Lambda calculs et catégories

Paul-André Melliès

Master Parisien de Recherche en Informatique

Paris, Octobre 2010

Plan de la séance

- 1 Lambda-calcul typé du second ordre
- 2 Une sémantique opérationnelle
- 3 Une topologie
- 4 Les variétés comme type sémantique
- 5 Théorème fondamental
- 6 Application: théorème de normalisation

Part I

Second order lambda calculus

Polymorphism

Curry 1958: the simply typed λ -calculus

It is possible to type the λ -terms by simple types A,B constructed by the grammar:

$$A,B ::= \alpha \mid A \Rightarrow B.$$

A typing context Γ is a finite list $\Gamma = (x_1 : A_1, ..., x_n : A_n)$ where x_i is a variable and A_i is a simple type, for all $1 \le i \le n$.

A sequent is a triple:

$$x_1: A_1, ..., x_n: A_n \vdash P: B$$

where $x_1:A_1,...,x_n:A_n$ is a typing context, P is a λ -term and B is a simple type.

Curry 1958: the simply-typed λ -calculus

Variable	$\overline{x:A \vdash x:A}$
Abstraction	$\frac{\Gamma, x : A \vdash P : B}{\Gamma \vdash \lambda x . P : A \Rightarrow B}$
Application	$\frac{\Gamma \vdash P : A \Rightarrow B \qquad \Delta \vdash Q : A}{\Gamma, \Delta \vdash PQ : B}$
Weakening	$\frac{\Gamma \vdash P : B}{\Gamma, x : A \vdash P : B}$
Contraction	$\frac{\Gamma, x : A, y : A \vdash P : B}{\Gamma, z : A \vdash P[x, y \leftarrow z] : B}$
Permutation	$\frac{\Gamma, x : A, y : B, \Delta \vdash P : C}{\Gamma, y : B, x : A, \Delta \vdash P : C}$

Girard 1972: second-order λ -calculus

The idea is to extend the usual simply typed lambda-calculus with second-order quantification on type variables.

Types are simple types extended with second-order variables:

$$A, B ::= \alpha \mid A \Rightarrow B \mid \forall \alpha.A$$

A typing context Γ is a finite list constructed by the grammar

$$\Gamma = \text{nil} \mid \Gamma, x : A \mid \Gamma, \alpha$$

where:

- o nil is the empty list
- o x is a term variable and A is a type,
- o α is a type variable.

Girard 1972: second-order λ -calculus

Second order abstraction

$$\frac{\Gamma, \alpha \vdash P : A}{\Gamma \vdash P : \forall \alpha.A}$$

Second order application

$$\frac{\Gamma \vdash P : \forall \alpha.A}{\Gamma \vdash P : A[\alpha := B]}$$

Properties of second-order polymorphism

A λ -term P is typed when there exists a typing context Γ and a second-order type A such that:

$$\Gamma \vdash P : A$$

One establishes that the set of typed λ -terms is closed under β -réduction:

Subject Reduction: If $\Gamma \vdash P : A$ and $P \longrightarrow_{\beta} Q$, then $\Gamma \vdash Q : A$.

A λ -term P is strongly normalizing when all the rewriting paths based on β -reduction:

$$P \longrightarrow_{\beta} P_1 \longrightarrow_{\beta} P_2 \longrightarrow_{\beta} \cdots \longrightarrow_{\beta} P_n \longrightarrow_{\beta} \cdots$$

terminate.

Strong normalisation: Every typed λ -term P is strongly normalizing.

