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Abstract

Algebraic type systems provide a general framework for the study of the interaction between
typed A-calculi and typed rewriting systems. A magjor problem in the development of a general
theory for algebraic type systems is to prove that typing is preserved under reduction (Subject
Reduction lemma). In this paper, we propose a general technique to prove Subject Reduction
for a large class of algebraic type systems. The idea is to consider for every (functional) algeb-
raic type system a labelled syntax for which Subject Reduction is easy to prove and then prove
the equivalence between the labelled and standard syntaxes when the labelled system is strongly
normalising. The equivalence can then be used to recover confluence, strong normalisation and
subject reduction for the standard syntaz.

1 Introduction

A-calculus and term-rewriting are two fundamental computational paradigms. When combined, they
give rise to the class of algebraic-functional languages ([3, 9, 10, 15]). Recently, H. Geuvers and the
first author have proposed a general framework for the classification and study of algebraic-functional
languages: algebraic type systems ([6]).

Subject Reduction, also known as Type Safeness, states that types are closed under reduction. It
is an important property of a type system: for instance it implies that correctness is preserved under
evaluation and is needed in most strong normalisation proofs. Unfortunately, it is unknown whether
Subject Reduction holds for an arbitrary algebraic type system. Indeed, the reduction relation of
algebraic type systems may not be confluent on pseudo-terms (see [9, 16]) and as a result standard
techniques to prove Subject Reduction (see [4, 14]) cannot be used.

The problem. Let AS be an algebraic type system. If ' - M : A and M =g N, then ' - NV : A.

In this paper, we propose a general technique for proving Subject Reduction for a large class of
algebraic type systems (and so provide a partial but useful answer to the problem). The central
idea is to consider a labelled syntax for which Subject Reduction is easy to establish and then prove
that, under suitable conditions, both syntaxes are equivalent. Our work, complemented with a
generic proof of strong normalisation ([6, 19]!), provides a clear and widely applicable meta-theory of
algebraic type systems. A particular application of our work is a proof of strong normalisation of the
algebraic A-cube, see [7] for details. Another, perhaps more important, application is to contribute
to a better understanding of the various presentations of type systems. Several presentations are
used in the literature, each of which serves a specific purpose. For example, the labelled syntax

! These proofs are concerned with a different syntax but may be adapted to that of this paper.



we consider is best suited to give a semantics of type systems? (see [2, 19, 22]) while the standard
syntax is best suited for proof checking (see [11, 18]). Our work establishes the equivalence between
the two presentations for a large class of systems.

Contents of the paper and prerequisites In Section 2, we introduce the standard and labelled
syntaxes of algebraic type systems. The Subject Reduction property for the labelled syntax is proved
in Section 3 and the equivalence between the labelled and standard syntaxes is proved in Section 4.
In Section 5, we consider an application of our results. Finally, we conclude in Section 6.

The paper assumes some basic familiarity with pure type systems (see [4, 14]) and term-rewriting

(see [12, 17]).

2 Algebraic type systems

2.1 Preliminaries

Throughout this section, X is an arbitrary set. All relations will be understood as relations over X.
Elements of X are called objects.

If R and & are binary relations, R.S denote their composition. Moreover, for R an arbitrary
relation, we use the following notation (below R stands for Reflexive, S for symmetric and T for
transitive, C for closure):

Notion RC SC TC RTC RSTC Inverse RY - (RoP)¥
Notation R RE Rt RY =R ROP Ir

Some of the relations will written as —;, in which case we use an ARS (abstract rewriting system)
notation:

Usual notation —¥ =, 1o,

ARS notation — = bi

Definition 1 A relation R is
- locally confluent if R? - R Clg.
- confluent if the relations | r and =r are equal.

- Church-Rosser on an object a if for every b, ¢ such that b (R¥)°P a R¥ ¢ there exists d such that
bR d (R¥)P c.

- strongly normalising on an object a if there is no infinite sequence

aoRalRagR e

- canonical on an object a if it is Church-Rosser and strongly normalising on a.

Throughout the paper, we will make use of Newman’s Lemma.

Lemma 2 (Newman’s Lemma) If R is locally confluent and strongly normalising on a, then R
is Church-Rosser on a.

?Labels were also used, in a slightly different form, by Salvesen to prove Church-Rosser for extensional pure type
systems [21].



2.2 Algebraic type systems

For the sake of clarity, we only consider first-order rewriting.
Definition 3 A pre-specification is a 6-tuple AS = (U, S, F, H, P, D) where
- U is a set of universes, S is a set of sorts and F' is a set of function symbols;
-H C(UUS) xU is a set of axioms s.t. Vr € S.3s € U. (1,s) € H.
- PCUXUxU is a set of rules;
-D:F — S5 xS is a declaration function.

For the sake of hygiene, we assume that U, .S, F' are pairwise disjoint. Throughout the rest of this
paper, we let V be a fixed set of variables and let o, 7,... (resp. f,g,...) range over sorts (resp.
function symbols). Moreover we define the arity ar(f) of a function symbol f € F to be the length
of the first component of D(f). K is then defined as the set of function symbols of arity 0.

To complete the specification of an ATS, we introduce algebraic reduction. The approach we
follow is inspired from [3, 13] and is equivalent to that of [6].

