Lambda calculs et catégories

Paul-André Melliès

Master Parisien de Recherche en Informatique

Ecole Normale Supérieure

Synopsis of the lecture

- 1 Lambda-calculus
- 2 Concurrent graphs
- 3 Proof of the finite developments theorem

First part

Lambda-calculus

The calculus of functions

The pure λ -calculus

Terms $M ::= x \mid MN \mid \lambda x.M$

The β -reduction:

 $(\lambda x.M) N \longrightarrow M[x := N]$

The η -expansion:

 $M \longrightarrow \lambda x. (M x)$

Remark: every term is considered up to renaming \equiv_{α} of the bound variables, typically:

 $\lambda x.\lambda y.x \equiv_{\alpha} \lambda z.\lambda y.z$

Occurrences

The set of occurrences of a λ -term *M* is defined by induction:

$$\triangleright \quad \mathbf{occ} (x) = \{ \varepsilon \}$$

- $\triangleright \quad \mathbf{occ}(MN) = \{\varepsilon\} \cup \{1 \cdot o \mid o \in \mathbf{occ}(M)\} \cup \{2 \cdot o \mid o \in \mathbf{occ}(N)\}$
- $\triangleright \quad \mathbf{occ} (\lambda x.M) \quad = \quad \{ \varepsilon \} \cup \{ 1 \cdot o \, | \, o \in \mathbf{occ} (M) \}$

Note that every occurrence of the λ -term M is labelled by

- an application node App
- \triangleright a binder λx
- \triangleright a variable *x*

Free variables

The set of **free variables** of a λ -term is defined by induction:

- $\triangleright \quad FV(x) \quad = \quad \{x\}$
- \triangleright $FV(MN) = FV(M) \cup FV(N)$
- $\triangleright \quad FV(\lambda x.M) \quad = \quad FV(M) \setminus \{x\}$

Every occurrence of a variable x in a λ -term is

- ▷ either free
- > or bound by a binder λx above it in the λ -term.

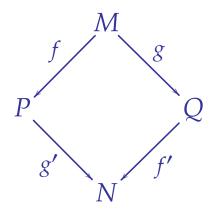
Church-Rosser theorem

Also called confluence theorem.

Given two β -rewriting paths

$$f : M \xrightarrow{*} P \qquad g : M \xrightarrow{*} Q$$

there exists a λ -term N and two β -rewriting paths f' and g' completing the diagram as



Redex

Definition. A β -redex is a pair

(M, o)

consisting of

- \triangleright a λ -term M
- > an occurrence of the λ -term M such that

 $M_{|o} = (\lambda x.P) Q$

is a β -reduction pattern.

Residuals

Given a pair of β -redexes

 $u: M \to P \qquad \qquad v: M \to Q$

from the same λ -term M with occurrences o_u and o_v

 $M_{|o_u} = (\lambda x.A)B \qquad \qquad M_{|o_v} = (\lambda y.C)D$

we would like to define the **residuals** of v along u in the λ -term P.

We write in that case

The idea is that the computation of v in M has been postponed to the computation of its residuals in Q.

Residuals [case 1]

There are three possibilities to consider:

 \triangleright the β -redex v occurs inside the function A of the β -redex u.

In that case, the occurrence o_v factors as

$$o_v = o_u \cdot 1 \cdot 1 \cdot o'$$

and the β -redex v has a unique residual w with occurrence

$$o_w = o_u \cdot o'$$

Residuals [case 2]

 \triangleright the β -redex v occurs inside the argument B of the β -redex u.

In that case, the occurrence o_v factors as

$$o_v = o_u \cdot 2 \cdot o'$$

Let

 $\{o_1, \ldots, o_k\}$

denote the set of occurrences of the variable x in the λ -term A.

In that case, the β -redex v has a residual w_i with occurrence

$$o_{w_i} = o_u \cdot o_i \cdot o'$$

for each occurrence of the variable x in the λ -term A.

Residuals [case 3]

 \triangleright the β -redex v does not occur inside the β -redex u.

In that case, the β -redex v has a unique residual w along u.

The β -redex w has occurrence

 $o_{\mathcal{W}} = o_{\mathcal{V}}$

in the λ -term *P*.

Unique ancestor property

Property.

```
Suppose that u, v, v' are \beta-redexes

u: M \to P v: M \to Q v: M \to Q'

and that w is a \beta-redex in P.

The residual relation satisfies
```

```
v \llbracket u \rrbracket w and v' \llbracket u \rrbracket w \Rightarrow v = v'
```

Every path $f: M \rightarrow N$ thus defines a partial function from the redexes of N to the redexes of M

Residuals along a path

Given a β -rewriting path

$$f : M \xrightarrow{*} P$$

and a β -redex

 $v : M \longrightarrow Q$

from the same λ -term M, one defines

$v\,[\![\,f\,]\!]\,w$

by induction on the length of the path f, as follows:

$$\triangleright \qquad v \llbracket id_M \rrbracket w \quad \Longleftrightarrow \quad v = w$$

$$\triangleright \qquad v \llbracket u \cdot f \rrbracket w \quad \Longleftrightarrow \quad \exists v', \quad v \llbracket u \rrbracket v' \text{ and } v' \llbracket f \rrbracket w$$

Sets of residuals

Given a β -rewriting path

 $f : M \xrightarrow{*} P$

and a finite set

 $V = \{ v_1, \ldots, v_n \}$

of β -redexes from the same λ -term M, one defines

 $V[[f]] = \{ w \mid \exists v \in V, v[[f]]w \}$

Development

A development

$$P_1 \xrightarrow{u_1} P_2 \xrightarrow{u_2} \cdots \xrightarrow{u_{n-1}} P_n \xrightarrow{u_n} \cdots$$

of a finite set of β -redexes

V

is a possibly infinite rewriting path where

 $\forall n, \qquad u_n \in V \llbracket f_n \rrbracket$

for the rewriting path f_n defined as

$$f_n = u_1 \cdots u_{n-1}$$

Finite developments

Suppose given a finite set

 $V = \{ v_1, \ldots, v_n \}$

of β -redexes starting from the same λ -term M.

