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Abstract. The purpose of this paper is to define in a clean and concep-
tual way a non-deterministic and sheaf-theoretic variant of the category
of simple games and deterministic strategies. One thus starts by associat-
ing to every simple game a presheaf category of non-deterministic strate-
gies. The 2-category of simple games and non-deterministic strategies is
then obtained by a construction inspired by the recent work by Melliès
and Zeilberger on type refinement systems. We show that the resulting
2-category is symmetric monoidal closed and cartesian. We also define
a 2-comonad which adapts the Curien-Lamarche exponential modality
of linear logic to the 2-dimensional and non deterministic framework.
We conclude by discussing in what sense the 2-category of simple games
defines a model of non deterministic intuitionistic linear logic.

1 Introduction

A new generation of 2-categorical and sheaf-theoretic game semantics is currently
emerging in the field of programming language semantics. The games and strate-
gies which determine them are more sophisticated mathematically, and also more
difficult to define rigorously, than they were in the deterministic case. For that
reason, it is timely to examine more closely the 2-categorical and sheaf-theoretic
frameworks available to us in order to formulate these games and strategies in
a suitably clean and conceptual way. In this investigation, one benefits from the
efforts made in the past twenty-five years to give a clearer mathematical sta-
tus to the previous generation of game semantics, which was (to a large extent)
based on the notion of arena game. We recognize three main lines of work here:

1. the logical approach advocated by Girard, and formulated in ludics [3], polar-
ized linear logic [7] or tensorial logic [12] with its connection to continuations
and string diagrams,

2. the combinatorial approach advocated by Hyland, inspired by algebraic topol-
ogy, and based on the combinatorial description of the structure of pointers
in arena games [4],

3. the concurrent and asynchronous approach advocated by Melliès, based on
the description of arena games as asynchronous games, and of strategies as
causal concurrent structures playing on them, either in an alternated [11, 9,
10] or in a non-alternated way [18].



Interestingly, all the sheaf-theoretic frameworks designed for game semantics to-
day are offsprings of the third approach based on asynchronous games: on the one
hand, the notion of concurrent strategy in [19] is a sheaf-theoretic transcription
of the notion of receptive ingenuous strategy formulated in [18] ; on the other
hand, the sheaf-theoretic notion of non-deterministic innocent strategy in [13,
17] relies on the diagrammatic and local definition of innocence in alternated
asynchronous games [11]. For that reason, our purpose in this paper is to inves-
tigate the connection with the second approach, different in spirit and design,
and to define a 2-category of simple games and non-deterministic strategies in
the sheaf-theoretic style of Harmer, Hyland and Melliès [4]. As we will see, our
work also integrates a number of elements coming from the first approach, and
more specifically, the discovery by Melliès that strategies are presented by gener-
ators and relations, and for that reason, are prone to factorisation theorems [14,
15]. Since we are interested in sheaf-theoretic models of computations, we should
not forget to mention the pioneering work by Hirschowitz and Pous on models
of process calculi [5], and its recent connection to game semantics [2].

In the present paper, we start from the category G of simple games and
deterministic strategies between them, and we explain how to turn G into a bi-
category S of simple games and non-deterministic strategies. As we will see, the
construction of S relies on the discovery of a number of elementary but funda-
mental fibrational properties of the original category G. Since our work is built
on [4], let us recall that a simple game A is defined there as a contravariant

presheaf A : ωop → Set over the order category ω = 0 1 2 · · · asso-
ciated to the infinite countable ordinal ω. A simple game A is thus a family of
sets An together with a function πn : An+1 → An for all n ∈ N, depicted as:

A0 A1 A2 · · · An An+1 · · ·π0 π1 πn

One requires moreover that A0 is the singleton set. The intuition is that A is a
rooted tree ; that An contains its plays (or branches) of length n ; and that πn
is the prefix function which transports every play of length n+ 1 to its prefix of
length n. In particular, every simple game A contains only one play of length 0,
which should be thought as the empty play. Every simple game A should be
moreover understood as alternated: here, the intuition is that every play of odd
length 2n+ 1 ends with an Opponent move, and that every play of even length
2n ends with a Player move.

Terminology: an element a ∈ An is called a position of degree n in the game A.
The position a ∈ An is called a P -position when its degree n is even, and a O-
position when its degree n is odd. Given a position a ∈ An+1, we write π(a) for
the position πn(a) ; similarly, given a position a ∈ An+2, we write π2(a) for the
position πn ◦πn+1(a). A simple game A is called O-branching when the function
π : A2n+2 → A2n+1 is injective, for all n ∈ N. This means that every Opponent
position a ∈ A2n+1 can be extended in at most one way into a Player position
b ∈ A2n+2, for all n ∈ N.



We start the paper by formulating a sheaf-theoretic notion of non-deterministic
P -strategy on a simple game A. Recall that a deterministic P -strategy σ of a
simple game A is defined in [4] as a family of subsets σ2n ⊆ A2n of P -positions,
satisfying the following properties, for all n ∈ N:

(i) Unique empty play — σ0 is equal to the singleton set A0,
(ii) Closure under even prefixes — if a ∈ σ2n+2 then π2(a) ∈ σ2n,
(iii) Determinacy — if a, b ∈ σ2n with π(a) = π(b), then a = b.

In order to generalize this definition to non-deterministic P -strategies, we find
convenient to consider the full subcategory ωP of ω consisting of the strictly
positive even numbers, of the form 2n for n > 0 ; and the inclusion functor
ιP : ωP → ω. Define the presheaf AP = A ◦ ιP as the simple game A obtained
by restricting the presheaf A : ωop → Set to the subcategory ωP :

AP = ωopP ωop Set
ιP A

The collection AP thus consists of all the Player positions in A, except for the ini-
tial one ∗ ∈ A(0). This leads us to the following definition of (non-deterministic)
P -strategy on a simple game A:

Definition 1. A P -strategy σ on a simple game A is a presheaf S : ωop
P → Set

over the category ωP together with a morphism of presheaves σ : S → AP . We
write σ : A in that case. The presheaf S is called the support of the strategy σ
and the elements of S2n are called the runs of degree 2n of the strategy, for n ≥ 0.

In other words, a P -strategy σ on A is a family of sets S2n indexed by strictly
positive numbers n > 0, related between them by functions (πP )2n : S2n+2 → Sn
pictured as:

S2 S4 · · · S2n S2n+2 · · ·πP πP

together with a family of functions σ2n : S2n → A2n making the diagram below
commute, for all n > 0:

S2n S2n+2

A2n A2n+1 A2n+2

σ2n

πP

σ2n+2

π π

To every simple game A, we associate the category P(A) of P -strategies over A,
defined as the slice category

P(A) = [ωopP , Set] /AP (1)

whose objects are thus the strategies over A, and whose morphisms θ : σ → τ
between two strategies σ : S → A and τ : T → A are the morphisms θ : S → T
of presheaves satisfying the expected equation : σ = τ ◦ θ. We will call those



simulations. One main contribution of the paper is the observation that the
family of categories P(A) can be organised into a pseudofunctor

P : G −→ Cat

from the category G of simple games and deterministic strategies. The pseudo-
functor P is moreover monoidal, in the sense that there exists a family of functors

mA,B : P(A)× P(B) −→ P(A⊗B)

indexed by simple games A,B. As a symmetric monoidal closed category, the
category G is enriched over itself, with the simple game G(A,B) = A ( B
constructed from the simple games A and B. Here comes the nice point of the
construction: the bicategory S is simply defined as the bicategory with simple
games A,B as objects, and with

S(A,B) = P(A( B)

as category of morphisms between two simple games A and B. In other words,
a morphism σ : A → B in S is a P -strategy σ : A ( B, and a 2-cell θ :
σ ⇒ τ : A → B is a morphism θ : σ → τ in the category P(A( B). At this
point, the fact that S defines a bicategory is easily derived from the lax monoidal
structure of the pseudofunctor P. Recall that, as a symmetric monoidal closed
category, the category G is enriched over itself. From a conceptual point of view,
the construction of the bicategory S thus amounts to a change of enrichment
category along the lax monoidal pseudofunctor P : G → Cat, transforming the
G-enriched category G into the (weak) Cat-enriched category S.

