.2 how to derive confluence from strong confluence
or from local confluence + strong normalisation. We obtain on the way that
the presentation of M4 in Section 1.1 is strongly normalising and confluent,
hence decidable. But Rewriting Theory is not only concerned with calculi
which are normalising and confluent. We present two calculi in this section:
the pure λ-calculus which is confluent but not normalising and the calculus
of Petri nets which being non deterministic is not confluent.

2.1 Rewriting graph

A rewriting graph G is a quadruple (V,E, ∂0, ∂1) where V is a set of vertices,
E is a set of edges, ∂0 : V −→ E and ∂1 : V −→ E are total functions
indicating the source and target vertex of any edge. We write M

u−→ N
when ∂0u = M and ∂1u = N .

A path in a graph G is a sequence

f = (M1, u1,M2, ...,Mm, um,Mm+1) (2.1)

where Mi
ui−→ Mi+1 for every i ∈ [1...m]. The length |f | of the path f in

(2.1) is m, which is the number of edges the path contains. When m = 0,
the path (M1) is said to be empty ; we write (M1) = idM1 . Two paths
(M1, u1, ..., um,Mm) and (N1, v1, ..., vn, Nn) are coinitial (resp. cofinal) when
M1 = N1 (resp. Mm = Nn).

2.2 The lambda-calculus

The λ-calculus was invented then promoted by Alonzo Church as the calculus
of functional evaluation.

9
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Suppose given an infinite set var of variables. The set of λ-trees is
constructed by induction:

1. every variable x ∈ var is a λ-tree,

2. if M and N are λ-trees, then MN is a λ-tree,

3. if M is a λ-tree, then λx.M is a λ-tree, where λx is a node λ labelled
with any variable x ∈ var.

The intended meaning of the λ-tree (λx.M) is the function x 7→ M which
maps any argument N to the λ-tree obtained by carefully replacing with N
every variable x appearing in M . For example the λ-tree λx.x stands for the
identity x 7→ x. Since λy.y also stands for the identity, the two λ-trees λx.x
and λy.y should be identified.

Two λ-trees M and N are α-equivalent, M ∼α N , when

1. M and N are the same variables, or

2. M = M1M2 and N = N1N2 with M1 ∼α N1 and M2 ∼α N2, or

3. M = λx.M1 and N = λy.N1 with M1 ∼α N2 where N2 is the result of
replacing every variable y and node λy in N1 by x and λx respectively.

The relation ∼α is an equivalence relation whose classes of equivalence are
called λ-terms. So, a λ-termM is best pictured as the λ-graph obtained from
the λ-tree by linking each λx-node to the variables x it binds, and then by
removing the variable labels on λ nodes and bound variables. Here, variable
means occurrence of a variable, and a node λx binds (the occurrence of) a
variable x in the λ-tree λx.M when λx.M ∼α λy.N implies that x is replaced
by y in N .

The λ-calculus operates on λ-terms. Before we introduce its only reduc-
tion rule, the β-rule, we need the operation of substitution defined on two
λ-terms M and P :

1. x[x := P ]
∆
= P and y[x := P ]

∆
= y if x 6= y,

2. MN [x := P ]
∆
= M [x := P ]N [x := P ],

3. (λz.M)[x := P ]
∆
= λz.(M [x := P ]) if the variable z 6= x does not

appear anywhere in P .
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It is easy to check that the definition of the λ-term M [x := P ] does not
depend on the λ-trees M and P but only on the λ-terms they define.

The λ-calculus contains only one reduction rule: the β-rule.

(λx.M)P →M [x := P ]

The λ-calculus is very expressive. It allows to construct duplicators like
∆ = (λx.xx) which duplicates its argument P in two copies:

∆P → PP

It also allows to construct erasers like (λx.y) which does not use its argument
P and erases it:

(λx.y)P → y

Two duplicators may combine in a λ-term whose computation loops:

∆∆ = (λx.xx)(λy.yy)→ ∆∆→ · · ·

This shows in particular that the λ-calculus is not normalising since nf∆∆ is
empty. This has quite unexpexted consequences. For instance, an eraser like
K = (λx.λy.x) eliminates one of the looping procedures:

(λx.λy.x)a(∆∆)→ (λy.a)(∆∆)→ a

This successful reduction path illustrates the fact that some λ-terms like
Ka(∆∆) have a normal form but may be computed for ever. We will see
later how to compute successfully any λ-term, thus avoiding all sort of loops.

For the moment, let us only say that despite non termination, Church and
Rosser have shown that the λ-calculus is confluent and therefore that a λ-
term has at most one normal form. Chapter 4 is devoted to this fundamental
result and to its proof.

