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Synopsis of the lecture

1 – Lambda-calculus

2 – Concurrent graphs

3 – Proof of the finite developments theorem
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First part

Lambda-calculus

The calculus of functions
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The pure λ-calculus

Terms M ::= x | M N | λx.M

The β-reduction:

(λx.M) N −→ M [x := N]

The η-expansion:

M −→ λx. (M x)

Remark: every term is considered up to renaming ≡α of the bound
variables, typically:

λx.λy.x ≡α λz.λy.z

4



Occurrences

The set of occurrences of a λ-term M is defined by induction:

B occ (x) = { ε }

B occ (MN) = { ε } ∪ { 1 · o | o ∈ occ (M) } ∪ { 2 · o | o ∈ occ (N) }

B occ (λx.M) = { ε } ∪ { 1 · o | o ∈ occ (M) }

Note that every occurrence of the λ-term M is labelled by

B an application node App

B a binder λx

B a variable x
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Free variables

The set of free variables of a λ-term is defined by induction:

B FV(x) = { x }

B FV(MN) = FV(M) ∪ FV(N)

B FV(λx.M) = FV(M) \ {x}

Every occurrence of a variable x in a λ-term is

B either free

B or bound by a binder λx above it in the λ-term.
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Church-Rosser theorem

Also called confluence theorem.

Given two β-rewriting paths

f : M ∗
−→ P g : M ∗

−→ Q

there exists a λ-term N and two β-rewriting paths f ′ and g′

completing the diagram as

M
f

��

g

��

P

g′
��

Q

f ′
��

N
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Redex

Definition. A β-redex is a pair

(M, o)

consisting of

B a λ-term M

B an occurrence of the λ-term M such that

M|o = (λx.P) Q

is a β-reduction pattern.
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Residuals

Given a pair of β-redexes

u : M→ P v : M→ Q

from the same λ-term M with occurrences ou and ov

M | ou = (λx.A)B M | ov = (λy.C)D

we would like to define the residuals of v along u in the λ-term P.

We write in that case

v [[ u ]] w

The idea is that the computation of v in M has been postponed to
the computation of its residuals in Q.
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Residuals [ case 1 ]

There are three possibilities to consider:

B the β-redex v occurs inside the function A of the β-redex u.

In that case, the occurrence ov factors as

ov = ou · 1 · 1 · o′

and the β-redex v has a unique residual w with occurrence

ow = ou · o′
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Residuals [ case 2 ]

B the β-redex v occurs inside the argument B of the β-redex u.

In that case, the occurrence ov factors as

ov = ou · 2 · o′

Let

{ o1 , . . . , ok }

denote the set of occurrences of the variable x in the λ-term A.

In that case, the β-redex v has a residual wi with occurrence

owi = ou · oi · o
′

for each occurrence of the variable x in the λ-term A.
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Residuals [ case 3 ]

B the β-redex v does not occur inside the β-redex u.

In that case, the β-redex v has a unique residual w along u.

The β-redex w has occurrence

ow = ov

in the λ-term P.
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Unique ancestor property

Property.

Suppose that u, v, v′ are β-redexes

u : M→ P v : M→ Q v : M→ Q′

and that w is a β-redex in P.

The residual relation satisfies

v [[ u ]] w and v′ [[ u ]] w ⇒ v = v′

Every path f : M→ N thus defines a partial function
from the redexes of N to the redexes of M
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Residuals along a path

Given a β-rewriting path

f : M ∗
−→ P

and a β-redex

v : M −→ Q

from the same λ-term M, one defines

v [[ f ]] w

by induction on the length of the path f , as follows:

B v [[ idM ]] w ⇐⇒ v = w

B v [[ u · f ]] w ⇐⇒ ∃ v′, v [[ u ]] v′ and v′ [[ f ]] w
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Sets of residuals

Given a β-rewriting path

f : M ∗
−→ P

and a finite set

V = { v1 , . . . , vn }

of β-redexes from the same λ-term M, one defines

V [[ f ]] = { w | ∃ v ∈ V, v [[ f ]] w }
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Development

A development

P1
u1
−→ P2

u2
−→ · · ·

un−1
−→ Pn

un
−→ · · ·

of a finite set of β-redexes

V

is a possibly infinite rewriting path where

∀n, un ∈ V [[ fn ]]

for the rewriting path fn defined as

fn = u1 · · · un−1
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Finite developments

Suppose given a finite set

V = { v1 , . . . , vn }

of β-redexes starting from the same λ-term M.