Definition 4 Let AS = (U, S, F, H, P, D) be a pre-specification.
- The set L of algebraic terms is given by the abstract syntax:
L=V|f(L,..., L)
where in the last case the number of arguments applied to f is ar(f).
- The set of variables of a term t is denoted by var(t) and is defined as usual.
- Let £:V — S. The relation :;C L x S is defined by the rules

{x)=r tizeri (1<i<n) ifD(fy=({(m ... ... Tn)s O
T T flti,eootn) e o ()= »o)

- A rewrite rule is a pair (I,r) of algebraic terms s.t. 1 ¢ V and var(l) C var(r) and l,r :¢ T for
some&:V — S and T € 5.

- A rewrite system is a set of rewrite rules.

Every rewrite system R may be seen as an unsorted rewrite system and thus induces a relation
—1(r) on L. We can also define a relation =1 (r) by @ =rr(r) bif a =1 (r) b and a,b:¢ 7 for some
E:V—=Sand reS.

Definition 5 - An ATS specification is a pair consisting of a pre-specification AS = (U, S, F, H, P, D)
and a rewrite system R. By abuse of notation, we write AS = (U, S, F, H, P, D, R).

- Let PROPERTY be a property of relations (e.g. confluent or terminating). A specification AS =
(U,S,F,H, P, D, R) is A-PROPERTY if —1(r) is PROPERTY.

- A specification A\S = (U, S, F, H, P, D, R) is functional if A and P are partial maps.
For the remaining of the paper, we assume:

Assumption 6 AS = (U, S, F,H, P, D, R) is an ATS specification.



Axiom Frois if (¢,s) € H
Function L 11:1|_7Z-1f(t1’£n|_)nf_n - In if Df = ((61...00),7)
Start = xr:?é’;: y ifzgT,2eV
Weakening r l_?’tx: :AB '_i :RAB -5 ifr¢glandt e SUUUV UK
Product [Fr f;::; H;’ 251:7; B:s if (s1,82,83) € P
Application Tkrt:Mlx:AB Thrpu:A
kgt u: Blu/z]
OB PS¢ B
Conversion I'Fr UF '1471 UF ;R B:s if ARB

Table 1: R-DEDUCTIVE SYSTEM FOR THE STANDARD SYNTAX

2.3 Standard syntax
The set T of pseudo-terms is defined by the abstract syntax:

T = V|U|S|TTIOV : T.TIAV : T.T|f(T,...,T)

where in the last case, the number of arguments applied to f is ar(f)3.

In order to provide a uniform framework for the systems used in the literature, the rules for
derivation, in Table 1, are parametrised by a binary relation R on pseudo-terms, see [20] for a
similar idea. For lack of space, only one deductive system F is considered here. The definition below
makes use of contexts, substitutions and B-reduction. These are defined as usual.

Definition 7 - M —g N if there exists a context C[.], a rule (I,7) and a substitution 0 s.t.
M = C[0l] and N = C[0r].

- —miz = —pU—gR.

-F o= ke

2.4 Labelled syntax

The labelled syntax differs from the standard one by having labelled abstractions and labelled
applications. The set T, of labelled pseudo-terms is defined by the abstract syntax:

T. = V|U|S|app™erTeTe(T,, T.) NV : T, T NV Te Tey T | (T, ..., T.)

where in the last case, the number of arguments applied to f is ar(f).

As for the standard syntax, we consider a class of deductive systems indexed by a binary relation
R on (labelled) pseudo-terms. The rules for derivation are given in Table 2. Two specific deductive
systems will be considered.

Definition 8 ([2]) - Algebraic reduction — g is defined in the same way as for the standard syntaz;

3Tn other words, we only consider fully applied algebraic terms. Such a restriction is crucial when n-reduction is
considered.



Axiom _ if (¢,s) € H

Fc:s
Function I'Fg lt“ll—:glf(ti,‘ : ’I;n'_)% f_” “On if Df = ((61...00),7)
Start = xr:z%é’;: y ifegl,zeV
Weakening r F%’tx: :AB '_;; :%AB -5 ifr¢glandt e SUUUV UK
Application Frl_i%; ;;ix::ﬁﬁt, uf ";z[;l/xfl
NSRS vy VLT
Conversion IFPpu:d THpB:s if ARB

'L u:B

Table 2: R-DEDUCTIVE SYSTEM FOR THE LABELLED SYNTAX

- Tight B-reduction —g, is defined as the compatible closure of

app! AP (AT 4By A1 Ny 5 MN/z]

- Loose (3-reduction —g, is defined as the compatible closure of

app! P A™B (\1:4-By A1 N) 5 MIN/z]

- —mizt = —rU—g, and  —piol = —r U —g,.
o= R and K= R

Tight [S-reduction requires the abstraction and application labels to match. In contrast loose j3-

reduction which does not impose any condition on labels.
Lemma 9 1. —g, is locally confluent.
2. If AS is A-confluent, then — gt is locally confluent.

Proof by induction on the structure of the terms.

It is unclear whether tight g-reduction, which is not left-linear, is confluent.

Throughout the paper, we will use the following standard terminology: a labelled pseudo-term
M is legal w.r.t. % if there is a context I' and a pseudo-term A such that I' H4 M : A. A labelled
pseudo-context T'is legal w.r.t. % if there two pseudo-terms M and A such that T' =5, M : A.

