Examen partiel en ligne 2020-2021

Modèles des langages de programmation Master Parisien de Recherche en Informatique

Le mardi 1er décembre 2020 de 9h30 à 11h30

Les questions de l'examen sont rédigées en anglais mais les réponses pourront bien entendu être écrites en français.

Exercise A. Consider the derivation tree of the simply-typed λ -calculus

$$\frac{\overline{x:A \vdash x:A}}{f:A \Rightarrow A, x:A \vdash x:A}$$
 Weakening
$$\frac{\overline{f:A \Rightarrow A, x:A \vdash x:A}}{f:A \Rightarrow A \vdash \lambda x.x:A \Rightarrow A}$$
 Abstraction
$$\overline{\vdash \lambda f.\lambda x.x:(A \Rightarrow A) \Rightarrow (A \Rightarrow A)}$$
 Abstraction

in the typing system studied in the course.

§A1. Describe another derivation tree leading to the same typing judgment :

$$\vdash \quad \lambda f. \lambda x. x \quad : \quad (A \Rightarrow A) \Rightarrow (A \Rightarrow A)$$

§A2. Explain with a categorical diagram why the interpretations of the two derivation trees are the same in any cartesian closed category.

Exercise B. In this exercise, we study a categorical formulation of induction and coinduction based on the notions of *T*-algebra for induction and of *T*-coalgebra for coinduction. To that purpose, we suppose given a category \mathcal{C} and a functor $T : \mathcal{C} \to \mathcal{C}$. A *T*-algebra is defined as a pair (A, a) consisting of an object A of the category \mathcal{C} and of a map

 $a : TA \longrightarrow A.$

A T-homomorphism between T-algebras

$$f \quad : \quad (A,a) \longrightarrow (B,b)$$

is defined as a map $f: A \to B$ of the category \mathcal{C} which makes the diagram below commute :

$$\begin{array}{ccc} TA & & \xrightarrow{Tf} & TB \\ a \downarrow & & \downarrow b \\ A & & \xrightarrow{f} & B \end{array}$$

One obtains in this way a category \mathbf{Alg}_T whose objects are the *T*-algebras and whose maps are the *T*-homomorphisms.

§B1. A *T*-algebra (A, a) is called *initial* when for every map $b : TB \to B$ there exists a unique map $f : A \to B$ such that the following diagram commutes :

Explain why a T-algebra (A, a) is initial in that sense if and only if it is initial as an object in the category \mathbf{Alg}_T .

§B2. Consider the functor $T : \mathbf{Set} \to \mathbf{Set}$ which transports every set A to the set $TA = 1 \uplus A$ where \uplus denotes the disjoint union of sets, and $1 = \{*\}$. Show that the set of natural numbers \mathbb{N} equipped with the bijection

$$\begin{array}{ccccccc} succ & : & 1 \uplus \mathbb{N} & \longrightarrow & \mathbb{N} \\ & & n & \mapsto & n+1 \\ & & * & \mapsto & 0 \end{array}$$

defines the initial algebra of the functor T. Explain in particular how this property of $(\mathbb{N}, succ)$ enables one to define in a unique way a function $\mathbb{N} \to A$ by induction on the natural numbers.

§B3. In a dual way, one defines a *T*-coalgebra in a category \mathcal{C} as a pair (A, a) consisting of an object A and of a map

 $a \quad : \quad A \longrightarrow TA$

of the category \mathcal{C} . A *T*-homomorphism between *T*-coalgebras

$$f \quad : \quad (A,a) \longrightarrow (B,b)$$

is defined as a map $f: A \to B$ of the category \mathcal{C} which makes the diagram below commute :

$$\begin{array}{ccc} A & & f & & B \\ a \downarrow & & & \downarrow^{b} \\ TA & & & Tf & \\ \end{array}$$

One defines in this way a category \mathbf{CoAlg}_T whose objects are the *T*-coalgebras and whose maps are the *T*-homomorphisms. A *T*-coalgebra (B, b) is called *terminal* when for every map

 $a: A \to TA$ there exists a unique map $f: A \to B$ such that the diagram below commutes :

$$\begin{array}{c} A & \xrightarrow{f} & B \\ a \downarrow & \downarrow b \\ TA & \xrightarrow{Tf} & TB \end{array}$$

Explain why a T-coalgebra (A, a) is terminal in that sense precisely when it is terminal as an object in the category **CoAlg**_T.

