
Lambda calculs et catégories

Paul-André Melliès

Master Parisien de Recherche en Informatique

Ecole Normale Supérieure

1

Synopsis of the lecture

1 – General presentation of the course

2 – Categories and functors

3 – Cartesian categories

2

General introduction

3

Programming language semantics

A mathematical study of programming languages
and of their compilation schemes

High-level languages built on the λ-calculus as kernel:

PCF Algol ML OCAML JAVA
λ-calculis states exceptions modules concurrency

higher order references objects synchronisation
typing threads

recursion

Formalisation and certification of low level languages

4

The logical origins

A proof of the formula

A ∧ B

is a pair

(ϕ , ψ)

consisting of a proof

ϕ

of the formula A and of a proof

ψ

of the formula B.

5

The logical origins

A proof of the formula

A ⇒ B

is an algorithm

ψ

which transforms every proof

ϕ

of the formula A into a proof

ψ (ϕ)

of the formula B.

6

The simply-typed λ-calculus

Variable
x : A ` x : A

Abstraction
Γ , x : A ` P : B

Γ ` λx.P : A⇒ B

Application
Γ ` P : A⇒ B ∆ ` Q : A

Γ,∆ ` PQ : B

Weakening Γ ` P : B
Γ , x : A ` P : B

Contraction
Γ , x : A , y : A ` P : B

Γ , z : A ` P[x, y← z] : B

Permutation
Γ , x : A , y : B , ∆ ` P : C
Γ , y : B , x : A , ∆ ` P : C

7

Curry-Howard correspondance

Variable
x : A ` x : A

Abstraction
Γ , x : A ` P : B

Γ ` λx.P : A⇒ B

Application
Γ ` P : A⇒ B ∆ ` Q : A

Γ,∆ ` PQ : B

Weakening Γ ` P : B
Γ , x : A ` P : B

Contraction
Γ , x : A , y : A ` P : B

Γ , z : A ` P[x, y← z] : B

Permutation
Γ , x : A , y : B , ∆ ` P : C
Γ , y : B , x : A , ∆ ` P : C

8

The algebraic nature of proofs

Illustration:

An adjunction is given by two graphical combinators

η : Id⇒ R ◦ L ε : L ◦ R⇒ Id

η

LR

L R

ε

9

The algebraic nature of proofs

which satisfy the two equalities below:

ε

η

=

R

R

R

R

ε

η

=

L

L

L

L

10

String diagrams

L

L

L L

L

R

R

RR

R

11

A diagrammatic composition law

R

L

Between game semantics and knot theory

12

String diagrams

The λ-term

ϕ : ¬¬A , ψ : ¬¬B ` λk. ϕ (λa. ψ (λb. k (a, b)) : ¬¬ (A ⊗ B)

has the following diagram as control flow

κ+κ+

ε

BA

R

A

B

R

R
LL

L

13

The Stassheff associahedron

AB C

D E

A

B C

D

E

A

B

C D

E

B C

D

E

A

A

D

E

B

C

A B

C

D

E

A B

C

D

E

A B

C D E

B C

D

E

A

A B

C D E

A B

C D E

A

B

C D

E

A

B

C D

E

AB C

D E

AB C

D E

A D

E

B C

A B

C D

E A D

E

B C

A B

C

D

E

B

C D

E

A

A

B C

D E

A

B C

D E

A

B

C

D E

A B
C
D E

u

v

w
w

u

v

A

D EB C

A

D EB C

A

D EB C

B C

D

E

A

A

B C

D

E

A

B C

D

E

B C

D

E

A

A

D

E

B C

A

D

E

B C

A

D

E

B C

A

D

E

B

C

B

C D

E

A

A

D

E

B C

A

B

C

D E

A

B C

D E

A B

C D

E

A B

C D

E

A D

E

B C

A D

E

B C

A B

C

D

E

A B

C

D

E

A

D

E

B

C

B

C D

E

A

A

B

C

D E

14

Computational effects

Typically described by a monad in Haskell

T : C −→ C

η : IdC ⇒ T

µ : T ◦ T ⇒ T

15

The global state monad

A program accessing one register with a set of values Val = {true, f alse}

A impure
// B

is interpreted as a function

Val × A pure
// Val × B

thus as a function

A pure
// Val⇒ (Val × B)

Hence, the global state monad

T : A 7→ Val⇒ (Val × A)

16

The local state monad

The slightly intimidating monad

L A : n 7→ S n
⇒

 ∫ p∈Inj S p
× Ap × Inj (n, p)


on the presheaf category [Inj,Set] where the contravariant presheaf

p 7→ Val p : Inj −→ Set

describes the states available at degree p.

17

An equational reformulation

x =

true

false
x

x

An equational reformulation

val1val2 = val2

19

An equational reformulation

true

y

x

= true
x

20

An equational reformulation

val′

val = val

val′

21

An equational reformulation

D

D

D

D

D

D

valvalD
=

D

D

D

D

D

D

valD

22

Categories and functors

23

Categories

A category C is given by

[0] a class of objects

[1] a set Hom(A,B) of morphisms

f : A −→ B

for every pair of objects (A,B)

[2] a composition law

◦ : Hom(B,C) × Hom(A,B) −→ Hom(A,C)

[2] an identity morphism

idA : A −→ A

for every object A,

24

Categories

satisfying the following properties:

[3] the composition law ◦ is associative:

∀ f ∈ Hom(A,B)
∀g ∈ Hom(B,C)
∀h ∈ Hom(C,D)

h ◦ (g ◦ f) = (h ◦ g) ◦ f

[3] the morphisms id are neutral elements

∀ f ∈ Hom(A,B) f ◦ idA = f = idB ◦ f

25

A hint of higher-dimensional wisdom

B

f

��

A

g

FF

g ◦ f
//C

The composition law hides a 2-dimensional simplex

26

A hint of higher-dimensional wisdom

B
g

//C

h

��

A

f

FF

h ◦ (g ◦ f)
//

g ◦ f

99

D

=

B
g

//

h ◦ g

%%

C

h

��

A

f

FF

(h ◦ g) ◦ f
//D

The associativity rule hides a 3-dimensional simplex

27

Functors

A functor between categories

F : C −→ D

is defined as the following data:

[0] an object FA of D for every object A of C ,

[1] a function

FA,B : HomC (A,B) −→ HomD (FA,FB)

for every pair of objects (A,B) of the category C .

