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Synopsis of the lecture

1 — General presentation of the course
2 — Categories and functors

3 — Cartesian categories



General intfroduction



Programming language semantics

A mathematical study of programming languages
and of their compilation schemes

High-level languages built on the A-calculus as kernel:

PCF Algol ML OCAML JAVA
A-calculis states exceptions modules concurrency
higher order references objects synchronisation

typing threads
recursion

Formalisation and certification of low level languages



The logical origins
A proof of the formula
IS a pair
(¢, ¢)

consisting of a proof

of the formula A and of a proof

of the formula B.



The logical origins

A proof of the formula

A = B
IS an algorithm
P
which fransforms every proof
‘%
of the formula A info a proof
P (@)

of the formula B.



The simply-typed A-calculus

Variable
x:A F x: A
| I x:A + P:B
Abstraction I - \xP A= B
ot T + P:A=B Ar Q:A
icafi
pplicato I,A + PQ:B
| I'' + P:B
Weakening I x:A + P:B
Contracti r,x:A,y:A v+ P:B
ontraction
F,z:A + Plx,y<z]:B
| I,x:A,y:B, A+ P:C
Permutation

I'y:B,x:A,A + P:C



Curry-Howard correspondance

Variable

A F A
. I, A F B
Abstraction T e
Abolication I' + A= B A F
pplicatio T AT =
. I' + B
Weakening T AT z
Contract I, A, A F
onfraction
I, A F
5 - I, A, B, A+
ermutation T B A A



The algebraic nature of proofs

lllustration:

An adjunction is given by two graphical combinators

n:ld=RolL ¢:LoR=Id

W, .
N m




The algebraic nature of proofs

which satisfy the two equalities below:
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String diagrams

11



A diagrammatic composition law

Between game semanftfics and knot theory
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The A-term

@ : —A,p: =B

String diagrams

|_

Ak. o (Aa. Y (Ab.k(a,b)) :

has the following diagram as conftrol flow

-= (A ® B)

Ii+

n-i_
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The Stassheff associahedron
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Computational effects

Typically described by a monad in Haskell
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The global state monad

A program accessing one register with a set of values Val = {true, false}

impure

A B
is inferpreted as a function
Valx A —2 Vil x B

thus as a function

A —222  vul = (Val x B)

Hence, the global state monad

T : A v Val= ValxA)
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The local state monad

The slightly infimidating monad

LA : n o " = | [P spxA,xInjmn,p)

on the presheaf category [Inj, Set] where the confravariant presheaf
pe Val?P : Inj —  Set

describes the states available at degree p.
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An equational reformulation

m
X

false




An equational reformulation

G




An equational reformulation

—

true
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An equational reformulation

val

val
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O O 0O OC

An equational reformulation

valo

: val, '

D D
D
D ~ D
D D

22




Categories and functors
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Categories
A category ¢ is given by
[0] a class of objects

[1] aset Hom(A, B) of morphisms

f + A — B

for every pair of objects (A, B)

[2] o composition law

o : Hom(B,C) X Hom(A,B)

[2] an identity morphism
idgy :+ A —
for every object A,

— Hom(A, C)
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Categories
safisfying the following properties:

[3] the composition law o is associative:

VY f € Hom(A, B)
V¢ € Hom(B, () ho(¢gof)=(hog)of
Yh € Hom(C, D)

[3] the morphisms id are neutfral elements

Vf € Hom(A, B) foidy = f = idgof
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A hint of higher-dimensional wisdom
B
/X
A—r7i—C

The composition law hides a 2-dimensional simplex
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A hint of higher-dimensional wisdom

B—2S& ¢ B—¢& _C
f h _ f h
A D A D

ho(gof) (hog)of

The associativity rule hides a 3-dimensional simplex

27



Functors

A functor between categories
F : € — 9
is defined as the following data:
[0] an object FA of & for every object A of &,

[1] a function

Fpap : Homg(A,B) — Homgy(FA, FB)
for every pair of objects (A, B) of the category 7.
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Functors
One requires moreover

[2] that F preserves composition

FA—S gt pc _

[2] that F preserves the identities

Fid 4

FA FA

FA

FA

F(gof)

idpa

FA

FC
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lllustration [orders ]