2.5 Subject Reduction for the standard syntax

Before embarking on technicalities, let us analyze where the standard proof of subject reduction
breaks down. The problem arises when trying to prove subject reduction for S-reduction: as noticed
in [3, 13], one cannot prove subject reduction by induction on the length of the derivations. Indeed,

the induction step

F'FXe: A b:TMe: A B Thra:A
Tk (A : A"b) a: Bla/x]




fails if one wants to prove I' - bla/x] : Bla/z]. If we follow the proof of subject reduction for pure
type systems (see [4, 14]), the induction step should be completed in four steps:

1. deduce from the generation lemma that ',z : A’ - b : B’ for some B’ such that Tz : A.B |zt
Ch izt - -« dmizvt Cn dmiwt Tz + A.B’ (where the Cj’s are legal);

2. use confluence to derive A |,,;»:+ A’ and B | izt B’;
3. apply the conversion rule and substitution to get T' F bla/z] : B'[a/z];
4. apply the conversion rule once more to get T'F b[a/z] : Bla/z].

However the induction step cannot be completed (at step 2) because confluence may fail in presence
of algebraic rewriting.

To circumvent this problem we propose a different strategy to develop the meta-theory of - for
functional, A-confluent ATSs. The strategy is an adaptation of a technique applied originally on
Pure Type Systems, (see [2, 19] for details). We proceed in three steps:

1. prove subject reduction of —,,;-+ for a class of deductive systems F%;
2. prove strong normalisation of the labelled syntax using subject reduction if necessary;

3. deduce from functionality and strong normalisation (a) the equivalence between labelled and
unlabelled syntaxes (b) confluence, strong normalisation and subject reduction for the standard
syntax.

We treat Steps 1 and 3 thoroughly. Step 2 is treated in [2, 19] for Pure Type Systems and by the
first author in a companion paper [7] for Algebraic Type Systems.

3 The subject reduction property for the labelled syntax
Definition 10 S has the Subject Reduction Property w.r.t Q@ (Q-SR) if
FFgt:AandtQu=TFgu: A4

In this section, we prove the Subject Reduction property w.r.t. — ;¢ for a large class of R-deductive
systems.

The standard proof of subject reduction (in [4, 14]) uses a frontier property: at each derivation
step,

Fll_tltAl Fkl_tk:Ak
Aru:B

A and u can be constructed from the T';’s and the ¢;’s. Labelled systems do not fulfill this property
because of the Application rule (where B appears in Al1#:4-Bz #). To recover this frontier property,
we consider a variant |Fr of the labelled syntax, where the Application rule is replaced by:

Tlhrt:Me:AB Tlgru:A Tlhgrlz:AB:s
[ IFr app ™A B(t, u) : Blu/z]

Application+

Proposition 15 will show that this modification has in general no consequence on the set of derivable
judgements. For now, we prove Subject Reduction for k. Some preliminary closure results are
needed.

Lemma 11 (Generation lemma) (G.) if T lkgr ¢: F and ¢ € UU S, there exists s € S such
that (c¢,s) € H and s R* E;

(Gy) if TlFg f(t1,...,tn) : E withD(f) = ((61,...,00),7), then T kg t; 10y for i =1,...,n and
r R E;



(Gp) if Tlkr o« E, then there exists B such that (x : B) €T and B RY F;

G, any derivation of T IFr a He:A.B M, N) : E contains a derivation of I' lkr M : Tlz : A.B
pp PP
and T lkr N: A and T lkgr Tz : A.B : s for some universe s. Moreover B[N/x]R¥ E.

(Gn) any derivation of the judgement T' Ik (Tlz : A.B) : E contains derivations of T IFr A : sy
and I'yx : A lFr B : sy for some universes s1,s2. Moreover there exists s3 € U such that
(s1,82,83) € P and ssR“F.

(Gy) any derivation of T kg M=A-Bx b E contains a derivation of T,z : A lbg b : B and
Tlkgr Mz : A.B : s for some universe s. Moreover (Tlx : A.B)R¥E.

(Gr) any derivation of T,z : Alkgr M : B contains a derivation of T lFr A : s for some universe
s.

Lemma 12 (Substitution lemma) Let T'y,z : A, T'y be a context, let a,b, B be pseudo-terms. If
R is closed under substitution then

I,z: ATy lFrb: B
! r1|rn2a:7f4 }:» Ty, Tyfa/z] Ibr bla/z] : Bla/x]

Lemma 13 (Correctness of Types) (C) Suppose that R is closed under substitution. If T IFgr
a:Aand A@U, then T lFr A : s for some universe s.

Proof by induction on the structure of the derivation of ' IFr a : A. [ |

The next result gives three general conditions for Subject Reduction to hold. H;y is needed to apply
the above closure lemmas while Hy and Hj3 are needed to apply the induction hypothesis via a
back-and-forth reasoning.

Theorem 14 (Subject Reduction Theorem) Let R be a relation such that

Hi, R is closed under substitution,

H; if Q1 = mict Q2 then Q1 R Q2

Hs if Q1 —mizt Q2 then P[Q2/x] R P[Q1/x] where P is any labelled pseudo-term.
Assume Tlkr M : A and M —pipt M'. Then Tlkp M’ : A.

Proof see Appendix. [ |
Proposition 15 If R is closed under substitution then for every judgement (T, M, A):
' M:A & TlkpgM:A

Proof both implications are proved by induction on the structure of derivations. The implication
(=) is proved using Correctness of Types. [ |

Corollary 16 If R verifies the hypotheses Hy, Hy and Hs, then it has the —p;01-SR property. In
particular, = and F§ have the —p0¢-SR property.

