Lambda calculs et catégories

Paul-André Melliès

Master Parisien de Recherche en Informatique

Ecole Normale Supérieure

Plan de la séance

- 1 Lambda-calcul typé du second ordre
- 2 Une sémantique opérationnelle
- 3 Une topologie
- 4 Les variétés comme type sémantique
- 5 Théorème fondamental
- 6 Application: théorème de normalisation

Part One

Second order lambda calculus

The expressive power of polymorphism

The simply-typed λ -calculus

The simple types A, B are constructed by the grammar:

 $A,B ::= \alpha \mid A \Rightarrow B.$

A typing context Γ is a finite sequence

 $\Gamma = (x_1:A_1,...,x_n:A_n)$

where each x_i is a variable and each A_i is a simple type.

A sequent is a triple

$$x_1 : A_1, ..., x_n : A_n \vdash P : B$$

where

$$x_1: A_1, ..., x_n: A_n$$

is a typing context, P is a λ -term and B is a simple type.

The simply-typed λ -calculus

Variable	$\overline{x:A \vdash x:A}$		
Abstraction	$\frac{\Gamma, x : A \vdash P : B}{\Gamma \vdash \lambda x \cdot P : A \Rightarrow B}$		
Application	$\frac{\Gamma \vdash P : A \Rightarrow B \qquad \Delta \vdash Q : A}{\Gamma, \Delta \vdash PQ : B}$		
Weakening	$\frac{\Gamma \vdash P : B}{\Gamma, x : A \vdash P : B}$		
Contraction	$\frac{\Gamma, x : A, y : A \vdash P : B}{\Gamma, z : A \vdash P[x, y \leftarrow z] : B}$		
Exchange	$\frac{\Gamma, x : A, y : B, \Delta \vdash P : C}{\Gamma, y : B, x : A, \Delta \vdash P : C}$		

Subject reduction

A λ -term *P* is simply typed when there exists a sequent

 $\Gamma \vdash P:A$

which may be obtained by a derivation tree.

One establishes that the set of simply typed λ -terms is closed under β -réduction:

Subject Reduction:

If $\Gamma \vdash P : A$ and $P \longrightarrow_{\beta} Q$, then $\Gamma \vdash Q : A$.

Girard 1972: the second-order λ -calculus

The simple types are extended by second-order quantification on the type variables

```
A, B ::= \alpha \mid A \Rightarrow B \mid A \times B \mid \forall \alpha. A
```

A typing context Γ is a finite list constructed by the grammar

```
\Gamma = nil | \Gamma, x : A | \Gamma, \alpha : Type
```

where

- ▷ nil is the empty list
- \triangleright x is a term variable and A is a type
- $\triangleright \quad \alpha$ is a type variable and *Type* is a symbol.

Two families of sequents

A type sequent is a triple

 $\alpha_1: Type, \dots, \alpha_n: Type \vdash A: Type$

where

 $\triangleright \quad \alpha_1 : Type, \dots, \alpha_n : Type$ is a context of type variables

 \triangleright A is a type.