Key property [ Finite developments - termination ]

Every development of V is finite.
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Permutation tiles

Definition.

A permutation tile consists of a pair of paths

f = u · hv : M ∗
−→ N g = v · hu : M ∗

−→ N

such that

u : M→ P v : M→ Q

are two β-redexes starting from the same λ-term M and moreover

B hu is a development of the residuals of u along v

B hv is a development of the residuals of v along u

B hu and hv have the same target N.

18



Illustration

MQ

PQ

PN

MN

u′

u v′

v

The two redexes u : M→ P and v : N→ Q are disjoint.
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Illustration

y

(λx.y)P

(λx.y)M

u′v

u

The redex u erases the redex v : M→ P.
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Illustration

MP

(λx.xx)P

PP

MM

(λx.xx)M

u′

v2

v1

u

v

The redex u duplicates the redex v : M→ P.
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Local confluence

Key property [ Finite developments - confluence ]

For every pair of different β-redexes

u : M→ P v : M→ Q

in the same term M, there exists a permutation tile

f = u · hv g = v · hu

such that, moreover, the two paths

f , g : M ∗
−→ N

define the same residual relation:

[[ f ]] = [[ g ]]

between the β-redexes of M and the β-redexes of N.
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Finite developments

Theorem [ Finite developments ]

Every two developments

f : M ∗
−→ N g : M ∗

−→ N′

of the same finite set of β-redexes

V = { v1 , . . . , vn }

reach the same λ-term

N = N′

and define the same residual relation

[[ f ]] = [[ g ]] .
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Permutation equivalence

Given two rewriting paths

d, e : P ∗
−→ Q

we write

d 1
∼ e

where there exists a permutation tile

f = u · hv : M ∗
−→ N g : v · hu : M ∗

−→ N

such that

d = P
d1
−→M

f
−→ N

d2
−→ Q e = P

d1
−→M

g
−→ N

d2
−→ Q
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Permutation equivalence

Given two rewriting paths

d, e : P ∗
−→ Q

we write

d ∼ e

when there exists a sequence of permutations

d 1
∼ f1

1
∼ · · ·

1
∼ fn

1
∼ e

transforming the rewriting path d into the path e.
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Permutation equivalence continued

Proof of the finite developments theorem.

Every two developments

f , g : M ∗
−→ N

of the same set V of β-redexes are equivalent

f ∼ g.

Main consequence.

Every two equivalent paths define the same residual relation

f ∼ g ⇒ [[ f ]] = [[ g ]]
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Algebraic Church-Rosser Theorem

Given two β-rewriting paths

f : M ∗
−→ P g : M ∗

−→ Q

there exists a λ-term N and two β-rewriting paths f ′ and g′

completing the diagram as

M
f

��

g

��

P

g′
��

∼ Q

f ′
��

N

Key property established by Jean-Jacques Lévy in 1978
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Rewriting paths modulo permutations

An important problem of rewriting theory: compare the several paths
which rewrite a λ-term P into its normal form Q.

