Lambda calculs et catégories

Paul-André Melliès

Master Parisien de Recherche en Informatique

Ecole Normale Supérieure

Synopsis of the lecture

- 1 General presentation of the course
- 2 Categories and functors
- 3 Cartesian categories

General introduction

Programming language semantics

A **mathematical** study of programming languages and of their compilation schemes

High-level languages built on the λ -calculus as kernel:

PCFAlgolMLOCAMLJAVAλ-calculisstatesexceptionsmodulesconcurrencyhigher orderreferencesobjectssynchronisationtypingthreadsthreads

Formalisation and certification of **low level languages**

The logical origins

A proof of the formula

 $A \wedge B$

 (φ, ψ)

 φ

is a pair

consisting of a proof

of the formula A and of a proof

 ψ

of the formula B.

The logical origins

A proof of the formula

 $A \Rightarrow B$

 ψ

 φ

is an algorithm

which transforms every proof

of the formula A into a proof

 $\psi(\varphi)$

of the formula B.

The simply-typed λ -calculus

Variable	$\overline{x:A \vdash x:A}$
Abstraction	$\frac{\Gamma, x: A \vdash P: B}{\Gamma \vdash \lambda x. P: A \Rightarrow B}$
Application	$\frac{\Gamma \vdash P : A \Rightarrow B \qquad \Delta \vdash Q : A}{\Gamma, \Delta \vdash PQ : B}$
Weakening	$\frac{\Gamma \vdash P:B}{\Gamma, x:A \vdash P:B}$
Contraction	$\frac{\Gamma, x: A, y: A \vdash P: B}{\Gamma, z: A \vdash P[x, y \leftarrow z]: B}$
Permutation	$\frac{\Gamma, x: A, y: B, \Delta \vdash P: C}{\Gamma, y: B, x: A, \Delta \vdash P: C}$

Curry-Howard correspondance

Variable	$A \vdash A$
Abstraction	$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B}$
Application	$\frac{\Gamma \vdash A \Rightarrow B \qquad \Delta \vdash A}{\Gamma, \Delta \vdash B}$
Weakening	$\frac{\Gamma \vdash B}{\Gamma, A \vdash B}$
Contraction	$\frac{\Gamma, A, A \vdash B}{\Gamma, A \vdash B}$
Permutation	$\frac{\Gamma, A, B, \Delta \vdash C}{\Gamma, B, A, \Delta \vdash C}$

The algebraic nature of proofs

Illustration:

An adjunction is given by two graphical combinators

 $\eta: Id \Rightarrow R \circ L \qquad \qquad \varepsilon: L \circ R \Rightarrow Id$

The algebraic nature of proofs

which satisfy the two equalities below:

String diagrams

A diagrammatic composition law

Between game semantics and knot theory

String diagrams

The λ -term

 $\varphi : \neg \neg A , \psi : \neg \neg B \vdash \lambda k. \varphi (\lambda a. \psi (\lambda b. k (a, b)) : \neg \neg (A \otimes B)$

has the following diagram as control flow

The Stassheff associahedron

Computational effects

Typically described by a **monad** in Haskell

$$T \quad : \quad \mathscr{C} \quad \longrightarrow \quad \mathscr{C}$$

$$\eta : Id_{\mathscr{C}} \implies T$$
$$\mu : T \circ T \implies T$$

The global state monad

A program accessing **one register** with a set of values $Val = \{true, false\}$

 $A \xrightarrow{\text{impure}} B$ is interpreted as a function $Val \times A \xrightarrow{\text{pure}} Val \times B$ thus as a function $A \xrightarrow{\text{pure}} Val \Rightarrow (Val \times B)$ Hence, the global state monad

$$T : A \mapsto Val \Rightarrow (Val \times A)$$

16

The local state monad

The slightly intimidating monad

$$LA : n \mapsto S^n \Rightarrow \left(\int^{p \in Inj} S^p \times A_p \times Inj(n,p) \right)$$

on the presheaf category [Inj, Set] where the contravariant presheaf

$$p \mapsto Val^p$$
 : $Inj \longrightarrow Set$

describes the states available at degree p.