2.2.1 Petri nets

Petri nets form another important class of Rewriting Systems. A Petri net
is a quadruple N = (P, T,pre,post) where P is the set of places and T is
the set of transitions of the net. A state of the net N is a set of elements
of P . To every transition t the functions pre,post : T −→ S associate a
pre-condition pre(t) and a post-condition post(t) in the set of states S.

To every Petri net is associated a rewriting relation→ between its states.
This relation describes the possible transformations of the net through time.
In fact, this leads to the definition of an abstract rewriting system (A,→)
where:
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−→

Figure 2.1: An example of rewriting step s→ s′

1. A is the set of states of N ,

2. s → s′ when there exists a set s0 such that s = s0 ] pre(t) and s′ =
s0 ] post(t), letting ] be the disjoint set union.

There is a standard graphical representation of Petri nets. Places are repre-
sented as circles and transition by boxes. The function t is represented by
oriented arcs between circles and boxes, so that there are as many arcs from
p to t (and from t to q) as there are occurrences of p in pre(t) (and of q
in post(t)). Every state of N is represented by the corresponding tagging
of tokens in the places, see figure 2.2.1 for an illustration. Many familiar
concepts of computer science may be expressed using Petri nets, like

1. concurrency, when two unrelated transitions t1 and t2 fire s → s1

and s→ s2. Unrelated means that pre(t1)∩pre(t2) is empty. Observe
that in that case there is a diamond diagram s1 → s′ and s2 → s′ for
some state s′.

2. causality when a token in p is fired to a place q which enables a
transition t, see figure 2.2.1,

3. conflicts when two different transitions have a source place or a target
place in common, see figure 2.2.1.

Other interesting configurations are presented in figure 2.2.1.

Exercises

In the following exercises, (A,→) denotes an abstract rewriting system.
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t

q

p

−→

Figure 2.2: An example of causality

Figure 2.3: Forward and backward conflicts

Exercise. Assume that (A,→) verifies the following property: for every

M,P,Q such that P ← M
∗→ Q, there exists an element N ∈ A such that

P
∗→ N

∗← Q. Show that (A,→) is confluent.

Exercise. Let (A,
≤1→) be the abstract rewriting system constructed from

(A,→) by replacing → by its reflexive closure
≤1→. Show that (A,

≤1→) is
confluent if and only if (A,→) is confluent. Deduce from proposition 2 that
an abstract rewriting system (A,→) is confluent when for every M,P,Q such

that P ←M → Q there exists N ∈ A such that P
≤1→ N

≤1← Q.

Exercise. A linear λ-term is a λ-term whose λ-nodes bind one variable
exactly. Show that N is linear when M is linear and β-reduces to N . The
linear λ-calculus is the λ-calculus restricted to linear λ-terms. Prove that the
linear λ-calculus is confluent.

Exercise. Same exercise with the affine λ-calculus. An affine λ-term is a
λ-term whose λ-nodes bind at most one variable.

Exercise. Show that a Petri net defines a confluent system (A,→) when it
does not contain any backward or forward conflict.
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Figure 2.4: Symmetric and asymmetric confusion



Chapter 3

Canonical confluence in
concurrent systems

The λ-calculus was proved confluent by two logicians, Church and Rosser,
who established that way in 1936 the consistency of their new-born calcu-
lus. Later investigations by Curry [Cur 58], Hindley [Hin 69, Hin 78] and
especially Lévy [Lév 78] have led to interpret confluence as the existence
of pushouts in a category of rewriting paths suitably quotiented. We call
canonical confluence that kind of universal confluence.

Sections 3.1 and 3.2 introduce the setting of conflict-free graph where
confluence is interpreted as a pushout property in the category of paths
modulo “permutation”. The theory is adapted to the λ-calculus in the next
chapter.

3.1 Concurrent graphs

Definition 1 A pointed graph is a graph which contains for every vertice
M ∈ V a specific edge ∅M : M −→ M . This edge ∅M is called the point of
M .

