
Lambda calculs et catégories

Paul-André Melliès

Master Parisien de Recherche en Informatique

Ecole Normale Supérieure

1

Plan de la séance

1 – Lambda-calcul typé du second ordre

2 – Une sémantique opérationnelle

3 – Une topologie

4 – Les variétés comme type sémantique

5 – Théorème fondamental

6 – Application: théorème de normalisation

2

Part One

Second order lambda calculus

The expressive power of polymorphism

3

The simply-typed λ-calculus

The simple types A,B are constructed by the grammar:

A,B ::= α | A⇒ B.

A typing context Γ is a finite sequence

Γ = (x1 : A1, ..., xn : An)

where each xi is a variable and each Ai is a simple type.

A sequent is a triple

x1 : A1, ..., xn : An ` P : B

where

x1 : A1, ..., xn : An

is a typing context, P is a λ-term and B is a simple type.

4

The simply-typed λ-calculus

Variable
x : A ` x : A

Abstraction
Γ, x : A ` P : B

Γ ` λx.P : A⇒ B

Application
Γ ` P : A⇒ B ∆ ` Q : A

Γ,∆ ` PQ : B

Weakening Γ ` P : B
Γ, x : A ` P : B

Contraction
Γ, x : A, y : A ` P : B

Γ, z : A ` P[x, y← z] : B

Exchange
Γ, x : A, y : B,∆ ` P : C
Γ, y : B, x : A,∆ ` P : C

5

Subject reduction

A λ-term P is simply typed when there exists a sequent

Γ ` P : A

which may be obtained by a derivation tree.

One establishes that the set of simply typed λ-terms is closed under
β-réduction:

Subject Reduction:

If Γ ` P : A and P −→β Q, then Γ ` Q : A.

6

Girard 1972: the second-order λ-calculus

The simple types are extended by second-order quantification on
the type variables

A,B ::= α | A⇒ B | A × B | ∀α.A

A typing context Γ is a finite list constructed by the grammar

Γ = nil | Γ, x : A | Γ, α : Type

where

B nil is the empty list

B x is a term variable and A is a type

B α is a type variable and Type is a symbol.

7

Two families of sequents

A type sequent is a triple

α1 : Type , ... , αn : Type ` A : Type

where

B α1 : Type , ... , αn : Type is a context of type variables

B A is a type.

8

Type derivation

Variable
α : Type ` α : Type

Implication
Γ ` A : Type ∆ ` B : Type

Γ , ∆ ` A⇒ B : Type

Quantification
Γ , α : Type ` A : Type

Γ ` ∀α.A : Type

Weakening
Γ ` A : Type

Γ , α : Type ` A : Type

Contraction
Γ , α : Type , β : Type , ∆ ` A : Type
Γ , γ : Type , ∆ ` A[α, β← γ] : Type

Exchange
Γ , α : Type , β : Type , ∆ ` A : Type
Γ , β : Type , α : Type , ∆ ` A : Type

9

Term derivation

Variable
Γ ` A : Type

Γ, x : A ` x : A

Abstraction [term]
Γ, x : A ` P : B

Γ ` λx.P : A⇒ B

Application [term]
Γ ` P : A⇒ B ∆ ` Q : A

Γ,∆ ` PQ : B

Abstraction [type]
Γ, α : Type ` P : A

Γ ` P : ∀α.A

Application [type]
Γ ` P : ∀α.A ∆ ` B : Type

Γ , ∆ ` P : A[α := B]

10

Term derivation

Weakening [term]
Γ ` P : A ∆ ` B : Type

Γ , ∆ , x : A ` P : B

Weakening [type] Γ ` P : A
Γ , α : Type ` P : A

Contraction [term]
Γ , x : A , y : A , ∆ ` P : B

Γ , z : A , ∆ ` P[x, y← z] : B

Contraction [type]
Γ , α : Type , β : Type , ∆ ` P : A

Γ , γ : Type , ∆[α, β← γ] ` P : A[α, β← γ]

11

Term derivation

Exchange [term-term]
Γ , x : A , y : B , ∆ ` P : C
Γ , y : B , x : A , ∆ ` P : C

Exchange [type-type]
Γ , α : Type , β : Type , ∆ ` P : B
Γ , β : Type , α : Type , ∆ ` P : A

Exchange [term-type]
Γ , x : A , α : Type , ∆ ` P : B
Γ , α : Type , x : A , ∆ ` P : B

Exchange [type-term]
Γ , α : Type , x : A , ∆ ` P : B
Γ , x : A , α : Type , ∆ ` P : B

The Exchange [type-term] rule is allowed only when α is not free in A.