Curry-Howard (1)

Minimal intuitionistic logic

Variable	$A \vdash A$
Abstraction	$\frac{\Gamma, A \vdash B}{\Gamma \vdash \qquad A \Rightarrow B}$
Application	$\frac{\Gamma \vdash A \Rightarrow B \qquad \Delta \vdash A}{\Gamma, \Delta \vdash B}$
Weakening	$\frac{\Gamma \vdash B}{\Gamma, A \vdash B}$
Contraction	$\frac{\Gamma, A, A \vdash B}{\Gamma, A \vdash B}$
Permutation	$\frac{\Gamma, A, B, \Delta \vdash C}{\Gamma, B, A, \Delta \vdash C}$

Curry-Howard (1)

simply-typed λ -calculus

Variable	$\overline{x}:A \vdash x:A$
Abstraction	$\frac{\Gamma, x : A \vdash P : B}{\Gamma \vdash \lambda x . P : A \Rightarrow B}$
Application	$\frac{\Gamma \vdash P : A \Rightarrow B \qquad \Delta \vdash Q : A}{\Gamma, \Delta \vdash PQ : B}$
Weakening	$\frac{\Gamma \vdash P : B}{\Gamma, x : A \vdash P : B}$
Contraction	$\frac{\Gamma, x : A, y : A \vdash P : B}{\Gamma, z : A \vdash P[x, y \leftarrow z] : B}$
Permutation	$\frac{\Gamma, x : A, y : B, \Delta \vdash P : C}{\Gamma, y : B, x : A, \Delta \vdash P : C}$

Curry-Howard for second-order logic

Second order abstraction
$$\frac{\Gamma, \alpha + A}{\Gamma + \forall \alpha A}$$

Second order application
$$\frac{\Gamma \vdash \forall \alpha.A}{\Gamma \vdash A[\alpha := B]}$$

Encoding the natural numbers

The type *Nat* of natural numbers is defined as:

$$Nat = \forall \alpha . (\alpha \Rightarrow \alpha) \Rightarrow (\alpha \Rightarrow \alpha)$$

Exercise: check that every Church numeral n is indeed of type Nat:

$$\vdash \quad \lambda f. \lambda a. \ \underbrace{f \cdots f}_{n \text{ times}} (a) \quad : \quad \forall \alpha. (\alpha \Rightarrow \alpha) \Rightarrow (\alpha \Rightarrow \alpha)$$

Encoding finite lists

The type *List* of finite lists of elements of *A* is defined as:

$$List(A) = \forall \alpha . (A \Rightarrow \alpha \Rightarrow \alpha) \Rightarrow (\alpha \Rightarrow \alpha)$$

The list $[a_1, a_2, \cdots, a_n]$ is encoded as

$$[a_1, \cdots, a_n] = \lambda f. \lambda x. f a_1(f a_2(\cdots f a_n x) \cdots)$$

and the empty list is encoded as

$$nil = \lambda f.\lambda x.x$$

So, for instance:

$$[a_1, a_2] = \lambda f. \lambda x. f a_1(f a_2 x)$$

Exercise: establish that the encoding of finite lists is of the expected type:

$$\vdash [a_1, \cdots, a_n] : List(A)$$

Appending lists

The following λ -term appends two finite lists:

Append =
$$\lambda list_1$$
. $\lambda list_2$. λf . λx . $list_1 f$ ($list_2 f x$)

Exercise: check that the λ -term Append has the expected type:

$$\vdash \textit{Append} : \forall \gamma \; . \; \textit{List}(\gamma) \; \Rightarrow \; \textit{List}(\gamma) \; \Rightarrow \; \textit{List}(\gamma)$$
 and the expected behaviour:

$$Append[a_1, \cdots, a_k][a_{k+1}, \cdots a_n] \longrightarrow_{\beta} \cdots \longrightarrow_{\beta} [a_1, \cdots, a_n]$$

Mapping lists

Given a λ -term h of type

$$h : A \Rightarrow B$$

the λ -term

$$Map = \lambda h. \lambda list. \lambda f. \lambda x. list (\lambda a. f(ha)) x$$

transforms every list

$$[a_1,\cdots,a_n]$$

of elements of A into the list

$$[ha_1, \cdots, ha_n]$$

of elements of B.