Corollary

Every two rewriting paths to the normal form

f , g : P −→ Q

are equal modulo a series of redex permutations.
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A 2-dimensional hole

(λy.y)z

(λx.x)z
(λx.x)(λy.y)z

v

u

The two redexes u and v are not equivalent modulo permutation.
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The 2-dimensional hole continued

z

(λx.x)z

(λx.x)(λy.y)z

v

w

u

The two paths u · w and v · w are equivalent modulo permutation.
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Pushouts in categories

In a category C , the pushout of a pair of morphisms

f : M −→ P g : M −→ Q

is a pair of morphisms

g′ : P −→ N f ′ : Q −→ N

such that the resulting diagram

M
f

��

g

��

P

g′
��

Q

f ′
��

N
commutes and moreover...
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Pushouts in categories

... for every pair of morphisms

g′′ : P −→ X f ′′ : Q −→ X

making the diagram

M
f

��

g

��

P

g′′

!!

Q

f ′′

}}

X
commute in the category C ...

32



Pushouts in categories

... there exists a unique morphism

h : N −→ X

making the diagram

M
f

��

g

��

P

g′ ��

g′′

""

Q

f ′��

f ′′

||

N

h

��

X
commute in the category C .
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A reformulation of the Church-Rosser theorem

We will consider the category Cλ with

B λ-terms as objects,

B rewriting paths modulo permutation ∼ as morphisms.

Theorem [ Levy 1978, Huet-Levy 1981 ]

The category Cλ has pushouts.

This property holds for every rewriting system without critical pairs.
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Second part

Concurrent graphs

Confluence formulated as a pushout property
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Reflexive graphs

A reflexive graph G is given by

B a set of vertices V

B a set of edges E

B a source and a target function ∂0, ∂1 : E→ V

B an identity function ∅ : V → E such that

∂0 (∅A) = A ∂1 (∅A) = A

this meaning that the edge ∅A connects the vertex A to itself:

∅A : A −→ A
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Concurrent graphs

A concurrent graph is a reflexive graph G with a symmetric relation

f ♦ g

between coinitial and cofinal paths f and g of length 2,
satisfying the following axioms.

Axiom 1. [ Unique residual ]

M u //

v
��

♦

P

v′
��

Q
u′

//N

and

M u //

v
��

♦

P

v′′
��

Q
u′′

//O

implies u′ = u′′ and v′ = v′′

If u · v′ ♦ v · u′ and u · v′′ ♦ v · u′′ then v′ = v′′ and u′ = u′′
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Concurrent graphs

Axiom 2. [ Cube axiom ]

u1 //

v1

��

M

w

``

u //

v
��

♦

P

v′
��

w1

??

Q
u′

//N

w′

��

implies v2

��

u1 //

v1

��

M

w

``

u //

v
��

♦

P

v′
��

w1

??

Q
u′

//

w2
��

N

w′

��u2 //

If u · v′ ♦ v · u′ and w · u1 ♦u · w1 and w1 · v1 ♦ v′ · w′,
then there exists edges w2, v2,u2

such that w · v2♦v · w2 and w2 · u2 ♦u′ · w′ and u1 · v1 ♦ v2 · u2
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Concurrent graphs

Axiom 3.

M u //

u
��

♦

N

��

N //P

implies

M u //

u
��

♦

N

∅N

��

N ∅N
//N

If u : M −→ N and u · v♦u · v then v = ∅N
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Concurrent graphs

Axiom 4.

M u //

∅M

��

♦

N

��

M //N

implies

M u //

∅M

��

♦

N

∅N

��

M u
//N

If u : M −→ N and u · v♦∅M · u′ then u = u′ and v = ∅N
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Conflict-free graphs

Axiom 5.

For every pair of coinitial edges

u : M→ P v : M→ Q

there exists a pair of cofinal edges

v′ : P→ N u′ : Q→ N

such that

u · v′ ♦ v · u′
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The conflict-free graph Gλ

B its vertices are the λ-terms

B its edges are the multi-redexes.

