
Examen partiel 2016-2017

Modèles des langages de programmation
Master Parisien de Recherche en Informatique

Le vendredi 2 décembre 2016 de 16h15 à 19h15

On pourra répondre aux questions en français ou en anglais.
Questions may be answered in French or in English.

Exercise 1. Consider the typing derivation of the simply-typed λ-calculus

x : A ` x : A Weakening
f : A⇒ A, x : A ` x : A

Abstractionf : A⇒ A ` λx.x : A⇒ A
` λ f .λx.x : (A⇒ A)⇒ (A⇒ A)

in the type system studied in the course.
(1a.) Describe another derivation tree leading to the same typing judgement

` λ f .λx.x : (A⇒ A)⇒ (A⇒ A)

(1b.) Explain why the interpretation of the two typing derivations are the same in
any cartesian closed category.
(1c.) Redo the same exercise for the typing derivation below :

g : A⇒ A ` g : A⇒ A
h : A⇒ A ` h : A⇒ A x : A ` x : A

h : A⇒ A, x : A ` h(x) : A
g : A⇒ A, h : A⇒ A, x : A ` g(h(x)) : A

Contractionf : A⇒ A, x : A ` f ( f (x)) : A
Abstractionf : A⇒ A ` λx. f ( f (x)) : A⇒ A

` λ f .λx. f ( f (x)) : (A⇒ A)⇒ (A⇒ A)

Exercise 2. Every category C comes equipped with a unique functor

L : C −→ 1

to the category 1 which contains a unique object ∗ and a unique morphism : the
identity morphism on ∗. Show that the category C has a terminal object if and only
if the functor L has a right adjoint

R : 1 −→ C.
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Problème. The purpose of this problem is to describe the coherence spaces as the
objects X isomorphic to their double negation ∼∼ X in a larger category Config
of arguably more primitive spaces, called configuration spaces. In particular, we
will see how the constructions on coherence spaces studied in the course (classical
duality, tensorial product, sum, exponentials) can be deduced from more primitive
constructions on configuration spaces. A configuration space is defined here as a
pair

X = (| X |,Conf(X))

consisting of a countable set | X | called the web of X and of a set

Conf(X) ⊆ ℘(| X |)

of subsets (finite or infinite) of the web | X |. The elements of Conf(X) are called
the configurations of X. One requires moreover that every element x ∈ | X | of the
web is an element of some configuration u ∈ Conf(X) :

∀x ∈ | X |, ∃u ∈ Conf(X), x ∈ u.

One remarks immediately that every coherence space A defines a configuration
space U(A) with the same web :

|U(A) | = | A |

and whose configurations are the cliques of A.

The negation of a configuration space X is defined as the configuration space ∼ X
with same web

| ∼ X | = | X |

and whose configurations are defined in the following way :

Conf(∼ X) = { u ⊆ | X | | ∀v ∈ Conf(X), u ⊥ v }

where
u ⊥ v

means that the intersection u ∩ v contains at most an element.

(3a.) Show that
Conf(X) ⊆ Conf(∼∼ X)

for every configuration space X.
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(3b.) Show that
∼∼∼ X = ∼ X

for every configuration space X.

(3c.) Show that for every configuration space X, the configuration space

∼ X

is of the form
∼ X = U(A)

for some coherence space A which will be described.

(3d.) Show in particular that

∼ U(A) = U(A⊥)

for every coherence space A, where the coherence space A⊥ is the dual of A defined
in the course.

(3e.) Deduce from this the equality

U(A) = ∼∼ U(A)

for every coherence space A.

(3f.) Deduce from the previous questions that there exists a one-to-one relationship
between the coherence spaces A and the configuration spaces X such that

X = ∼∼ X.

(3g.) The category Config is defined in the following way : its objects are the
configuration spaces, and the morphisms

f : X −→ Y

are the binary relations
f ⊆ | X | × | Y |

such that :
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— the relation f transports the configurations forward :

∀u ∈ Conf(X), f (u) ∈ Conf(Y)

where one writes

f (u) = { y ∈ |Y | | ∃x ∈ u such that (x, y) ∈ f }

— the relation f is locally injective in the sense that for every configuration
u ∈ Conf(X), one has :

∀x1, x2 ∈ u,
(
∃y ∈ |Y |, (x1, y) ∈ f and (x2, y) ∈ f

)
⇒ x1 = x2.

The identity morphism on the configuration space X is the morphism defined as
follows :

idX = { (x, x) | x ∈ | X | }.

Show that these data define indeed a category, where morphisms are composed as
relations [ note : one can use the fact that the binary relations between sets define a
category noted Rel ].