Exercise: check that the λ -term Map has the expected type:

$$\vdash$$
 Map : $\forall \alpha . \forall \beta . (\alpha \Rightarrow \beta) \Rightarrow (List(\alpha) \Rightarrow List(\beta))$

and the expected behaviour:

$$Map \ h \ [a_1, \cdots, a_n] \longrightarrow_{\beta} \cdots \longrightarrow_{\beta} [ha_1, \cdots, ha_n]$$

Encoding binary trees

The type BinTree of binary trees with leaves of type A is defined as:

```
BinTree(A) = \forall \alpha . (\alpha \times \alpha \Rightarrow \alpha) \Rightarrow (A \Rightarrow \alpha)
```

Exercise: define the λ -term associated to a given binary tree, and construct a λ -term Flatten of type

```
\vdash Flatten : \forall \alpha. BinTree(\alpha) \Rightarrow List(\alpha)
```

which flattens every binary tree into the list of its leaves, ordered from left to right.

Part II

An operational semantics

Terms and evaluation contexts

The terms

The usual **untyped** λ -calculus extended with **pairs** and **conditionals**.

е	::= 	x λx.e e e	variable abstraction application
		(e,e) fst(e) snd(e)	pair first projection second projection
		if e then e else e true false	conditional constant true constant false

The evaluation contexts

Evaluation contexts are **stacks** or **finite lists** of operations:

The evaluation bracket

Every term e and context E combine as a term

$$\langle e \mid E \rangle$$

defined just in the usual way:

```
 \begin{array}{lll} \langle e \mid \text{nil} \rangle & = & e \\ \langle e \mid e' \cdot E \rangle & = & \langle e \, e' \mid E \rangle \\ \langle e \mid \text{fst} \cdot E \rangle & = & \langle \text{fst}(e) \mid E \rangle \\ \langle e \mid \text{snd} \cdot E \rangle & = & \langle \text{snd}(e) \mid E \rangle \\ \langle e \mid (\text{if} \, e_1, e_2) \cdot E \rangle & = & \langle \text{if} \, e \, \text{then} \, e_1 \, \text{else} \, e_2 \mid E \rangle \\ \end{array}
```

The dynamics

Five rewriting rules:

 \circ the β -rule:

$$\langle \lambda x.e \mid e' \cdot E \rangle \rightarrow \langle e[x := e'] \mid E \rangle$$

• the two projection rules for the pair:

$$\langle (e_1, e_2) \mid \mathsf{fst} \cdot \mathsf{E} \rangle \rightarrow \langle e_1 \mid \mathsf{E} \rangle$$

 $\langle (e_1, e_2) \mid \mathsf{snd} \cdot \mathsf{E} \rangle \rightarrow \langle e_2 \mid \mathsf{E} \rangle$

• the two rules for the conditional:

$$\langle \text{true} \mid (\text{if } e_1, e_2) \cdot E \rangle \rightarrow \langle e_1 \mid E \rangle$$

 $\langle \text{false} \mid (\text{if } e_1, e_2) \cdot E \rangle \rightarrow \langle e_2 \mid E \rangle$

Sums

Possible to extend the language of **terms** with three operators

$$inl(e)$$
 $inr(e)$ caseof (e, e_1, e_2)

the language of **contexts** with one operator

$$(case e_1, e_2) \cdot E$$

Then, add the equation:

$$\langle e \mid (\mathsf{case}\,e_1, e_2) \cdot \mathsf{E} \rangle = \langle \mathsf{caseof}(e, e_1, e_2) \mid \mathsf{E} \rangle$$

and the two rewriting rules:

$$\langle \text{inl}(e) \mid (\text{case } e_1, e_2) \cdot E \rangle \rightarrow \langle e_1 e \mid E \rangle$$

 $\langle \text{inr}(e) \mid (\text{case } e_1, e_2) \cdot E \rangle \rightarrow \langle e_2 e \mid E \rangle$

Part III

A topology

Well-typed terms cannot go wrong

Safe terms

A term e is **safe** when it loops, or when it reduces to the boolean constant true or to the boolean constant false.

$$(\lambda x.xx)(\lambda x.xx)$$
 true $(\lambda x.x)$ true

A term is **unsafe** when it is not safe.

fst(true) (syntax error!)