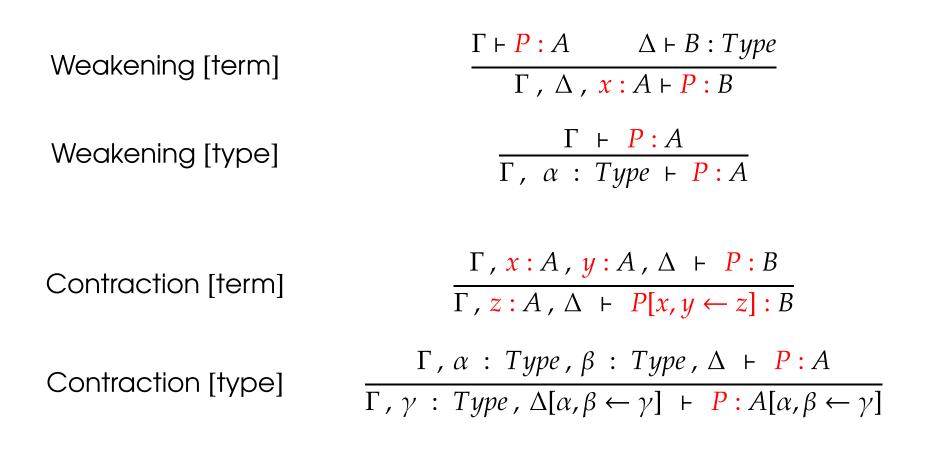
Type derivation

Variable	$\overline{\alpha: Type \vdash \alpha: Type}$
Implication	$\frac{\Gamma \vdash A: Type \qquad \Delta \vdash B: Type}{\Gamma, \Delta \vdash A \Rightarrow B: Type}$
Quantification	$\frac{\Gamma, \alpha: Type \vdash A: Type}{\Gamma \vdash \forall \alpha.A: Type}$
Weakening	$\Gamma \vdash A : Type$ $\overline{\Gamma, \alpha : Type \vdash A : Type}$
Contraction	$\frac{\Gamma, \alpha: Type, \beta: Type, \Delta \vdash A: Type}{\Gamma, \gamma: Type, \Delta \vdash A[\alpha, \beta \leftarrow \gamma]: Type}$
Exchange	$\begin{array}{l} \Gamma,\alpha:Type,\beta:Type,\Delta\ \vdash\ A:Type\\ \overline{\Gamma,\beta:Type,\alpha:Type,\Delta\ \vdash\ A:Type} \end{array}$

Term derivation

Variable	$\frac{\Gamma \vdash A : Type}{\Gamma, x : A \vdash x : A}$		
Abstraction [term]	$\frac{\Gamma, x : A \vdash P : B}{\Gamma \vdash \lambda x . P : A \Rightarrow B}$		
Application [term]	$\frac{\Gamma \vdash P : A \Rightarrow B \qquad \Delta \vdash Q : A}{\Gamma, \Delta \vdash PQ : B}$		
Abstraction [type]	$\frac{\Gamma, \alpha : Type \vdash P : A}{\Gamma \vdash P : \forall \alpha. A}$		
Application [type]	$\frac{\Gamma \vdash P : \forall \alpha. A \Delta \vdash B : Type}{\Gamma, \Delta \vdash P : A[\alpha := B]}$		

Term derivation



Term derivation

Exchange [term-term]	$\frac{\Gamma, x : A, y : B, \Delta \vdash P : C}{\Gamma, y : B, x : A, \Delta \vdash P : C}$
Exchange [type-type]	$\frac{\Gamma, \alpha: Type, \beta: Type, \Delta \vdash P:B}{\Gamma, \beta: Type, \alpha: Type, \Delta \vdash P:A}$
Exchange [term-type]	$\frac{\Gamma, \mathbf{x} : A, \alpha : Type, \Delta \vdash P : B}{\Gamma, \alpha : Type, \mathbf{x} : A, \Delta \vdash P : B}$
Exchange [type-term]	$\frac{\Gamma, \alpha: Type, x: A, \Delta \vdash P: B}{\Gamma, x: A, \alpha: Type, \Delta \vdash P: B}$

The Exchange [type-term] rule is allowed only when α is not free in A.

Term derivation (calculus with pairs)

Pair	$\frac{\Gamma \vdash P : A \qquad \Gamma \vdash Q : B}{\Gamma \vdash \langle P, Q \rangle : A \times B}$
Left projection	$\frac{\Gamma \vdash P : A \times B}{\Gamma \vdash \texttt{fst}(P) : A}$
Right projection	$\frac{\Gamma \vdash P : A \times B}{\Gamma \vdash snd(P) : B}$
Unit	$\overline{\Gamma \vdash *: 1}$

Properties of the second-order λ -calculus

A λ -term *P* is typed in second-order λ -calculus when there exists a typing context Γ and a type *A* such that:

```
\Gamma \vdash P : A
```

The set of simply-typed λ -terms is closed under β -reduction:

Subject reduction: If $\Gamma \vdash P : A$ and $P \longrightarrow_{\beta} Q$, then $\Gamma \vdash Q : A$.

A λ -term *P* is strongly normalizing when there exists no infinite path

$$P \longrightarrow_{\beta} P_1 \longrightarrow_{\beta} P_2 \longrightarrow_{\beta} \cdots \longrightarrow_{\beta} P_n \longrightarrow_{\beta} \cdots$$

of β -reductions.

Strong normalisation: Every λ -term *P* typed in the second-order λ -calculus is strongly normalising.

Curry-Howard

	Second order intuitionistic logic		
Variable	$\frac{\Gamma \vdash A : Type}{\Gamma, A \vdash A}$		
Abstraction [term]	$\frac{\Gamma, A \vdash B}{\Gamma \vdash \qquad A \Rightarrow B}$		
Application [term]	$\frac{\Gamma \vdash A \Rightarrow B \qquad \Delta \vdash A}{\Gamma, \Delta \vdash B}$		
Abstraction [type]	$\frac{\Gamma, \alpha: Type \vdash A}{\Gamma \vdash \forall \alpha. A}$		
Application [type]	$\frac{\Gamma \vdash \forall \alpha. A \Delta \vdash B : Type}{\Gamma, \Delta \vdash A[\alpha := B]}$		