A concurrent graph [HL 79, Plo 80] is a pointed graph G equipped
with a symmetric relation ♦ between paths of G, such that for every edges
u, u′, u′′, u1 and v, v′, v′′, v1 and w,w′, w1 and paths f, g:

1. if f♦g, then f, g are coinitial, cofinal, and |f | = |g| = 2,

15
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2. if u; v′♦v;u′ and u; v′′♦v;u′′ then v′ = v′′ and u′ = u′′,

M u //

v
��
♦

P

v′

��
Q

u′
// N

and

M u //

v
��
♦

P

v′′

��
Q

u′′
// O

implies u′ = u′′ and v′ = v′′

3. if u; v′♦v;u′ and w;u1♦u;w1 and w1; v1♦v′;w′, then there exists edges
w2, v2, u2 such that w; v2♦v;w2 and w2;u2♦u′;w′ and u1; v1♦v2;u2,

u1 //

v1

��

M

w

``

u //

v
��
♦

P

v′

��

w1

>>

Q
u′
// N

w′

��

implies v2

��

u1 //

v1

��

M

w

``

u //

v
��
♦

P

v′

��

w1

>>

Q
u′
//

w2

��

N

w′

��u2 //

4. if u : M −→ N and u; v♦u; v, then v = ∅N ,

M
u //

u
��
♦

N

��
N // P

implies

M
u //

u
��
♦

N

∅N
��

N
∅N
// N

5. if u : M −→ N and u; v♦∅M ;u′ then u = u′ and v = ∅N .

M u //

∅M
��
♦

N

��
M // N

implies

M
u //

∅M
��
♦

N

∅N
��

M u
// N

We associate a category [G] to any concurrent graph (G,♦):

1. its objects are the vertices of G,

2. its morphisms are the paths of G modulo the binary relation ♦ and the
equalities ∅M = (M).

So, two paths f, g : M −→ N are identified in [G] precisely when f ' g,
where ' is the smallest equivalence relation containing ♦ and both:
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1. verifying f ; ∅P ; g ' f ; g whenever M
f−→ P

g−→ N ,

2. verifying d; f ; e ' d; g; e whenever M
d−→ P

f,g−→ Q
e−→ N and f ' g.

We associate to every path f : M −→ N in G the corresponding morphism
[f ] : M −→ N in [G]. So,

[f ] = [g] ⇐⇒ f ' g

Since u′ and v′ are uniquely determined by u and v when u; v′♦v;u′, we
introduce the notation u/v for u′ and v/u for v′. So, every edge u : M −→ N
defines a partial function v 7→ v/u from M -edges to N -edges, where by P -
edge we mean an edge outgoing P . In particular, ∅M/u is ∅N if defined.

Exercise. Show that a concurrent graph is characterised by its pointed
graph and the partial functions v 7→ v/u.

By composition, every path f : M −→ N defines a function u 7→ u/f
from M -edges to N -edges. Formally, (u 7→ u/f) is defined as the identity
when f is empty and as (u 7→ u/g) ◦ (u 7→ u/v) when f = v; g.

Exercise. Show that the two partial functions (u 7→ u/f) and (u 7→ u/g)
are equal when f ' g.

Definition 2 (residual of a path after an edge) Every edge u : M −→
N defines a partial function f 7→ f/u from M-paths to N-paths. The path
f/u is defined

• as idM/u = idN when f = idM ,

• as (v; g)/u = (v/u); g/(u/v) when f = v; g, when v/u and u/v and
g/(u/v) are all defined.

Definition 3 (residual of a path after a path) Every path f : M −→
N defines a partial function h 7→ h/f from M-paths to N-paths. The path
h/f is defined

• as h/idM = h when f = idM ,

• as h/(v; g) = (h/v)/g when f = v; g and h/v and (h/v)/g are all
defined.

Exercise?. Assume that two M -paths f and g are such that f/g is defined.
Show that g/f is also defined, and that f ; (f/g) ' g; (g/f). Show also that
f ' f ′ and g ' g′ implies that f ′/g′ is defined and that f/g ' f ′/g′.
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3.2 Conflict-free graphs

A conflict-free graph is a concurrent graph in which for every two coinitial
edges u and v, there exist cofinal edges u′ and v′ such that u; v′♦v;u′. Equiv-
alently, it is a concurrent graph in which every edge u : M −→ P defines a
total function v 7→ v/u from M -edges to N -edges.

Exercise. Assume that f, g are two coinitial paths in a conflict-free graph.
Show that f/g is always defined, and that f/f = id∂1f .

Exercise. Assume that (G,♦) is a conflict-free graph. Show that (u; f)/u
is always defined and equal to f .

Proposition 3 Assume that (G,♦) is a conflict-free graph. Then every mor-
phism in the category [G] is epi.

Proof. Recall that a morphism f : X −→ Y in a category C is epi when for
every two morphisms g, h, g ◦ f = h ◦ f implies g = h.

