Lambda calculs et catégories

Paul-André Mellies

Master Parisien de Recherche en Informatique

Paris, Octobre 2010

Plan de la séance

1 - Lambda-calcul typé du second ordre
2 — Une sémantique opérationnelle

3 — Une topologie

4 — Les variétés comme type sémantique
5 — Théoreme fondamental

6 — Application: théoréme de normalisation

Part |

Second order lambda calculus

Polymorphism

Curry 1958: the simply typed A-calculus

It is possible to Type the A-terms by simple types A, B constructed by the grammair:
AB:=a|A = B.

A typing context I'is a finite list I' = (x1 : Ay, ..., x, : Ay) Where x; is a variable and A;
is a simple type, forall1 <i < n.

A seguent is a triple:
x1:A1,..,%,: A, v P:B
where x1 : Ay, ..., x, : Ay IS A typing context, P is a A-term and B is a simple type.

Curry 1958: the simply-typed A-calculus

Variabl
ariable x:Arx: A

, I'x:AvP:B
Abstraction e xP A B
Abolication I'-rP:A=B AFQ:A
PRICANo T ArDPO:B

. I'+P:B
Weakening T~ ArD-B
Contracti Ix:Ay:ArP:B
ontraction

I'z:AvPlx,y < z]:B

. I'x:A,y:B,ArP:C

Permutation

Iy:B,x:A,ArP:C

Girard 1972: second-order A-calculus

The idea is fo extend the usual simply typed lambda-calculus with second-order
quantification on type variables.

Types are simple types extended with second-order variables:

AB:=a|A=B|VYa.A

A typing context I' is a finite list constructed by the grammar

I'=nil | TI'x:A | T,«a
where:

O nilis the empty list
O «xisaterm variable and A is a type,

O «aisatype variable.

Girard 1972: second-order A-calculus

Ia vP:A
I'rP:VYa.A

Second order abstraction

I'+ P:Va.A

Second order application T + P:Ala:= B]

Properties of second-order polymorphism

A A-term P is typed when there exists a typing context I' and a second-order type
A such that;

I'tP: A

One establishes that the set of typed A-terms is closed under g-réduction:
Subject Reduction: IfT-P: Aand P —g Q. thenT'+ Q: A.

A A-term P is strongly normalizing when all the rewrifing paths based on g-reduction:

ferminate.

Strong normalisation: Every typed A-term P is strongly normalizing.

Curry-Howard (1)

Variable

Abstraction

Application

Weakening

Contraction

Permutation

'k

Minimal infuifionistic logic

I, A+ B

I'k

A =B

A =B Ar A

I[LAF B

I'r B

I, A+ B

I, A Ar

B

L,

L,

A
A, B,AF

C

L,

B, AA¢r

C

CU"Y—HOWCIrd (]) simply-typed A-calculus

Variable

X AFx:A
, I'x:A+ P :B
Abstraction T P ASE
Aoplication '-rP:A=B ArQ:A
PRicatio IA+ PO :B
: I'-P:B
Weakening ILx:AvP:B
Contract I',x:A,y:ArP:B
onNntraction
! I'z:Av Plx,y < z] :B
. Ix:A,y:B,ArP:C
Permutation

Iy:B,x:A,ArP:C

Curry-Howard for second-order logic

Ia F A

Second order tfraction ’
d order abstractio i oA
I - Ya.A

Second order application

I' + Ala := B]

10

Encoding the natural numbers

The type Nat of natural numbers is defined as:

Nat = VYa . (a=a) = (@=a)

Exercise: check that every Church numeral n is indeed of type Nat:

F AfAa. fo--f (@) : Va(a=a)= (a=a)
——
n times

11

Encoding finite lists

The type List of finite lists of elements of A is defined as:

List(A) = VYa . (A=s>a=>a) = (a=>a)

The list [a1,a5,--- ,a,] Is encoded as

lay,---,an] = AfAx.far(fax(--- fanx)---)
and the empty list is encoded as
nil = AfAxx
S0, for instance:
[a1,a2] = Af.Ax.fai(faxx)

Exercise: establish that the encoding of finite lists is of the expected type:

a1, ,a,] : List(A)

12

Appending lists
The following A-term appends two finite lists:

Append = Alisty. Alisto. Af. Ax. listy f (listy f x)

Exercise: check that the A-term Append has the expected type:

- Append : Vy . List(y) = List(y) = List(y)
and the expected behaviour:

Appendlay,- -, allaxsr,---an]l —p -+ —p lay, a4

13

Mapping lists

Given a A-term h of type
h : A = B
the A-term
Map = Ah. Alist. Af. Ax. list (Aa.f(ha)) x
tfransforms every list

[a1, -+, an]
of elements of A info the list
[hay,- -, ha,]
of elements of B.

Exercise: check that the A-terrn Map has the expected type:
F Map : VYa . V. (@ =) = (List(a) = List(p))
and the expected behaviour;

Map h [all... ,an] _)‘3 _)‘8 [hall... ,han]

14

Encoding binary trees

The type BinTree of binary frees with leaves of type A is defined as:

BinTree(A) = VYa . (axa=>a) = (A=>a)

Exercise: define the A-term associated fo a given binary tree, and construct a
A-term Flatten of type

Flatten : VYa. BinTree(a) = List(a)
which flattens every binary tfree into the list of its leaves, ordered from left to right.