Curry-Howard

Second order λ -calculus

Variable	$\frac{\Gamma \vdash A : Type}{\Gamma, x : A \vdash x : A}$	
Abstraction [term]	$\frac{\Gamma, x : A \vdash P : B}{\Gamma \vdash \lambda x . P : A \Rightarrow B}$	
Application [term]	$\frac{\Gamma \vdash \mathbf{P} : A \Rightarrow B \qquad \Delta \vdash \mathbf{Q} : A}{\Gamma, \Delta \vdash \mathbf{PQ} : B}$	
Abstraction [type]	$\frac{\Gamma, \alpha : Type \vdash P : A}{\Gamma \vdash P : \forall \alpha. A}$	
Application [type]	$\frac{\Gamma \vdash P : \forall \alpha. A \qquad \Delta \vdash B : Type}{\Gamma, \ \Delta \vdash P : A[\alpha := B]}$	

Encoding of the natural numbers

The type *Nat* of the natural numbers is defined as

$$Nat = \forall \alpha \quad . \quad (\alpha \Rightarrow \alpha) \quad \Rightarrow \quad (\alpha \Rightarrow \alpha)$$

Exercise: show that every Church numeral n is of type *Nat*:

$$\vdash \quad \lambda f.\lambda a. \underbrace{f \cdots f}_{n \text{ times}} (a) \quad : \quad \forall \alpha. (\alpha \Rightarrow \alpha) \Rightarrow (\alpha \Rightarrow \alpha)$$

Encoding of the finite lists

The type *List* of the finite lists of elements of *A* is defined as

 $List(A) = \forall \alpha \quad . \quad (A \Rightarrow \alpha \Rightarrow \alpha) \quad \Rightarrow \quad (\alpha \Rightarrow \alpha)$

The list $[a_1, a_2, \cdots, a_n]$ is encoded as

$$[a_1, \cdots, a_n] = \lambda f.\lambda x.fa_1(fa_2(\cdots fa_n x) \cdots)$$

while the empty list is encoded as

 $nil = \lambda f.\lambda x.x$

Property. The encoding of a finite list is of the expected type:

 \vdash $[a_1, \cdots, a_n]$: List(A)

Concatenation

The λ -term

Append = $\lambda list_1$. $\lambda list_2$. λf . λx . $list_1 f$ ($list_2 f x$) appends two finite lists.

Exercise: check that the λ -term Append has the type

 $\vdash Append : \forall \gamma \ . \ List(\gamma) \Rightarrow List(\gamma) \Rightarrow List(\gamma)$ and the expected behaviour:

 $Append[a_1, \cdots, a_k][a_{k+1}, \cdots a_n] \longrightarrow_{\beta} \cdots \longrightarrow_{\beta} [a_1, \cdots, a_n]$

Show that the number of β -réductions does not depend on the size of the lists.

Мар

Suppose given a λ -term h of type

$$h : A \Rightarrow B$$

Then, the λ -term

 $Map = \lambda h. \ \lambda list. \ \lambda f. \ \lambda x. \ list (\lambda a.f(ha)) x$

transforms every list

 $[a_1, \cdots, a_n]$

of elements of A in the list

 $[ha_1, \cdots, ha_n]$

of elements of B.

Map

Exercise: show that the λ -term Map has the type

 $\vdash Map : \forall \alpha . \forall \beta . (\alpha \Rightarrow \beta) \Rightarrow (List(\alpha) \Rightarrow List(\beta))$ and the expected behaviour

 $Map \ h \ [a_1, \cdots, a_n] \longrightarrow_{\beta} \cdots \longrightarrow_{\beta} [ha_1, \cdots, ha_n]$

Multiplication

Every λ -term *a* of type *A* induces the λ -term

 $Map(\lambda b.\langle a, b \rangle)$: $List(B) \Rightarrow List(A \times B)$

Multiplication is encoded as the λ -term

 $Mult = \lambda list_1.\lambda list_2. \ list_1(\lambda a.\lambda list.Append(\underline{Map}(\lambda b.\langle a, b \rangle)(list_2), list))(\lambda f.\lambda x.x)$ Exercise: show that Mult has the type

 $\vdash Mult : \forall \alpha . \forall \beta . List(\alpha) \times List(\beta) \implies List(\alpha \times \beta)$ et le comportement suivant:

 $Mult[a_1, \cdots, a_m][b_1, \cdots b_n] \longrightarrow_{\beta} \cdots \longrightarrow_{\beta} [(a_1, b_1), (a_1, b_2), \cdots, (a_m, b_n)]$

Exponentiation

We start from the λ -term

 $\vdash Head = \lambda a.\lambda list.\lambda f.\lambda x. fa(list fx) : \forall \alpha . \alpha \Rightarrow List(\alpha) \Rightarrow List(\alpha)$ which adds an element of type α to a list of type $List(\alpha)$.