4 Equivalence results
In this section, we establish under certain conditions an equivalence between (a) labelled deductive

systems (b) F¢ and F. Only the most important equivalence results are stated here. There are
further, more general, results which we omit for the lack of space.



4.1 A general equivalence result for labelled deductive systems
Throughout this subsection, @, R and & denote binary relations on labelled pseudo-terms.
Definition 17
- R C S if for all judgements (T, M, A),
T M:A= T M: A

-R~SifRESLCR.
- R < 8 if for all judgements (T, M, A),

(TFsM:A and TF:B:s and ARB) = TF;M:B

“RSSifR<S<R.

Remark that < is not transitive. Working at an abstract level, we show that all the labelled deductive
systems satisfying certain properties are equivalent.

Proposition 18 R<S=RCSandRsS<=R~S.

Proof see Appendix. [ |
Proposition 19  Assume that S has the @-SR property and is closed under substitutions.

Q<SandR<S = Q-R<S
R<Sand Q7?7 <S8 = R-QP<S
09 <S8 = S=09¥.-8-(Q7P)W

Proof see Appendix. [ |

Corollary 20 (Equivalence Lemma) Assume that S8 has the Q-SR property and is closed under

substitutions.
Q7 <S = [gCS

Q9 <S<lg = lo=§
Proof see Appendix. [ |

Theorem 21 (Equivalence theorem) Let R verify the hypotheses Hy, Hy and Hz. Then }pmiz:C
R. Moreover R <|mizt = Imint>=R.

Proof see Appendix. [ |

4.2 More labelled equivalences

In this subsection, we prove two further equivalence results for the labelled syntax. Both results will
be used to prove the equivalence between the labelled and unlabelled syntaxes.

The first result is concerned with showing that under suitable conditions, I—ER is equivalent to
another, easier to use, deductive system.

Definition 22 Let R be a binary relation. The relation T(R) is defined by
t T(R)u <= (tR uandt and u are legal w.r.t. b )

We have:



Lemma 23 IfR is closed under substitution and -], has R-SR then |r~|1(R)-

Proof see Appendix. [ |

We write =T (mizt) for T(—=mizt)-
Corollary 24 iT(mm)Zimixt-

An interesting point about — (st is that it is confluent when —;.+ is canonical on legal terms

of 5.

The second result is concerned with an equivalence between -{ and 7. We start with a preliminary
result:

Lemma 25 Assume —m(mizt) i confluent. For every judgement T ¢ M : A and labelled pseudo-
term M',
M =i M = M=t M

mixt

Proof see Appendix. [ |
Proposition 26 Assume —r(micr) is confluent. Then |mivt™~|misi-

Proof the direct inclusion l.,iztClmier follows from the inclusion |zt € mizi. The reverse
inclusion |mieiCEdmizt follows from Equivalence Lemma: Remark that we need Lemma 25 to show
that F; has the —,,;;-SR property and that (¢mm)*’ <lmizt- [ |

4.3 Equivalence between labelled and unlabelled syntaxes

In this section, we establish the main equivalence result between labelled and unlabelled syntaxes.
For the lack of space, we only consider the equivalence between F and 5.
There is an obvious translation from 7T, to T which erases labels:

Definition 27 (The translation) The map ||-||: T. — T is defined inductively as follows:
o [lzf|=x
o [Isl|=s,
o I7l[=r,
o ||Iz: A.B|| = Tz : ||A]].||B]],
o [[f(trs -y tn)ll = £ - 1IERl]),
o [N AFe M| = Xz« ||A|[.[|M]],

o |[app™ P (M, N)|| = ||M]|| ||N]].
Erasure preserves typing.
Lemma 28 TH M : A = ||T||F [|M]]:]|]A4]l

Proof by an easy structural induction on the derivation of T' -y M : A. [ |

The fundamental fact about labels is that, under suitable conditions, every derivable judgement
can be labelled without losing derivability. Throughout this subsection, we assume:

Assumption 29 AS is a functional algebraic type system. Moreover — iz is canonical on legal
terms of k5.

We start with some preliminary results.



Proposition 30 (Unicity of types) Assume I'f M : A and T'=§ M : B. Then A =p(mizt) B.
Proof by induction on the structure of the derivation of T' 7 M : A. ]

Corollary 31 Assume that T'F-§ M : A and AFg N : B. If T =p(mizt) A and M =1(mizt) N, then
A =T (mizt) B.

Proof by confluence of =7 (mizt), there exists = and P such that T'y A —p () = and M, N =7 (mixt)
P. By Subject Reduction, Z+§ P: A and ZF; P: B. By Unicity of Types, A =1 (mizt) B. [ |

Next we define for each legal term its canonical form.

Definition 32 (canonical forms) Let M be legal. We define M as

e T =
e s — ¢
e 7% — 1

Tz : A.B)®" = [lz : A" Be"
Fltry oo )0 = F(IS", ... 25"

Tz:A.B can Mz:A%". B" can
A e M) =\ z. M

(
(
e (
nf nf
° (appﬂx tA. B(M N))can _ appﬂx A" B (Mcan Ncan)
where A™ denotes the normal form of A w.r.t —migt.

We remark that ||[M|| = |[M"||. One important property of ." is that it identifies terms which
have equal erasures.