15

Part I

An operational semantics

Terms and evaluation contexts

16

The usual untyped A-calculus extended with pairs and conditionals.

e

The terms

X
Ax.e
ee

(e €)
fst(e)
snd(e)

if e theneelsece
true
false

variable
abstraction
application

pair
first projection
second projection

conditional
constant true
constant false

17

E

The evaluation contexis

Evaluation contexts are stacks or finite lists of operations:

nil

e-E
fst-E
snd - E
(ifee)-E

empty context
application

first projection
second projection
conditional

18

The evaluation bracket

Every term e and context E combine as a term

defined just in tThe usual way:

(e | nil)

(e|e -E)

(e | fst - E)

(e | snd- E)
(e|(ife1,e2) - E)

(e | E)

e

(ee’ | E)

(fst(e) | E)

(snd(e) | E)

(if e then ey else ey | E)

19

The dynamics
Five rewrifing rules:

o the g-rule:

(Ax.e| e -E) — {e[x :=¢€] | E)
o the two projection rules for the pair:

((e1,e2) | fst-E) — (e1 | E)

((e1,€2) | snd-E)y — <(e2| E)
o the two rules for the conditional:

(true | (ife1,e0)-E) — (e | E)
(false|(ifej,ep) - E) — (e | E)

20

Sums

Possible to extend the language of terms with three operators
inl(e) inr(e) caseof(e, e, e2)
the language of contexts with one operator
(caseeq,e) - E
Then, add the equation:
(e| (case e, er)-E) = (caseof(e,eq,e) | E)
and the tfwo rewrifing rules:

(inl(e) | (caseeq,e) - E) — (e1e| E)
(inr(e) | (caseeq,e) - E) — (ere | E)

21

Part Il

A topology

Well-typed terms cannot go wrong

22

Safe terms

A term e is safe when it loops, or when it reduces to the boolean constant true or
to the boolean constant false.

(Ax.xx)(Ax.xx) true (Ax.x)true

A term is unsafe when it is not safe.

fst(true) (syntax error!)

23

Safe terms

More generally, we may fix a set of safe terms

A

with the single requirement that 1L is closed under reverse reduction:

for all e, e, ey — e and ep, € 1
implies
e1 € 1L

24

means that

Orthogonality

e L E

the term (¢ | E) is safe

25

Orthogonality

Given a set S of evaluation contexts,

el S
means that

the term (e | E) is safe for every context E € S

26

Variety

The terms in the set

St = {eIeJ_S}

are the terms which combine safely with any element of S.

We define:

A variety is a set of terms of the form X = 5+

27

Varieties = closed sets of terms

The set of varieties is closed under arbitrary intersection, and thus defines a closure
operator — computed by biorthogonality:

X Xt

A variety is a set of ferms of the form X = X++

28

Algebraic geometry as guideline

A-terms ~ points
evaluation contexts ~ polynomials
(x| P) ~ P(x)
safe computation ~ equality o zero
St ~ V(S)

29

30

Part IV

Varieties as semantic types

A modern view on “candidats de réducibilité”

31

Arrow type

Given two sets X and Y of terms, define
X=Y
as the set of terms f safisfying:
Ve e X, feeY.

Fact: X = Y is a variety when Y is a variety.

32

Arrow type

X = Yis a variety when Y is a variety Y = S+

Proof. feX=Y

= Vee X, VE € S, the ferm (fe | E) is safe.

— Vee X VEeS, theterm (f |e-E) is safe.

— f L X-S

33

Product types

Given two sets X and Y of terms, define
XXY

as the set of ferms f which loop or reduce to a pair

(e1,€2)

in whiche; € Xand e, € Y.

Fact: X x Y is a variety when X and Y are variefies.

34

Subtyping

35

Intersection and union types

XAY = XNY

XVvYy = (Xuy)tt
Note that we need to close the union herel

36

Universal and existential polymorphism

Given a family (X,).cy Of varieties indexed by a running on a set W,

aeW

Ja.X, = (U X,)t
aeW

Note that we need to close the union herel

37

Algebraic geometry as guideline
The Zariski topology is defined as the set of variefies V(S).

The union X U Y of two Zariski varieties X and Y is a variety because the product of
polynomials behaves like the parallel or;

x|PQ)=0 & (x|P)=0 or (x|Q)=0.

38

Algebraic geometry as guideline
X U Y is closed if and only if, for every term e,
ee XUY)H = eeXUY,
or equivalently,

e L XtNYt = eeXUY,

This is frue when X+ N Y+ contains all the evaluation contexts E @ E’.

(e|EQE) — (e|E)@<(e|E")

An angelic interpretation of choice

39

Part V

The main theorem

Towards a semantic proof of normalization

40

APP

VAR-ACCESS The:1— 11 ABS PAIR
F(X)ZT rl—eZZTz F,xzle—e:ﬁ erlzrl rl—ezi’[z
F'kFx:7t I'terer: 1y I'FAxe:1 — 19 'k (e1,62): 71 X 12
FST SND CONSTANT TRUE CONSTANT FALSE
I're:11 X1 I're:11 X1
I' + true : Bool I' + false : Bool
[+ fst(e): 11 I'+ snd(e) : 12
CONDITIONAL
I'+ ey : Bool FIXPOINT ALL-INTRO ALL-ELIM
I'rey: 7t I'kes:t I're:t—> 1 I'Nare:t I're:Va.t
I'+ifeq thenep elsees: T F'tYe:t I'te: Va1 I'te:1[t/a]
EXISTS-ELIM
Fre:da.t
EXISTS-INTRO Ta,x:7 +{(x|E):7 SUB
I'te:t[t'/a] a ¢ FV(1) x ¢ FV(E) I'rte:7 T <t
I'te:dar I'k|E):T I'kre:t

41

Funhdamental theorem

Suppose that the term e is typed by the sequent:
F e : A

Then,
e € [A]

where the variety [A] is the interpretation of the type A.

42

Application: a weak normalization theorem
This works for any choice of notion of safety.

In particular, suppose that

A
denoftes the set of weakly normalizing ferms.

In that case, the variety [A]] contains only weakly normalizing ferms.

Consequence: every typed A-term is weakly normalizing.

43