Key property [Finite developments - termination]

Every development of V is finite.

Permutation tiles

Definition.

A permutation tile consists of a pair of paths

$$f = u \cdot h_v : M \xrightarrow{*} N \qquad g = v \cdot h_u : M \xrightarrow{*} N$$

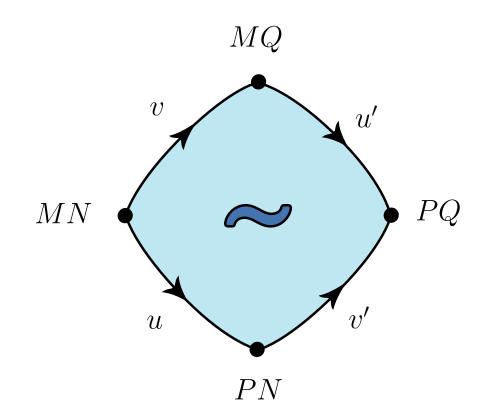
such that

$$u: M \to P$$
 $v: M \to Q$

are two β -redexes starting from the same λ -term M and moreover

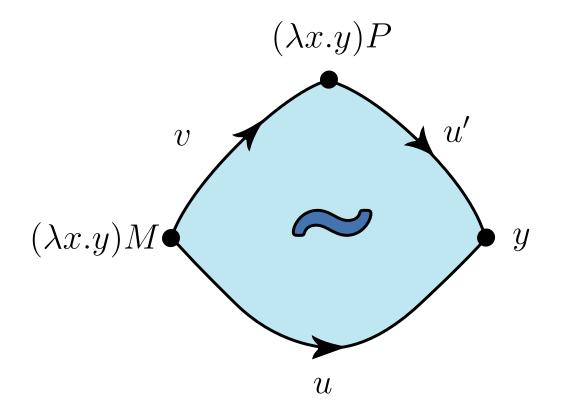
- \triangleright h_u is a development of the residuals of u along v
- \triangleright h_v is a development of the residuals of v along u
- \triangleright h_u and h_v have the same target N.

Illustration



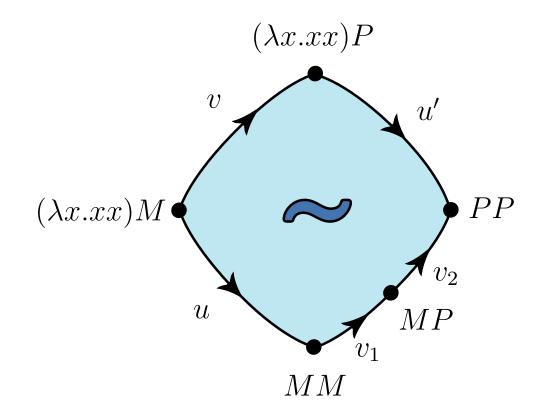
The two redexes $u: M \to P$ and $v: N \to Q$ are disjoint.

Illustration



The redex u erases the redex $v: M \to P$.

Illustration



The redex u duplicates the redex $v: M \to P$.

Local confluence

Key property [Finite developments - confluence]

For every pair of different β -redexes

 $u: M \to P \qquad v: M \to Q$

in the same term M, there exists a permutation tile

 $f = u \cdot h_{v} \qquad \qquad g = v \cdot h_{u}$

such that, moreover, the two paths

$$f,g : M \xrightarrow{*} N$$

define the same residual relation:

$$\llbracket f \rrbracket = \llbracket g \rrbracket$$

between the β -redexes of M and the β -redexes of N.

Finite developments

Theorem [Finite developments]

Every two developments

$$f: M \xrightarrow{*} N \qquad g: M \xrightarrow{*} N'$$

of the same finite set of β -redexes

$$V = \{v_1, \ldots, v_n\}$$

reach the same λ -term

N = N'

and define the same residual relation

 $\llbracket f \rrbracket = \llbracket g \rrbracket.$

Permutation equivalence

Given two rewriting paths

$$d, e : P \xrightarrow{*} Q$$

we write

 $d \stackrel{1}{\sim} e$

where there exists a permutation tile

 $f = u \cdot h_v : M \xrightarrow{*} N \qquad g : v \cdot h_u : M \xrightarrow{*} N$

such that

$$d = P \xrightarrow{d_1} M \xrightarrow{f} N \xrightarrow{d_2} Q \qquad e = P \xrightarrow{d_1} M \xrightarrow{g} N \xrightarrow{d_2} Q$$

Permutation equivalence

Given two rewriting paths

$$d, e: P \xrightarrow{*} Q$$

we write

 $d \sim e$

when there exists a sequence of permutations

 $d \stackrel{1}{\sim} f_1 \stackrel{1}{\sim} \cdots \stackrel{1}{\sim} f_n \stackrel{1}{\sim} e$

transforming the rewriting path d into the path e.

Permutation equivalence continued

Proof of the finite developments theorem.

Every two developments

 $f,g : M \xrightarrow{*} N$

 $f \sim g$.

of the same set V of β -redexes are equivalent

Main consequence.

