Examen partiel en ligne 2020-2021

Modéles des langages de programmation
Master Parisien de Recherche en Informatique

Le mardi ler décembre 2020 de 9h30 a 11h30

Les questions de ’examen sont rédigées en anglais
mais les réponses pourront bien entendu étre écrites en frangais.

Exercise A. Consider the derivation tree of the simply-typed A-calculus

r:AFx: A
fiA=>Ax: Az A
fiA=AF ) 2. A=A

FAfAzz: (A= A)= (A= A)

in the typing system studied in the course.
§A 1. Describe another derivation tree leading to the same typing judgment :

Weakening
Abstraction
Abstraction

Fo A @ (A= A)= (A= A)

§A2. Explain with a categorical diagram why the interpretations of the two derivation trees
are the same in any cartesian closed category.

Exercise B. In this exercise, we study a categorical formulation of induction and coinduc-
tion based on the notions of T-algebra for induction and of T-coalgebra for coinduction. To
that purpose, we suppose given a category € and a functor T : € — €. A T-algebra is defined
as a pair (A, a) consisting of an object A of the category € and of a map

a : TA — A

A T-homomorphism between T-algebras
f : (Au a) I — (Ba b)

is defined as a map f: A — B of the category € which makes the diagram below commute :

A —Y 7B
T

A——— B



One obtains in this way a category Alg, whose objects are the T-algebras and whose maps
are the T-homomorphisms.

§B1. A T-algebra (A, a) is called initial when for every map b : TB — B there exists a
unique map f : A — B such that the following diagram commutes :

TA — Y 7B

| |

A—7F B
Explain why a T-algebra (A, a) is initial in that sense if and only if it is initial as an object
in the category Alg,.

§B2. Consider the functor T : Set — Set which transports every set A to theset TA =10 A
where W denotes the disjoint union of sets, and 1 = {x}. Show that the set of natural
numbers N equipped with the bijection

suce : 1UN — N
n — n+1
* — 0

defines the initial algebra of the functor T'. Explain in particular how this property of (N, succ)
enables one to define in a unique way a function N — A by induction on the natural numbers.

§B3. In a dual way, one defines a T-coalgebra in a category C as a pair (A, a) consisting of
an object A and of a map
a : A—TA

of the category €. A T-homomorphism between T-coalgebras
f : (Av Cl) I — (Bv b)
is defined as a map f : A — B of the category € which makes the diagram below commute :

A—T1 B
L
TA ——— TB

One defines in this way a category CoAlg, whose objects are the T-coalgebras and whose
maps are the T-homomorphisms. A T-coalgebra (B, b) is called terminal when for every map



a: A — TA there exists a unique map f : A — B such that the diagram below commutes :

A—7 B
| ls
Tf
TA —— TB
Explain why a T-coalgebra (A, a) is terminal in that sense precisely when it is terminal as
an object in the category CoAlg,.

§B4. Consider the same functor T : Set — Set as in §B2. which transports every set A to
the set TA = 1w A. Show that the set of completed natural numbers NWw{oo} equipped with
the function

pred :  Nw{cc} — 1UNW{oo}
0 > *
n+1 = n
00 > 00

defines the terminal T-coalgebra. Explain that it enables one to define a function by coin-
duction on the natural numbers (if you happen to know the terminology).

Problem. The purpose of this series of exercises is to describe coherence spaces as ob-
jects X isomorphic to their double negation ~~ X in a larger category Conf of configuration
spaces. We will then see how the various constructions on coherence spaces studied during
the course : the classical duality, the tensor product, the sum, can be derived from more
primitive constructions on configuration spaces. A configuration space is defined as a pair

X = (X, Config(X))
consisting of a countable set | X| called the web of X and of a set
Config(X) < p(|X])

of subsets of |X|. The elements of Config(X) are called the configurations of X. One
asks moreover that every element z € |X| of the web is an element of a configuration u €
Config(X) :

Vo e |X|, 3Fu e Config(X), T € u.

It is immediate that every coherence space A defines a configuration space U(A) with same
web :

vl = 4]



and whose configurations are the cliques of A.

Now, one defines the negation of a configuration space X as the configuration space ~ X
with same web
I~ Xl = |X]

and with set of configurations defined as :
Config(~ X) = { uC|X| | VveConfig(X), ulv }
where
ulwv

means that the intersection u N v contains an element at most.

§P1. Show that
Config(X) C Config(~~ X)

for every configuration space X.

§P2. Show that

for every configuration space X.

§P3. Show that for every configuration space X, the configuration space
~ X

is of the form
~X = U4

for a given coherence space A that will be described.

§P4. Show in particular that for every coherence space A, one has
~UA) = UAY

where A is the coherence space dual to A defined in the course.

§P5. Deduce the following equation

for every coherence space A.