Lemma 33 (Unicity of the canonical translation)
1. for every legal contexts T and A, ||A]| = ||T|| = A®" = ",
2. for every derivations T F; M : C and A N : D,
(Tl = A A (1M = INJ) = Mo = Neen

Proof See Appendix. [ |

In order to be able to prove the equivalence between - and 7, it is necessary to show that standard
reductions may be lifted to labelled ones. The following result is also useful to deduce subject
reduction and strong normalisation from labelled subject reduction and strong normalisation.
Lemma 34 Assume I'F{ M : A.

1. If ||M|| =miz N then there exists N' such that M —*. N’ and ||[N'|| = N

N’ and ||N’|| = N

mixl

2. If ||M|| —}. N then there exists N' such that M —*

mixt

3. —mir 1s confluent and strongly normalising on ||M]|].
4. IfT'F; N : B with ||M|| dmixz ||N]], then M | izt N.
Proof see Appendix. [ |

Collecting the previous results, we get:

Proposition 35 IfI' - M : A is derivable then there exists a derivable judgement T'q F{ M, : A,
such that T'q, My and A, are canonical and

ITul| =T and ||My]] = M and ||Al|] = A

Proof see Appendix [ |

10



4.4 Aside: deductive systems with one-step conversion rule

Algebraic type systems are often defined with a deductive system using one-step conversion ([3, 6,
13]). Unfortunately, it seems unclear how to prove Subject Reduction or an equivalence result for
those systems. Yet there is a slightly bigger deductive system for which Subject Reduction holds.

Definition 36 —,,;,1 is the smallest reduction relation on labelled pseudo-terms such that for every
M,N,N' €T, and x € FV(M), N =izt N’ = M[N/z] = miz1 M[N'/2z]. The relation
Istep is defined as the symmetric closure of mixl.

We have
Corollary 37 lstep has the —p;0:-SR property and 1step ~ |izt.

Proof the first part follows from Theorem 14; the second part from the first and Theorem 21. H

5 Application

Under suitable conditions, subject reduction for - can be deduced from subject reduction of 5.

Proposition 38 Let AS be a functional ATS. Assume —pmize s canonical on legal terms of F§.
Then b has the Subject Reduction property w.r.t. —pmin. Moreover — ;. is canonical on legal terms

of .

Proof Assume I' = M : A. By Proposition 35, there exists a derivation I'y F{ M, : A, with
the expected translation property. By Lemma 34, there exists N, such that M, — 0 N with
[[Ne|]| = N. By Subject Reduction, T'y F¢ N, : A4 and by translation T'+ N : A. The second part
of the proposition follows from Lemma 34. [ ]

As a corollary, we get strong normalisation of the algebraic A-cube.
Corollary 39 A-canonical systems of the algebraic A-cube are strongly normalising.

Proof by Proposition 38, it is enough to prove strong normalisation of —,;,: on legal terms of I-{.
See [7] for such a proof. [ |

6 Conclusion

Proving the equivalence between the various formulations of algebraic or pure type systems is a
vital exercise. It contributes to a better understanding of type systems and allows to derive results
from one formalism to another. The main technical contribution of this paper is a proof of subject
reduction for functional, A-confluent algebraic type systems which are strongly normalising for the
labelled syntax. Although we have been unable to prove Subject Reduction for an arbitrary algebraic
type system, our result is interesting because it is based on a simple technique and applies to an
important class of algebraic type systems. Moreover, the technique in itself is interesting as it is
very general and may be used in other type-theoretic frameworks where the reduction relation is not
confluent on pseudo-terms. These include:

- pure and algebraic type systems with 5-reduction,
- pure type systems with congruence types ([5])
- classical pure type systems ([8]).

As such, it constitutes the first general technique to prove subject reduction for (unlabelled) type
systems with a non-confluent reduction relation.

11
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Appendix: proofs

Proof of Theorem 14 the proof proceeds along the same lines as in [4]. The following two facts
are proved by simultaneous induction on the structure of derivations:

1. T kg M : C and M — ;5 M’, then T'lbp M’ : C.
2. fTIkg M :C and T —,,;5; IV, then IV Ikg M : C.
We treat the cases where the last rule is an abstraction, an application or a function rule:

- abstraction rule: assume M = X'™4Bg ¢ and C = Tz : A.B. 2 follows from the induction
hypothesis. As for 1, the interesting case is when the reduction occurs in A or in B, i.e.
M/ = NIwA By op M/ = \NTw:AB g 4

Subcase 1: M' = A"=:A"“By ¢ Tn this case, we use the induction hypothesis to conclude
I'ye: A kg t: Band T IFg Tz : A'.B : 5. We may then apply the abstraction rule
to get I' IFr NTz:A“By ¢ Mg« A'.B. By H3, we may apply the conversion rule to get
TlFr ATz:A By ¢ Tz« ALB.

Subcase 2: M’ = A1=:A-B'z 4 By induction hypothesis, T' IFg Iz : A.B’ : s. By G,
I'yz : Alkgr B’ : s for a universe s’. We apply the conversion rule thanks to Hs to
deduce T,z : A lFx M : B'. By abstraction, T IFg A\1=:4-B"¢ 31 (Tlz : A.B’). We next
apply the conversion rule thanks to Hs to deduce T IFz MIe:AB 0 Ay (T : A.B).

- application rule: assume M = app"™4-P ¢ w and C = Blu/z]. Tt is easy to prove 2. As for 1, we
treat four subcases:

Subcase 1: top reduction: M = app@A-B(A\I=:A-Byp o) and M’ = b[u/z]. By Gy: T,z :
AlFg b: B. By the Substitution Lemma, T kg b[u/x] : B[u/z].