Every two equivalent paths define the same residual relation

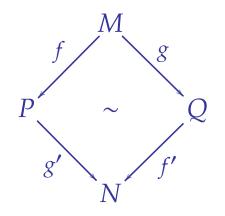
 $f \sim g \quad \Rightarrow \quad \llbracket f \rrbracket = \llbracket g \rrbracket$

Algebraic Church-Rosser Theorem

Given two β -rewriting paths

$$f : M \xrightarrow{*} P \qquad g : M \xrightarrow{*} Q$$

there exists a λ -term N and two β -rewriting paths f' and g' completing the diagram as



Key property established by Jean-Jacques Lévy in 1978

Rewriting paths modulo permutations

An important problem of rewriting theory: compare the several paths which rewrite **a** λ -term *P* into its normal form *Q*.

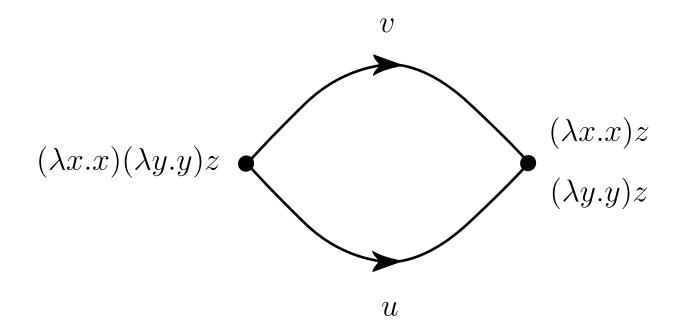
Corollary

Every two rewriting paths to the normal form

 $f,g : P \longrightarrow Q$

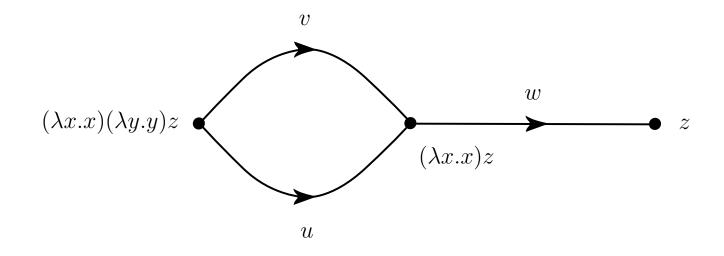
are equal modulo a series of redex permutations.

A 2-dimensional hole



The two redexes u and v are not equivalent modulo permutation.

The 2-dimensional hole continued



The two paths $u \cdot w$ and $v \cdot w$ are equivalent modulo permutation.

Pushouts in categories

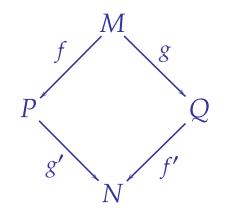
In a category \mathscr{C} , the pushout of a pair of morphisms

 $f: M \longrightarrow P \qquad g: M \longrightarrow Q$

is a pair of morphisms

$$g': P \longrightarrow N \qquad f': Q \longrightarrow N$$

such that the resulting diagram



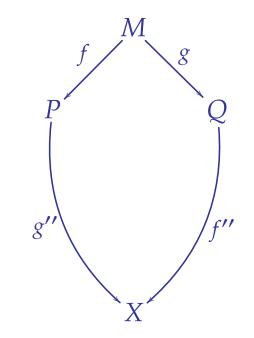
commutes and moreover...

Pushouts in categories

... for every pair of morphisms

$$g'': P \longrightarrow X \qquad f'': Q \longrightarrow X$$

making the diagram



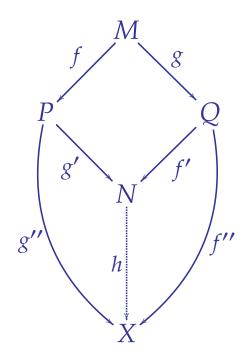
commute in the category \mathscr{C} ...

Pushouts in categories

... there exists a **unique** morphism

 $h : N \longrightarrow X$

making the diagram



commute in the category \mathscr{C} .

A reformulation of the Church-Rosser theorem

We will consider the category \mathscr{C}_{λ} with

- \triangleright λ -terms as objects,
- \triangleright rewriting paths modulo permutation ~ as morphisms.

Theorem [Levy 1978, Huet-Levy 1981]

The category \mathscr{C}_{λ} has pushouts.

This property holds for every rewriting system without critical pairs.

Second part

Concurrent graphs

Confluence formulated as a pushout property

Reflexive graphs

A reflexive graph *g* is given by

- \triangleright a set of vertices V
- \triangleright a set of edges *E*
- ▷ a source and a target function $\partial_0, \partial_1 : E \to V$
- \triangleright an identity function $\varnothing: V \to E$ such that

 $\partial_0(\emptyset_A) = A$ $\partial_1(\emptyset_A) = A$

this meaning that the edge \emptyset_A connects the vertex A to itself:

 $\varnothing_A \quad : \quad A \quad \longrightarrow \quad A$

A concurrent graph is a reflexive graph *G* with a symmetric relation

 $f \diamond g$

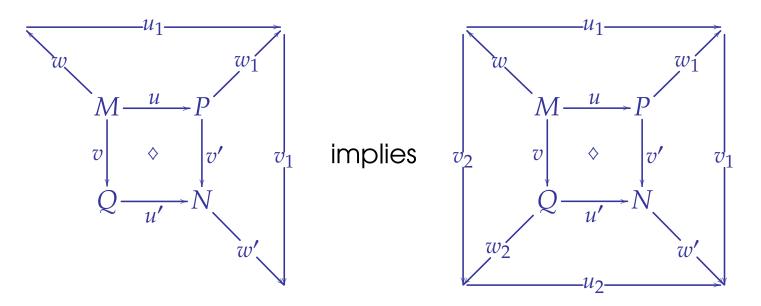
between coinitial and cofinal paths f and g of length 2, satisfying the following axioms.