12

Term derivation (calculus with pairs)

Pair
Γ ` P : A Γ ` Q : B

Γ ` 〈P,Q〉 : A × B

Left projection Γ ` P : A × B
Γ ` fst(P) : A

Right projection Γ ` P : A × B
Γ ` snd(P) : B

Unit
Γ ` ∗ : 1

13

Properties of the second-order λ-calculus

A λ-term P is typed in second-order λ-calculus when there exists
a typing context Γ and a type A such that:

Γ ` P : A

The set of simply-typed λ-terms is closed under β-reduction:

Subject reduction: If Γ ` P : A and P −→β Q, then Γ ` Q : A.

A λ-term P is strongly normalizing when there exists no infinite path

P −→β P1 −→β P2 −→β · · · −→β Pn −→β · · ·

of β-reductions.

Strong normalisation: Every λ-term P typed in the second-order
λ-calculus is strongly normalising.

14

Curry-Howard .

Second order intuitionistic logic

Variable
Γ ` A : Type

Γ, x : A ` x : A

Abstraction [term]
Γ, x : A ` P : B

Γ ` λx.P : A⇒ B

Application [term]
Γ ` P : A⇒ B ∆ ` Q : A

Γ,∆ ` PQ : B

Abstraction [type]
Γ, α : Type ` P : A

Γ ` P : ∀α.A

Application [type]
Γ ` P : ∀α.A ∆ ` B : Type

Γ , ∆ ` P : A[α := B]

15

Curry-Howard .

Second order λ-calculus

Variable
Γ ` A : Type

Γ, x : A ` x : A

Abstraction [term]
Γ, x : A ` P : B

Γ ` λx.P : A⇒ B

Application [term]
Γ ` P : A⇒ B ∆ ` Q : A

Γ,∆ ` PQ : B

Abstraction [type]
Γ, α : Type ` P : A

Γ ` P : ∀α.A

Application [type]
Γ ` P : ∀α.A ∆ ` B : Type

Γ , ∆ ` P : A[α := B]

15

Encoding of the natural numbers

The type Nat of the natural numbers is defined as

Nat = ∀α . (α⇒ α) ⇒ (α⇒ α)

Exercise: show that every Church numeral n is of type Nat:

` λ f .λa. f · · · f︸︷︷︸
n times

(a) : ∀α.(α⇒ α)⇒ (α⇒ α)

16

Encoding of the finite lists

The type List of the finite lists of elements of A is defined as

List(A) = ∀α . (A⇒ α⇒ α) ⇒ (α⇒ α)

The list [a1, a2, · · · , an] is encoded as

[a1, · · · , an] = λ f .λx. f a1(f a2(· · · f anx) · · ·)

while the empty list is encoded as

nil = λ f .λx.x

Property. The encoding of a finite list is of the expected type:

` [a1, · · · , an] : List(A)

17

Concatenation

The λ-term

Append = λlist1. λlist2. λ f . λx. list1 f (list2 f x)

appends two finite lists.

Exercise: check that the λ-term Append has the type

` Append : ∀γ . List(γ) ⇒ List(γ) ⇒ List(γ)

and the expected behaviour:

Append[a1, · · · , ak][ak+1, · · · an] −→β · · · −→β [a1, · · · , an]

Show that the number of β-réductions does not depend on the size
of the lists.

18

Map

Suppose given a λ-term h of type

h : A ⇒ B

Then, the λ-term

Map = λh. λlist. λ f . λx. list (λa. f (ha)) x

transforms every list

[a1, · · · , an]

of elements of A in the list

[ha1, · · · , han]

of elements of B.