§P6. Deduce from the previous questions the existence of a bijection between the coherence
spaces A and the configuration spaces X such that

X = ~~X.

§P7. The category Conf is defined as the category whose objects are the configuration

spaces, and whose morphisms
f: X — Y

are the binary relations
foc XY

such that :

— the relation f transports the configurations in the forward direction :
Vu € Config(X), f(u) € Config(Y)
where we write
flwy = { yelY| | Fwrcutelque(z,y)ef }

— therelation f is locally injective in the sense that for every configuration v € Config(X),
one has :

Vg, 2 € u, (396 Y|, (z1,y) € fet (xz,y)Gf) =  T1 = T2.
The identity on the configuration space X is the morphism defined as follows :
idy = { (z,z) | z€|X| }.

Show that these data define a category, where morphisms are composed as relations. [note :
you are welcome to use the fact that binary relations between sets define a category noted
Rel|.

§P8. Show that the construction U(—) defines a fully faithful functor
U(-) : Coh — Conf

Reminder : a functor U is called fully faithful when the function

Coh(A,B) —  Conf(U(A),U(B))
f — U(/f)



is bijective for every pair of coherence spaces A and B.

This result enables us to see the category Coh as the full subcategory of Conf consisting
of the configuration spaces X such that X = ~~ X. Reminder : a category B is a full
subcategory of a category € when the class of objects of B is included in the class of objects
of €, and the sets of morphisms B(Bj, Bs) and C(Bj, Bs) between two objects By and By of
B (and thus of €) are the same in the categories B and C :

B(Bb BQ) — @(Bl, Bg)

with the same composition and identity laws in B and in C.

§P9. Show that the construction ~ defines a functor
~ : Conf — Conf ¥
which transports a morphism f : X — Y in the morphism
~f  ~Y — ~X

defined as
(y,x)e~f <= (v,y)cf
for all z € | X| and y € |Y].

§P10. Deduce from the previous question that the double négation ~~ defines a functor
~~ : Conf — Conf.

§P11. Describe in a simple way the coherence space ~~ X associated to a configuration
space X, as well as the morphism

associated to a morphism f: X — Y.
§P12. Show that the relation

nx = { (@) | zelX] }
defines for every configuration space X a morphism
nx : X — ~~X

of the category Conf.



§P13. Show that the family of morphisms nx : X — ~~ X is natural in X.
We find convenient write

F : Conf — Coh.

for that double negation functor.

§P14. Give the example of a configuration space X such that the inclusion
Config(X) C Config(UF (X))

is strict [note : one can take a configuration space X with three points in its web | X|].

§P15. Suppose given a configuration space X and a coherence space A. Show that a binary
relation

foc [XIx|A]

is an element of

Conf(X,U(A))

if and only if the binary relation f is an element of
Coh(F(X), A).

§P16. From this, deduce that the functor

F : Conf — Coh
is left adjoint to the functor

U : Coh — Conf
§P16. Describe the unit

nx : X — UFX)

and the counit
€A : FU(A) — A

of the adjunction F' 4 U for a configuraton space X and for a coherence space A.

§P17. Given two configuration spaces X and Y, one defines the configuration space X o Y

as follows :
| XeY| = |X|x][Y]

Config(X oY) = { uxwv | weConfig(X) et ve Config(Y) }
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We admit that the tensor product defines a structure of symmetric monoidal category on the
category Conf. Show that

F(X) ® F(Y) = F(XeY)

where ® denotes the tensor product of coherence spaces defined in the course. Explain in
what sense this equation enables one to deduce the tensor product ® of coherence spaces
from the tensor product e on configuration spaces.

§P18. Given two configuration spaces X and Y, the configuration space X +Y is defined as
follows :
X+Y[ = [X]|+]Y]

Config(X +Y) = { inl(u) | w e Config(X) }
U { inr(v) | wveConfig(Y) }

Show that X + Y defined a cartesian sum of X and of Y in the category Conf. |[Note : a
cartesian sum is the dual of a cartesian product, that is, a cartesian product in the opposite
category Conf |

§P19. Show that
FX)eFY) = FX+Y).

Explain in what sense this equation enables one to deduce the cartesian sum ® of coherence
spaces from the cartesian sum e on configuration spaces.

§P20. Suppose given two configuration spaces X and Y. Show that a binary relation
foc IXIx Y|

is an element of

Conf(X,~Y)

if and only if
V(u,v) € Config(X) x Config(Y), f L uxw.

[Note : we use here the fact that every element y of the web of Y appears as a specific
configuration v of the configuration space Y|

§P21. Deduce a bijection
Conf(X,~Y) = Conf(XeY, 1)

where L denotes the configuration space whose web is a singleton {*} and whose two confi-
gurations are the empty set and the singleton set {x}.
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