Besides the construction of S, a great care will be devoted to the analysis of
the Curien-Lamarche exponential comonad ! on the category G and to the recipe
to turn it into an exponential 2-comonad on the bicategory S. The construction
relies on the existence of a family of functors

pA : P(A) −→ P(!A)

called “promotion” functors, and natural in the simple game A in the category G.
In particular, the functorial part of the exponential 2-comonad ! : S → S is
defined as the composite:

P(A( B) P(!(A( B)) P(!A( !B)
pA P(nA,B)

where nA,B : !(A( B) → !A( !B is the canonical morphism in G which pro-
vides the structure of a lax monoidal functor to the original comonad ! : G→ G.

2 Non-deterministic P -strategies as P -cartesian
transductions

As explained in the introduction, a P -strategy σ ∈ P(A) over a simple game A
is defined as an object of the slice category (1) in the category [ωopP ,Set] of



contravariant presheaves over ωP . We will use the fact that the slice category is
equivalent to the category of contravariant presheaves

P(A) = [ωopP , Set] /AP ∼= [ tree(AP )op,Set]

over the Grothendieck category tree(AP ) generated by the presheaf AP ∈
[ωopP ,Set]. The category tree(AP ) has the P -positions of the simple game A
as objects, and a morphism a → a′ between a ∈ A2p and a′ ∈ A2q precisely
when p ≤ q and π2q−2p(a′) = a. In other words, it is the order category associ-
ated to the tree of P -positions of the simple game A.

We find convenient for later purposes to reformulate non-deterministic P -
strategies in the following way. This paves the way to a comprehension theorem
for the pseudofunctor P, which will be established in the next section. A trans-
duction θ : A → B between two simple games A,B : ωop → Set is defined as
a natural transformation between the presheaves A and B, given by a family of
functions θn : An → Bn making the square �n diagram below commute, for all
n ∈ N:

An An+1

�n

Bn Bn+1

θn

πn

θn+1

πn

A transduction θ : A → B is called P -cartesian when �2n is a pullback square
for all n ∈ N ; and O-cartesian when �2n+1 is a pullback square for all n ∈ N. We
write T for the category of simple games and transductions between them, and TP
(resp. TO) for the subcategory of P -cartesian (resp. O-cartesian) transductions.
Note that the restriction functor

(−)P : [ωop,Set] −→ [ωopP ,Set]

is a fibration, and that a transduction θ : A → B between simple games is
P -cartesian precisely when it defines a cartesian morphism with respect to the
fibration (−)P . For that reason, a P -cartesian transduction θ : A→ B is entirely
characterized by the family of functions θ2n : A2n −→ B2n on the P -positions of
the simple games A and B, for n ∈ N. From this follows easily that

Proposition 1. A P -strategy σ on a simple game A is the same thing as a
simple game S together with a P -cartesian transduction S → A. The simple
game S is uniquely determined by σ up to isomorphism. It is called the support
(or run-tree) of σ, and noted {A |σ}, while the P -cartesian transduction is noted
suppσ : {A |σ} −→ A.

Note that the definition applies the general principle formulated in [18] that a
strategy σ of a game A is a specific kind of map (here a P -cartesian transduction)
S → A from a given game S = {A |σ} to the game A of interest. One benefit
of this principle is that it unifies the two concepts of game and of strategy, by
regarding a strategy σ of a game A as a game S “embedded” in a appropriate



way by S → A inside the simple game A. This insight coming from [18] underlies
for instance the construction in [19] of a category of non-deterministic strategies
between asynchronous games.

Typically, consider the simple game A = B1 ( B2 where B is the simple
boolean game with a unique initial Opponent move q and two Player moves tt
for true and ff for false ; and where the indices 1, 2 are here to indicate the
component of the boolean game B. The simple game A may be represented as
the decision tree below:

A

π

π

π

π

a

b

Opponent

layer

Opponent

P

layerP

layerP



A

A

A

A

a

*

a

b b

b bb b

�

�

tt

tt

� tt

�

tt

q

q

where the sets of positions are defined as:

A1 = {a} A2 = {b, a1, a2} A3 = {b1, b2} A4 = {b11, b12, b21, b22}

and where the branches are induced by the prefix functions πn : An+1 → An
depicted on the picture above. For the reader’s convenience, we label every edge
of A by the name of the move which would be used in the more familiar definition
of simple games, where plays are defined as sequences of moves [1, 6]. Note that
every position a ∈ An of degree n is determined by its occurrence, defined as the
sequence of n moves from the root ∗ to the position a in the tree A. Typically,
the P -position b ∈ A2 has occurrence q2 · q1 and the P -position b21 ∈ A4 has
occurrence q2 · q1 · tt1 · ff2.

By way of illustration, we define the P -strategy σ ∈ P(A) as the presheaf below

∗ 7→ {∗} a1 7→ ∅ a2 7→ {x′′}
b 7→ {x′} b11 7→ ∅ b12 7→ ∅ b21 7→ {z′} b22 7→ {z′′, z′′′}

on the Grothendieck category tree(AP ) associated to the presheaf AP of P -
positions in A. As explained in Prop. 1, the P -strategy σ may be equivalently



defined as the simple game S = {A |σ} below

x

z

Opponent

layer

Opponent

P

layerP

layerP

*

x

zy

z

� tt

�

tt

q

q

S

π

π

π

π



S

S

S

Sz

tt
tt

’x ‘’

’ ‘’ ‘’’

together with the P -cartesian transduction suppσ : {A |σ} → A described as:

x 7→ a x′ 7→ b x′′ 7→ a2 y 7→ b1 z′ 7→ b21 z′′ 7→ b22 z′′′ 7→ b22

It is worth mentioning that the transduction suppσ may be recovered from
the moves labelled on the run-tree S = {A |σ}. This pictorial description pro-
vides a convenient way to describe how the non-deterministic P -strategy σ plays
on A. Typically, when questioned by the initial move q2 of the game, the non-
deterministic P -strategy σ answers tt2 with the run x′′ ∈ S2 or asks the value
of the input boolean by playing the move q1 ; when the Opponent answers with
the move tt1, the P -strategy reacts by playing the value ff2 with the run z′ ∈ S4

or by playing the value ff2 with the runs z′′, z′′′ ∈ S4. Note in particular that
the P -strategy σ is allowed to play two different runs z′′, z′′′ ∈ S4 of the same
play b22 ∈ A4.

