
Examen partiel en ligne 2020-2021

Modèles des langages de programmation
Master Parisien de Recherche en Informatique

Le mardi 1er décembre 2020 de 9h30 à 11h30

Les questions de l’examen sont rédigées en anglais
mais les réponses pourront bien entendu être écrites en français.

Exercise A. Consider the derivation tree of the simply-typed λ-calculus

x : A ` x : A Weakening
f : A⇒ A, x : A ` x : A

Abstraction
f : A⇒ A ` λx.x : A⇒ A

Abstraction` λf.λx.x : (A⇒ A)⇒ (A⇒ A)

in the typing system studied in the course.
§A1. Describe another derivation tree leading to the same typing judgment :

` λf.λx.x : (A⇒ A)⇒ (A⇒ A)

§A2. Explain with a categorical diagram why the interpretations of the two derivation trees
are the same in any cartesian closed category.

Exercise B. In this exercise, we study a categorical formulation of induction and coinduc-
tion based on the notions of T -algebra for induction and of T -coalgebra for coinduction. To
that purpose, we suppose given a category C and a functor T : C→ C. A T -algebra is defined
as a pair (A, a) consisting of an object A of the category C and of a map

a : TA A.

A T -homomorphism between T -algebras

f : (A, a) (B, b)

is defined as a map f : A→ B of the category C which makes the diagram below commute :

TA TB

A B

a

Tf

b

f
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One obtains in this way a category AlgT whose objects are the T -algebras and whose maps
are the T -homomorphisms.

§B1. A T -algebra (A, a) is called initial when for every map b : TB → B there exists a
unique map f : A→ B such that the following diagram commutes :

TA TB

A B

a

Tf

b

f

Explain why a T -algebra (A, a) is initial in that sense if and only if it is initial as an object
in the category AlgT .

§B2. Consider the functor T : Set→ Set which transports every set A to the set TA = 1]A
where ] denotes the disjoint union of sets, and 1 = {∗}. Show that the set of natural
numbers N equipped with the bijection

succ : 1 ] N −→ N
n 7→ n+ 1
∗ 7→ 0

defines the initial algebra of the functor T . Explain in particular how this property of (N, succ)
enables one to define in a unique way a function N→ A by induction on the natural numbers.

§B3. In a dual way, one defines a T -coalgebra in a category C as a pair (A, a) consisting of
an object A and of a map

a : A TA

of the category C. A T -homomorphism between T -coalgebras

f : (A, a) (B, b)

is defined as a map f : A→ B of the category C which makes the diagram below commute :

A B

TA TB

a

f

b

Tf

One defines in this way a category CoAlgT whose objects are the T -coalgebras and whose
maps are the T -homomorphisms. A T -coalgebra (B, b) is called terminal when for every map
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a : A→ TA there exists a unique map f : A→ B such that the diagram below commutes :

A B

TA TB

a

f

b

Tf

Explain why a T -coalgebra (A, a) is terminal in that sense precisely when it is terminal as
an object in the category CoAlgT .

§B4. Consider the same functor T : Set → Set as in §B2. which transports every set A to
the set TA = 1]A. Show that the set of completed natural numbers N]{∞} equipped with
the function

pred : N ] {∞} −→ 1 ] N ] {∞}
0 7→ ∗

n+ 1 7→ n
∞ 7→ ∞

defines the terminal T -coalgebra. Explain that it enables one to define a function by coin-
duction on the natural numbers (if you happen to know the terminology).

Problem. The purpose of this series of exercises is to describe coherence spaces as ob-
jects X isomorphic to their double negation ∼∼ X in a larger category Conf of configuration
spaces. We will then see how the various constructions on coherence spaces studied during
the course : the classical duality, the tensor product, the sum, can be derived from more
primitive constructions on configuration spaces. A configuration space is defined as a pair

X = (|X|,Config(X))

consisting of a countable set |X| called the web of X and of a set

Config(X) ⊆ ℘(|X|)

of subsets of |X|. The elements of Config(X) are called the configurations of X. One
asks moreover that every element x ∈ |X| of the web is an element of a configuration u ∈
Config(X) :

∀x ∈ |X|, ∃u ∈ Config(X), x ∈ u.

It is immediate that every coherence space A defines a configuration space U(A) with same
web :

|U(A)| = |A|
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and whose configurations are the cliques of A.

Now, one defines the negation of a configuration space X as the configuration space ∼ X
with same web

|∼ X| = |X|

and with set of configurations defined as :

Config(∼ X) = { u ⊆ |X| | ∀v ∈ Config(X), u ⊥ v }

where
u ⊥ v

means that the intersection u ∩ v contains an element at most.

§P1. Show that
Config(X) ⊆ Config(∼∼ X)

for every configuration space X.

§P2. Show that
∼∼∼ X = ∼ X

for every configuration space X.

§P3. Show that for every configuration space X, the configuration space

∼ X

is of the form
∼ X = U(A)

for a given coherence space A that will be described.

§P4. Show in particular that for every coherence space A, one has

∼ U(A) = U(A⊥)

where A⊥ is the coherence space dual to A defined in the course.

§P5. Deduce the following equation

U(A) = ∼∼ U(A)

for every coherence space A.
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§P6. Deduce from the previous questions the existence of a bijection between the coherence
spaces A and the configuration spaces X such that

X = ∼∼ X.