Safe terms

More generally, we may fix a set of safe terms

 $\perp\!\!\!\perp$

with the single requirement that $\!\!\!\!\perp\!\!\!\!\perp$ is closed under **reverse reduction**:

for all e_1, e_2 $e_1 \rightarrow e_2$ and $e_2 \in$

implies

$$e_1 \in \coprod$$

Orthogonality

 $e \perp E$

means that

the term $\langle e \mid E \rangle$ is **safe**

Orthogonality

Given a set S of evaluation contexts,

 $e \perp S$

means that

the term $\langle e \mid E \rangle$ is safe for every context $E \in S$

Variety

The terms in the set

$$S^{\perp} = \left\{ e \mid e \perp S \right\}$$

are the terms which **combine safely** with any element of S.

We define:

A **variety** is a set of terms of the form $X = S^{\perp}$

Varieties = closed sets of terms

The set of varieties is closed under **arbitrary intersection**, and thus defines a **closure operator** — computed by **biorthogonality**:

$$X \mapsto X^{\perp \perp}$$

A **variety** is a set of terms of the form $X = X^{\perp \perp}$

Algebraic geometry as guideline

```
\begin{array}{cccc} \lambda\text{-terms} & \sim & \text{points} \\ \text{evaluation contexts} & \sim & \text{polynomials} \\ \langle x \mid P \rangle & \sim & P(x) \\ \\ \text{safe computation} & \sim & \text{equality to zero} \\ S^{\perp} & \sim & V(S) \\ \end{array}
```


Part IV

Varieties as semantic types

A modern view on "candidats de réducibilité"

Arrow type

Given two sets X and Y of terms, define

$$X \Rightarrow Y$$

as the set of terms f satisfying:

$$\forall e \in X$$
, $fe \in Y$.

Fact: $X \Rightarrow Y$ is a variety when Y is a variety.

Arrow type

 $X \Rightarrow Y$ is a variety when Y is a variety $Y = S^{\perp}$

Proof. $f \in X \Rightarrow Y$ $\iff \forall e \in X, \ \forall E \in S, \ \text{the term} \ \langle fe \mid E \rangle \ \text{is safe}.$ $\iff \forall e \in X, \ \forall E \in S, \ \text{the term} \ \langle f \mid e \cdot E \rangle \ \text{is safe}.$ $\iff f \perp X \cdot S$

Product types

Given two sets X and Y of terms, define

$$X \times Y$$

as the set of terms f which **loop** or **reduce** to a pair

$$(e_1, e_2)$$

in which $e_1 \in X$ and $e_2 \in Y$.

Fact: $X \times Y$ is a variety when X and Y are varieties.

Subtyping

 $X \subseteq Y$

Intersection and union types

$$X \wedge Y = X \cap Y$$

$$X \vee Y = (X \cup Y)^{\perp \perp}$$

 $X \vee Y = (X \cup Y)^{\perp \perp}$ Note that we need to close the union here!

Universal and existential polymorphism

Given a family $(X_{\alpha})_{\alpha \in V}$ of varieties indexed by α running on a set W,

$$\forall \alpha. X_{\alpha} = \bigcap_{\alpha \in W} X_{\alpha}$$

$$\exists \alpha. X_{\alpha} = (\bigcup_{\alpha \in W} X_{\alpha})^{\perp \perp}$$

Note that we need to close the union here!

Algebraic geometry as guideline

The **Zariski topology** is defined as the set of varieties V(S).