3 P -cartesian transductions as deterministic strategies

In the previous section, we have seen how to regard every non-deterministic P -
strategy σ ∈ P(B) as a P -cartesian transduction suppσ : {B |σ} → B into the
simple game B. Our purpose here is to show that every P -cartesian transduction
θ : A→ B can be seen as a particular kind of deterministic strategy of the simple
game A( B.

Definition 2 (Total strategies). A deterministic strategy σ of a simple game
A is total when for every O-position s such that the P -position π(s) is an element
of σ, there exists a P -position t in the strategy σ such that π(t) = s.

Definition 3 (Back-and-forth strategies). Given two simple games A and B,
a back-and-forth strategy f of the simple game A ( B is a deterministic and
total strategy whose positions are all of the form (c, a, b) where c : n → n is a
copycat schedule.

Back-and-forth strategies compose, and thus define a subcategory of G:



Definition 4 (The category BF). The category BF of back-and-forth strate-
gies is the subcategory of G whose objects are the simple games and whose mor-
phisms f : A→ B are the back-and-forth strategies of A( B.

As a matter of fact, we will be particularly interested here in the subcategory
BF+ of functional back-and-forth strategies in the category BF.

Definition 5 (Functional strategies). A functional strategy f of the simple
game A ( B is a back-and-forth strategy such that for every position a ∈ An
of degree n in the simple game A, there exists a unique position b ∈ Bn of same
degree in B such that (c, a, b) ∈ f , where c : n→ n is the copycat schedule.

The following basic observation justifies our interest in the notion of functional
strategy:

Proposition 2. For all simple games A, B, there is a one-to-one correspon-
dence between the P -cartesian transductions A→ B and the functional strategies
in A( B.

Proof. See Appendix E.

For that reason, we will identify P -cartesian transductions and functional strate-
gies from now on. Put together with Prop. 1, this leads us to the following
correspondence, which holds for every simple game A:

Proposition 3. The category P(A) is equivalent to the slice category BF+/A.

The result may be understood as a preliminary form of comprehension: it states
that every non-deterministic P -strategy σ ∈ P(A) may be equivalently seen as
a functional P -strategy

suppσ : {A |σ} −→ A (2)

in the category G of simple games and deterministic strategies, obtained by
composing the equivalences stated in Prop. 1 and Prop. 3. Note that the simple
game {A |σ} coincides with the run-tree S of the non-deterministic strategy σ
formulated in Prop. 1 and that the functional strategy suppσ coincides with the
P -cartesian transduction which “projects” the support S on the simple game A.
The property (Prop. 3) is important from a methodological point of view, because
it enables us to use the rich toolbox developed for simple games and deterministic
strategies, in order to handle non-deterministic strategies inside the category G.

4 The pseudofunctor P

Suppose given a P -strategy σ ∈ P(A) over the simple game A and a morphism
f : A→ B in the category G.



Definition 6. The P -strategy P(f)(σ) ∈ P(B) over the simple game B is de-
fined as the contravariant presheaf over tree(BP ) which transports every P -
position b of the simple game B to the disjoint union defined below:

P(f)(σ) : b 7→
∐

(e, a, b) ∈ f
σ(a). (3)

The fact that (3) defines a presheaf over P(B) and that P is a pseudofunctor
(see Def 24) is established in the appendix F.

This construction equips the family of presheaf categories P(A) with the
structure of a pseudofunctor P : G −→ Cat. Moreover, the pseudo-functor P

has comprehension in the sense of Lawvere [8]. For every simple game B, the
comprehension functor is defined as the composite

{B | −} : P(B) −→ BF+/B −→ G/B

which transports every non-deterministic P -strategy to the morphism (2) seen
as an object of G/B. One establishes that

Theorem 1 (Comprehension). For every simple game B, the comprehension
functor

{B | −} : P(B) −→ G/B

has a left adjoint functor

image : G/B −→ P(B).

Given a deterministic strategy f : A → B, the contravariant presheaf image(f)
over the category tree(BP ) transports every P -position b of the game B to the
set below:

image(f) : b 7→
{

(e, a, b)
∣∣∣ (e, a, b) ∈ f

}
Note that the presheaf image(f) may be also described by the formula

image(f) = P(f)(∗A) ∈ P(B)

where ∗A is the terminal object in the category P(A) of P -strategies over A. Note
that the run-tree {A | ∗A} of the P -strategy ∗A ∈ P(A) is the simple game A
itself, with supp ∗A the identity iA : A → A. In other words, the P -strategy ∗A
has exactly one run over each position of the simple game A.

Also note that we will occasionally note positions of image(f) b(e,a) when
there is need to emphasize the fact that image(f) is a contravariant presheaf
over tree(BP ).



5 The slender-functional factorisation theorem

In order to establish the comprehension theorem, we prove a factorization theo-
rem in the original category G, which involves slender and functional strategies.

Definition 7. A deterministic strategy f in a simple game A ( B is slender
when for every P -position b in the simple game B, there exists exactly one P -
position a of the simple game A and exactly one schedule e such that (e, a, b) ∈ f .

By extension, we say that a morphism f : A → B in the category G is slen-
der when the deterministic strategy f is slender in A ( B. Note that every
isomorphism f : A→ B in the category G is both slender and functional.

Proposition 4. Suppose that A and B are two simple games and that f is a
deterministic strategy of A( B. Then, there exists a slender strategy g : A→ C
and a functional strategy h : C → B such that f = h ◦ g.

The simple game C is defined as {B | image(f)} while the slender strategy g :
A→ C is defined as

g =
{

(e, a, (e, a, b))
∣∣∣ (e, a, b) ∈ f

}
and h : C → B is the functional strategy supp image(f) associated in Prop. 3 to
the P -strategy image(f) ∈ P(B).

Proposition 5. Suppose that s : U → V and f : A → B are two morphisms
of the category G. Suppose moreover that s is slender and that f is functional.
Then, s : X → Y is orthogonal to f : A→ B in the sense that for all morphisms
u : X → A and v : Y → B making the diagram (a) commute, there exists a
unique morphism h : Y → B making the diagram (b) commute in the category G:

(a)

X A

Y B

u

s f

v

(b)

X A

Y B

u

s f

v

h

The deterministic strategy h : Y → A is defined as

h =
{

(e, y, a)
∣∣∣ ∃x ∈ X, b ∈ B, e′, e′′ ∈ Υ,

(e, y, b) ∈ v ∧ (c, a, b) ∈ f ∧ (e′, x, y) ∈ s ∧ (e′′, x, a) ∈ u
}

]
{

(e, y, a)
∣∣∣ ∃x ∈ X, b ∈ B, e′, e′′ ∈ Υ,

(e, y, b) ∈ v ∧ (c, a, b) ∈ f ∧ (e′, x, πy) ∈ s ∧ (e′′, x, πa) ∈ u
}

Note that the position b is uniquely determined by the position a because f is
functional, and that the pair (e′, x) is uniquely determined by the position y
because s is slender. Moreover, by determinism of u = h ◦ s, the schedule e′′ is
entirely determined by the schedules e and e′.



Theorem 2 (Factorization theorem). The classes S of slender morphisms
and F of functional morphisms define a factorization system (S,F) in the cat-
egory G.