(3h.) Show that the construction U(−) defines a fully faithful functor

U(−) : Coh −→ Config

Recall that the functor U is fully faithful when the function

Coh(A, B) → Config(U(A),U(B))
f 7→ U( f )

is bijective for every pair of coherence spaces A and B.

This result enables us to see the category Coh as the full subcategory of configura-
tion spaces X such that X = ∼∼ X in the category Config. Recall that a category B

is a full subcategory of a category C when the class of objects of B is included in
the class of objects of C, and when the sets of morphisms B(B1, B2) and C(B1, B2)
between two objects B1 and B2 of B (and thus of C) are the same in the categories
B and C :

B(B1, B2) = C(B1, B2)

with same composition law and identity morphisms in B and in C.

(3i.) Show that the construction ∼ defines a functor

∼ : Config −→ Config op
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which transports a morphism f : X → Y in the morphism

∼ f : ∼ Y −→ ∼ X

defined as
(y, x) ∈ ∼ f ⇐⇒ (x, y) ∈ f

for every x ∈ | X | and y ∈ |Y |.

(3j.) Deduce from the two previous questions that ∼∼ defines a functor

∼∼ : Config −→ Coh.

From now on, one writes this double negation functor as

F : Config −→ Coh.

(3k.) Describe in a simple way the coherence space F(X) associated to a confi-
guration space X, and give the example of a configuration space X such that the
inclusion

Conf(X) ⊆ Conf(UF(X))

is a strict inclusion [note : it is possible to find such a configuration space X with
three points in its web | X | ].

(3l.) Suppose given a configuration space X and a coherence space A. Show that a
binary relation

f ⊆ | X | × | A |

is an element of
Config(X,U(A))

if and only if the relation f is an element of

Coh(F(X), A).

(3m.) From this, deduce the existence of a bijection

φX,A : Coh(F(X), A) � Config(X,U(A))

and show that it is natural in X and in A.

From this, it follows that the functor

F : Config −→ Coh
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is left adjoint to the functor

U : Coh −→ Config

(3n.) Describe the unit

ηX : X −→ UF(X)

and the counit
εA : FU(A) −→ A

of the adjunction F a U for a configuration space X and for a coherence space A.

(3o.) Given two configuration spaces X and Y , define the configuration space X •Y
as follows :

| X • Y | = | X | × | Y |

Conf(X • Y) = { u × v | u ∈ Conf(X) and v ∈ Conf(Y) }

We admit here that the tensor product defines a structure of symmetric monoidal
category on the category Config. Show that

F(X) ⊗ F(Y) = F(X • Y)

where ⊗ is the tensor product on coherence space defined in the course. Explain in
what sense this equality enables one to deduce the tensor product ⊗ on coherence
spaces from the tensor product • on configuration spaces.

(3p.) Given two configuration spaces X and Y , show that a binary relation

f ⊆ | X | × | Y |

is an element of
Config(X,∼ Y)

if and only if

∀(u, v) ∈ Conf(X) × Conf(Y), f ⊥ u × v.

[Note : here, one uses the fact that every element y of the web of Y appears in one
configuration v of the configuration space Y .]

(3q.) Deduce a bijection

Config(X,∼ Y) � Config(X • Y,⊥)
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where ⊥ is the configuration space whose web is the singleton {∗} and whose confi-
gurations are the empty set and the singleton {∗}.

(3r.) Given two configuration spaces X and Y , one defines the configuration space X+
Y as follows :

| X + Y | = | X | + |Y |

Conf(X + Y) = { inl(u) | u ∈ Conf(X) }

∪ { inr(v) | v ∈ Conf(Y) }

Show that X + Y defines a cartesian sum of X and of Y in the category Config.
[Note : the cartesian sum is the dual of the cartesian product, in other words, a
cartesian product in the opposite category Config op.]

(3s.) Show that
F(X) ⊕ F(Y) = F(X + Y).

(3t.) For every configuration space X, one defines the configuration space T X
whose web is the set of finite sub-configurations

|T X | = { u finite | ∃v ∈ Conf(X) tel que u ⊆ v }

and whose configurations u† are generated by the configurations of X in the follo-
wing sense :

Conf(T X) = { u† | u ∈ Conf(X) }

where
u† = the set of finite subsets of u.

[Note : here, a sub-configuration u of the configuration space X is any set of
elements of the web | X | contained in some configuration v of the configuration
space X]. Show that for every coherence space A, one has

! A = F T U A .

(3u.) From this, deduce the existence of a morphism

mX : F T X −→ ! F X

for every configuration space X [one admits here the fact that the construction T (−)
defines a functor T : Config→ Config.]
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(3v.) Give an example of a configuration space X such that the morphism

mX : F T X −→ ! F X

is not an isomorphism [note : it is sufficient to check that the two coherence spaces
F T X and !FX do not have the same web.]

8