The λ -term *Exp* is then defined as follows:

 $\lambda list_1.\lambda list_2. list_1 \{\lambda a.\lambda list.Map(\lambda b.\lambda list'.Head(a, b)(list')) (Mult(list_2, list)) \} \{[nil]\}$ where

 $\alpha: Type, \beta: Type \vdash [nil] = \lambda f.\lambda x.f(\lambda g.\lambda y.y)x : List(List(\alpha \times \beta))$

Exponentiation

Exercise: show that Exp has the type

 $\vdash Exp : \forall \alpha . \forall \beta . List(\alpha) \times List(\beta) \implies List(List(\alpha \times \beta))$ and constructs a list of length q to the power p where

- \triangleright p is the length of the list $list_1$ in $List(\alpha)$
- \triangleright q is the length of the list $list_2$ in $List(\beta)$.

Encoding of the binary trees

The type *BinTree* of binary trees with leaves of type *A* is defined as

 $BinTree(A) = \forall \alpha \quad . \quad (\alpha \times \alpha \Rightarrow \alpha) \quad \Rightarrow \quad (A \Rightarrow \alpha \Rightarrow \alpha)$

Exercise: define the λ -term associated to a binary tree and construct the λ -term

 \vdash Flatten : $\forall \alpha$. BinTree(α) \Rightarrow List(α)

which transforms every binary tree in the list of its leaves, ordered from left to right.

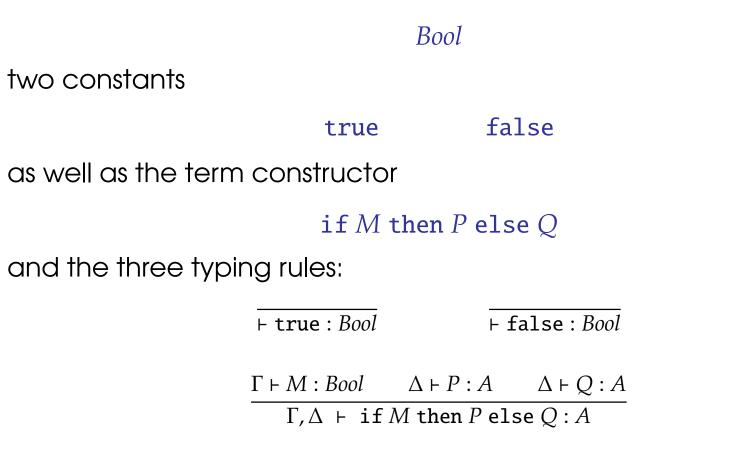
Part Two

An operational semantics

Terms and evaluation contexts

Second-order calculus with boolean tests

In order to build a programming language, the syntax of secondorder λ -calculus may be extended with a type



Goal: show that every typed term has a normal form

The terms

The **untyped** λ -terms extended with **pairs** and **boolean tests**.

Р	::= 	$ \begin{array}{l} x \\ \lambda x.P \\ P Q \end{array} $	variable abstraction application
	 	$\begin{array}{l} (P,Q) \\ \texttt{fst}(P) \\ \texttt{snd}(P) \end{array}$	pair first projection second projection
		if <i>M</i> then <i>P</i> else <i>Q</i> true false	boolean test true constant false constant

Evaluation contexts

The evaluation contexts are **stacks** or **finite lists** of operations:

E::=nilempty context $| P \cdot E$ application $| fst \cdot E$ first projection $| snd \cdot E$ second projection $| (if P, Q) \cdot E$ boolean test

The evaluation bracket

The combination of a term M and of a context E induces a term

 $\langle M \mid \mathbf{E} \rangle$

defined as follows:

The dynamics

Five rewriting rules:

• the β -rule:

 $\langle \lambda x.M \mid P \cdot \mathbf{E} \rangle \rightarrow \langle M[x := P] \mid \mathbf{E} \rangle$

• two projection rules for the pair:

 $\begin{array}{lll} \langle (P,Q) \mid \texttt{fst} \cdot \mathbf{E} \rangle & \to & \langle P \mid \mathbf{E} \rangle \\ \langle (P,Q) \mid \texttt{snd} \cdot \mathbf{E} \rangle & \to & \langle Q \mid \mathbf{E} \rangle \end{array}$

• two rules for the boolean test:

 $\langle \texttt{true} | (\texttt{if} P, Q) \cdot \mathbf{E} \rangle \rightarrow \langle P | \mathbf{E} \rangle \\ \langle \texttt{false} | (\texttt{if} P, Q) \cdot \mathbf{E} \rangle \rightarrow \langle Q | \mathbf{E} \rangle$