Hx:A.B(t’ U) Hx:A.B(

Subcase 2: inside u: M = app and M’ = app t,u') with v =iz .
By induction hypothesis, T' IFg «' : A. By construction, T' IFg (TTz : A.B) : s. By
application+, T IFr app ™ 4-B(t, ') : Blu'/z]. By Gn: T,z : Alrgr B : s for some
universe s’. By substitution lemma, I' Ik Blu/z]: s’ We apply a conversion rule thanks
to Hs to deduce T Ik app™4-B(t, ') : Blu/z].

Subcase 3: inside B: just like Subcase 2 of the abstraction rule: if M = app and
M = appHx:A'Bl(t,u) with B —mize B’ then by induction hypothesis on the premise
Il (Tz : A.B) : s we deduce T' IF¢ (TIz : A.B’) : s. By conversion thanks to Hy we
deduce T IFg ¢ : (TTz : A.B’). By application+, T IFr appHx:A'Bl(t, u) : B'lu/x]. By G,
I'yz: Allr B : s for some universe s’. By substitution lemma, T' Ik Blu/z] : s’. By

conversion and Hg, T -z app™™4-B' (¢, u) : B[u/x].

ITx:A.B (t, U)
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Subcase j: inside A: simpler than the preceding case because A does not appear in the type
of appﬂx:A.B(t’ U)

- function rule: if M = f(ty,...,t,) with D(f) = ((61,...,0n),7), then A = 7. The only interesting
case here is when M is a redex, i.e. when M = f({y,...,t,) is matched to a rewrite rule | — r
(of sort T) by some substitution 0. So let M = 6] and M’ = 0r.

Fact 40 Assume M is an algebraic term of sort 7. Assume FV(M) = {x1,...,zn} with
2, €Vy, fori=1,...,n. ThenT =21 :01,...,2p:0n Ik M : T.

So we know A Ik [ : 7 and A lFg » : 7 for the canonical context A associated to . Moreover,
T'lkg Oz : 7; for every (z; : ;) € A. By substitution, T'lFr M’ : T.

Proof of Proposition 18 the first statement is proved by structural induction on the derivations
of 4. The direct implication of the second statement follows immediately. As for the reverse
implication of the second statement, suppose that R ~ §; we show R < §. Assume

'k M:A THB:s ARB
implies thanks to § C R that
'k M:A THL;B:s ARB

By R-conversion, I' /5, M : B. By R ~ §: '+ M : B. Henceforth R < & and symmetrically
R < §. Remark that R < § implies R ~ § with the first statement. So we are done. [ |

Proof of Proposition 19 We prove the first statement. Suppose that
TFsM:A TFsB:s A(Q-R)B

There exists a pseundo-term C' such that AQCRB. We use that S is closed by substitution: TI' kg
A : ¢ for some universe s’ follows by Correctness of Types. By Q-SR: T F% C : s'. By Q < &t
¢ M:C.ByR<S&: T'H; M:B.

The proof of the second statement is (nearly) dual. Suppose that:

TFeM:A THgB:s A(R-QP)B

There is a pseudo-term C' such that ARCQPB. By Q-SR: T Fg C:s. By R<S: T'Fg M : (. By
Q%P < 8: TFg M: B. We are done.

The proof of the third statement: Note that & < §. Hence, we may apply the first and second
statement as many times as wished. By continuity of <:

Qv.-S§- (P <S

We deduce from § C Q¥ -8 - (Q°)¥ that SC Q¥ -S-(Q°?)¥. We are done with the first statement
of proposition 18. [ ]

Proof of Corollary 20 the last statement is easy to prove with proposition 18. As for the first
statement, we prove the following sequence of inequalities

\LQE Qw . (Qop)w E Qw § (Qop)w ZQZ S

We proceed in reverse order. § ~ § is easy. It follows that & has the Q-SR property and that
Q < 8. We apply Proposition 19 to get S ~ Q¥-S-(Q°)%. The last inequality follows Q¥ - (Q°P)¥ C
Qv . 8- (Qr)=. n

14



Proof of Theorem 21 we only prove the first part as the second part is easy. Let Q be — ;5.
It follows from Hy and Hs that @ C R therefore @< < R. On the other hand Theorem 14 shows
that R has the Q-SR property. Hence we can apply corollary 20 to get [m;r:C R. [ ]

Proof of Lemma 23 the direction |p®r)C}r is the consequence of T(R) C R. The reverse
direction is a nice application of lemma 18. To prove that R <|t(r) suppose that I' I—iT(R) M: A
and T I—jT(R) B:sand A |g B. The following properties induce A |7(r) B:

1. the relation |z is closed under substitution, so A is legal w.r.t. I—ER by Correctness of Types,
2. Bislegal, A [g B and -] has R-SR.