It is a folklore result that, in that situation, the comprehension theorem (Thm. 1)
follows from the factorization theorem. The reason is that the category P(B) is
equivalent (by Prop. 3) to the full subcategory BF+/B of functional strategies in
the slice category G/B. Seen from that point of view, the comprehension functor
{B | −} coincides with the embedding of BF+/B into G/B. It is worth noting
that for every P -strategy σ ∈ P(A), one has an isomorphism

σ ∼= image(suppσ)

in the category P(A), and that one has an isomorphism

P(f)(σ) ∼= image(f ◦ suppσ) (4)

in the category P(B), for every morphism f : A → B in the category G. This
provides an alternative way to define the pseudofunctor P.

6 The bicategory S of simple games and non-deterministic
strategies

In this section, we explain how to construct a bicategory S of simple games and
non-deterministic strategies, starting from the category G. The first step is to
equip the pseudofunctor P with a lax monoidal structure (See Def 25), based on
the definition of tensor product in the category G formulated in [4], see Appendix
B for details. We start by observing that

Proposition 6. Suppose given two morphisms f : A → B and g : C → D in
the category G of simple games and deterministic strategies. The morphism

f ⊗ g : A⊗ C −→ B ⊗D

is slender when f and g are slender, and functional when f and g are functional.

Proof. See Appendix G.

Note that the isomorphism image(f ⊗ g) ∼= image(f) ⊗ image(g) follows imme-
diately from this statement and from the factorization theorem (Thm. 2), for
every pair of morphisms f : A → B and g : C → D in the category G. The
tensor product σ ⊗ τ of two P -strategies σ and τ is defined in the same spirit,
using comprehension:

Definition 8. Suppose that σ ∈ P(A) is a P -strategy of a simple game A and
that τ ∈ P(B) is a P -strategy of a simple game B. The tensor product σ ⊗ τ is
the P -strategy of the simple game A⊗B defined as

σ ⊗ τ = image( suppσ ⊗ supp τ ).



Here, the morphism suppσ ⊗ supp τ : {A |σ} ⊗ {B | τ} → A ⊗ B denotes the
tensor product (computed in the original category G) of the morphisms suppσ
and supp τ . A direct description of σ ⊗ τ ∈ P(A⊗B) is also possible, as the
presheaf which transports every position (e, a, b) of the simple game A ⊗ B to
the set-theoretic product below:

σ ⊗ τ : (e, a, b) 7→ σ(a)× τ(b).

As indicated in the introduction, the tensor product of P -strategies defines a
family of functors mA,B : P(A) × P(B) → P(A⊗B) which, together with the
isomorphism of categories m1 : 1→ P(1), equips the pseudofunctor P with a lax
monoidal structure:

Theorem 3. The pseudofunctor P equipped with the family of functors mA,B

and m1 defines a lax monoidal pseudofunctor from (G,⊗, 1) to (Cat,×, 1).

Proof. See Appendix H.

The bicategory S of simple games and non-deterministic strategies is deduced
from the lax monoidal pseudofunctor P in the following generic way, inspired by
the idea of monoidal refinement system [16].

Definition 9. The bicategory S has simple games A, B, C as objects, with the
hom-category S(A,B) defined as

S(A,B) = P(A( B)

the composition functor

◦A,B,C : P(B( C)× P(A( B) −→ P(A( C)

defined as the composite

P(B ( C)× P(A( B) P((B ( C)⊗ (A( B)) P(A( C)
mB(C,A(B P(compA,B,C)

where compA,B,C : (B ( C) ⊗ (A ( B) −→ (A ( C) is the morphism which
internalizes composition in the symmetric monoidal closed category G. In the
same way, the identity in P(A( A) is defined as the composite

1 P(1) P(A( A)
m1 P(idA)

where the morphism idA : 1→ (A( A) internalizes the identity morphism in G.

Proposition 7. The bicategory S is symmetric monoidal closed in the sense
that there exists a family of isomorphisms

ΦA,B,C : S(A⊗B,C) ∼= S(B,A( C).

The isomorphism ΦA,B,C is defined as the image by the pseudofunctor P of the
isomorphism

ϕA,B,C : (A⊗B)( C ∼= B( (A( C)

in the category G between the underlying simple games. One benefit of our
conceptual approach is that the monoidal closed structure of S is neatly deduced
from the monoidal closed structure of the original category G.



7 The exponentional modality on the category G

Now that the monoidal bicategory S has been defined, we analyze how the ex-
ponential modality defined in [4] adapts to our sheaf-theoretic framework.

Definition 10. Let A be a simple game. !A is the simple game whose set (!A)n
of positions of degree n consists of the pairs (φ, a) such that:

– φ is a O-heap over n and a = (a1, . . . , an) is a sequence of positions of A,
– for each k ∈ {1, . . . , n}, the sequence of positions in a = (a1, . . . , an) corre-

sponding to the branch of k in φ defines a play

{ak, aφ(k), aφ2(k), . . . }

of the simple game A.

The predecessor function πn : (!A)n+1 → (!A)n is defined as π(φ, a) = (φ �
(n), a � (n)).

Definition 11. Let f be a deterministic strategy of A( B. The deterministic
strategy !f of !A ( !B consists of the positions (e, (φ, a), (ψ, b)) such that φ =
e∗ψ and, for each branch of (φ, e, π), the positions associated to that branch are
played by f .

It is worth observing that the construction of !f : !A → !B can be decomposed
in the following way. Consider the morphism

nA,B : ! (A( B) −→ !A ( !B

obtained by currying the composite morphism

! (A( B) ⊗ !A ! ( (A( B) ⊗A ) !Blaxmonoidal !evaluation

in the symmetric monoidal closed category G, where we use the coercion mor-
phism which provides the exponential modality ! : G → G with the structure of
a lax monoidal functor.

Definition 12 (#f). Given a deterministic strategy f of a simple game A, the
deterministic strategy #f of the simple game !A has positions the pairs (φ, a)
such that for each branch of (φ, a), the positions associated to that branch are
played by the deterministic strategy f .

Proposition 8. Given a morphism f : A→ B of the category G and its curried
form λa.f : 1→ A( B, the composite morphism

1 ! (A( B) !A( !B
#λa:A.f nA,B

is the curried form λx : !A. !f in the category G of the morphism !f : !A −→ !B.



More details about the original exponential modality in G will be found in
Appendix C. By analogy with Prop. 6, we establish that

Proposition 9. Suppose that f : A→ B is a morphism in the categoryG. Then,
the morphism

!f : !A −→ !B

is slender when f is slender, and functional when f is functional.

Proof. See Appendix I.

8 The exponential modality on the bicategory S

In this section, we define the linear exponential modality ! : S → S on the
symmetric monoidal closed bicategory S, in order to define a 2-categorical model
of intuitionistic linear logic. The construction is inspired by the observation made
in the previous section (Prop. 8).

Definition 13. Given a P -strategy σ ∈ P(A) of a simple game A, the P -strategy
#σ of the simple game !A is defined as the image in P(!A) of the morphism

! suppσ : ! {A |σ} −→ !A.

Note that the definition of #σ induces a commutative diagram in the category G

! {A |σ} {!A |#σ}

!A

isomorphism

!supp σ supp#σ

where the top arrow is an isomorphism. Moreover, the definition of #σ coincides
with the previous definition (Def. 12) when the P -strategy σ = f happens to
be deterministic. Consequently, for two games A,B and a deterministic strategy
f : A( B, we have image(!f) ∼= #Simage(f) and #Sf = #f .
As mentioned in the introduction, this construction σ 7→ #σ defines a functor

pA : P(A) −→ P(!A).