Sums

Possible to extend the language of **terms** with three operators

inl(M) inr(M) caseof(M, P, Q)

the language of **contexts** with one operator

 $(case P, Q) \cdot E$

Then, add the equation:

 $\langle M \mid (case P, Q) \cdot E \rangle = \langle caseof(M, P, Q) \mid E \rangle$

and the two rewriting rules:

 $\langle \operatorname{inl}(M) \mid (\operatorname{case} P, Q) \cdot E \rangle \rightarrow \langle PM \mid E \rangle$ $\langle \operatorname{inr}(M) \mid (\operatorname{case} P, Q) \cdot E \rangle \rightarrow \langle QM \mid E \rangle$

Part Three

A pretopology

Well-typed terms cannot go wrong

Accepting set of terms

Definition. A set of terms

Ш

is called **accepting** when it is closed by **anti-reduction**, that is:

for all M, N $M \rightarrow N$ and $N \in \bot$ implies

 $M \in \blacksquare$

Illustration: the safe terms

Definition. A λ -term *M* is called **safe** when:

- \triangleright the term *M* rewrites into the boolean constant true
- \triangleright the term *M* rewrites into the boolean constant false
- \triangleright or *M* produces an infinite rewriting path:

 $M \longrightarrow M_1 \longrightarrow M_2 \longrightarrow \cdots \longrightarrow M_n \longrightarrow \cdots$

The existence of the infinite path ensures that there is no syntax error.

examples of safe terms:	$(\lambda x.xx)(\lambda x.xx)$	true	$(\lambda x.x)$ true
example of non safe terms:	<pre>fst(true)</pre>	(synt	ax error !)

Illustration: the safe and normalising terms

Property. The set $\perp\!\!\!\perp_s$ of safe terms is accepting.

Property. The set $\perp n$ of safe and normalising terms is accepting.

Remark:

the set of safe and strongly normalising terms is not accepting...

Hence, the method below does not imply that the typed λ -terms are strongly normalizing in the second-order λ -calculus.

However, the method may be easily adapted to establish strong normalization, thanks to the notion of **reducibility candidate**.

Orthogonality

We suppose given an accepting set \perp of terms.

Definition.

A term M is called **orthogonal** to a context E, what we write

$M \perp E$

when the term

$\langle M \mid \mathbf{E} \rangle$

is an element of \bot .

Orthogonality

Suppose given a set S of evaluation contexts.

Notation: one writes

 $M \perp S$

when

 $M \perp \mathrm{E}$

for every context $E \in S$.

Semantic varieties

Definition.

A semantic variety is a set of terms of the form

$$S^{\perp} = \left\{ \begin{array}{cc} M & | & M \perp S \end{array} \right\}$$

for some set S of evaluation contexts.

Interpretation:

 S^{\perp} contains the terms which combine well with every context of S.

Closure operator

A **closure operator** on a set *A* is a function

 $\sigma \quad : \quad \wp(A) \quad \longrightarrow \quad \wp(A)$

from the powerset $\wp(A)$ of A to itself, such that

 \triangleright σ is monotone:

 $X \subseteq Y \quad \Rightarrow \quad \sigma(X) \subseteq \sigma(Y)$

 \triangleright σ is increasing:

 $X \subseteq \sigma(X)$

 \triangleright σ is idempotent:

 $\sigma(\sigma(X)) \quad = \quad \sigma(X)$

Closure operators

Property.

A closure operator

$$\sigma \quad : \quad \wp(A) \quad \longrightarrow \quad \wp(A)$$

is entirely described by the set

 $fix(\sigma)$

of its fixpoints, which is closed by arbitrary intersections:

• if $(X_i)_{i \in I}$ is a family of subsets of A, then

$$\forall i \in I, \quad X_i \in fix(\sigma) \qquad \Rightarrow \qquad \bigcap_{i \in I} X_i \in fix(\sigma)$$

Closure operators

Conversely,

Property. Every set \mathcal{F} of subsets of A closed by arbitrary intersection

$$\forall i \in I, \quad X_i \in \mathcal{F} \qquad \Rightarrow \qquad \bigcap_{i \in I} X_i \in \mathcal{F}$$

defines a unique closure operator σ such that

$$\mathcal{F} = fix(\sigma).$$

Closure operators

Corolary.