28

Functors

One requires moreover

[2] that F preserves composition

FA
F f

//FB
Fg

//FC = FA
F(g◦ f)

//FC

[2] that F preserves the identities

FA FidA //FA = FA idFA //FA

29

Illustration [orders]

Every ordered set

(X,≤)

defines a category

[X,≤]

B whose objects are the elements of X

B whose hom-sets are defined as

Hom(x, y) =

{
{∗} if x ≤ y
∅ otherwise

In this category, there exists at most one map between two objects

30

Illustration [orders]

Exercise: given two ordered sets

(X,≤) (Y,≤)

a functor

F : [X,≤] −→ [Y,≤]

is the same thing as a monotonic function

F : (X,≤) −→ (Y,≤)

between the underlying ordered sets.

31

Illustration [monoids]

A monoid (M, ·, e) is a set M equipped with a binary operation

· : M ×M −→ M

and a neutral element

e : {∗} −→M

satisfying the two properties below:

Associativity law ∀x, y, z ∈M, (x · y) · z = x · (y · z)

Unit law ∀x ∈M, x · e = x = e · x.

32

Illustration [monoids]

Key observation: there is a one-to-one relationship

(M, ·, e) 7→ Σ (M, ·, e)

between

B monoids

B categories with one object ∗

obtained by defining Σ(M, ·, e) as the category with unique hom-set

Σ(M, ·, e) (∗, ∗) = M

and composition law and unit defined as

g ◦ f = g · f id ∗ = e

33

Illustration [monoids]

Key observation: given two monoids

(M, ·, e) (N, •,u)

a functor

F : Σ (M, ·, e) −→ Σ (N, •,u)

is the same thing as a homomorphism

f : (M, ·, e) −→ (N, •,u)

between the underlying monoids.

Recall that a homomorphism is a function f such that

∀x, y ∈M, f (x · y) = f (x) • f (y) f (e) = u

34

Illustration [actions]

The action of a monoid

(M, ·, e)

on a set

X

is the same thing as a functor

Σ (M, ·, e) −→ Set

35

Illustration [representations]

The action of a monoid

(M, ·, e)

on a vector space

V

is the same thing as a functor

Σ (M, ·, e) −→ Vect

36

Cartesian categories

37

Isomorphism

In a category C , a morphism

f : A −→ B

is called an isomorphism when there exists a morphism

g : B −→ A

satisfying

g ◦ f = idA et f ◦ g = idB.

Exercise.

◦ Show that g ◦ f : A −→ C is an isomorphism
. when f : A −→ B and g : B −→ C are isomorphisms.

◦ Show that every functor F : C −→ D transports
. an isomorphism of C into an isomorphism of D .

38

Products
The product of two objects A and B in a category C is an object
A × B equipped with two morphisms

π1 : A × B −→ A π2 : A × B −→ B

such that for every diagram

A

X

f --

g 11

A × B

π1
::

π2 $$B

there exists a unique morphism h : X −→ A × B making the diagram

A

X h //

f --

g 11

A × B

π1
::

π2 $$B

commute.
39

Illustrations

1. The cartesian product in the category Set,

2. The cartesian product in the category Ord of ordered sets,

3. The lub a ∧ b of two elements a and b in an ordered set (X,�).

40

Terminal object

An object 1 is terminal in a category C when Hom(A, 1) is a singleton
for all objects A.

One may consider 1 as the nullary product in C .

Example 1. the singleton {∗} in the categories Set and Ord,

Example 2. the maximum of an ordered set (X,�)

41

Cartesian category

A cartesian category is a category C equipped with a product

A × B

for all pairs A, B of objects, and of a terminal object

1

42

The category of small categories

Definition

A category is small when its class of objects is a set.

Definition

The category Cat of small categories has

◦ small categories as objects

◦ functors as morphisms.

Exercise. Show that the category Cat is cartesian.

43

Bifunctors

A bifunctor between categories

F : C ,D −→ E

is given by:

B a functor F (A , −) : D −→ E

for every object A of the category C

B a functor F (− , B) : C −→ E

for every object B of the category D

44

Bifunctors

such that the diagram

F(A,B)
F(A,g)

//

F(f ,B)

��

F(A,B′)

F(f ,B′)

��

F(A′,B)
F(A′,g)

//F(A′,B′)

commutes for all maps f : A −→ A′ in C and g : B −→ B′ in D .

45

Reformulation

Proposition.

A bifunctor

F : C ,D −→ E

is the same thing as a functor

F : C ×D −→ E

where C ×D is the product of the categories C and D .

46

Exercise

Show that every cartesian category C is equipped with a bifunctor

A,B 7→ A × B : C , C −→ C

as well as with a functor

∗ 7→ 1 : 1 −→ C

from the terminal category 1 with one object ∗ and one morphism id∗.

47