Now, remember that a morphism σ : A→ B of the bicategory S is defined as a
P -strategy

σ ∈ P(A( B).

For that reason, every such morphism σ : A→ B induces a P -strategy

#σ ∈ P(!(A( B)).

In order to turn the P -strategy #σ into a P -strategy

!σ ∈ P( !A( !B )



we apply the functor

P(nA,B) : P( !(A( B) ) −→ P( !A( !B )

to the P -strategy #σ, where

nA,B : ! (A( B) −→ !A ( !B

denotes the structural morphism of G defined in the previous section. The con-
struction may be summarized as follows:

Definition 14. The morphism !σ : !A → !B of the bicategory S associated to
the morphism σ : A→ B is defined as the P -strategy

P(nA,B)(#σ) ∈ P(!A( !B).

Theorem 4. With this definition, ! : S → S defines a pseudofunctor from the
bicategory S to itself.

Proof. See Appendix J.

The family of morphisms

δA : !A → !!A εA : !A → A

are defined with the same deterministic strategies in P(!A( !!A) and P(!A( A)
as in the original category G. One checks that the families δ and ε define natural
transformations between pseudonatural functors on S (as defined in Def. 26), and
that the 2-functor ! : S→ S defines a 2-comonad in the appropriate bicategorical
sense (see Def 27). The family of morphisms

dA : !A → !A⊗ !A eA : !A → 1

are defined with the same deterministic strategies in P(!A( !A⊗!A) and in
P(!A( 1) as in the original category G, and one checks that they define natural
transformations between pseudonatural functors on S. One obtains that

Theorem 5. The bicategory S equipped with the exponential modality ! : S→ S

defines a bicategorical model of intuitionistic linear logic.

The formal and rigorous verification of these facts would be extremely tedious if
done directly on the bicategory S of nondeterministic strategies. Our proof relies
on the fact that the constructions of the model (Defs 9, 14) are performed by
“push” functors P(f) above a structural morphism f living in the original cate-
gory G. The interested reader will find part of the detailed proof in Appendix K.

9 Conclusion

We construct a bicategory S of simple games and non-deterministic strategies,
which is symmetric monoidal closed in the extended 2-dimensional sense. We
then equip the bicategory S with a linear exponential modality ! : S → S which
defines a 2-categorical model of intuitionistic linear logic. This provides, as far
as we know, the first sheaf-theoretic and non-deterministic game semantics of
intuitionistic linear logic — including, in particular, a detailed description of the
exponential modality.
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Poincaré, June 2014.
14. P.-A. Melliès. Dialogue categories and chiralities. Publications of the Research

Institute in Mathematical Sciences, 2015.
15. P.-A. Melliès. Une étude micrologique de la négation, habilitation thesis. 2017.
16. P-A. Mellies and N. Zeilberger. Funtors are type refinement systems. 2015.
17. C. H. L. Ong and T. Tsukada. Nondeterminism in game semantics via sheaves.

LICS’16, 2016.
18. S. Mimram P.-A. Melliès. Asynchronous games : innocence without alternation,

2007.
19. S. Rideau and G. Winskel. Concurrent strategies. LICS’11, 2011.



A The category G of simple games and deterministic
strategies

We recall the construction of the category Υ of schedules performed in [4] and
how we deduce from it the category G of simple games and deterministic strate-
gies.

Definition 15 (Schedule). A schedule is defined as a function e : {1, . . . , n} →
{0, 1} verifying e(1) = 1 and e(2k + 1) = e(2k) whenever 1 ≤ 2k ≤ n − 1. The
number of 0’s and 1’s in e are noted |e|0 and |e|1 respectively. A schedule e is
noted e : |e|0 → |e|1.

A schedule e : p→ q may be equivalently seen as a couple l : (p)→ (p+ q) and
r : (q)→ (p+ q) of order-preserving and globally surjective functions, such that
r(1) = 1 and

l(i) odd ⇒ l(i+ 1) = l(i) + 1 r(j) even ⇒ r(j + 1) = r(j) + 1

for all 1 ≤ i ≤ p − 1 and 1 ≤ j ≤ q − 1, where (n) stands for the finite ordinal
(n) = {1, . . . , n}.

Definition 16. The category of schedules Υ has the natural numbers as objects,
the schedules e : p→ q as morphisms from p to q.

The identity morphism c : p→ p is the copycat schedule c characterized by the
fact that c(2k + 1) 6= c(2k + 2) for all 1 ≤ 2k ≤ 2p. Details on the composition
of two schedules e : p→ r and e′ : r → q as a schedule e � e′ : p→ q can be found
in [4]. Now, we explain how we derive the category G from the category Υ . We
start by defining the simple game A( B of linear maps from A to B:

Definition 17. The simple game A( B is defined as the set (A( B)n of all
the triples (e, a, b) consisting of a schedule e : p → q with p + q = n, a position
a ∈ Ap and b ∈ Bq. The predecessor function π is defined as

π(e, a, b) =

{
( e � (n− 1) , π(a) , b ) if e(n) = 0
( e � (n− 1) , a , π(b) ) if e(n) = 1

Definition 18. The category G has simple games A,B as objects, and deter-
ministic P -strategies f, g of A ( B as morphisms from A to B. Note that we
use latin letters instead of greek letters for deterministic strategies. The identity
morphism iA : A → A is defined as the P -strategy of A ( A whose positions
of degree 2n are the triples (c, a, a) where c : n → n is the copycat schedule,
and a ∈ An. The composite g ◦ f : A → C of two deterministic P -strategies
f : A→ B and g : B → C is the deterministic P -strategy whose set of positions
of degree 2n is defined as

(g◦f)2n =
∐

e : p→ r, e′ : r → q
p+ q = 2n

{
(e�e′, a, c)

∣∣∣ ∃b ∈ Br , (e, a, b) ∈ σp+r , (e′, b, c) ∈ τr+q
}



B The tensor product in the category G

Definition 19 (Tensorial schedule). A ⊗-schedule is a function e : {1, . . . , n} →
{0, 1} verifying e(2k + 1) = e(2k + 2) whenever 0 ≤ 2k ≤ n− 2.

Definition 20 (A ⊗ B). The positions of the simple game A ⊗ B of degree n
are the triples (e, a, b) where e : p⊗ q is a ⊗-schedule with p+ q = n, a ∈ Ap and
b ∈ Bq. The predecessor function π is defined as

π(e, a, b) =

{
(e � (n− 1), π(a), b) if e(n) = 0
(e � (n− 1), a, π(b) ) if e(n) = 1

The simple game 1 is the simple game with a unique position ∗, of degree 0.

We can also define ⊗ on strategies. Intuively, for f : A→ B and g : C → D
two morphisms of the category G, the plays of the strategy f ⊗ g of the simple
game (A⊗C)( (B⊗D) are obtained by combining through a tensorial schedule
plays of f and g.

The intuition is that, once we know the structure of f and g, the structure of
plays of f⊗g is entirely directed by what happens in B⊗D. The only agency that
Opponent really has is to decide at some points whether to play on B or D, the
rest being handled by the plays of f , g and the structure of (A⊗C)( (B⊗D).
Formally, this gives the proposition :

Proposition 10. Let f : A ( B, g : C ( D be two deterministic strategies.
Assuming a valid play of f ⊗ g : A ⊗ C ( B ⊗D and the associated schedules
e : A⊗C → B⊗D, t1 : A×C, t2 : B×D, e1 : A→ B, e2 : C → D, the knowledge
of t2, e1, e2 is enough to reconstruct e and t1.