19

Map

Exercise: show that the λ-term Map has the type

` Map : ∀α . ∀β . (α ⇒ β) ⇒ (List(α) ⇒ List(β))

and the expected behaviour

Map h [a1, · · · , an] −→β · · · −→β [ha1, · · · , han]

20

Multiplication

Every λ-term a of type A induces the λ-term

Map(λb.〈a, b〉) : List(B) ⇒ List(A × B)

Multiplication is encoded as the λ-term

Mult = λlist1.λlist2. list1(λa.λlist.Append(Map(λb.〈a, b〉)(list2), list))(λ f .λx.x)

Exercise: show that Mult has the type

` Mult : ∀α . ∀β . List(α) × List(β) ⇒ List(α × β)

et le comportement suivant:

Mult[a1, · · · , am][b1, · · · bn] −→β · · · −→β [(a1, b1), (a1, b2), · · · , (am, bn)]

21

Exponentiation

We start from the λ-term

` Head = λa.λlist.λ f .λx. f a(list f x) : ∀α . α⇒ List(α)⇒ List(α)

which adds an element of type α to a list of type List(α).

The λ-term Exp is then defined as follows:

λlist1.λlist2. list1{λa.λlist.Map(λb.λlist′.Head〈a, b〉(list′)) (Mult(list2, list)}{[nil]}

where

α : Type, β : Type ` [nil] = λ f .λx. f (λg.λy.y)x : List(List(α × β))

22

Exponentiation

Exercise: show that Exp has the type

` Exp : ∀α . ∀β . List(α) × List(β) ⇒ List(List(α × β))

and constructs a list of length q to the power p where

B p is the length of the list list1 in List(α)

B q is the length of the list list2 in List(β).

23

Encoding of the binary trees

The type BinTree of binary trees with leaves of type A is defined as

BinTree(A) = ∀α . (α × α⇒ α) ⇒ (A⇒ α ⇒ α)

Exercise: define the λ-term associated to a binary tree and
construct the λ-term

` Flatten : ∀α. BinTree(α) ⇒ List(α)

which transforms every binary tree in the list of its leaves, ordered
from left to right.

24

Part Two

An operational semantics

Terms and evaluation contexts

25

Second-order calculus with boolean tests

In order to build a programming language, the syntax of second-
order λ-calculus may be extended with a type

Bool

two constants

true false

as well as the term constructor

if M then P else Q

and the three typing rules:

` true : Bool ` false : Bool

Γ `M : Bool ∆ ` P : A ∆ ` Q : A
Γ,∆ ` if M then P else Q : A

Goal: show that every typed term has a normal form

26

The terms

The untyped λ-terms extended with pairs and boolean tests.

P ::= x variable
| λx.P abstraction
| P Q application

| (P,Q) pair
| fst(P) first projection
| snd(P) second projection

| if M then P else Q boolean test
| true true constant
| false false constant

27

Evaluation contexts

The evaluation contexts are stacks or finite lists of operations:

E ::= nil empty context
| P · E application
| fst · E first projection
| snd · E second projection
| (if P,Q) · E boolean test

28

The evaluation bracket

The combination of a term M and of a context E induces a term

〈M | E〉

defined as follows:

〈M | nil〉 = P
〈M | P · E〉 = 〈M P | E〉
〈M | fst · E〉 = 〈fst(M) | E〉
〈M | snd · E〉 = 〈snd(M) | E〉
〈M | (if P,Q) · E〉 = 〈if M then P else Q | E〉

29

The dynamics

Five rewriting rules:

◦ the β-rule:

〈λx.M | P · E〉 → 〈M[x := P] | E〉

◦ two projection rules for the pair:

〈(P,Q) | fst · E〉 → 〈P | E〉
〈(P,Q) | snd · E〉 → 〈Q | E〉

◦ two rules for the boolean test:

〈true | (if P,Q) · E〉 → 〈P | E〉
〈false | (if P,Q) · E〉 → 〈Q | E〉

30

Sums

Possible to extend the language of terms with three operators

inl(M) inr(M) caseof(M,P,Q)

the language of contexts with one operator

(case P,Q) · E

Then, add the equation:

〈M | (case P,Q) · E〉 = 〈caseof(M,P,Q) | E〉

and the two rewriting rules:

〈inl(M) | (case P,Q) · E〉 → 〈P M | E〉
〈inr(M) | (case P,Q) · E〉 → 〈Q M | E〉

31

Part Three

A pretopology

Well-typed terms cannot go wrong

32

Accepting set of terms

Definition. A set of terms

⊥⊥

is called accepting when it is closed by anti-reduction, that is:

for all M,N M → N and N ∈ ⊥⊥

implies

M ∈ ⊥⊥

33

Illustration: the safe terms

Definition. A λ-term M is called safe when:

B the term M rewrites into the boolean constant true

B the term M rewrites into the boolean constant false

B or M produces an infinite rewriting path:

M −→M1 −→M2 −→ · · · −→Mn −→ · · ·

The existence of the infinite path ensures that there is no syntax error.

examples of safe terms: (λx.xx)(λx.xx) true (λx.x)true

example of non safe terms: fst(true) (syntax error !)

34

Illustration: the safe and normalising terms

Property. The set ⊥⊥s of safe terms is accepting.

Property. The set ⊥⊥n of safe and normalising terms is accepting.

Remark:
the set of safe and strongly normalising terms is not accepting...

Hence, the method below does not imply that the typed λ-terms
are strongly normalizing in the second-order λ-calculus.

However, the method may be easily adapted to establish strong
normalization, thanks to the notion of reducibility candidate.

35

Orthogonality

We suppose given an accepting set ⊥⊥ of terms.

Definition.

A term M is called orthogonal to a context E, what we write

M ⊥ E

when the term

〈M | E〉

is an element of ⊥⊥.

36

Orthogonality

Suppose given a set S of evaluation contexts.

Notation: one writes

M ⊥ S

when

M ⊥ E

for every context E ∈ S .

37

Semantic varieties

Definition.

A semantic variety is a set of terms of the form

S⊥ =
{

M | M ⊥ S
}

for some set S of evaluation contexts.

Interpretation:

S⊥ contains the terms which combine well with every context of S.

38

Closure operator

A closure operator on a set A is a function

σ : ℘(A) −→ ℘(A)

from the powerset ℘(A) of A to itself, such that

B σ is monotone:

X ⊆ Y ⇒ σ(X) ⊆ σ(Y)

B σ is increasing:

X ⊆ σ(X)

B σ is idempotent:

σ(σ(X)) = σ(X)

39

Closure operators

Property.

A closure operator

σ : ℘(A) −→ ℘(A)

is entirely described by the set

f ix(σ)

of its fixpoints, which is closed by arbitrary intersections:

◦ if (Xi)i∈I is a family of subsets of A, then

∀i ∈ I, Xi ∈ f ix(σ) ⇒

⋂
i∈I

Xi ∈ f ix(σ)

40

Closure operators

Conversely,

Property. Every set F of subsets of A closed by arbitrary intersection

∀i ∈ I, Xi ∈ F ⇒

⋂
i∈I

Xi ∈ F

defines a unique closure operator σ such that

F = f ix(σ).

41

Closure operators

Corolary.

The set F of semantic varieties is closed by intersection:⋂
i∈I

S⊥i =
(⋃

i∈I
Si

)⊥
and thus defines a closure operator, computed by biorthogonality:

X 7→ X⊥⊥

Corolary. A set X of terms is a semantic variety if and only if

X = X⊥⊥.

42

In algebraic geometry

λ-terms ∼ points
evaluation contexts ∼ polynomials

〈x | P〉 ∼ P(x)

accepting set ⊥⊥ ∼ equality to zero
S⊥ ∼ V(S)

Definition. The Zariski topology has the varieties V(S) as closed sets.

43

In algebraic geometry

This definition of the Zariski topology requires the following property:

Proposition. The union X ∪ Y of two varieties X and Y is a variety.

This property is a consequence of the equality:

S⊥ ∪ T⊥ = (ST)⊥

where

ST = { P1P2 | P1 ∈ S,P2 ∈ T }

The product P1P2 of two polynomials P1 et P2 behaves as a disjunc-
tion:

〈x | P1P2〉 = 0 ⇐⇒ 〈x | P1〉 = 0 or 〈x | P2〉 = 0.

which tests P1 and P2 in a parallel and independent fashion.