We only prove that every '-class [u] of an edge u : M −→ N is epi. The
proposition follows by composition of epis. Suppose that F ◦ [u] = G ◦ [u] in
[G]. By construction of [G], there are paths f and g such that [f ] = F and
[g] = G. Moreover, the two paths f and g compose with u, so that in fact
F ◦ [u] = [u; f ] and G ◦ [u] = [u; g].

We deduce that f ' g from u; f ' u; g and conclude. From (u; f)/u = f
and u; f ' u; g, we deduce that (u; g)/u is defined and (u; g)/u ' f . But
(u; g)/u = g and we conclude.

Let f : M −→ P and g : M −→ N be two paths. We write f v g when
there exists a path f ′ : P −→ N such that f ; f ′ ' g.

Proposition 4 Assume an edge u : M −→ P and a path f : M −→ N in a
conflict-free graph (G,♦). Then u v f is equivalent to u/f = ∅N .

Proof. u v f means that there is a path g : P −→ N such that u; g ' f .
In particular u/f = u/(u; g). But u/(u; g) = (u/u)/g = ∅P/g = ∅N , and we
conclude that u v f implies u/f = ∅N .

Conversely, we prove by induction on |f | that u/f = ∅N implies u v f . If
f = (M), then u/f = u and we conclude. Otherwise, suppose that f = v; g,
that u/f = ∅N and that g verifies the property. Let w = u/v. That u/f = ∅N
means that w/g = ∅N , therefore that w v g. So, there exists a path h such
that w;h ' g, hence u; (v/u);h ' v;w;h ' v; g ' f . So, u v f . We conclude
by induction.
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Proposition 5 Assume that u and v are two M-edges in a conflict-free graph
(G,♦). Then [v/u] ◦ [u] and [u/v] ◦ [v] form a pushout diagram in [G].

Proof. Suppose that F : P −→ N and G : Q −→ N verify F ◦ [u] = G ◦ [v]
in [G]. There exists paths f and g in G such that [f ] = F and [g] = G and
u; f ' v; g. By proposition 4 v/(u; f) = ∅N and u/(v; g) = ∅N . In particular,
(v/u)/f = ∅N = (u/v)/g. By proposition 4 again, v/u v f and u/v v g.
This means that there exists two paths h1 and h2 such that (v/u);h1 ' f
and (u/v);h2 ' g. Let us write H1 = [h1] and H2 = [h2] and establish that
H1 = H2 using the equalities

H1 ◦ [v/u] ◦ [u] = F ◦ [u] = G ◦ [v] = H2 ◦ [u/v] ◦ [v]

and epiness of [v/u] ◦ [u] = [u/v] ◦ [v].
To prove that [v/u] ◦ [u] and [u/v] ◦ [v] form the pushout diagram of [u]

and [v], we only need to check the uniqueness of H = H1 = H2 such that
H ◦ [v/u] = F and H ◦ [u/v] = G. But this is a direct consequence of epiness
of [v/u] and [u/v]. We conclude.

Proposition 6 (Lévy) Assume that (G,♦) is a conflict-free graph. Then
its category [G] has pushouts.

Proof. By proposition 5, every diagram (3.1) is a pushout.

M
[u] //

[v]
��

P

[v/u]
��

Q
[u/v]

// N

(3.1)

We use the categorical pasting lemma, see [Mac 71] for information, to tile

and close any diagram P
F←−M

G−→ Q into a pushout diagram.

Exercises

Exercise. Show that the category [G] associated to a concurrent graph
(G,♦) contains no iso except the identities.

Exercise. A normal form in a pointed graph is a vertex P whose only
P -edge is ∅P . Show that two paths f and g from a vertex M to a normal
form P are always '-equivalent in a concurrent graph (G,♦).

Exercise. Construct the conflict-free graphs of the linear λ-calculus and of
the affine λ-calculus.
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Exercise?. Construct the concurrent graph of a Petri net. When is it a
conflict-free graph?

Exercise. A subgroup H of a group G is normal when aH = Ha for every
a ∈ G. A group is simple when it contains no normal subgroup except {e}
and itself.

Show that groups form a conflict-free graph where an edge G −→ U
indicates that U is (isomorphic to) a normal subgroup of G and that G/U
is simple. Deduce the Jordan-Hölder theorem that two normal towers G1 ⊃
G2 · · · ⊃ {e} and H1 ⊃ H2 · · · ⊃ {e} are equivalent when G1 = H1 and every
Gi/Gi+1 (resp. Hi/Hi+1) is simple and non trivial.