Proof. The first O move of such a play is in B ⊗ D to follow the structure of
A⊗C ( B⊗D. This is given to us by t2. Let us assume it is a move in D (The
other case is handled similarly).
The P move after that will necessarily be a move in C or D, as playing a move
in A,B would break the structure of A( B,B⊗D respectively. e2 gives us the
information.

– If it is a move in D, We go back to a situation equivalent to the initial one.
We have also started to reconstruct e, which starts by 11.

– If it is a move in C, we start to reconstruct both e which starts by 10 and
t1 which starts by 1.

In this last case, the following O move will be a move in C as a move in A,B,D
would break the structure of A ( B,B ⊗D,C ( D respectively. e is then at
100 and t1 at 11.

Finally, the following P move will be a move in either C or D as a move in
A,B would break the structure of A( B,B ⊗D respectively. e2 gives us this
information.



– If it is a move in D, We go back to a situation equivalent to the initial one.
We have also started to reconstruct e, which starts by 1001 and t1 which
starts by 11. We’ve also played the first two moves of t2 which is at 11.

– If it is a move in C, we go back to the precedent situation (the one with a
fixed O move in C) with e at 1000 and t1 at 111.

To sum up the described construction, once an opponent move in B or D
is played, the play is stuck playing in either A ( B or C ( D until a player
move is played in B,D respectively. t2 decides whether to play the opponent
move in B or D and e1 guides the play in A( B in the first case, e2 guides it
in C ( D in the second. This guides us through the whole play and allows us
to reconstruct both e and t1.
In particular, any compatible plays of f, g,B ⊗D induce a play of f ⊗ g.

This proposition and its proof are key in several proofs we will make in the
rest of the paper.

Proposition 11. The category (G,⊗, 1,() is symmetric monoidal closed.

C The exponential modality on the category G

In this section, we recall the combinatorial structures introduced in [4] to con-
struct the linear exponential comonad ! : G → G on the symmetric monoidal
closed category G.

Definition 21 (Pointer function). A pointer function on n is a parity-reversing
function

φ : {1, . . . , n} −→ {0, . . . , n− 1}

such that φ(i) < i for all i. A pointer function φ is called an O-heap if φ(2k) =
2k−1 for all k, and a P -heap if φ(2k+1) = 2k for all k. The set {k, φ(k), φ2(k), ...}
will be called the branch of φ associated to the integer k. Note that the predecessor
function π defined as π(i) = i− 1 for all i is both an O-heap and a P -heap.

Definition 22. Suppose that e : p → q is a schedule, that φ is a O-heap over
q and that ψ is a P -heap over p. The O-heap (φ, e, ψ) on p + q is defined as
follows:

(φ, e, ψ)(k) =

 r(φ(j)) if k = r(j) is odd
l(ψ(i)) if k = l(i) is odd
k − 1 otherwise

where the schedule e is represented as a pair (l, r) as explained in §A. Intuitively,
the O-heap (φ, e, ψ) points alongside φ when the schedule e is at 1 and alongside
ψ otherwise. The fact that (φ, e, ψ) defines an O-heap is ensured by the even
case.



We recall the partial order over the set of pointer functions introduced in [4].

Definition 23 (Generalization). Given two pointer functions φ, ψ, we say
that φ is a generalization of ψ, and note φ � ψ, if the branch of φ associated
to k ∈ {1, .., n} can be injected in the branch of ψ associated to k, or, in other
words, if for all k, there exists j such that φ(k) = ψj(k).

Further in the paper, and in certain proofs, we will also need to look into the
structure of !!A. Intuitively, positions of !!A are pairs (φ, u) where u is a sequence
of positions of !A and φ an O-heap. It is equivalent to another representation
using only a sequence of positions of A :

Proposition 12. A position (φ, u) of !!A is equivalent to (φ, ψ, a) with φ � ψ,
ψ an O-heap, a a sequence of positions of A, verifying

∀i, j ∈ {1, . . . , n}, (i 6= j)⇒ ∃k, aφk(i) 6= aφk(j)

The moves alongside the branches of ψ are then plays of the simple game A.

From this follows a description of the strategy

!!f : !!A −→ !!B

for a deterministic strategy f : A( B. The positions of !!f are of the form

(e, (φ, ψ, a), (φ′, ψ′, b))

where e∗φ′ = φ, e∗ψ′ = ψ and each thread of (ψ, e, π) is a play of the strategy f .

D Some bicategorical definitions

In this section, we recall a few definitions required by our bicategorical setting.

Definition 24. A pseudofunctor is a mapping between bicategories C and D
where the usual functorial equations F (f ◦g) = F (f)◦F (g) and F (IdA) = IdF (A)

are only valid up to natural bijectve 2-morphisms in D.

Definition 25. Let (C,⊗C , 1C) and (D,⊗D, 1D) be two monoidal bicategories.
A lax monoidal pseudofunctor between them is given by :

– a pseudofunctor F : C → D
– a morphism ε : 1D → F (1C)
– for every pair of objects A,B ∈ C, a natural transformation µA,B : F (A)⊗D
F (B)→ F (A⊗C B)

satisfying the following conditions :



– associativity : For every triple of objects A,B,C ∈ C, the following diagram
commutes :

(F (A)⊗D F (B))⊗D F (C)

µA,B⊗id
��

aDF (A),F (B),F (C)

// F (A)⊗D (F (B)⊗D F (C))

id⊗µB,C
��

F (A⊗C B)⊗D F (C)

µA⊗B,C

��

F (A)⊗D F (B ⊗C C)

µA,B⊗C

��
F ((A⊗C B)⊗C C)

F (aCA,B,C)

// F (A⊗C (B ⊗C C))

where the two morphisms aC , aD denote the associators of the two tensor
products.

– unality : For every object A ∈ C, the following diagram and its right symme-
try both commute :

1D ⊗D F (A)

lDF (A)

��

ε⊗id
// F (1C)⊗D F (A)

µ1C ,A

��
F (A) F (1C ⊗C A)

F (lCA )oo

where lC , lD denote the left unitors of the two tensor products.

Definition 26. Let F,G be two pseudofunctors between two bicategories C and
D. A pseudonatural transformation φ : F → G is given by :

– for every object A of C, a morphism φ(A) : F (A)→ G(A) of D.
– for every morphism f : A → B of C, a bijective 2−morphism φ(f) : φ(B) ◦
F (f)⇒ G(f) ◦ φ(A)

such that

– φ respects composition of morphisms, meaning that we have an equivalence
between

(φ(A) / G(f, g)) · (φ(f) . G(g)) · (F (f) / φ(g))

and
φ(g ◦ f) · (F (f, g) . φ(C)),

both being 2-morphisms from

φ(C) ◦ F (g) ◦ F (f)⇒ G(g ◦ f) ◦ φ(A),

where · is the vertical composition between 2-morphisms, /, . the two versions
of the horizontal composition between a morphism and a 2-morphism, (also
called whiskering), anf F (f, g) : F (g) ◦ F (f) ⇒ F (g ◦ f) is the bijective
2-morphism coming from the pseudofunctor F .