The union $X \cup Y$ of two Zariski varieties X and Y is a variety because the **product** of polynomials behaves like the **parallel or**:

$$\langle x \mid PQ \rangle = 0 \iff \langle x \mid P \rangle = 0 \text{ or } \langle x \mid Q \rangle = 0.$$

Algebraic geometry as guideline

 $X \cup Y$ is closed if and only if, for every term e,

$$e \in (X \cup Y)^{\perp \perp} \implies e \in X \cup Y$$

or equivalently,

$$e \perp X^{\perp} \cap Y^{\perp} \Rightarrow e \in X \cup Y$$
,

This is true when $X^{\perp} \cap Y^{\perp}$ contains all the evaluation contexts $E \otimes E'$.

$$\langle e \mid E \otimes E' \rangle \rightarrow \langle e \mid E \rangle \otimes \langle e \mid E' \rangle$$

An angelic interpretation of choice

Part V

The main theorem

Towards a semantic proof of normalization

VAR-ACCESS $\frac{\Gamma(x) = \tau}{\Gamma \vdash x : \tau}$

APP

$$\Gamma \vdash e_1 : \tau_2 \rightarrow \tau_1$$

 $\Gamma \vdash e_2 : \tau_2$
 $\Gamma \vdash e_1 e_2 : \tau_1$

ABS
$$\frac{\Gamma, x : \tau_2 \vdash e : \tau_1}{\Gamma \vdash \lambda x.e : \tau_2 \rightarrow \tau_1}$$

$$\frac{\mathsf{PAIR}}{\Gamma \vdash e_1 : \tau_1} \frac{\Gamma \vdash e_2 : \tau_2}{\Gamma \vdash (e_1, e_2) : \tau_1 \times \tau_2}$$

FST

$$\Gamma \vdash e : \tau_1 \times \tau_2$$

 $\Gamma \vdash \text{fst}(e) : \tau_1$

$$\frac{\mathsf{SND}}{\Gamma \vdash e : \tau_1 \times \tau_2}$$
$$\frac{\Gamma \vdash \mathsf{snd}(e) : \tau_2}{\Gamma \vdash \mathsf{snd}(e) : \tau_2}$$

CONDITIONAL

$$\frac{\Gamma \vdash e_1 : Bool}{\Gamma \vdash e_2 : \tau \qquad \Gamma \vdash e_3 : \tau}$$

$$\frac{\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : \tau}{\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : \tau}$$

$$\frac{\mathsf{FIXPOINT}}{\Gamma \vdash e : \tau \to \tau} \frac{\Gamma \vdash Ye : \tau}{\Gamma \vdash Ye : \tau}$$

ALL-INTRO
$$\frac{\Gamma, \alpha \vdash e : \tau}{\Gamma \vdash e : \forall \alpha.\tau}$$

$$\frac{\mathsf{ALL-ELIM}}{\Gamma \vdash e : \forall \alpha.\tau}$$
$$\frac{\Gamma \vdash e : \tau[\tau'/\alpha]}{\Gamma \vdash e : \tau[\tau'/\alpha]}$$

EXISTS-ELIM

$$\frac{\mathsf{EXISTS\text{-}INTRO}}{\Gamma \vdash e : \tau[\tau'/\alpha]} \frac{\Gamma \vdash e : \exists \alpha.\tau}$$

$$\Gamma \vdash e : \exists \alpha.\tau'$$

$$\Gamma, \alpha, x : \tau' \vdash \langle x \mid E \rangle : \tau$$

$$\alpha \notin FV(\tau) \qquad x \notin FV(E)$$

$$\Gamma \vdash \langle e \mid E \rangle : \tau$$

$$\frac{\mathsf{SUB}}{\Gamma \vdash e : \tau'} \qquad \tau' \lessdot: \tau$$

$$\frac{\Gamma \vdash e : \tau}{\Gamma}$$

Fundamental theorem

Suppose that the term e is typed by the sequent:

⊢ e : *A*

Then,

$$e \in [A]$$

where the variety [A] is the interpretation of the type A.

Application: a weak normalization theorem

This works for any choice of notion of safety.

In particular, suppose that

Ш

denotes the set of weakly normalizing terms.

In that case, the variety $[\![A]\!]$ contains only weakly normalizing terms.

Consequence: every typed λ -term is weakly normalizing.