Axiom 1. [Unique residual]

$$\begin{array}{cccc} M \xrightarrow{u} P & M \xrightarrow{u} P \\ v & \downarrow v' & \text{and} & v & \downarrow v'' \\ Q \xrightarrow{u'} N & Q \xrightarrow{u''} O \end{array} \text{ implies } u' = u'' \text{ and } v' = v''$$

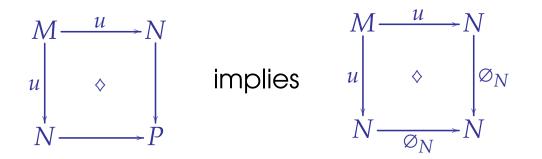
If $u \cdot v' \diamond v \cdot u'$ and $u \cdot v'' \diamond v \cdot u''$ then v' = v'' and u' = u''

Axiom 2. [Cube axiom]

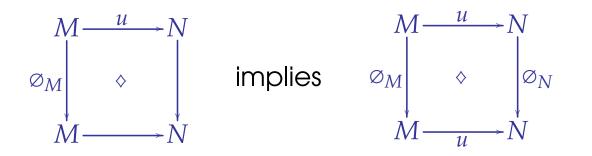


If $u \cdot v' \diamond v \cdot u'$ and $w \cdot u_1 \diamond u \cdot w_1$ and $w_1 \cdot v_1 \diamond v' \cdot w'$, then there exists edges w_2, v_2, u_2 such that $w \cdot v_2 \diamond v \cdot w_2$ and $w_2 \cdot u_2 \diamond u' \cdot w'$ and $u_1 \cdot v_1 \diamond v_2 \cdot u_2$

Axiom 3.



If $u: M \longrightarrow N$ and $u \cdot v \diamond u \cdot v$ then $v = \emptyset_N$



If $u: M \longrightarrow N$ and $u \cdot v \diamond \emptyset_M \cdot u'$ then u = u' and $v = \emptyset_N$

Conflict-free graphs

Axiom 5.

For every pair of coinitial edges

 $u: M \to P \qquad v: M \to Q$

there exists a pair of cofinal edges

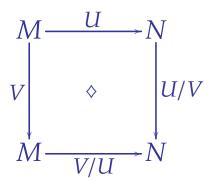
$$v': P \to N \qquad \qquad u': Q \to N$$

such that

 $u \cdot v' \Leftrightarrow v \cdot u'$

The conflict-free graph \mathscr{G}_{λ}

- \triangleright its vertices are the λ -terms
- ▷ its edges are the multi-redexes.
- its diamonds are of the form



where

 $U/V = U[[V]] = \{ u' \mid \exists u \in U, u[[V]]u' \}$

Residual of a path after an edge

Every edge

$$u : M \longrightarrow N$$

defines a function

 $f \mapsto f/u$

from M-paths to N-paths, defined by induction on the length of f as

$$\triangleright$$
 $id_M / u = id_N$

 $\triangleright \qquad (v \cdot g) / u = (v/u) \cdot g / (u/v)$

Residual of a path after a path

Every path

$$f : M \longrightarrow N$$

defines a function

 $h \mapsto h/f$

from *M*-paths to *N*-paths, defined as

$$\triangleright \quad h / id_M = h$$

 $\triangleright \qquad h / (v \cdot g) = (h/v) / g$

Permutation equivalence

Given two paths $d, e : P \xrightarrow{*} Q$ one writes $d \stackrel{1}{\approx} e$ when $d = P \xrightarrow{d_1} M \xrightarrow{f} N \xrightarrow{d_2} Q \qquad e = P \xrightarrow{d_1} M \xrightarrow{g} N \xrightarrow{d_2} Q$ and $f \diamond g$ or when

$$f = id_M$$
 and $g = \emptyset_M$.

Permutation equivalence

Given two paths

$$d, e : P \xrightarrow{*} Q$$

one writes

 $d \approx e$

when there exists a sequence of permutations

 $d \stackrel{1}{\approx} f_1 \stackrel{1}{\approx} \cdots \stackrel{1}{\approx} f_n \stackrel{1}{\approx} e$

transforming the rewriting path d into the path e.

Two structural properties

Suppose given three paths f, g, h starting from the same edge M.

First property.

$$f \approx g \implies h/f = h/g$$

Second property.

$$f \approx g \quad \Rightarrow \quad f/h \approx g/h$$

Algebraic confluence theorem

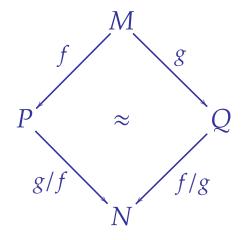
Given two rewriting paths

$$f : M \xrightarrow{*} P \qquad g : M \xrightarrow{*} Q$$

the two rewriting paths f/g and g/f satisfy the equation

 $f \cdot (g/f) \approx g \cdot (f/g)$

and thus complete the diagram as



The rewriting category

The rewriting category \mathscr{C} is defined as the category

- \triangleright the vertices of \mathscr{G} as objects
- \triangleright the rewriting paths of \mathscr{G} modulo \approx as morphisms.

Every rewriting path is an epi

Property.

Given an edge

 $u : M \longrightarrow P$

and two rewriting paths

$$f, g : M \longrightarrow P$$

one has

$$u \cdot f \approx u \cdot g \quad \Rightarrow \quad f \approx g$$

This means that u is an epimorphism in the category \mathscr{C} .