B its diamonds are of the form

M U //

V

��

♦

N

U/V

��

M V/U
//N

where

U/V = U [[ V ]] = { u′ | ∃u ∈ U, u [[ V ]] u′ }
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Residual of a path after an edge

Every edge

u : M −→ N

defines a function

f 7→ f /u

from M-paths to N-paths, defined by induction on the length of f as

B idM /u = idN

B (v · g) /u = (v/u) · g / (u/v)
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Residual of a path after a path

Every path

f : M −→ N

defines a function

h 7→ h / f

from M-paths to N-paths, defined as

B h / idM = h

B h / (v · g) = (h/v) / g
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Permutation equivalence

Given two paths

d , e : P ∗
−→ Q

one writes

d
1
≈ e

when

d = P
d1
−→M

f
−→ N

d2
−→ Q e = P

d1
−→M

g
−→ N

d2
−→ Q

and

f ♦ g

or when

f = idM and g = ∅M.
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Permutation equivalence

Given two paths

d , e : P ∗
−→ Q

one writes

d ≈ e

when there exists a sequence of permutations

d
1
≈ f1

1
≈ · · ·

1
≈ fn

1
≈ e

transforming the rewriting path d into the path e.
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Two structural properties

Suppose given three paths f , g, h starting from the same edge M.

First property.

f ≈ g ⇒ h/ f = h/g

Second property.

f ≈ g ⇒ f/h ≈ g/h
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Algebraic confluence theorem

Given two rewriting paths

f : M ∗
−→ P g : M ∗

−→ Q

the two rewriting paths f / g and g / f satisfy the equation

f · (g/ f ) ≈ g · ( f/g)

and thus complete the diagram as

M
f

��

g

��

P

g/ f
��

≈ Q

f/g
��

N
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The rewriting category

The rewriting category C is defined as the category

B the vertices of G as objects

B the rewriting paths of G modulo ≈ as morphisms.
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Every rewriting path is an epi

Property.

Given an edge

u : M −→ P

and two rewriting paths

f , g : M −→ P

one has

u · f ≈ u · g ⇒ f ≈ g

This means that u is an epimorphism in the category C .
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Pushouts

Theorem.

Every pair of morphisms (= rewriting paths modulo permutation)

f : M −→ P g : M −→ Q

defines a pushout diagram

M
f

��

g

��

P

g/ f ��

Q

f/g��

N
in the rewriting category C .
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Pushouts in categories

Indeed, for every pair of morphisms

g′′ : P −→ X f ′′ : Q −→ X

making the diagram

M
f
��

g
��

P

g′′

##

Q

f ′′

zzX
commute in the category C ...
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Pushouts in categories

... there exists a unique morphism

h : N −→ X

making the diagram

M
f
��

g
��

P

g/ f ��

g′′

$$

Q

f/g��

f ′′

zz

N

h

��

X
commute in the category C , given by the equation

h ≈ ( f · g′′) / ( f · (g/ f )) ≈ (g · f ′′) / (g · ( f/g))
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A reformulation of the Church-Rosser theorem

The category associated to Gλ coincides with Cλ with

B λ-terms as objects

B rewriting paths modulo permutation ∼ as morphisms.

Theorem [ Levy 1978, Huet-Levy 1981 ]

The category Cλ has pushouts.

This property holds for every rewriting system without critical pairs.
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Illustration : Jordan-Hölder theorem

A subgroup H of a group G is normal when

a H = H a
for every element a ∈ G. One writes in that

H C G
A group is simple when it contains no normal subgroup except {e}
and itself.

Fact. Groups form a conflict-free graph where an edge

G −→ H
indicates that

B H is (isomorphic to) a normal subgroup of G

B the subgroup G/H is simple.
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Shapes of the Jordan-Hölder tiles

G G/H
//

G/K

��

♦

H

H/(H∩K)

��

K K/(H∩K)
//H ∩ K

Note in particular that

G/H = K/(H ∩ K) G/K = H/(H ∩ K)
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Butterfly lemma

Let H,H′,K,K′ be four subgroups of a group G such that

H′ CH K′ C K

In that case

H′ · (H ∩ K′) C H′ · (H ∩ K)

K′ · (K ∩H′) C K′ · (K ∩H)