§P7. The category Conf is defined as the category whose objects are the configuration
spaces, and whose morphisms

f : X −→ Y

are the binary relations
f ⊆ |X| × |Y |

such that :

— the relation f transports the configurations in the forward direction :

∀u ∈ Config(X), f(u) ∈ Config(Y )

where we write

f(u) = { y ∈ |Y | | ∃x ∈ u tel que (x, y) ∈ f }

— the relation f is locally injective in the sense that for every configuration u ∈ Config(X),
one has :

∀x1, x2 ∈ u,
(
∃y ∈ |Y |, (x1, y) ∈ f et (x2, y) ∈ f

)
⇒ x1 = x2.

The identity on the configuration space X is the morphism defined as follows :

idX = { (x, x) | x ∈ |X| }.

Show that these data define a category, where morphisms are composed as relations. [ note :
you are welcome to use the fact that binary relations between sets define a category noted
Rel ].

§P8. Show that the construction U(−) defines a fully faithful functor

U(−) : Coh −→ Conf

Reminder : a functor U is called fully faithful when the function

Coh(A,B) → Conf(U(A), U(B))

f 7→ U(f)
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is bijective for every pair of coherence spaces A and B.

This result enables us to see the category Coh as the full subcategory of Conf consisting
of the configuration spaces X such that X = ∼∼ X. Reminder : a category B is a full
subcategory of a category C when the class of objects of B is included in the class of objects
of C, and the sets of morphisms B(B1, B2) and C(B1, B2) between two objects B1 and B2 of
B (and thus of C) are the same in the categories B and C :

B(B1, B2) = C(B1, B2)

with the same composition and identity laws in B and in C.

§P9. Show that the construction ∼ defines a functor

∼ : Conf −→ Conf op

which transports a morphism f : X → Y in the morphism

∼ f : ∼ Y −→ ∼ X

defined as
(y, x) ∈ ∼ f ⇐⇒ (x, y) ∈ f

for all x ∈ |X| and y ∈ |Y |.
§P10. Deduce from the previous question that the double négation ∼∼ defines a functor

∼∼ : Conf −→ Conf .

§P11. Describe in a simple way the coherence space ∼∼ X associated to a configuration
space X, as well as the morphism

∼∼ f : ∼∼ X −→ ∼∼ Y

associated to a morphism f : X → Y .

§P12. Show that the relation

ηX = { (x, x) | x ∈ |X| }

defines for every configuration space X a morphism

ηX : X −→ ∼∼ X

of the category Conf .
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§P13. Show that the family of morphisms ηX : X → ∼∼ X is natural in X.
We find convenient write

F : Conf −→ Coh.

for that double negation functor.

§P14. Give the example of a configuration space X such that the inclusion

Config(X) ⊆ Config(UF (X))

is strict [note : one can take a configuration space X with three points in its web |X| ].

§P15. Suppose given a configuration space X and a coherence space A. Show that a binary
relation

f ⊆ |X| × |A|

is an element of
Conf(X,U(A))

if and only if the binary relation f is an element of

Coh(F (X), A).

§P16. From this, deduce that the functor

F : Conf −→ Coh

is left adjoint to the functor

U : Coh −→ Conf

§P16. Describe the unit
ηX : X −→ UF (X)

and the counit
εA : FU(A) −→ A

of the adjunction F a U for a configuraton space X and for a coherence space A.

§P17. Given two configuration spaces X and Y , one defines the configuration space X • Y
as follows :

|X • Y | = |X| × |Y |

Config(X • Y ) = { u× v | u ∈ Config(X) et v ∈ Config(Y ) }
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We admit that the tensor product defines a structure of symmetric monoidal category on the
category Conf . Show that

F (X) ⊗ F (Y ) = F (X • Y )

where ⊗ denotes the tensor product of coherence spaces defined in the course. Explain in
what sense this equation enables one to deduce the tensor product ⊗ of coherence spaces
from the tensor product • on configuration spaces.

§P18. Given two configuration spaces X and Y , the configuration space X +Y is defined as
follows :

|X + Y | = |X|+ |Y |

Config(X + Y ) = { inl(u) | u ∈ Config(X) }
∪ { inr(v) | v ∈ Config(Y ) }

Show that X + Y defined a cartesian sum of X and of Y in the category Conf . [Note : a
cartesian sum is the dual of a cartesian product, that is, a cartesian product in the opposite
category Conf op.]

§P19. Show that
F (X)⊕ F (Y ) = F (X + Y ).

Explain in what sense this equation enables one to deduce the cartesian sum ⊗ of coherence
spaces from the cartesian sum • on configuration spaces.

§P20. Suppose given two configuration spaces X and Y . Show that a binary relation

f ⊆ |X| × |Y |

is an element of
Conf(X,∼ Y )

if and only if
∀(u, v) ∈ Config(X)× Config(Y ), f ⊥ u× v.

[Note : we use here the fact that every element y of the web of Y appears as a specific
configuration v of the configuration space Y .]

§P21. Deduce a bijection

Conf(X,∼ Y ) ∼= Conf(X • Y,⊥)

where ⊥ denotes the configuration space whose web is a singleton {∗} and whose two confi-
gurations are the empty set and the singleton set {∗}.
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