Chapter 4

Canonical confluence in the
λ-calculus

Proposition 6 is remarkable and conveys hope for a similar interpretation
of the λ-calculus as a conflict-free graph. This would imply the existence
of pushouts in its category of paths modulo (some adequate notion of) per-
mutation equivalence. Unfortunately, the framework of conflict-free graph
appears to be quite restrictive at this point. Indeed, a satisfactory notion of
permutation in the λ-calculus should validate diagrams of that form:

∆(Ia) I //

∆1

��

∆a

∆2

��
(Ia)(Ia)

I1
// a(Ia)

I2
// aa

(4.1)

which mirrors the duplication by ∆ = (λx.xx) of its argument Ia. [The
λ-term I = (λx.x) is the identity]. Clearly, the diagram (4.1) does not
relate rewriting paths of length 2 and therefore cannot be considered as a
permutation f♦g in a conflict-free graph.

This chapter is devoted to a trick to interpret diagrams like (4.1) as
diagrams in a conflict-free graph. The trick is to consider a (conflict-free)
graph where I1; I2 appears as an edge instead of a path of length 2. Edges
in this new graph are called “multi-edges” and are presented next.

4.1 Lévy graphs

A Lévy graph is a graph L and for every edge u : M −→ N a relation [[u]]
between M -edges and N -edges. Every Lévy graph is supposed to verify four
axioms that we introduce after the necessary definitions.

21
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Let L be a Lévy graph. We extend the notation [[−]] to paths by defining

[[u1; · · · ;uk]]
∆
= [[u1]] ◦ · · · ◦ [[uk]]

An edge v is a residual of u through f when u[[f ]]v. We define the set u[[f ]]
as {v|u[[f ]]v}, the set of residuals of u though f .

M
f //

u
��

N

v
��

P Q

u[[f ]]v

Figure 4.1: The edge v is a residual of u through the path f

A multi-edge in L is a couple (U,M) consisting of a vertex M and a finite
set U of M -edges. We often write UM instead of (U,M). We extend the
relation [[f ]] to multi-edges by declaring

VM [[f ]]WN

when f : M −→ N and W = {w|∃v ∈ V, v[[f ]]w}. Observe that we have the
equivalence

UM [[u1; · · · ;uk]]VN ⇐⇒ UM [[u1]] ◦ · · · ◦ [[uk]]VN

We use the notation (U,M)
u−→ (V, P ) to express that u : M −→ P is an

edge element of U , and (U,M)[[u]](V, P ). A development of a multi-edge
UM is a path

M = M1
u1−→M2

u2−→ · · · ui−1−→Mi
ui−→Mi+1

such that

(U,M)
u1−→ (U2,M2)

u2−→ · · · ui−1−→ (Ui,Mi)
ui−→ (∅,Mi+1)

The four properties every Lévy graph L must verify are:

1. for every two coinitial edges u, v: u[[v]] is finite,

2. for every edge u, u[[u]] = ∅,

3. there is no infinite sequence

(U1,M1)
u1−→ (U2,M2)

u2−→ · · · ui−1−→ (Ui,Mi)
ui−→ · · ·

of multi-edges (Ui,Mi) and edges ui ∈ Ui,
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4. for every vertex M and two different M -edges u : M −→ P and v :
M −→ Q, there exist developments f and g of (v[[u]], P ) and (u[[v]], Q)
respectively such that [[f ]] = [[g]].

M
u //

v
��

P

f
��

Q g
// N

Axioms 1 and 3 together imply that every multi-edge has at least one de-
velopment. Axioms 3 and 4 together imply that all these developments are
equivalent in the following strong sense.

Proposition 7 Assume that UM is a multi-edge and that f : M −→ P and
g : M −→ Q are developments of UM . Then P = Q and [[f ]] = [[g]].

Proof. By induction on the length of the longest development of UM . This
longest path exists by König’s lemma and finiteness of every multi-edge.
The proposition is verified when UM = ∅M . Suppose now that f = u; f ′ and
g = v; g′. If u = v : M −→ N , then UM [[u]]VN for V = {v|∃w ∈ U,w[[u]]v, and
f ′ and g′ are developments of this multi-edge VN . In particular, f ′ and g′ are
cofinal and since [[f ′]] = [[g′]] we have

[[f ]] = [[u; f ′]] = [[u]] ◦ [[f ′]] = [[u]] ◦ [[g′]] = [[u; g′]] = [[g]]

Suppose now that u : M −→ P ′ and v : M −→ Q′ are different. In that
case, there exist two cofinal developments F : P ′ −→ N and G : Q′ −→ N of
(v[[u]], P ′) and (v[[u]], Q′) respectively such that [[u;F ]] = [[v;G]]. In particular, if
WN denotes the residual UM [[u]][[F ]] of UM [[u]] through F , it is also the residual
UM [[v]][[G]] of UM [[v]] through G. So, letting h be a development of WN , the two
paths F ;h and G;h are developments of UM [[u]] and UM [[v]] respectively, as are
f ′ and g′. So, F ;h and f ′ are cofinal by induction hypothesis on UM [[u]], as
are similarly G;h and g′. Hence P = Q.