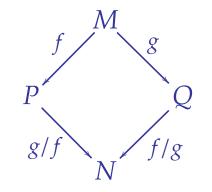
Pushouts

Theorem.

Every pair of morphisms (= rewriting paths modulo permutation)

$$f: M \longrightarrow P \qquad g: M \longrightarrow Q$$

defines a pushout diagram



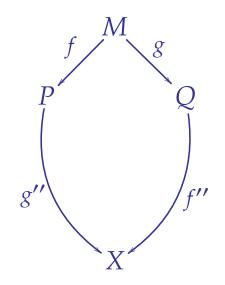
in the rewriting category \mathscr{C} .

Pushouts in categories

Indeed, for every pair of morphisms

$$g'': P \longrightarrow X \qquad f'': Q \longrightarrow X$$

making the diagram



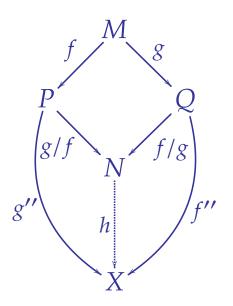
commute in the category \mathscr{C} ...

Pushouts in categories

... there exists a **unique** morphism

 $h : N \longrightarrow X$

making the diagram



commute in the category \mathscr{C} , given by the equation

 $h \approx (f \cdot g'') / (f \cdot (g/f)) \approx (g \cdot f'') / (g \cdot (f/g))$

A reformulation of the Church-Rosser theorem

The category associated to \mathscr{G}_{λ} coincides with \mathscr{C}_{λ} with

- \triangleright λ -terms as objects
- \triangleright rewriting paths modulo permutation ~ as morphisms.

Theorem [Levy 1978, Huet-Levy 1981]

The category \mathscr{C}_{λ} has pushouts.

This property holds for every rewriting system without critical pairs.

Illustration : Jordan-Hölder theorem

A subgroup H of a group G is **normal** when

aH = Ha

for every element $a \in G$. One writes in that

$H \triangleleft G$

A group is **simple** when it contains no normal subgroup except $\{e\}$ and itself.

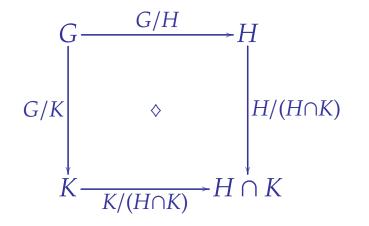
Fact. Groups form a conflict-free graph where an edge

 $G \longrightarrow H$

indicates that

- \triangleright *H* is (isomorphic to) a normal subgroup of *G*
- \triangleright the subgroup G/H is simple.

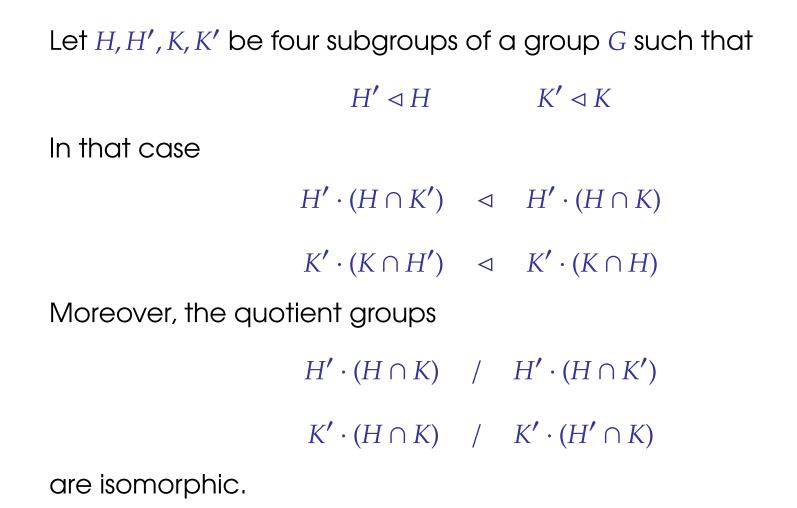
Shapes of the Jordan-Hölder tiles



Note in particular that

 $G/H = K/(H \cap K)$ $G/K = H/(H \cap K)$

Butterfly lemma



Jordan-Hölder theorem

Deduce the Jordan-Hölder theorem that two normal towers

is simple and non trivial.

Third part

A proof of the finite developments theorem

A purely combinatorial argument

Nesting ordering

Given a pair of β -redexes

 $u: M \to P$ $v: M \to Q$

from the same λ -term M with occurrences o_u and o_v

 $M_{\mid o_u} = (\lambda x.A)B \qquad \qquad M_{\mid o_v} = (\lambda y.C)D$

we declare that v is nested by u and write

 $u \prec v$

when v lies in the argument B of the redex u. In that case,

$$o_v = o_u \cdot 2 \cdot o'$$

for some occurrence o'.

Gripping

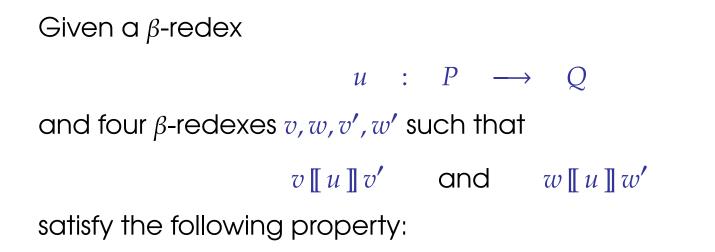
We declare that u grips v and write

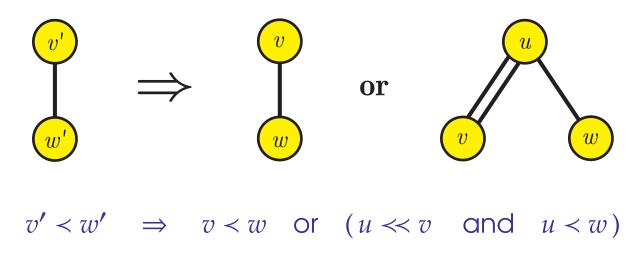
 $u \prec v$

when

- \triangleright the β -redex v lies in the functional body A of the β -redex u.
- the argument D of the β-redex v contains an occurrence
 of the variable x bound by the β-redex u.