Moreover, the quotient groups

H′ · (H ∩ K) / H′ · (H ∩ K′)

K′ · (H ∩ K) / K′ · (H′ ∩ K)

are isomorphic.
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Jordan-Hölder theorem

Deduce the Jordan-Hölder theorem that two normal towers

{e} C Gn C · · · C G1 C G

{e} C Hn C · · · C H1 C H

have the same length when

G = H

and every quotient group

Gi/Gi+1 Hi/Hi+1

is simple and non trivial.
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Third part

A proof of the finite developments theorem

A purely combinatorial argument
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Nesting ordering

Given a pair of β-redexes

u : M→ P v : M→ Q

from the same λ-term M with occurrences ou and ov

M | ou = (λx.A)B M | ov = (λy.C)D

we declare that v is nested by u and write

u ≺ v

when v lies in the argument B of the redex u. In that case,

ov = ou · 2 · o′

for some occurrence o′.
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Gripping

We declare that u grips v and write

u ≺≺ v

when

B the β-redex v lies in the functional body A of the β-redex u.

B the argument D of the β-redex v contains an occurrence
. of the variable x bound by the β-redex u.
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Property 1

Given a β-redex

u : P −→ Q

and four β-redexes v,w, v′,w′ such that

v [[ u ]] v′ and w [[ u ]] w′

satisfy the following property:

v ´

w ´

v

w

⇒ or

u

wv

v′ ≺ w′ ⇒ v ≺ w or ( u ≺≺ v and u ≺ w )
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Property 2

Given a β-redex

u : P −→ Q

and four β-redexes v,w, v′,w′ such that

v [[ u ]] v′ and w [[ u ]] w′

satisfy the following property:

v ´

w ´

v

w

⇒ or

v

w

u

v′ ≺≺ w′ ⇒ v ≺≺ w or v ≺≺ u ≺≺ w
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A depth on β-redexes

Definition

The depth of a β-redex u in a finite set V of β-redexes

|u |V

is defined as the maximal length of gripping sequences

u ≺≺ v1 ≺≺ · · · ≺≺ vn

starting from u and consisting of elements of V.
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The depth decreases

Suppose that u is a β-redex of V with

v [[ u ]] w

and with set of residuals

W = V [[ u ]] .

Property. The depth of v decreases in the sense that

|w |W ≤ | v |V.

Proof. By applying Property 2.
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A norm on β-redexes

Definition

The norm of a β-redex u in a finite set V of β-redexes

||u ||V

is defined as the multiset of depths

{ | u |V | u ≺ v }

of all the β-redexes u in V which nest the β-redex v.
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The norm decreases

Suppose that u is a β-redex of V with

v [[ u ]] w

and with set of residuals

W = V [[ u ]] .

Property. The norm of v decreases in the sense that

||w ||W ≤mset || v ||V.

Moreover, this norm strictly decreases when u ≺ v.

Proof. By applying Property 1.
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Finite developments

The norm ||V || of a finite set of β-redexes V is defined as the multiset

{ || v ||V | v ∈ V }

Property. Suppose that u is a β-redex of a finite set

V

of β-redexes with set of residuals

W = V [[ u ]] .

In that case,

||W || <mset ||V ||.

Corollary [ Finite Developments ]

All the developments of a finite set V of β-redexes are finite.
68



Third part

Standardisation theorem

A 2-dimensional approach to rewriting systems
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Geometry of rewriting

M

(λy.M)N

(λy.M)Q(λx.(λy.x))MQ

(λx.(λy.x))MN

c

b

vu

a

Key idea: let us rewrite the rewriting paths !
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Left-to-right vs. right-to-left strategy

Consider the λ-term

(λx.λy.x) a (∆∆)

constructed by applying the first projection to a and to ∆∆.