44

By way of comparison...

Suppose given two semantic varieties X and Y.

The set X ∪ Y is a variety if and only if, for all terms M,

M ∈ (X ∪ Y)⊥⊥ ⇒ M ∈ X ∪ Y,

or equivalently:

M ⊥ X⊥ ∩ Y⊥ ⇒ M ∈ X ∪ Y,

This is true when there exits an operation 6 on contexts such that

〈M | E1 6 E2〉 ∈ ⊥⊥ ⇐⇒ 〈M | E1〉 ∈ ⊥⊥ or 〈M | E2〉 ∈ ⊥⊥

Remark: Such an operator 6 does not exist in the λ-calculus,
either for safety ⊥⊥s or normalization ⊥⊥n.

45

46

Part fourth

Varieties as semantic types

A modern account of “reducibility candidates”

47

Arrow type

For every two sets X and Y of terms, one defines

X⇒ Y

as the set of terms M such that:

∀P ∈ X, MP ∈ Y.

Proposition: X⇒ Y is a variety when Y is a variety.

48

Arrow type

Proposition. X⇒ Y is a variety when Y is a variety Y = S⊥

Proof. M ∈ X⇒ Y

⇐⇒ ∀P ∈ X, ∀E ∈ S, MP ⊥ E

⇐⇒ ∀P ∈ X, ∀E ∈ S, M ⊥ P · E

⇐⇒ M ⊥ X · S

where the set X · S is defined as

X · S = { P · E | P ∈ X, E ∈ S }

49

Product type

For every two sets X and Y of terms, one defines

X × Y

as the set of terms

X × Y =
(
{ fst · E | E ∈ S } ∪ { snd · E | E ∈ T }

)⊥

50

Product type

In the case where ⊥⊥ = ⊥⊥n is the set of safe and normalizing terms,

Proposition. Suppose that

X = S⊥ Y = T⊥

are two varieties defined by the sets S , ∅ et T , ∅.

In that case, X × Y contains the terms M which rewrite into a pair

(P,Q)

where P ∈ X and Q ∈ Y.

51

Universal quantification

Given a family of varieties (Xα)α∈W parametrized by W, one defines
the variety

∀α.Xα =
⋂
α∈W

Xα

It should be noted that

∀α.Xα =
(⋃
α∈W

Sα
)⊥

when

∀α ∈W, Xα = S⊥α .

52

Part five

The fundamental theorem of realizability

A semantic proof of normalization

53

Negative interpretation

We suppose given an accepting set ⊥⊥ of terms.

Definition. a typing environment ξ is a function which associates
to every type variable α : Type a set of evaluation contexts.

Idea: every type

α1 : Type, · · · , αn : Type ` A : Type

is interpreted as a function

ξ 7→ ||A || ξ

which transports every environment ξ to a set ||A || ξ of contexts.

54

Negative interpretation

The function

||A || : ξ 7→ ||A || ξ

is defined by induction on the size of the type:

||α || ξ = ξ(α)

||A⇒ B || ξ = { P · E | P ⊥ ||A || ξ et E ∈ ||B || ξ }

||A × B || ξ = { fst · E | E ∈ ||A || ξ } ∪ { snd · E | E ∈ ||B || ξ }

|| ∀α.A || ξ =
⋃

S∈℘(Π)

||A || ξ+α 7→S

Notation: the set of contexts is denoted by Π.

55

Fundamental theorem

Theorem. Suppose that the term M is typed by the sequent:

` M : A

Then,

M ⊥ ||A || ξ

Corolary. The λ-term M is an element of the variety ||A ||⊥
ξ
.

Remark.
The interpretation ||A || ξ does not depend on the environment ξ.

56

Application: the normalization theorem

Take the accepting set

⊥⊥ = ⊥⊥n

consisting of the safe and normalizing terms.

First, one shows that the set of contexts

||A || ξ
is nonempty for every closed type.

From this follows that the variety

||A ||⊥ξ
contains only normalizing terms.