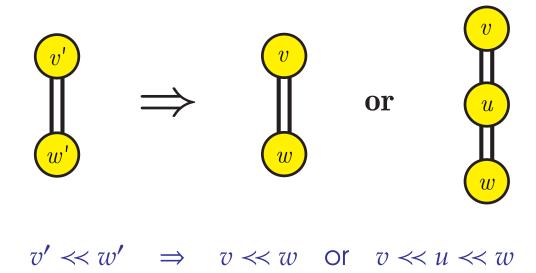
Property 1





Property 2

Given a β -redex $u : P \longrightarrow Q$ and four β -redexes v, w, v', w' such that $v \llbracket u \rrbracket v'$ and $w \llbracket u \rrbracket w'$ satisfy the following property:



A depth on β -redexes

Definition

The depth of a β -redex u in a finite set V of β -redexes

$|u|_V$

is defined as the maximal length of gripping sequences

 $u \ll v_1 \ll \cdots \ll v_n$

starting from u and consisting of elements of V.

The depth decreases

Suppose that u is a β -redex of V with

v [[u]] w

and with set of residuals

 $W = V \llbracket u \rrbracket.$

Property. The depth of v decreases in the sense that

 $|w|_W \leq |v|_V.$

Proof. By applying Property 2.

A norm on β -redexes

Definition

The norm of a β -redex u in a finite set V of β -redexes

$\|\,u\,\|_V$

is defined as the multiset of depths

$\{ |u|_V | u \prec v \}$

of all the β -redexes u in V which nest the β -redex v.

The norm decreases

Suppose that u is a β -redex of V with

 $v \llbracket u \rrbracket w$

and with set of residuals

 $W = V \llbracket u \rrbracket.$

Property. The norm of v decreases in the sense that

 $\|w\|_W \leq_{mset} \|v\|_V.$

Moreover, this norm strictly decreases when u < v.

Proof. By applying Property 1.

Finite developments

The norm ||V|| of a finite set of β -redexes V is defined as the multiset $\{ ||v||_V | v \in V \}$

Property. Suppose that u is a β -redex of a finite set

V

of β -redexes with set of residuals

 $W = V \llbracket u \rrbracket.$

In that case,

 $\|W\| <_{mset} \|V\|.$

Corollary [Finite Developments]

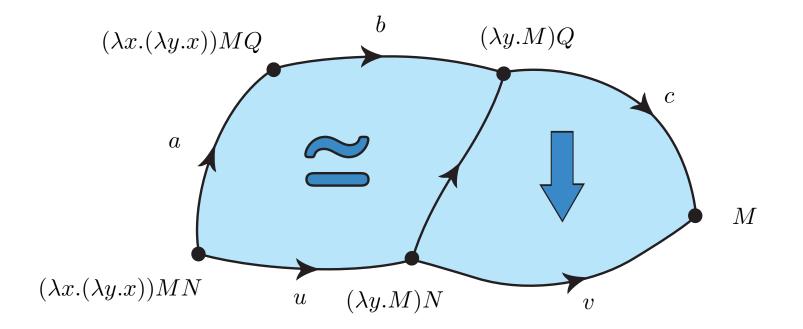
All the developments of a finite set V of β -redexes are finite.

Third part

Standardisation theorem

A 2-dimensional approach to rewriting systems

Geometry of rewriting



Key idea: let us rewrite the rewriting paths !

Left-to-right vs. right-to-left strategy

Consider the λ -term

 $(\lambda x.\lambda y.x) a (\Delta \Delta)$

constructed by applying the first projection to a and to $\Delta\Delta$.

The right-to-left strategy

 $(\lambda x.\lambda y.x) a (\Delta \Delta) \longrightarrow_{\beta} (\lambda x.\lambda y.x) a (\Delta \Delta) \longrightarrow_{\beta} \cdots$

computes for ever while the left-to-right strategy

 $(\lambda x.\lambda y.x) a (\Delta \Delta) \longrightarrow_{\beta} (\lambda y.a) (\Delta \Delta) \longrightarrow_{\beta} a$

terminates.

Irreversible tiles

We write

when

 $f = v \cdot u' \qquad g = u \cdot h_v$

 $f \triangleright g$

are two developments of the pair of β -redexes {u, v} where

 $u: M \longrightarrow P$ $v: M \longrightarrow Q$

and moreover

 $u \prec v$

Reversible tiles

We write

$$f \diamond g$$

when

and

$$f = v \cdot u' \qquad g = u \cdot v'$$

are two developments of the pair of β -redexes $\{u, v\}$ where
 $u : M \longrightarrow P \qquad v : M \longrightarrow Q$
and moreover

 $u \parallel v$

where $u \parallel v$ means that the two β -redexes are disjoint:

 $\neg (u < v)$ and $\neg (v < u)$

Standardisation tiles

We write

 $f \triangleright g$

when

 $f = v \cdot u' \qquad g = u \cdot h_v$

are two developments of the pair of β -redexes {u, v} where

 $u: M \longrightarrow P$ $v: M \longrightarrow Q$

and moreover

u < v or $u \parallel v$

Standardisation path

Given two rewriting paths

$$d, e : P \xrightarrow{*} Q$$

we write

$$d \stackrel{1}{\Rightarrow} e$$

when d and e factor as

 $d = P \xrightarrow{d_1} M \xrightarrow{f} N \xrightarrow{d_2} Q \qquad e = P \xrightarrow{d_1} M \xrightarrow{g} N \xrightarrow{d_2} Q$

where f and g are related by a standardization tile:

$$f = v \cdot u' \qquad \vartriangleright \qquad g = u \cdot h_v$$

Standardisation paths

Given two rewriting paths

$$d, e : P \xrightarrow{*} Q$$

we write

 $d \Rightarrow e$

when there exists a sequence of standardization steps

$$d \xrightarrow{1} f_1 \xrightarrow{1} \cdots \xrightarrow{1} f_n \xrightarrow{1} e$$

transforming the rewriting path d into the rewriting path e.

In that case, one says that the path e is **more standard** than d.

Reversible standardization paths

A standardization path

 $\theta : d \Rightarrow e$

is called **reversible** when all the standardization steps

$$d \stackrel{1}{\Rightarrow} f_1 \stackrel{1}{\Rightarrow} \cdots \stackrel{1}{\Rightarrow} f_n \stackrel{1}{\Rightarrow} e$$

are reversible. In that case, we write

 θ : $d \simeq e$

Standard path

A rewriting path

 $f : M \xrightarrow{*} N$

is called **standard** when every standardization path

 $\theta : f \Rightarrow g$

starting from the rewriting path f is reversible:

 θ : $f \simeq g$

Standardization theorem

Existence. From every rewriting path

 $f : M \xrightarrow{*} N$

there exists a standardization path

$$\theta : f \Rightarrow g : M \xrightarrow{*} N$$

which transforms the path f into a standard path g.

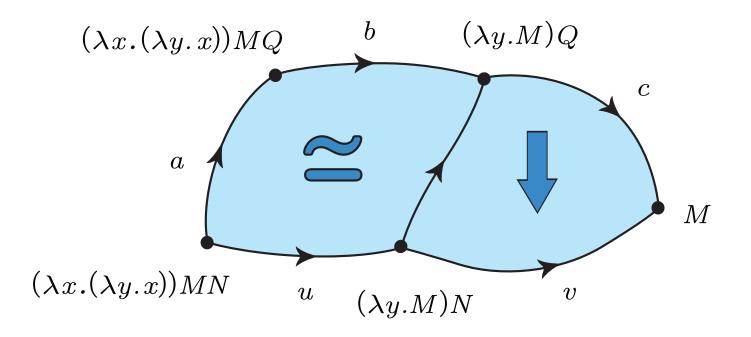
Uniqueness. Every two standard paths

 $f, g : M \xrightarrow{*} N$

equivalent modulo general β -redex permutation are equivalent modulo **reversible** permutation

$$f \sim g \Rightarrow f \simeq g.$$

Illustration



Here, the path $a \cdot b \cdot c$ is transformed into the standard path $u \cdot v$.

 $a \cdot b \cdot c \implies u \cdot w \cdot c \implies u \cdot v$

Idea of the proof

To every non-empty rewriting path

$$f : M \xrightarrow{*} N$$

one associates a β -redex

```
\mathbf{outermost}(f) : M \longrightarrow P
```

defined by induction on the length of the rewriting path:

 \triangleright outermost (u) = u

$$\triangleright \quad \mathbf{outermost} (u \cdot g) = \begin{cases} v & \text{when } v \prec_{left-outer} u \\ & \text{and } v \llbracket u \rrbracket \mathbf{outermost} (g) \\ u & \text{otherwise} \end{cases}$$

Leftmost-outermost ordering

One writes

 $u \prec_{left-outer} v$

when the occurrence

 $O_{\mathcal{U}}$

of the β -redex u is smaller than the occurrence

 $\mathcal{O}_{\mathcal{U}}$

of the β -redex v in the lexicographic order:

 $o_{\mathcal{U}} \leq_{lex} o_{\mathcal{V}}.$

This defines a **total** ordering on the β -redex of a λ -term.

Leftmost-outermost ordering

Typically, the β -redex $u : (\lambda x.(\lambda y.x))a (\Delta \Delta) \longrightarrow (\lambda y.a)(\Delta \Delta)$ is left-outer to the β -redex $v : (\lambda x.(\lambda y.x))a (\Delta \Delta) \longrightarrow (\lambda x.(\lambda y.x))a (\Delta \Delta)$ in the λ -term

 $(\lambda x.(\lambda y.x)) a (\Delta \Delta)$

Key lemma

Lemma.

Suppose that the two non empty rewriting paths

 $f, g : M \xrightarrow{*} N$

are related by a standardisation path

 $\theta : f \Rightarrow g$

In that case,

outermost(f) = outermost(g).

Proof. The property holds in the case of a standardisation step

 $f \triangleright g$

and this particular case induces the general case.

Corollary

Corollary.

Suppose that the rewriting path

$$f \quad : \quad P \quad \xrightarrow{*} \quad N$$

is standard and that

$$u = outermost(u \cdot f)$$

for a β -redex

$$u : M \longrightarrow P$$

In that case, the rewriting path

$$u \cdot f : M \xrightarrow{*} N$$

is standard.

Standardisation algorithm

Given a rewriting path

$$f : M \xrightarrow{*} N$$

 \triangleright extract the β -redex

 $u = \mathbf{outermost}(f) : M \longrightarrow P$

from the path f by applying a series of standardisation steps

▷ apply the standardisation algorithm on any rewriting path $g : P \xrightarrow{*} N$ obtained as a residual of f after subarrant (f)

obtained as a residual of f after **outermost** (f).