The right-to-left strategy

(λx.λy.x) a (∆∆) −→β (λx.λy.x) a (∆∆) −→β · · ·

computes for ever while the left-to-right strategy

(λx.λy.x) a (∆∆) −→β (λy.a) (∆∆) −→β a

terminates.
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Irreversible tiles

We write

f I g

when

f = v · u′ g = u · hv

are two developments of the pair of β-redexes {u, v} where

u : M −→ P v : M −→ Q

and moreover

u ≺ v
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Reversible tiles

We write

f ♦ g

when

f = v · u′ g = u · v′

are two developments of the pair of β-redexes {u, v} where

u : M −→ P v : M −→ Q

and moreover

u ‖ v

where u ‖ v means that the two β-redexes are disjoint:

¬ ( u ≺ v) and ¬ ( v ≺ u)
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Standardisation tiles

We write

f B g

when

f = v · u′ g = u · hv

are two developments of the pair of β-redexes {u, v} where

u : M −→ P v : M −→ Q

and moreover

u ≺ v or u ‖ v
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Standardisation path

Given two rewriting paths

d , e : P ∗
−→ Q

we write

d 1
⇒ e

when d and e factor as

d = P
d1
−→M

f
−→ N

d2
−→ Q e = P

d1
−→M

g
−→ N

d2
−→ Q

where f and g are related by a standardization tile:

f = v · u′ B g = u · hv
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Standardisation paths

Given two rewriting paths

d , e : P ∗
−→ Q

we write

d ⇒ e

when there exists a sequence of standardization steps

d 1
⇒ f1

1
⇒ · · ·

1
⇒ fn

1
⇒ e

transforming the rewriting path d into the rewriting path e.

In that case, one says that the path e is more standard than d.
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Reversible standardization paths

A standardization path

θ : d ⇒ e

is called reversible when all the standardization steps

d 1
⇒ f1

1
⇒ · · ·

1
⇒ fn

1
⇒ e

are reversible. In that case, we write

θ : d ' e
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Standard path

A rewriting path

f : M ∗
−→ N

is called standard when every standardization path

θ : f ⇒ g

starting from the rewriting path f is reversible:

θ : f ' g

78



Standardization theorem

Existence. From every rewriting path

f : M ∗
−→ N

there exists a standardization path

θ : f ⇒ g : M ∗
−→ N

which transforms the path f into a standard path g.

Uniqueness. Every two standard paths

f , g : M ∗
−→ N

equivalent modulo general β-redex permutation are equivalent
modulo reversible permutation

f ∼ g ⇒ f ' g.
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Illustration

λx. x

�

λy. �

�

�MQ

λx. x

�

λy. �

�

�MN u v�

λy. �M N

M

a

b

c

�

λy. �M Q

Here, the path a · b · c is transformed into the standard path u · v.

a · b · c ⇒ u · w · c ⇒ u · v
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Idea of the proof

To every non-empty rewriting path

f : M ∗
−→ N

one associates a β-redex

outermost ( f ) : M −→ P

defined by induction on the length of the rewriting path:

B outermost (u) = u

B outermost (u · g) =


v when v ≺le f t−outer u

and v [[ u ]] outermost (g)

u otherwise
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Leftmost-outermost ordering

One writes

u ≺le f t−outer v

when the occurrence

ou

of the β-redex u is smaller than the occurrence

ov

of the β-redex v in the lexicographic order:

ou ≤lex ov.

This defines a total ordering on the β-redex of a λ-term.
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Leftmost-outermost ordering

Typically, the β-redex

u : (λx.(λy.x)) a (∆∆) −→ (λy.a) (∆∆)

is left-outer to the β-redex

v : (λx.(λy.x)) a (∆∆) −→ (λx.(λy.x)) a (∆∆)

in the λ-term

(λx.(λy.x)) a (∆∆)
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Key lemma

Lemma.

Suppose that the two non empty rewriting paths

f , g : M ∗
−→ N

are related by a standardisation path

θ : f ⇒ g

In that case,

outermost ( f ) = outermost (g).

Proof. The property holds in the case of a standardisation step

f B g

and this particular case induces the general case.
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Corollary

Corollary.