– φ respects the identity morphisms, meaning we have an equivalence between

LDφ(A) · ε
F
idA . φ(A)

and

RDφ(A) · φ(A) / εGidA · φ(idA)

both being 2-morphisms from

φ(A) ◦ F (idA)⇒ φ(A)

where LDφ(A) : φ(A) ◦ idF (A) ⇒ φ(A) is the left unitor coming from the

bicategory D and εFidA : F (idA)⇒ idF (A) is the bijective 2-morphism coming
from the pseudofunctor F .

– φ is natural in the following sense : for every 2-morphism ψ : f ⇒ g with
f, g : A→ B, we have an equivalence between

φ(g) · F (ψ) . φ(B)

and

φ(A) / G(ψ) · φ(f).

Definition 27. A fully weak comonad G on a bicategory C is a pseudofunctor,
along with pseudonatural transformations δ and ε that satisfy the usual laws of
a comonad up to natural bijectiive 2-morphisms in C.

E Proof of proposition 2

Proof. Let A,B be two games.

Let σ be a P -cartesian transduction between A and B. The associated de-
terministic strategy fσ is simply given by :

fσ(2n) = {(c, a, σ(a))|a ∈ A(n)}

This definition clearly gives a functional strategy, the determinism being given
by the fact that σ is P -cartesian.

Conversely, let f be a functional strategy of A ( B. The associated P -
cartesian transduction σf is given by :

σf (2n)(a) = b s.t. (c, a, b) ∈ f(4n)

Such a b is unique by functionality of f .



F Proof that P is a pseudofunctor

Proof. First we need to complete the definition of P by detailling why, for f a
deterministic strategy of A → B and σ a P -strategy over A, P(f)(σ) is indeed
a P -strategy over B, and thus a presheaf over tree(BP ). For this, we need to
define the collection of projector functions π2n : P(f)(σ)(2n)→ P(f)(σ)(2n− 2)
as follows :

For x ∈ P(f)(σ)(2n) over b (meaning x ∈ P(f)(σ)(b) and b ∈ B2n), there
exists by definition a unique e, a such that (e, a, b) ∈ f and x ∈ σ(a). From this,
we define :

π2n(x) = πkσ(x), (π2k+2(e), π2k
A (a), π2

B(b)) ∈ f.

By determinism of f , there is only one such k. Moreover, we also have πkσ(x) ∈
σ(π2k

A (a)). Consequently, by definition of P(f)(σ), we have πkσ(x) ∈ P(f)(σ)(π2
B(b))

as expected.

Next step is to show that, for a strategy f : A → B, P(f) is a functor
from P(A) to P(B). For that, we need to define its effects on simulations. For
α : σ → τ , P(f)(α) : P(f)(σ) → P(f)(τ) is simply defined by applying α to all
positions of P(f)(σ), as all those are induced from positions of σ by definition.
With this, it is easy to verify that P(f) preserves identities and composition of
simulations.

Finally, let us show that P is a pseudofunctor.
First, P(IdA)σ associates to a position a of A the set :

P(IdA)(σ) : a 7→
∐

(c, a, a) ∈ IdA

σ(a).

which is instantly isomorphic to σ(a). Factoring the effect on simulations, it
is easy to build a bijective natural natural transformation between P(IdA) ∼=
IdP(A) . Thus P(IdA) ∼= IdP(A).

Next, let f : A → B and g : B → C two deterministic strategies and σ a
P -strategy of A. We have :

P(g)(P(f)(σ) : c 7→
∐

(e2, b, c) ∈ g

∐
(e1, a, b) ∈ f

σ(a).

This is easily isomorphic to P(g ◦ f)σ which is given by :

P(g ◦ f)(σ) : c 7→
∐

(e, a, c) ∈ g ◦ f
σ(a).

This isomorphism is a consequence of the definition of composition for de-
terministic strategies, as there is only one triple e1, e2, b such that (e1, a, b) ∈ f ,



(e2, b, c) ∈ g and e = e1 · e2 for a position (e, a, c) ∈ g ◦ f .
This extends into a natural isomorphism between the functors P(g ◦ f) and
P(g)(P(f), giving us the fact that P is indeed a pseudofunctor.

G Proof of Proposition 6

Proof. – Let f : A( B, g : C ( D be two slender strategies. Let (t2, b, d)be
a player position of B ⊗ D. Since f and g are slender, there exist unique
ef , a, eg, c such that (ef , a, b) ∈ f, (eg, c, d) ∈ g. Using t2, ef , eg and propo-
sition 10, we reconstruct e, t1 such that (e, (t1, a, c), (t2, b, d)) is a position
of f ⊗ g. This position is unique as the reconstruction of proposition 10 is
unique, and thus f ⊗ g is a slender strategy.

– Let f : A( B, g : C ( D be two functional strategies. Let (t1, a, c) be an
opponent position of A ⊗ C. Since f and g are functional strategies, there
exist unique b, d such that (cpf , a, b) ∈ f, (cpg, c, d) ∈ g. The study of f ⊗ g
done in the proof of proposition 10 gives us that any valid position of f ⊗ g
would have a copycat schedule (as the schedule is built from sequences 1.0k.1
of cpf and cpg. This implies immediately that the only possible position is
cp, (t1, a, c), (t1, b, d) as no other play would verify the needed structures, and
thus f ⊗ g is a functional strategy.

H Proof of Theorem 3

Proof. First, we can note that the unit 1 of G has a unique P -strategy, the empty
strategy. Consequently, P(1) is the singleton category, which is the unit of the
cartesian product in Cat.
Moreover, to extend P as a lax monoidal pseudofunctor, we need a transformation
µA,B : P(A)× P(B)→ P(A⊗B) natural in A and B.

Since the morphisms of that transformation live in Cat, they are functors.
We thus define :

for σ an object of P(A) and τ an object of P(B),

µA,B(σ, τ) = σ ⊗ τ

for α : σ → σ′ a morphism of P(A) and β : τ → τ ′ a morphism of P(B),
µA,B(α, β) : σ ⊗ τ → σ′ ⊗ τ ′ is defined by :

µA,B(α, β)(t, x, y) = (t, α(x), β(y))

We now need to prove that this transformation is natural in A and B, and
that it verifies the two commutative diagrams of a lax monoidal functor (asso-
ciativity and unitality), up to bijective simulations. Those last two are easy to



verify and use similar arguments, so we will focus on the naturality.

We need our transformation to verify the following commutative diagram for
A,B,A′, B′ four games and f : A( A′, g : B( B′ two deterministic strategies:

P(A)× P(B)

P(f)×P(g)

��

µA,B
// P(A⊗B)

P(f⊗g)
��

P(A′)× P(B′)
µA′,B′

// P(A′ ⊗B′)

Let σ be a P -strategy of A and τ a P -strategy of B. Verifying the commuta-
tive diagram amounts to finding two reciprocal morphisms between : P(f)(σ)⊗
P(g)(τ) and P(f ⊗ g)(σ ⊗ τ).

P(f)(σ)⊗ P(g)(τ) ∼= image(f ◦ suppσ)⊗ image(g ◦ supp τ )

P(f)(σ)⊗ P(g)(τ) ∼= image(f ◦ suppσ ⊗ g ◦ supp τ ) by consequences of prop 6

P(f ⊗ g)(σ ⊗ τ) ∼= image((f ⊗ g) ◦ suppσ⊗τ )

P(f ⊗ g)(σ ⊗ τ) ∼= image((f ⊗ g) ◦ suppσ ⊗ supp τ ) by consequences of prop 6

By bifunctoriality of ⊗, we have f ◦ suppσ⊗ g◦ supp τ
∼= (f⊗g)◦ suppσ⊗supp τ ,

giving us the equality of the images we need, up to bijective simulations.