The set \mathcal{F} of semantic varieties is closed by intersection:

$$\bigcap_{i \in I} S_i^{\perp} = \left(\bigcup_{i \in I} S_i \right)^{\perp}$$

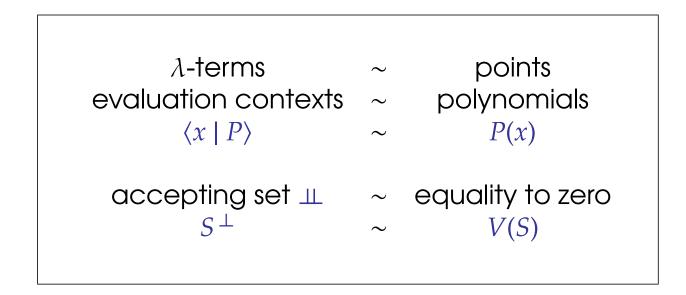
and thus defines a closure operator, computed by **biorthogonality**:

 $X \mapsto X^{\perp \perp}$

Corolary. A set X of terms is a semantic variety if and only if

 $X = X^{\perp \perp}.$

In algebraic geometry



Definition. The **Zariski topology** has the varieties V(S) as closed sets.

In algebraic geometry

This definition of the Zariski topology requires the following property:

Proposition. The union $X \cup Y$ of two varieties X and Y is a variety.

This property is a consequence of the equality:

 $S^{\perp} \cup T^{\perp} = (ST)^{\perp}$

where

 $ST = \{ P_1P_2 \mid P_1 \in S, P_2 \in T \}$

The **product** P_1P_2 of two polynomials P_1 et P_2 behaves as a disjunction:

 $\langle x | P_1 P_2 \rangle = 0 \quad \iff \quad \langle x | P_1 \rangle = 0 \quad \text{or} \quad \langle x | P_2 \rangle = 0.$

which tests P_1 and P_2 in a **parallel** and **independent** fashion.

By way of comparison...

Suppose given two semantic varieties X and Y.

The set $X \cup Y$ is a variety if and only if, for all terms M,

```
M \in (X \cup Y)^{\perp \perp} \quad \Rightarrow \quad M \in X \cup Y,
```

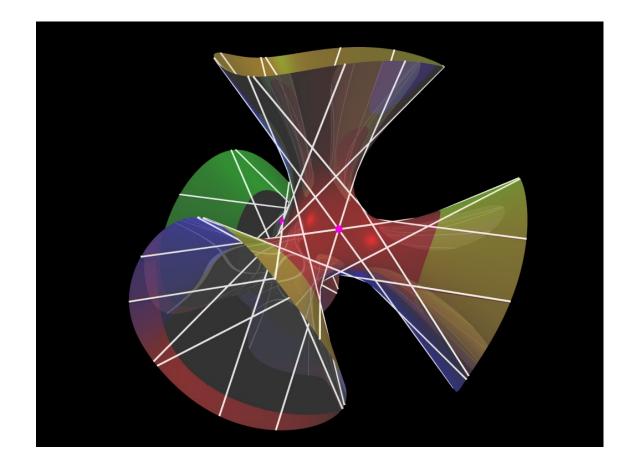
or equivalently:

$M \perp X^{\perp} \cap Y^{\perp} \quad \Rightarrow \quad M \in X \cup Y,$

This is true when there exits an operation \odot on contexts such that

 $\langle M \mid \mathcal{E}_1 \otimes \mathcal{E}_2 \rangle \in \bot$ $\iff \langle M \mid \mathcal{E}_1 \rangle \in \bot$ or $\langle M \mid \mathcal{E}_2 \rangle \in \bot$

Remark: Such an operator \oslash does not exist in the λ -calculus, either for safety \coprod_{S} or normalization \coprod_{n} .



Part fourth

Varieties as semantic types

A modern account of "reducibility candidates"

Arrow type

For every two sets X and Y of terms, one defines

 $X \Longrightarrow Y$

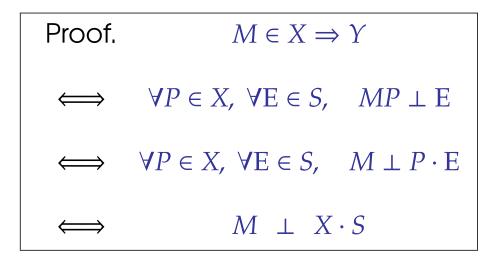
as the set of terms M such that:

 $\forall P \in X, \qquad MP \in Y.$

Proposition: $X \Rightarrow Y$ is a variety when Y is a variety.

Arrow type

Proposition. $X \Rightarrow Y$ is a variety when Y is a variety $Y = S^{\perp}$



where the set $X \cdot S$ is defined as

 $X \cdot S = \{ P \cdot E \mid P \in X, E \in S \}$

Product type

For every two sets X and Y of terms, one defines

$X \times Y$

as the set of terms

 $X \times Y = \left(\{ \mathsf{fst} \cdot \mathsf{E} \mid \mathsf{E} \in S \} \cup \{ \mathsf{snd} \cdot \mathsf{E} \mid \mathsf{E} \in T \} \right)^{\perp}$

Product type

In the case where $\perp \perp = \perp n$ is the set of safe and normalizing terms,

Proposition. Suppose that

 $X = S^{\perp} \qquad Y = T^{\perp}$

are two varieties defined by the sets $S \neq \emptyset$ et $T \neq \emptyset$.