§B4. Consider the same functor $T : \mathbf{Set} \to \mathbf{Set}$ as in §B2. which transports every set A to the set $TA = 1 \uplus A$. Show that the set of completed natural numbers $\mathbb{N} \uplus \{\infty\}$ equipped with the function

pred	:	$\mathbb{N} \uplus \{\infty\}$	\longrightarrow	$1 \uplus \mathbb{N} \uplus \{\infty\}$
		0	\mapsto	*
		n+1	\mapsto	n
		∞	\mapsto	∞

defines the terminal T-coalgebra. Explain that it enables one to define a function by coinduction on the natural numbers (if you happen to know the terminology).

Problem. The purpose of this series of exercises is to describe coherence spaces as objects X isomorphic to their double negation $\sim \sim X$ in a larger category **Conf** of configuration spaces. We will then see how the various constructions on coherence spaces studied during the course : the classical duality, the tensor product, the sum, can be derived from more primitive constructions on configuration spaces. A **configuration space** is defined as a pair

$$X = (|X|, \operatorname{Config}(X))$$

consisting of a countable set |X| called the web of X and of a set

$$\operatorname{Config}(X) \subseteq \wp(|X|)$$

of subsets of |X|. The elements of Config(X) are called the **configurations** of X. One asks moreover that every element $x \in |X|$ of the web is an element of a configuration $u \in \text{Config}(X)$:

$$\forall x \in |X|, \quad \exists u \in \operatorname{Config}(X), \qquad x \in u.$$

It is immediate that every coherence space A defines a configuration space U(A) with same web :

$$|U(A)| = |A|$$

and whose configurations are the cliques of A.

Now, one defines the **negation** of a configuration space X as the configuration space $\sim X$ with same web

$$\sim X| = |X|$$

and with set of configurations defined as :

$$\operatorname{Config}(\sim X) = \{ u \subseteq |X| \mid \forall v \in \operatorname{Config}(X), u \perp v \}$$

where

$$u \perp v$$

means that the intersection $u \cap v$ contains an element at most.

§P1. Show that

$$\operatorname{Config}(X) \subseteq \operatorname{Config}(\sim X)$$

for every configuration space X.

§P2. Show that

$$\sim \sim \sim X = \sim X$$

for every configuration space X.

§P3. Show that for every configuration space X, the configuration space

 $\sim X$

is of the form

 $\sim X = U(A)$

for a given coherence space A that will be described.

§P4. Show in particular that for every coherence space A, one has

$$\sim U(A) = U(A^{\perp})$$

where A^{\perp} is the coherence space dual to A defined in the course. **§P5.** Deduce the following equation

$$U(A) = \sim U(A)$$

for every coherence space A.

§P6. Deduce from the previous questions the existence of a bijection between the coherence spaces A and the configuration spaces X such that

$$X = \sim \sim X.$$

§P7. The category **Conf** is defined as the category whose objects are the configuration spaces, and whose morphisms

$$f : X \longrightarrow Y$$

are the binary relations

$$f \subseteq |X| \times |Y|$$

such that :

— the relation f transports the configurations in the forward direction :

$$\forall u \in \operatorname{Config}(X), \quad f(u) \in \operatorname{Config}(Y)$$

where we write

$$f(u) = \{ y \in |Y| \mid \exists x \in u \text{ tel que } (x, y) \in f \}$$

— the relation f is locally injective in the sense that for every configuration $u \in \text{Config}(X)$, one has :

$$\forall x_1, x_2 \in u, \qquad \left(\exists y \in |Y|, \quad (x_1, y) \in f \text{ et } (x_2, y) \in f \right) \quad \Rightarrow \quad x_1 = x_2.$$

The identity on the configuration space X is the morphism defined as follows :

 $id_X = \{ (x,x) \mid x \in |X| \}.$

Show that these data define a category, where morphisms are composed as relations. [note : you are welcome to use the fact that binary relations between sets define a category noted **Rel**].

§P8. Show that the construction U(-) defines a fully faithful functor

U(-) : Coh \longrightarrow Conf

Reminder : a functor U is called fully faithful when the function

$$\begin{array}{ccc} \mathbf{Coh}(A,B) & \to & \mathbf{Conf}(U(A),U(B)) \\ f & \mapsto & U(f) \end{array}$$

is bijective for every pair of coherence spaces A and B.

This result enables us to see the category **Coh** as the full subcategory of **Conf** consisting of the configuration spaces X such that $X = \sim \sim X$. Reminder : a category \mathcal{B} is a full subcategory of a category \mathcal{C} when the class of objects of \mathcal{B} is included in the class of objects of \mathcal{C} , and the sets of morphisms $\mathcal{B}(B_1, B_2)$ and $\mathcal{C}(B_1, B_2)$ between two objects B_1 and B_2 of \mathcal{B} (and thus of \mathcal{C}) are the same in the categories \mathcal{B} and \mathcal{C} :

$$\mathfrak{B}(B_1, B_2) = \mathfrak{C}(B_1, B_2)$$

with the same composition and identity laws in \mathcal{B} and in \mathcal{C} .