Hence, the Conversion rule can be applied in l—jT(R) in order to get T’ l—jT(R) M : B. We conclude
that |r<|T(r) and so |rRClr(Rr)- [ |
Proof of Lemma 25 by induction on the length of the derivation. Note that we only have to

prove the result for M —p, M’ as -rC—mize. The only interesting case is when the last rule is an
application rule and the subject of the judgement is a redex w.r.t. —5,. So assume the last rule is

DR AI=A-Bye g (Mx: A.B) T u: A
T '_f appﬂx:A’.B’ (AHx:A'Bl‘.t, u) . B/[U/l‘]

with M = appHx:Al'Bl(/\Hx:A'Bx.t, u) and M’ = t[u/z]. To show that M — . M’'. We use the fact
that |1 (mizt)~mirt. By generation on l—jT(mm) (which is equivalent to F¢), Tz : A.B =T(mizt) 1T :
A’'.B'. By confluence of = (mist), there exists A” and B such that A, A" —,,;,¢ A” and B, B" — iz
B"'. Therefore

Mae:A".B" (yTIz:A".B"
M — 0t 2PP (A

zt,u) =g, tlu/x]
and we are done. |

Proof of Lemma 33 by induction on the derivation of I' Ff M : C. We treat the case where the
last rule is an application, an abstraction or a weakening:

- application: assume the last step is

Fft:Me:AB TR u:A
| N appHx:A'B(t, u) : Blu/x]

with M = app™4-B(¢,u). 1 is easy to prove. As for 2, assume N = appHx:Al'Bl(t’,u’),

[IT]| = ||A]] and ||M || = ||N]|.- We show M" = N je.

IMe: A" . B"f (tcan’ ucan) IMe:A™. B (t/can’ u/can)

app = app
By Gapp, A F{ ¢/ : Iz : A.B" and A F{ v’ : A’. Note that ||M]|| = ||IN]|| = (||t]| = [|'l]
and ||u]| = ||u’|]). We can use the induction hypothesis on the premises T' F§ ¢ : Tlz : A.B

and T' F¢ u : A and deduce that T" = AN ¢@n = ¢’ and 4" = w/". By —mirt-SR,
[ lr(mizt) A and & Lr(mict) t’. By corollary 31 applied on

[ t:(Tle: A.B) and A ¢/ : (M : A.B')

we deduce (ITz : A.B) =7 (mizt) (M : A.B’). By confluence, (Ix : A.B) l1(mist) (Tx : A".B').
Hence A |mize A" and B izt B’. By Correctness of Types, T' ¢TIz : A.B : s and A F¢ Tle
A'.B’' : s and hence Tlz : A.B and Iz : A’.B’ are strongly normalising. So A" = A" and
B = B™, and we are done.

- abstraction: assume the last step is

Fe:AF;t:B TFH/ Ilx:AB:s
[ He AT A-By t: Tle : A.B
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with M = AT#A-B g ¢ 1 is easy to prove. As for 2, assume N = AT#A"B 2 ¢/ [|T|| = ||A|| and
[IM|| = ||N]||- To show M = N je.

/\Hx:Aca".B"fx fean = AHx:Alca".B’"fx $/ean

By Gi, A,z : A’ F¢ ¢/ : B’. Note that ||[M|| = ||[N]| implies that ||[A]|| = ||A4’||, hence
[T,z : Al = ||A, z: A’||. We can use the induction hypothesis on T'yz : A F{ ¢ : B and deduce
tcan = t/can and Acan = A/Can‘

We are left to show B" = B’™f. By corollary 31, B =T(mict) B'. By confluence, B |1 (mirt) B’
By Correctness of Types, either B is a sort or I'yz : AF{ B : sg. Similarly, either B’ is a sort
or A,x: A’ F¢ B’ : s1. In all cases both B and B’ are strongly normalising. Hence B" = B/’
and we are done.

- weakening: assume the last step is

Fr-fM:B TF A:s
Te:AF; M : B

with M a variable or a sort or an universe. Assume A,z : A’ is a legal context with ||T', z :
All = ||A,z : A'||. Then ||T|| = ||A]| and ||A]| = ||A’||- Necessarily, A F¢ A’ : s’ so we may
apply the induction hypothesis on T F{ 4 : s to conclude A" = T'®" and A®" = A’*®". This
proves 1. As for 2, assume [[N|| = ||M||. Then N = M because M a variable or a sort or an
universe. So we are done.

| ]
Proof of Lemma 34

e first note that it is not true for an arbitrary M because algebraic rewrite rules might not be
left-linear. Indeed, consider the rewrite rule

flz,2) > =

If A and A’ have no common reduct, then the term

Hx:A'.B(

f(app™™ B (z,y), app 2, y))

is in normal form while we have the reduction

Hx:A'.B(

|| (app"" 4P (z,y), app el =flzyry —zy

The lemma is proved by structural induction on the derivation of T' Ff M : A. We treat the
cases where the last rule of the derivation is (function) or (application).

- function: then M = f(t1,...,t,). The only interesting case is when ||M|| itself is a redex,
i.e. when there exists a rule | — r and a substitution # with domain FV(/) such that
0l = f(|lt1lls-- -+ |ltnl]) and Or = N. Take lo linear with FV(I) N FV(ly) = § and p a
renaming with domain FV(lp) (it may rename two distinct variables with the same name)
such that plo = [1. There exists a labelled substitution 8 with domain FV(ly) such that
0'lo = M. We know that for every = € FV(lp), we have ||0'z|| = 0 o p(x). Hence for every
z,y € FV(lp), pr = py = [|0'z]| = ||@y||. By Lemma 33, it follows (¢’z)%" = (¢'y)".
Define a labelled substitution #” with domain FV(lp) by 8"z = (6'z)®". There exists
a substitution fy with domain FV(l) such that 6" (z) = 0 o p(x) for every x € FV(lp).
Define N’ = 0gr. Then M —»,,;:1 N'.