M u //

v

��

P ′

F

�� f ′

��

Q′
G //

g′ ++

N

h

##
P = Q

By induction hypothesis again, [[f ′]] = [[F ;h]] and [[g′]] = [[G;h]], so

[[f ]] = [[u]] ◦ [[F ]] ◦ [[h]] = [[u;F ]] ◦ [[h]] = [[v;G]] ◦ [[h]] = [[v]] ◦ [[G;h]] = [[v]] ◦ [[g′]] = [[g]]
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This conludes the proof by induction.

This proposition allows to extend [[−]] to multi-edges by writing VM [[UM ]]WP

precisely when f : M −→ P is a development of UM and W = V [[f ]]. We
say in that case that WP is the residual of VM through UM , and write WP =
UM [[VM ]]. This extension paves the way to the definition of a conflict-free

graph L̂ = (G,♦) associated to L:

1. its vertices are the vertices of L,

2. its edges are the multi-edges of L,

3. its points ∅M : M −→M are the multi-edges ∅M ,

4. the relation ♦ relates two paths f and g precisely when they are of the
form UM ;VM [[UM ]] and VM ;UM [[VM ]]

M
U //

V
��
♦

P

V [[U ]]
��

Q
U [[V ]]

// N

Exercise. Show that the couple (G,♦) constructed above is a conflict-free
graph.

Note in particular that the edge WP = UM/VM in (G,♦) is precisely the
multi-edge UM [[VM ]].

4.2 Lévy permutation equivalence

In Section 3.2, we presented the category [G] associated to any conflict-free
graph (G,♦). We have just seen in the previous section how to construct

a conflict-free graph L̂ from any Lévy graph L. By composition, there is a
category [L̂] which, by proposition 6, has pushouts. But can [L̂] be directly
defined from L? The answer is positive, and we present the solution here.

Assume L is a Lévy graph and ♥ relates two paths u; f and v; g precisely
when u : M −→ P and v : M −→ Q are two different coinitial edges and f
and g are respective developments of (v[[u]], P ) and (u[[v]], Q).

M
u //

v
��
♥

P

f
��

Q g
// N

Let [L] be the category
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1. whose objects are the vertices of L,

2. whose morphisms are the paths modulo ♥.

So, two paths f, g : M −→ N are identified in [L] precisely when f ≡ g,
where ≡ is the smallest equivalence relation containing ♥ and such that

d; f ; e ≡ d; g; e whenever M
d−→ P

f,g−→ Q
e−→ N and f ≡ g.

The relation ≡ is called Lévy permutation equivalence in the litter-
ature. We associate to every path f : M −→ N in L the corresponding
morphism [f ] : M −→ N in [L]. So,

[f ] = [g] ⇐⇒ f ≡ g

The construction of [L] is justified by the following proposition.

Proposition 8 The category [L] is isomorphic to [L̂].

Proof. Let F : [L] −→ [L̂] transport any morphism [u] for an edge u : M −→
N in L to the morphism [{u}M ] in [L̂]. This functor is well-defined because

u1; · · · ;um♥v1; · · · ; vn in L implies in L̂ that:

{u1}; · · · ; {uk} ' {u1, v1} ' {v1}; · · · ; {vn}

Now, let G : [L̂] −→ [L] transport any morphism [UM ] for an edge UM :

M −→ N in L̂ to [f ] in [L], where f is a development of the multi-edge UM .
This morphism is well-defined by proposition 7. We could leave the proof
that G◦F = id[L] and F ◦G = id[L̂] to the reader, but we carry it out in full.
Observe that we only have to check the identities on morphisms of the form
[u] where u is an edge of L or L̂. For an edge u : M −→ N in L, F [u] = {u}M
and therefore G ◦F [u] is the ≡-class which contains the developments of the
multi-edge {u}M . But u is a development of {u}M , hence G◦F [u] = [u]. For

an edge UM : M −→ N in L̂, G[u] is the ≡-class of the developments of UM ,
hence F ◦ G[u] is the '-class containing the paths {u1}M1 ; · · · ; {uk}Mk

such

that M = M1
u1−→ M2; · · · ;Mk

uk−→ N develops UM . We only have to show
that in that case

UM ' {u1}M1 ; · · · ; {uk}Mk

But this is the consequence of the equivalence WP ' {w}P ;WP [[w]] when
w : P −→ Q is element of W , and a straightforward induction argument.