§P9. Show that the construction \sim defines a functor

$$\sim$$
 : Conf \longrightarrow Conf op

which transports a morphism $f: X \to Y$ in the morphism

 $\sim f$: $\sim Y \longrightarrow \sim X$

defined as

$$(y,x) \in \sim f \quad \iff \quad (x,y) \in f$$

for all $x \in |X|$ and $y \in |Y|$.

§P10. Deduce from the previous question that the double négation $\sim \sim$ defines a functor

$$\sim \sim$$
 : Conf \longrightarrow Conf.

§P11. Describe in a simple way the coherence space $\sim X$ associated to a configuration space X, as well as the morphism

$$\sim \sim f$$
 : $\sim \sim X \longrightarrow \sim \sim Y$

associated to a morphism $f: X \to Y$.

§P12. Show that the relation

$$\eta_X = \{ (x,x) \mid x \in |X| \}$$

defines for every configuration space X a morphism

$$\eta_X : X \longrightarrow \sim X$$

of the category **Conf**.

§P13. Show that the family of morphisms $\eta_X : X \to \sim X$ is natural in X. We find convenient write

$$F : \operatorname{Conf} \longrightarrow \operatorname{Coh}$$

for that double negation functor.

§P14. Give the example of a configuration space X such that the inclusion

 $\operatorname{Config}(X) \subseteq \operatorname{Config}(UF(X))$

is strict [note : one can take a configuration space X with three points in its web |X|].

§P15. Suppose given a configuration space X and a coherence space A. Show that a binary relation

$$f \subseteq |X| \times |A|$$

is an element of

 $\mathbf{Conf}(X, U(A))$

if and only if the binary relation f is an element of

 $\mathbf{Coh}(F(X), A).$

§P16. From this, deduce that the functor

F : Conf \longrightarrow Coh

is left adjoint to the functor

 $U : \operatorname{Coh} \longrightarrow \operatorname{Conf}$

§P16. Describe the unit

 $\eta_X : X \longrightarrow UF(X)$

and the counit

 $\varepsilon_A : FU(A) \longrightarrow A$

of the adjunction $F \dashv U$ for a configuration space X and for a coherence space A.

§P17. Given two configuration spaces X and Y, one defines the configuration space $X \bullet Y$ as follows :

$$|X \bullet Y| = |X| \times |Y|$$

Config $(X \bullet Y) = \{ u \times v \mid u \in \text{Config}(X) \text{ et } v \in \text{Config}(Y) \}$

We admit that the tensor product defines a structure of symmetric monoidal category on the category **Conf**. Show that

$$F(X) \otimes F(Y) = F(X \bullet Y)$$

where \otimes denotes the tensor product of coherence spaces defined in the course. Explain in what sense this equation enables one to deduce the tensor product \otimes of coherence spaces from the tensor product \bullet on configuration spaces.

§P18. Given two configuration spaces X and Y, the configuration space X + Y is defined as follows :

$$|X + Y| = |X| + |Y|$$

Config(X + Y) = { inl(u) | u \in Config(X) }
$$\cup \{ inr(v) | v \in Config(Y) \}$$

Show that X + Y defined a cartesian sum of X and of Y in the category **Conf**. [Note : a cartesian sum is the dual of a cartesian product, that is, a cartesian product in the opposite category **Conf**^{op}.]

§P19. Show that

$$F(X) \oplus F(Y) = F(X+Y).$$

Explain in what sense this equation enables one to deduce the cartesian sum \otimes of coherence spaces from the cartesian sum \bullet on configuration spaces.

§P20. Suppose given two configuration spaces X and Y. Show that a binary relation

$$f \subseteq |X| \times |Y|$$

is an element of

$$\operatorname{Conf}(X, \sim Y)$$

if and only if

$$\forall (u,v) \in \operatorname{Config}(X) \times \operatorname{Config}(Y), \qquad f \perp u \times v.$$

[Note : we use here the fact that every element y of the web of Y appears as a specific configuration v of the configuration space Y.]

§P21. Deduce a bijection

$$\operatorname{Conf}(X, \sim Y) \cong \operatorname{Conf}(X \bullet Y, \bot)$$

where \perp denotes the configuration space whose web is a singleton {*} and whose two configurations are the empty set and the singleton set {*}.