Suppose that the rewriting path

f : P ∗
−→ N

is standard and that

u = outermost (u · f )

for a β-redex

u : M −→ P

In that case, the rewriting path

u · f : M ∗
−→ N

is standard.
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Standardisation algorithm

Given a rewriting path

f : M ∗
−→ N

B extract the β-redex

u = outermost ( f ) : M −→ P

from the path f by applying a series of standardisation steps

B apply the standardisation algorithm on any rewriting path

g : P ∗
−→ N

obtained as a residual of f after outermost ( f ).

Theorem. The algorithm terminates and produces a standard path.
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Termination of the algorithm

Imagine that the standardization algorithm applied to the path

f : M ∗
−→ N

produces an infinite sequence u1 · · · un · · · of β-redexes.

Suppose moreover that f is minimal in length among such paths.

In that case, the rewriting path f factors as

f = v · g : M v
−→ P ∗

−→ N

where the standardisation algorithm terminates on the path g.

By definition, there exists a natural number N such that

uN+1 · · · uN+p · · ·

is a development of the set of residuals of v after the path u1 · · · uN.

This contradicts the finite development theorem. 87



Uniqueness

Notation. Given a rewriting path

f : M ∗
−→ N

we write

std ( f ) : M ∗
−→ N

for the standard path obtained as result of the algorithm.

Property. For every two rewriting paths

f , g : M ∗
−→ N

one has:

f ∼ g ⇒ std ( f ) = std (g)

f standard ⇒ f ' std ( f )
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Standardization theorem

Existence. From every rewriting path

f : M ∗
−→ N

there exists a standardization path

θ : f ⇒ g : M ∗
−→ N

which transforms the path f into a standard path g.

Uniqueness. Every two standard paths

f , g : M ∗
−→ N

equivalent modulo general β-redex permutation are equivalent
modulo reversible permutation

f ∼ g ⇒ f ' g.
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A sesqui-category of β-rewriting

The sesqui-category Lsesqui has

B the λ-terms as objects,

B the β-rewriting paths f : M ∗
−→ N as morphisms,

B the standardization paths θ : f ⇒ g as 2-cells.
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Ancestors along a standardisation path

Every standardisation path

θ : f = u1 . . . um ⇒ g = v1 . . . vn

induces a function

[θ] : [1, . . . ,n] −→ [1, . . . ,m]

which relates every β-redex of the rewriting path f

v j

to a β-redex of the rewriting path g

u[θ]( j)

called its ancestor along the standardisation path θ.
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A 2-category of β-rewriting

The 2-category L has

B the λ-terms as objects,

B the β-rewriting paths f : M ∗
−→ N as morphisms,

B the standardization paths θ : f ⇒ g modulo � as 2-cells.

Here, two standardization paths

θ1 , θ2 : f ⇒ g : M ∗
−→ N

are related by � precisely when they define the same function

[θ1] = [θ2]
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Standardization theorem revisited

Existence. From every rewriting path

f : M ∗
−→ N

there exists a unique standardization 2-cell

θ : f ⇒ g : M ∗
−→ N

which transforms the path f into a standard path g.

Uniqueness. Every two standard paths

f , g : M ∗
−→ N

equivalent modulo general β-redex permutation are equivalent
modulo a reversible 2-cell

f ∼ g ⇒ f ' g.
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Illustration

M

(λy.M)N

(λy.M)Q(λx.(λy.x))MQ

(λx.(λy.x))MN

c

b

vu

a

Here, the standardisation cell

θ : a · b · c ⇒ u · w · c ⇒ u · v

transforms the path a · b · c into the standard path u · v.
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Illustration

λx. x

�

λy. �

�

�MQ

λx. x

�

λy. �

�

�MN u v�

λy. �M N

M

a

b

c

�

λy. �M Q

θ

Note that the standardisation cell θ « erases » the β-redex a
in the sense that the β-redex a is not in the image of [θ] .
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