The important consequence of proposition 8 is that the category [L] has

all pushouts. In particular, two paths M
f,g−→ N to a normal form N are

equal modulo ≡. This uniqueness property plays a central role in the search
for normalising computational strategies in Chapter V.
Exercise. Prove the assertion that in a Lévy graph every two paths M −→
N to a normal form N are equal modulo ≡.
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4.3 The λ-calculus

The whole chapter has been devoted to graph-theoretic descriptions of Rewrit-
ing systems, but we have not taken the time yet to translate the λ-calculus
into a Lévy graph Lλ. We do this now.

The vertices of the Lévy graph Lλ are the λ-terms. Its edges u : M −→ N
called β-redexes are the triples u = (M, o,N) where o is the occurence of a
β-pattern (λx.P )Q in M = C[(λx.P )Q] such that N = C[P [x := Q]]. Here
C is a context, that is λ-tree on the set var + {−} of variables. Every
occurrence of − in C is called a hole. So, in our case the only hole − of C
is at occurrence o, and a λ-tree can be seen as context with no holes. Every
context C defines a function M 7→ C[M ] from λ-terms to λ-terms, defined
as follows:

1. −[M ]
∆
= M and for x ∈ var, x[M ]

∆
= x,

2. (λx.C)[M ]
∆
= λx.(C[M ]),

3. CC ′[M ]
∆
= C[M ]C ′[M ].

Exercise. Assume that C is a λ-tree and show that C[M ] does not depend
on M and is the λ-term associated to C (= its class modulo α-equivalence).

We return to the construction of Lλ and associate to every edge u : M −→ N
a total function Fu : oN 7→ Fu(oN) from N -occurrences to M -occurrences:

1. let (λx.M)P
u−→ M [x := P ]. The function Fu maps an occurrence o

in M [x := P ] to 1; 1; o when o is an occurrence of M not labelled by
x and to 2; o′ when there is an occurrence ox of M labelled by x such
that o = ox; o

′.

2. let u = (M, ou, N) : C[(λx.m)p] −→ C[m[x := p]] where C’s hole has

occurrence o, and v = ((λx.m)p, ε,m[x := p]). Then Fu(o)
∆
= ou;Fv(o′)

when o = ou; o
′ for some occurrence o′, and Fu(o) = o otherwise.

It will be useful in the sequel to observe that F : Lop −→ Set defines
a presheaf from L considered as a free category. For M a λ-term, FM
is simply the set of M ’s occurrences, and Ff : FN −→ FM is defined as
Fu1 ◦ · · · ◦ Fuk for a path f = u1; · · · ;uk : M −→ N .

Observe also that two occurrences o in N and Fu(o) in M have the same
label. So, for v = (M, o, P ) an M -edge and w = (N, o′, Q) an N -edge, we
simply write v[[u]]w when Fu(o′) = o. The relation [[u]] then defines a partial
function from N -edges to M -edges.
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Proposition 9 Assume that M,P,Q are λ-terms such that x ∈ var is not
free in Q and x 6= y. Then M [x := P ][y := Q] = M [y := Q][x := P [y := Q]].

Proof. By induction on M .

Proposition 10 Lλ is a Lévy graph.

Proof. Lλ clearly verifies the two first axioms of Lévy graphs: the set u[[v]]
is finite for u and v coinitial, and u[[u]] is always empty. That axiom 3 holds
in Lλ is an important and famous normalisation result on the λ-calculus,
called the finite development lemma. The proof which is too complicated
to carry out here is presented in Chapter IV.

For the moment, we prove that axiom 4 holds in Lλ. Let u = (M, o, P )
and v = (M, o′, Q) be two distinct M -edges. Suppose that o and o′ are dis-
joint in the sense that none precedes the other. Then, u[[v]] and v[[u]] are sin-
gletons {u′} and {v′} respectively, where u′ = (P, o′, N1) and v′ = (Q, o,N2)
for some λ-terms N1 and N2. It is not difficult to see that N1 = N2 and that
[[u]] ◦ [[v′]] = [[v]] ◦ [[u′]].