Corolary: every typed λ-terms is normalizing.

57

Application

One would like to understand the property of terms

` M : ∀α.α⇒ α

For a given accepting set ⊥⊥, one has

|| ∀α.α⇒ α || = { P · E | P ⊥ E }

It is possible to extend the syntax of the pure λ-calculus with

B a generic term P

B a generic context E

58

Proposition.

The term 〈M | P · E〉 rewrites into the term 〈P | E〉.

Proof. Define the accepting set

⊥⊥ =
{

the terms which rewrite into 〈P,E〉
}

By definition of ⊥⊥ one has that

P ⊥ E

From this, it follows that

M ⊥ P · E

We conclude.

59

Classical logic

One extends the syntax of the pure λ-calculus with an operator

callcc

and a constant

k E

for every evaluation context (in a recursive way).

One considers the rewriting rules:

〈callcc | P · E〉 → 〈P | kE · E〉

〈k E | P · E
′
〉 → 〈P | E〉

60

Classical logic

Proposition.
The fundamental theorem remains true in the presence of

Peirce Law
Γ `M : (A⇒ B)⇒ A

Γ ` callcc M : A

Proof. Let ξ be an environment associated to Γ. Suppose that

Mξ ⊥ || (A⇒ B)⇒ A || ξ
We want to show that

callcc Mξ ⊥ ||A || ξ
Suppose that

E ∈ ||A || ξ

61

The sequence of rewriting steps

〈callcc Mξ | E〉 → 〈callcc |Mξ · E〉 → 〈Mξ | kE · E〉

establishes that its is sufficient to show that

kE ⊥ ||A⇒ B || ξ

So, consider a term P and context E′ such that

P ⊥ ||A || ξ E′ ∈ ||B || ξ

The property follows from the rewriting step

〈kE | P · E
′
〉 → 〈P | E〉

and from the fact that

〈P | E〉 ∈ ⊥⊥

62

We conclude that

callcc Mξ ⊥ ||A || ξ

Extension: subtyping

X ⊆ Y

63

Zermelo-Fraenkel set theory

Starting from a model of ZF set theory, one defines

|| a 6ε b || = { E | (a,E) ∈ b }

A generalization of Paul Cohen’s forcing.

64

Extension: intersection and union types

X ∧ Y = X ∩ Y

X ∨ Y = (X ∪ Y)⊥⊥

One needs to close in order to obtain a variety

65

Extension: existential quantification

Given a family of varieties (Xi)i∈I parametrized by I,

∀α.Xα =
⋂
α∈W

Xα

∃α.Xα = (
⋃
α∈W

Xα)⊥⊥

Note that we need to close the union here!

66

VAR-ACCESS
Γ(x) = τ

Γ ` x : τ

APP
Γ ` e1 : τ2 → τ1

Γ ` e2 : τ2

Γ ` e1 e2 : τ1

ABS
Γ, x : τ2 ` e : τ1

Γ ` λx.e : τ2 → τ1

PAIR
Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` (e1, e2) : τ1 × τ2

FST
Γ ` e : τ1 × τ2

Γ ` fst(e) : τ1

SND
Γ ` e : τ1 × τ2

Γ ` snd(e) : τ2

CONSTANT TRUE
Γ ` true : Bool

CONSTANT FALSE
Γ ` false : Bool

CONDITIONAL
Γ ` e1 : Bool

Γ ` e2 : τ Γ ` e3 : τ
Γ ` if e1 then e2 else e3 : τ

FIXPOINT
Γ ` e : τ→ τ

Γ ` Y e : τ

ALL-INTRO
Γ, α ` e : τ
Γ ` e : ∀α.τ

ALL-ELIM
Γ ` e : ∀α.τ

Γ ` e : τ[τ′/α]

EXISTS-INTRO
Γ ` e : τ[τ′/α]
Γ ` e : ∃α.τ

EXISTS-ELIM
Γ ` e : ∃α.τ′

Γ, α, x : τ′ ` 〈x | E〉 : τ
α < FV(τ) x < FV(E)

Γ ` 〈e | E〉 : τ

SUB
Γ ` e : τ′ τ′ <: τ

Γ ` e : τ

67