Categories and functors

Categories

A category ${\mathscr C}$ is given by

- [0] a class of **objects**
- [1] a set Hom(A, B) of morphisms

 $f : A \longrightarrow B$ for every pair of objects (A, B)

[2] a composition law

 $\circ : \operatorname{Hom}(B,C) \times \operatorname{Hom}(A,B) \longrightarrow \operatorname{Hom}(A,C)$

[2] an **identity** morphism

 $id_A : A \longrightarrow A$

for every object A,

Categories

satisfying the following properties:

[3] the composition law \circ is associative:

 $\forall f \in \mathbf{Hom}(A, B) \\ \forall g \in \mathbf{Hom}(B, C) \\ \forall h \in \mathbf{Hom}(C, D)$

 $h \circ (g \circ f) = (h \circ g) \circ f$

[3] the morphisms *id* are neutral elements

 $\forall f \in \mathbf{Hom}(A, B) \qquad \qquad f \circ id_A = f = id_B \circ f$

A hint of higher-dimensional wisdom

The composition law hides a 2-dimensional simplex

A hint of higher-dimensional wisdom

The associativity rule hides a 3-dimensional simplex

Functors

A functor between categories

 $F : \mathscr{C} \longrightarrow \mathscr{D}$

is defined as the following data:

[0] an object FA of \mathscr{D} for every object A of \mathscr{C} ,

[1] a function

 $F_{A,B}$: $\operatorname{Hom}_{\mathscr{C}}(A,B) \longrightarrow \operatorname{Hom}_{\mathscr{D}}(FA,FB)$ for every pair of objects (A,B) of the category \mathscr{C} .

Functors

One requires moreover

[2] that *F* preserves composition $FA \xrightarrow{Ff} FB \xrightarrow{Fg} FC = FA \xrightarrow{F(g \circ f)} FC$

[2] that *F* preserves the identities

$$FA \xrightarrow{Fid_A} FA = FA \xrightarrow{id_{FA}} FA$$

Illustration [orders]

Every ordered set

 (X, \leq)

defines a category

 $[X,\leq]$

- \triangleright whose objects are the elements of X
- whose hom-sets are defined as

$$Hom(x, y) = \begin{cases} \{*\} & \text{if } x \leq y \\ \emptyset & \text{otherwise} \end{cases}$$

In this category, there exists at most one map between two objects

Illustration [orders]

Exercise: given two ordered sets

 $(X, \leq) \qquad (Y, \leq)$

a functor

 $F \quad : \quad [X, \leq] \quad \longrightarrow \quad [Y, \leq]$

is the same thing as a monotonic function

 $F \quad : \quad (X, \leq) \quad \longrightarrow \quad (Y, \leq)$

between the underlying ordered sets.

Illustration [monoids]

A monoid (M, \cdot, e) is a set M equipped with a binary operation

 $\cdot : M \times M \longrightarrow M$

and a neutral element

 $e \quad : \quad \{*\} \quad \longrightarrow M$

satisfying the two properties below:

Associativity law $\forall x, y, z \in M$, $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ Unit law $\forall x \in M$, $x \cdot e = x = e \cdot x$.

Illustration [monoids]

Key observation: there is a one-to-one relationship $(M, \cdot, e) \mapsto \Sigma(M, \cdot, e)$

between

▷ monoids

categories with one object *

obtained by defining $\Sigma(M, \cdot, e)$ as the category with unique hom-set

 $\Sigma(M,\cdot,e) (*,*) = M$

and composition law and unit defined as

$$g \circ f = g \cdot f \qquad id_* = e$$

Illustration [monoids]

Key observation: given two monoids (M, \cdot, e) (N, \bullet, u) a functor

$$F \quad : \quad \Sigma(M, \cdot, e) \quad \longrightarrow \quad \Sigma(N, \bullet, u)$$

is the same thing as a homomorphism

 $f : (M, \cdot, e) \longrightarrow (N, \bullet, u)$

between the underlying monoids.