Every ordered set

(X, <)
defines a category

[X, <]

> whose objects are the elements of X

> whose hom-sets are defined as

B {>(-} if Xﬁy
Hom(x,y) = { %) otherwise

In this category, there exists at most one map between two objects
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lllustration [orders |

Exercise: given two ordered sets
(X, <) (Y, <)
a functor
F : [X<] — [Y<]
is the same thing as a monotonic function
F : X)) — (s

pbetween the underlying ordered sets.
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lllustration [ monoids ]

A monoid (M, -, e) is a set M equipped with a binary operation

MxM — M

and a neutral element
e : {¥} —M
safisfying the two properties below:
Associativity law Vx,y,zeM, (x-y)-z=x-(y-2)

Unit law VxeM, X-e=x=e¢e-X.
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lllustration [ monoids ]

Key observation: there is a one-tfo-one relationship
(M,-,e) — X(M,-e)

between
> MonNoids
> cafegories with one object =

obtained by defining X(M,, -, e) as the category with unigue hom-set
X(M,-e) (x,x) = M
and composition law and unit defined as

gof = gf id«=e
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lllustration [ monoids ]

Key observation: given two monoids
(M, -, e) (N,e,u)
a functor
F : XWM,.,e) — X(N,o,u)
is The same thing as a homomorphism
for Mo —  (Neuw

between the underlying monoids.

Recall that a homomorphism is a function f such that

VoyyeM, flx-y) = fx)e f(y) fle) = u
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lllustration [actions|]
The action of a monoid
(M, -, e)
on a set
X
is the same thing as a functor
Y.(M,-,e) —> Set
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lllustration

The action of a monoid

| representations |

(M, '/ 8)

on a vector space

is the same thing as a functor

Y.(M,-,e)

—  Vect
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Cartesian categories
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Isomorphism

In a category ¢, a morphism
f + A — B
Is called an isomorphism when there exists a morphism
g : B — A
satisfying
gof=idy et fog=idg

Exercise.

o Show that go f: A — Cis an isomorphism
when f : A — B and g : B — C are isomorphisms.

o Show that every functor F : ¢ — & transports
an isomorphism of % into an isomorphism of 7.
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Products

The product of two objects A and B in a category % is an object
A X B equipped with two morphisms

M :AXB—A T :AXB— B
such that for every diagram
/ A
V
X AXB
: N,
there exists a unique morphism h : X — A x B making the diagram
f A
V
X—h—A XB\
B

commute.
39



lllustrations

1. The cartesian product in the caftegory Set,

2. The carftesian product in the category Ord of ordered sets,

3. The lub a A b of two elements a and b in an ordered set (X, <).
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Terminal object

An object 1 is terminal in a category ¢ when Hom(A, 1) is a singleton
for all objects A.

One may consider 1 as the nullary product in €.

Example 1. the singleton {+} in the categories Set and Ord,

Example 2. the maximum of an ordered set (X, x)
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Cartesian category

A cartesian category is a category ¢ equipped with a product

A X B

for all pairs A, B of objects, and of a terminal object

1
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The category of small categories

Definition

A category is small when ifs class of objects is a sef.

Definition
The category Cat of small categories has

o small categories as objects

o functors as morphisms.

Exercise. Show that the category Cat is cartesian.
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Bifunctors

A bifunctor between categories

F : €9 — &
IS given by:

> afunctor F(A,-) : 99— &

for every object A of the category ¢

> a functor F(-,B) : € — &

for every object B of the category ¥
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Bifunctors

such that the diagram

F(A,B)— 48 _ra B
F(f,B) F(f,B")
Fa’, By— A8 poar pry

commutes forallmaps f:A— A" in ¥ and ¢:B— B in 7.



Reformulation

Proposition.

A bifunctor
F : €9 — &
Is The same thing as a functor
F : x99 — &
where ¢ x 7 Is the product of the categories 4 and Z.
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Exercise

Show that every cartesian category % is equipped with a bifunctor
A BHAXB : €,¢ — €
as well as with a functor

r—=1 : 1 — €

from the terminal category 1 with one object + and one morphism id..
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