Theorem. The algorithm terminates and produces a standard path.

Termination of the algorithm

Imagine that the standardization algorithm applied to the path $f : M \xrightarrow{*} N$ produces an infinite sequence $u_1 \cdots u_n \cdots$ of β -redexes.

Suppose moreover that f is **minimal in length** among such paths.

In that case, the rewriting path f factors as

$$f = v \cdot g : M \xrightarrow{v} P \xrightarrow{*} N$$

where the standardisation algorithm **terminates** on the path g.

By definition, there exists a natural number N such that

$u_{N+1} \cdots u_{N+p} \cdots$

is a development of the set of residuals of v after the path $u_1 \cdots u_N$.

This contradicts the finite development theorem.

Uniqueness

Notation. Given a rewriting path

 $f : M \xrightarrow{*} N$

we write

$$\operatorname{std}(f) : M \xrightarrow{*} N$$

for the standard path obtained as result of the algorithm.

Property. For every two rewriting paths

 $f,g : M \xrightarrow{*} N$

one has:

$$f \sim g \implies \operatorname{std}(f) = \operatorname{std}(g)$$

f standard $\implies f \simeq \operatorname{std}(f)$

Standardization theorem

Existence. From every rewriting path

 $f : M \xrightarrow{*} N$

there exists a standardization path

$$\theta : f \Rightarrow g : M \xrightarrow{*} N$$

which transforms the path f into a standard path g.

Uniqueness. Every two standard paths

 $f, g : M \xrightarrow{*} N$

equivalent modulo **general** β -redex permutation are equivalent modulo **reversible** permutation

$$f \sim g \Rightarrow f \simeq g.$$

A sesqui-category of β -rewriting

The sesqui-category \mathscr{L}_{sesqui} has

- \triangleright the λ -terms as objects,
- \triangleright the β -rewriting paths $f: M \xrightarrow{*} N$ as morphisms,
- \triangleright the standardization paths $\theta: f \Rightarrow g$ as 2-cells.

Ancestors along a standardisation path

Every standardisation path

$$\theta : f = u_1 \dots u_m \implies g = v_1 \dots v_n$$

induces a function

 $[\theta] : [1, \ldots, n] \longrightarrow [1, \ldots, m]$

which relates every β -redex of the rewriting path f

v_j

to a β -redex of the rewriting path g

$u[\theta](j)$

called its **ancestor** along the standardisation path θ .

A 2-category of β -rewriting

The 2-category \mathscr{L} has

- \triangleright the λ -terms as objects,
- \triangleright the β -rewriting paths $f: M \xrightarrow{*} N$ as morphisms,
- ▷ the standardization paths $\theta: f \Rightarrow g$ modulo \cong as 2-cells.

Here, two standardization paths

 $\theta_1, \theta_2 : f \Rightarrow g : M \xrightarrow{*} N$

are related by \cong precisely when they define the same function $[\theta_1] = [\theta_2]$

Standardization theorem revisited

Existence. From every rewriting path $f : M \xrightarrow{*} N$ there exists a **unique** standardization 2-cell $\theta : f \Rightarrow g : M \xrightarrow{*} N$ which transforms the path f into a standard path g.

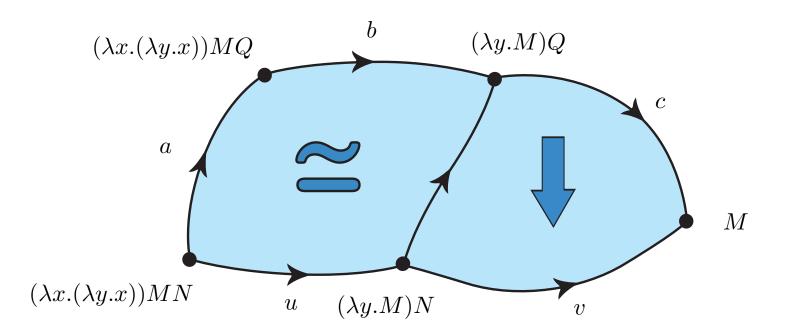
Uniqueness. Every two standard paths

 $f, g : M \xrightarrow{*} N$

equivalent modulo general β -redex permutation are equivalent modulo a **reversible** 2-cell

$$f \sim g \Rightarrow f \simeq g.$$

Illustration

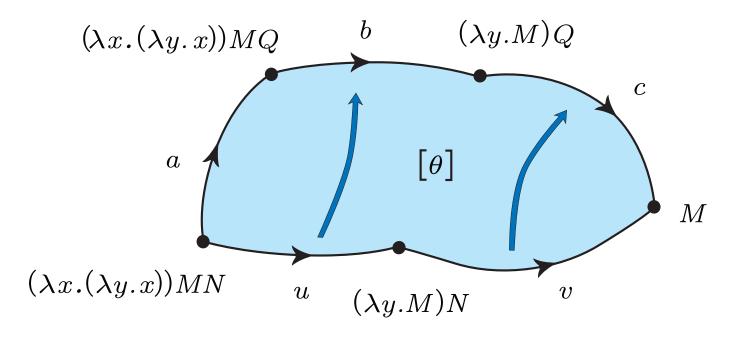


Here, the standardisation cell

 $\theta : a \cdot b \cdot c \implies u \cdot w \cdot c \implies u \cdot v$

transforms the path $a \cdot b \cdot c$ into the standard path $u \cdot v$.

Illustration



Note that the standardisation cell θ « erases » the β -redex *a* in the sense that the β -redex *a* is not in the image of $[\theta]$.