In that case, $X \times Y$ contains the terms M which rewrite into a pair

(P,Q)

where $P \in X$ and $Q \in Y$.

Universal quantification

Given a family of varieties $(X_{\alpha})_{\alpha \in W}$ parametrized by W, one defines the variety

$$\forall \alpha. X_{\alpha} = \bigcap_{\alpha \in W} X_{\alpha}$$

It should be noted that

$$\forall \alpha. X_{\alpha} = \left(\bigcup_{\alpha \in W} S_{\alpha} \right)^{\perp}$$

when

$$\forall \alpha \in W, \qquad \qquad X_{\alpha} = S_{\alpha}^{\perp}.$$

Part five

The fundamental theorem of realizability

A semantic proof of normalization

Negative interpretation

We suppose given an accepting set \perp of terms.

Definition. a typing environment ξ is a function which associates to every type variable α : *Type* a set of evaluation contexts.

Idea: every type

$$\alpha_1: Type, \cdots, \alpha_n: Type \vdash A: Type$$

is interpreted as a function

 $\xi \mapsto ||A||_{\xi}$

which transports every environment ξ to a set $||A||_{\xi}$ of contexts.

Negative interpretation

The function

 $\|A\| : \xi \mapsto \|A\|_{\xi}$

is defined by induction on the size of the type:

 $\|\alpha\|_{\xi} = \xi(\alpha)$ $\|A \Rightarrow B\|_{\xi} = \{ P \cdot E \mid P \perp \|A\|_{\xi} \text{ ef } E \in \|B\|_{\xi} \}$ $\|A \times B\|_{\xi} = \{ \text{fst} \cdot E \mid E \in \|A\|_{\xi} \} \cup \{ \text{snd} \cdot E \mid E \in \|B\|_{\xi} \}$ $\|\forall \alpha.A\|_{\xi} = \bigcup_{S \in \wp(\Pi)} \|A\|_{\xi + \alpha \mapsto S}$

Notation: the set of contexts is denoted by Π .

Fundamental theorem

Theorem. Suppose that the term M is typed by the sequent:

 $\vdash M : A$

Then,

 $M \perp \|A\|_{\mathcal{E}}$

Corolary. The λ -term *M* is an element of the variety $||A||_{\xi}^{\perp}$.

Remark.

The interpretation $||A||_{\xi}$ does not depend on the environment ξ .

Application: the normalization theorem

Take the accepting set

 $\bot\!\!\!\bot = \bot\!\!\!\bot_n$

consisting of the safe and normalizing terms.

First, one shows that the set of contexts

$\|A\|_{\xi}$

is nonempty for every closed type.

From this follows that the variety

 $\|A\|_{\xi}^{\perp}$

contains only normalizing terms.

Corolary: every typed λ -terms is normalizing.

Application

One would like to understand the property of terms

 $\vdash M : \forall \alpha. \alpha \Rightarrow \alpha$

For a given accepting set \perp , one has

```
\|\forall \alpha. \alpha \Rightarrow \alpha\| = \{ P \cdot E \mid P \perp E \}
```

It is possible to extend the syntax of the pure λ -calculus with

- \triangleright a generic term **P**
- \triangleright a generic context E

Proposition.

The term $\langle M | \mathbf{P} \cdot \mathbf{E} \rangle$ rewrites into the term $\langle \mathbf{P} | \mathbf{E} \rangle$.

Proof. Define the accepting set

 $\perp = \left\{ \text{ the terms which rewrite into } \langle \mathbf{P}, \mathbf{E} \rangle \right\}$

By definition of ${\scriptstyle \bot\!\!\!\!\bot}$ one has that

 $\mathbf{P} \perp \mathbf{E}$

From this, it follows that

 $M \perp \mathbf{P} \cdot \mathbf{E}$

We conclude.

Classical logic

One extends the syntax of the pure λ -calculus with an operator

callcc

and a constant

 $k_{\rm E}$

for every evaluation context (in a recursive way).

One considers the rewriting rules:

Classical logic

Proposition.