To show ||[N’|| = N. Let « € FV(l). There exists y such that py = z. We have

160z ]| = 6o (pw)l| = [16”yll = |(0"y) " = 10'yl| = 6(py) = b

Hence ||foz|| = 02 for every x € FV(I) and we are done.
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- application: let M = app"™ P (t,u) and ||M|| = [|t||||u]] = miz N’. We use the induction
hypothesis if the reduction occurs in ||¢|| or ||u||. When || M| itself is a G-redex then ¢t =
AI:C"D" 0 4 and N = ||¢'|[[||u]]/2]. The loose head reduction of M leads to N’ = '[u/z].
We are done with the following equality:

INII= 11T/ = 11N ull/2) = N

e it is proved by induction on the length of the reduction sequence ||M|| —F. N. Assume

||M|| —mir P. By 1. there exists P’ such that M —F. P’ and ||P'|| = P. By Lemma 25,

M —»;l'“»m P’. By Subject Reduction, P’ is legal. So we can apply the induction hypothesis on
P

e the strong normalisation part is proved by induction on the length of the longest —,;;5¢-
reduction sequence starting from M. Assume that ||M|| =miz N. By 2 there exists N’ such
that M —*. N’ and |[N'|| = N. By Subject Reduction, N’ is legal so we can apply the
induction hypothesis. Hence — ;. is strongly normalising on N = ||N’||. The property is true
for any N such that ||M|| =miz N. Henceforth — ;5 is strongly normalising on |[M]|. As
for the Church-Rosser property, assume ||M || —=miz N1 and ||M|| =mir N2. Then there exist
N{ and Nj such that M —,5c N{ and M — ;00 N§ with ||[N7]| = Ny and ||[N§|| = N2. By
confluence of —,,;:¢, there exists a labelled pseudo-term P with N{ —» 0t P and N — 500 P.
We can translate N/ —pipe P into ||[N/|| —mie ||P]]- Tt follows that Ny —n., ||P]| and
Ny = miz || P]|.

e assume |[M|| lmir ||N]||. Hence there exists @ such that [[M||,||N]|| = miz @. By 2, there
exists @1 and @2 such that M — ;0 Q1 and M — 00 Q2. Moreover ||Q4]| = ||Q2]] = Q-
Hence Q5" = QF" = Q'. Thus we have M, N —pint Q' 1.6 M Lmize N.

Proof of Proposition 35 the proof proceeds by structural induction on the derivation of T' F

M : A.

- conversion: suppose that I' - M : B is derived from I' M : A and T'F B : s with A |, B. It
follows by induction that I'y F{ M, : A, and I'; 7 B, : s with

INJI=T =|[T|[ |[Me]|=M |[As][=A ||Bo||= B

By lemma 33, Ty = I',. By Correctness of Types, I'y F§ A, : s’ for a given universe s’. The last
statement of Lemma 34 deduces A |nint B from I'y =T, and ||A|| Lmiz ||B]|. By conversion

Iy - M, : B,
with the required translation (and canonicity) features:

ITu|| =T and || M,]| = M and ||Bo]| = N

- application: suppose that T & tu : Blu/z] is derived from T'F ¢ : (TIz : A.B) and ' u : A with
application rule. By induction there exists two derivable judgements

Ty Ffte: (Tx: A.B)g and T'y Fy uo : A, (1)

with the good translation properties. Define A,, By as (Tlz : A.B)y =Tz : Ay.B,; by G and
Correctness of Types, T'q F¢ A, : s’ and Ty F§ A, : s” for some universes s’, s”’. By lemma 33

T's =T, and 4, = A4,
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because A, is canonical. By (1) and an application rule it follows that:
Ty F§ app ™ Ae-Be(ty uy) @ Byluo /2]
By the Subject Reduction Property and conversion:
L anf pnf can

Ty F§ app " 4ePe (24, 1) 1 (Bo[uo/x])

We easily check the three equalities
A", B can|| —
ITe|l =T and [|app'™***e-P« (14, uo)|| = tu and ||(Ba[uo/2])*"|| = Blu/x]
and the canonicity of T, appHx:A:f'B:f (Lo, to) and (Bg[ue/x])".
- abstraction: assume the last step is

x:AFt:B TFIx: AB:s
'FXe:At:Tlx: A.B

and M = Ax : A.t. By induction hypothesis:
Te,2: AgFite: Be Tobf (Tlz: A.B),:s (2)

"

for some canonical contexts I'y, I',. By Correctness of Types, Ty, 2 : Aq F§ By : s”' for some

universe s’. Let A, and B, be defined as (TIz : A.B), =Tz : A;.B,. By G
[o s Agts1 To,x: Ao Ff Bo i s2

for some universes sq, so. By lemma 33

By abstraction and (2):
Ly F ATwide-Bey 40 Tz 1 Ay.B,

By the Subject Reduction Property and a conversion rule:
Ty /\Hx:Ac'a"'Bifx.t. : (MM Ag.Be )"
We easily check the three equalities
ITJI=T A=A Bt = Ax : At ||(TTe : Ag.By)®"|| =TIz : A.B
and the respective canonicity properties.

- weakening: assume the last step is:

I'tt: A4 THB:s
Ix:BFt: A

ifrglandt e SUUUV UK
By induction there exists I'y Iy 4 : Ag and T'y F{ B, : 5. By lemma 33 T', = I'y and henceforth
Fe,2:BoF{ty:Agsincex ¢ 'andt € SUUUV UK.
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