Now, we treat the case when u’s occurrence o precedes v’s occurrence
o′. Let us consider first the case when o is the root occurrence ε. Then
M = (λx.M1)P1 and u = (M, ε,M1[x := P1]) while v occurs in M1 or in
P1. In both cases, M = C[(λy.M2)P2] and v : M −→ C[M2[y := P2]] for a
context C whose unique hole is at occurrence o′. Here we ask that x 6= y
and that C does not contain any bound variable x, so that in particular
C[M ][x := P ] = C[x := P ][M [x := P ]] for any λ-term M and P . We also
ask that y does not appear free in P1.

If v occurs in P1, then u[[v]] is a singleton {u′} and v[[u]] = {v1, ..., vk}
contains as many β-redexes as there as occurrences of x in M1. We have the
following diagram for f a development of v[[u]] and C = (λx.M)C ′.

(λx.M1)C ′[(λy.M2)P2]

v

��

u //M1[x := C ′[(λy.M2)P2]]

f
��

(λx.M1)C ′[M2[y := P2]] u′ //M1[x := C ′[M2[y := P2]]]

We leave to the reader the proof that Fu ◦ Ff = Fv ◦ Fu′ which implies that
[[u; f ]] = [[v;u′]].

If v occurs in M1, then u[[v]] and v[[u]] are singletons {u′} and {v′} which
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form the following diagram for C = (λx.C ′)P1 and C ′′ = C ′[x := P1]:

(λx.C ′[(λy.M2)P2])P1

v

��

u // C ′′[(λy.M2[x := P1])P2[x := P1]]

v′

��
(λx.C ′[M2[y := P2]])P1

u′

��

C ′′[M2[x := P1][y := P2[x := P1]]

C ′′[M2[y := P2][x := P1]]

But proposition 9 insures that M2[y := P2][x := P1] = M2[x := P1][y :=
P2[x := P1] and therefore that the diagram closes. We leave to the reader
the proof that Fu ◦ F ′v = Fv ◦ F ′u which implies that [[u; v′]] = [[v;u′]].

Now, when the β-redex u = (M, o,N) is not at the root ε, then M = C[M ]
for some context C whose only hole is at occurrence o. Letting v’s occurrence
o′ be o; o′′, the M -edges u at occurrence ε and v at occurrence o′′ verify the
property 4 of Lévy graphs. But the property is preserved by substituting
the λ-term M in the context C, so property 4 is verified on u and v. We
conclude.

The argument above implies that F is a functor from [Lλ]op to Set. Also,
note that F verifies the following nice property.

Exercise?. Show that F : [Lλ]op −→ Set preserves pullbacks.

This preservation property means that in any pushout diagram of [L]:

M
f //

g

��

P

g′

��
Q

f ′
// N

the sets FN and {(p, q)|p ∈ FP , q ∈ FQ,Ff (p) = Fg(q)} are one-to-one.

Exercises

Exercise. Show that every two paths M
f,g−→ N to a normal form in Lλ are

equal modulo ≡. Compare the various paths implementing I(Ia) −→ a and
Ka(∆∆) −→ a.
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[HL 91] G. Huet, J.-J. Lévy, “Computations in orthogonal rewriting sys-
tems”. In J.-L. Lassez and G. D. Plotkin, editors, Computational
Logic; Essays in Honor of Alan Robinson, pages 394–443. MIT
Press, 1991.

[Hyl 73] J.M.E. Hyland, “A simple proof of the Church-Rosser theorem”,
Type Script, Oxford University.

[Klo 80] J.W. Klop, “Combinatory Reduction Systems”. Thèse de
l’Université d’Utrecht, Pays-Bas (1980).



BIBLIOGRAPHY 31

[Klo 92] J.W. Klop, “Term Rewriting Systems” Handbook of Logic in
Computer Science, Volume 2, in S. Abramsky, Dov M. Gabbay,
T.S.E. Maibaum, editors, Oxford Science Publications, 1992.

[KM 89] J.W. Klop, A. Middeldorp, “Sequentiality in Orthogonal Term
Rewriting Systems”. Report Cs-R8932, Centre for Mathematics
and Computer Science, Amsterdam, Pays-Bas.

[KOR 93] Jan Willem Klop, Vincent van Oostrom, Femke van Raamsdonk,
“Combinatory Reduction Systems: introduction and survey”. in
“A Collection of Contributions in Honour of Corrado Böhm”,
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λ-calcul”. Thèse de Doctorat d’Etat, Université Paris VII, 1978.

[Lév 80a] Jean-Jacques Lévy, “Optimal reductions in the lambda-calculus”.
In J.P. Seldin and J.R. Hindley editors, “To H.B. Curry: Essays
in Combinatory Logic, Lambda Calculus and Formalism”, Aca-
demic Press. 1980.
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