Recall that a homomorphism is a function f such that

 $\forall x, y \in M, \quad f(x \cdot y) = f(x) \bullet f(y) \qquad \qquad f(e) = u$

Illustration [actions]

The action of a monoid

 (M, \cdot, e)

on a set

Х

is the same thing as a functor

 $\Sigma(M, \cdot, e) \longrightarrow \mathbf{Set}$

Illustration [*representations*]

The action of a monoid

 (M, \cdot, e)

on a vector space

V

is the same thing as a functor

 $\Sigma(M, \cdot, e) \longrightarrow$ **Vect**

Cartesian categories

Isomorphism

In a category \mathscr{C} , a morphism

is called an **isomorphism** when there exists a morphism

$$g : B \longrightarrow A$$

 $f : A \longrightarrow B$

satisfying

$$g \circ f = id_A$$
 et $f \circ g = id_B$.

Exercise.

- Show that $g \circ f : A \longrightarrow C$ is an isomorphism when $f : A \longrightarrow B$ and $g : B \longrightarrow C$ are isomorphisms.
- Show that every functor $F : \mathscr{C} \longrightarrow \mathscr{D}$ transports an isomorphism of \mathscr{C} into an isomorphism of \mathscr{D} .

Products

The **product** of two objects *A* and *B* in a category \mathscr{C} is an object $A \times B$ equipped with two morphisms

 $\pi_1: A \times B \longrightarrow A \qquad \qquad \pi_2: A \times B \longrightarrow B$

such that for every diagram

there exists a unique morphism $h: X \longrightarrow A \times B$ making the diagram

commute.

Illustrations

- 1. The cartesian product in the category Set,
- 2. The cartesian product in the category Ord of ordered sets,
- 3. The lub $a \wedge b$ of two elements a and b in an ordered set (X, \leq) .

Terminal object

An object 1 is **terminal** in a category \mathscr{C} when $\operatorname{Hom}(A, 1)$ is a singleton for all objects A.

One may consider 1 as the nullary product in \mathscr{C} .

Example 1. the singleton {*} in the categories Set and Ord,

Example 2. the maximum of an ordered set (X, \leq)

Cartesian category

A cartesian category is a category & equipped with a product

$A \times B$

for all pairs A, B of objects, and of a terminal object

1

The category of small categories

Definition

A category is small when its class of objects is a set.

Definition

The category **Cat** of small categories has

- small categories as objects
- functors as morphisms.

Exercise. Show that the category **Cat** is cartesian.

Bifunctors

A **bifunctor** between categories

 $F : \mathscr{C}, \mathscr{D} \longrightarrow \mathscr{E}$

is given by:

 $\triangleright \quad \text{a functor} \quad F(A, -) \quad : \quad \mathscr{D} \longrightarrow \quad \mathscr{E}$

for every object A of the category \mathscr{C}

 $\triangleright \quad \text{a functor} \quad F(-,B) : \mathscr{C} \longrightarrow \mathscr{E}$

for every object *B* of the category \mathcal{D}

Bifunctors

such that the diagram

commutes for all maps $f: A \longrightarrow A'$ in \mathscr{C} and $g: B \longrightarrow B'$ in \mathscr{D} .

Reformulation

Proposition.

A bifunctor

$$F : \mathscr{C}, \mathscr{D} \longrightarrow \mathscr{E}$$

is the same thing as a functor

 $F : \mathscr{C} \times \mathscr{D} \longrightarrow \mathscr{E}$

where $\mathscr{C} \times \mathscr{D}$ is the product of the categories \mathscr{C} and \mathscr{D} .

Exercise

Show that every cartesian category ${\mathscr C}$ is equipped with a bifunctor

 $A, B \mapsto A \times B \quad : \quad \mathscr{C}, \, \mathscr{C} \quad \longrightarrow \quad \mathscr{C}$

as well as with a functor

 $*\mapsto 1$: $\mathbb{1} \longrightarrow \mathscr{C}$

from the terminal category 1 with one object * and one morphism id_* .