The fundamental theorem remains true in the presence of

Peirce Law
$$\frac{\Gamma \vdash M : (A \Rightarrow B) \Rightarrow A}{\Gamma \vdash callcc M : A}$$

Proof. Let ξ be an environment associated to Γ . Suppose that

$$M_{\xi} \perp \|(A \Rightarrow B) \Rightarrow A\|_{\xi}$$

We want to show that

callec
$$M_{\xi} \perp ||A||_{\xi}$$

Suppose that

 $\mathbf{E} \in \|A\|_{\mathcal{E}}$

The sequence of rewriting steps

 $\begin{array}{l} \langle callcc\,M_{\xi} \mid \mathrm{E} \rangle \rightarrow \langle callcc \mid M_{\xi} \cdot \mathrm{E} \rangle \rightarrow \langle M_{\xi} \mid k_{\mathrm{E}} \cdot \mathrm{E} \rangle \\ \text{establishes that its is sufficient to show that} \\ k_{\mathrm{E}} \quad \bot \quad ||A \Rightarrow B||_{\xi} \\ \text{So, consider a term } P \text{ and context } E' \text{ such that} \\ P \perp ||A||_{\xi} \qquad E' \in ||B||_{\xi} \\ \text{The property follows from the rewriting step} \\ \langle k_{\mathrm{E}} \mid P \cdot \mathrm{E}' \rangle \rightarrow \langle P \mid \mathrm{E} \rangle \end{array}$

and from the fact that

 $\langle P \mid \mathbf{E} \rangle \in \bot\!\!\!\bot$

We conclude that

callcc $M_{\xi} \perp ||A||_{\xi}$

Extension: subtyping

 $X \subseteq Y$

Zermelo-Fraenkel set theory

Starting from a model of ZF set theory, one defines

 $||a \notin b|| = \{ E | (a, E) \in b \}$

A generalization of Paul Cohen's forcing.

Extension: intersection and union types

 $X \wedge Y \quad = \quad X \cap Y$

$X \lor Y \quad = \quad (X \cup Y)^{\perp \perp}$

One needs to close in order to obtain a variety

Extension: existential quantification

Given a family of varieties $(X_i)_{i \in I}$ parametrized by I,

$$\forall \alpha. X_{\alpha} = \bigcap_{\alpha \in W} X_{\alpha}$$
$$\exists \alpha. X_{\alpha} = (\bigcup_{\alpha \in W} X_{\alpha})^{\perp \perp}$$

Note that we need to close the union here!

$VAR-ACCESS \frac{\Gamma(x) = \tau}{\Gamma \vdash x : \tau}$	$ \begin{array}{c} APP \\ \Gamma \vdash e_1 : \tau_2 \to \tau_1 \\ \hline \Gamma \vdash e_2 : \tau_2 \\ \hline \Gamma \vdash e_1 e_2 : \tau_1 \end{array} $	$\frac{ABS}{\Gamma, x: \tau_2 \vdash} \frac{\Gamma \vdash \lambda x.e: \tau_2}{\Gamma \vdash \lambda x.e: \tau_2}$		$\frac{PAIR}{\Gamma \vdash e_1 : \tau_1} \frac{\Gamma \vdash e_2 : \tau_2}{\Gamma \vdash (e_1, e_2) : \tau_1 \times \tau_2}$
$FST \frac{\Gamma \vdash e : \tau_1 \times \tau_2}{\Gamma \vdash fst(e) : \tau_1}$	$\frac{SND}{\Gamma \vdash e : \tau_1 \times \tau_2}{\Gamma \vdash snd(e) : \tau_2}$	CONSTAN Γ⊦true:B	-	CONSTANT FALSE Γ + false : Bool
$\begin{array}{c} CONDITIONAL \\ \Gamma \vdash e_1 : Bool \\ \hline \Gamma \vdash e_2 : \tau \Gamma \vdash e_3 : \\ \hline \Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_2 \end{array}$	$\tau \qquad \Gamma \vdash c$	$\begin{array}{l} POINT\\ e:\tau \to \tau\\ \hline -Ye:\tau \end{array}$	$\frac{ALL-INTRO}{\Gamma, \alpha \vdash e : \tau}$ $\frac{\Gamma \vdash e : \forall \alpha. \tau}{\Gamma \vdash e : \forall \alpha. \tau}$	$\frac{ALL-ELIM}{\Gamma \vdash e : \forall \alpha.\tau}$ $\overline{\Gamma \vdash e : \tau[\tau'/\alpha]}$
$\frac{EXISTS-INTRO}{\Gamma \vdash e : \tau[\tau'/\alpha]}$ $\frac{\Gamma \vdash e : \exists \alpha.\tau}{\Gamma \vdash e : \exists \alpha.\tau}$	$\frac{\Gamma, \alpha, x}{\alpha \notin FV}$	$-ELIM$ $T \vdash e : \exists \alpha. \tau'$ $T \colon \tau' \vdash \langle x \mid E \rangle : \tau$ $T \vdash \langle e \mid E \rangle : \tau$	Su L	$\frac{JB}{-e:\tau'} \tau' <: \tau$ $\Gamma \vdash e: \tau$