I Proof of Proposition 9

Proof. – Let (ψ, b = b1, ...bn) a P position of !B. Since f is slender, for all bi
player positions of b, there exists a unique pair (ei, ai) such that (ei, ai, bi) ∈
f .

We use a method similar to the one used in the proof of proposition 10.
Instead of using the tensorial schedule to guide us in reconstructing the play
of !A(!B, we use ψ, which indicates us what is the next player move bi to
get to (starting from bi−2, and assuming we have reconstructed e and φ so
far), and then use the play (ei, ai, bi) to construct the play.
The sequence of moves we add is the suffix of the play (ei, ai, bi) looking like
bi−1a

1
i ....a

k
i bi (with aki = ai) as any other move in the play (ei, ai, bi) has

already been played (since in particular any b move prior to bi−1 has been
played.
Player cannot backtrack in the middle of the sequence bi−1a

1
i ....a

k
i bi without

breaking the fact that the full play is associated to a O-heap in !(A( B).
This allows us to extend e into e.1.0k.1 and φ by linking a1i to its predecessor



in A of the play (ei, ai, bi).

This method constructs a valid position of !f as all branches are played fol-
lowing f and φ is a O-Heap. It is the only possible position including ψ, b as
everything we have done was determined by ψ, f and b. Thus !f is a slender
strategy.

– Let (φ, a = a1, ...an) an O position of !A. Since f is a functional strategy, for
all ai opponent positions of a, there exists a unique bi such that (c, ai, bi) ∈ f .
By determinism of f , it is also true for all player positions of a. By using φ as
a guide, this easily allows us to construct the position of !f : (c, (φ, a), (φ, b =
b1, ...bn)).
It is the unique such position for (φ, a) for reasons similar to the ones evoked
in the proof for slender strategies. Thus !f is a functional strategy.

J Proof of Theorem 4

Proof. – For a game A, we have by construction :

(!P)A,B(IdA) = P(nA,B) ◦ #S(IdA)

(!P)A,B(IdA) = P(nA,B)(#IdA) = Id!A

– Let A,B,C be three games and σ a P -strategy of A ( B, τ a P -strategy
of B ( C. We need to prove that there is a natural isomorphic simulation
between !P(τ ◦ σ) and !P(τ) ◦ !P(σ).

First we will simplify those two strategies through the various properties we
have seen so far :
First !P(τ ◦ σ):

!P(τ ◦ σ) = P(nA,C)(#S(τ ◦ σ))

!P(τ ◦ σ) ∼= image(nA,C ◦ supp#S(τ◦σ)) by equation 4

!P(τ ◦ σ) ∼= image(nA,C ◦ !supp τ◦σ) by consequence of def 13

!P(τ ◦ σ) ∼= image(nA,C ◦ !suppP(compA,B,C)(σ⊗τ)) by definition 9

!P(τ ◦ σ) ∼= image(nA,C ◦ !supp image(compA,B,C◦supp σ⊗τ )) by equation 4

!P(τ ◦ σ) ∼= image(nA,C ◦ supp image(!(compA,B,C◦supp σ⊗τ ))) by consequence of def 13

!P(τ ◦ σ) ∼= image(nA,C ◦ !(compA,B,C ◦ suppσ⊗τ )) by theorem 1

!P(τ◦σ) ∼= image(nA,C◦ !compA,B,C◦supp#S(σ⊗τ)) by functoriality of ! and consequence of def 13

Then , !P(τ) ◦ !P(σ) :

!P(τ) ◦ !P(σ) = P(nB,C)(#Sτ) ◦ P(nA,B)(#Sσ)

!P(τ) ◦ !P(σ) ∼= image(nB,C ◦ supp#S(τ)) ◦ image(nA,B ◦ supp#S(σ)) by equation 4

!P(τ)◦ !P(σ) ∼= P(comp!A,!B,!C)(image(nA,B◦ supp#S(σ))⊗image(nB,C◦ supp#S(τ))) by definition 9



!P(τ)◦ !P(σ) ∼= P(comp!A,!B,!C)(image(nA,B◦ supp#S(σ)⊗ nB,C◦ supp#S(τ))) by consequence of prop 6

!P(τ)◦ !P(σ) ∼= image(comp!A,!B,!C◦(supp image(nA,B◦ supp
#S(σ)

⊗ nB,C◦ supp
#S(τ)

))) by equation 4

!P(τ)◦ !P(σ) ∼= image(comp!A,!B,!C◦(nA,B◦ supp#S(σ)⊗ nB,C◦ supp#S(τ))) by theorem 1

!P(τ)◦ !P(σ) ∼= image(comp!A,!B,!C◦nA,B⊗ nB,C◦supp#S(σ)⊗supp#S(τ)) by bifunctoriality of ⊗
!P(τ)◦ !P(σ) ∼= image(comp!A,!B,!C◦nA,B⊗ nB,C◦!supp (σ)⊗!supp (τ)) by consequence of def 13

We intend to prove that those two images are isomorphic. For that, we will make
the following remark :
! is lax monoidal in G, meaning that there exists a transformation µA,B :!A⊗!B →
!(A ⊗ B) natural in A and B. Thus we have the following diagram with the top
square commuting by naturality of µ:

!({σ |A( B} ⊗ {τ |B ( C}) !{σ |A( B}⊗!{τ |B ( C}

!(A( B ⊗B ( C) !(A( B)⊗!(B ( C)

!(A( C) !A(!B⊗!B (!C

!A(!C

µ{σ |A(B},{τ |B(C}

µA(B,B(C

!(suppσ ⊗ supp τ )

!compA,B,C

nA,C

nA,B ⊗ nB,C

comp!A,!B,!C

!suppσ⊗!supp τ

In more details, positions of µA,B are of the form : (e, (t, φ, a, ψ, b), (Φ, t′, a, b)),
where, for a position (Φ, t′, a, b) of !(A⊗B), one can rebuild the unique associated
position by playing the moves in order and building the tensorial schedule and the
O-heaps incrementally, the general structure ensuring that we do get them in the
end. Consequently µA,B is slender and induces a transduction from B to A.

Note that it is not bijective as the play of !(A ⊗ B) where we play in B, then
backtrack to play in A would produce the same play in !A⊗!B than playing in B
then in A without backtracking.



Thus, we have, since µ{σ |A(B},{τ |B(C} is slender :

image(nA,C◦ !compA,B,C◦ supp#S(σ⊗τ))
∼= image(nA,C◦ !compA,B,C◦ supp#S(σ⊗τ)◦ µ{σ |A(B},{τ |B(C})

Then, by naturality,

image(nA,C◦ !compA,B,C◦ supp#S(σ⊗τ))
∼= image(nA,C◦ !compA,B,C◦ µA(B,B(C◦ supp#Sσ⊗#Sτ )

Consequently,

image(nA,C◦ !compA,B,C◦ supp !(σ⊗τ))
∼= image(comp!A,!B,!C◦nA,B⊗ nB,C◦!supp (σ)⊗!supp (τ))

if and only if

image(nA,C◦ !compA,B,C◦ µA(B,B(C◦ supp !σ⊗!τ ) ∼= image(comp!A,!B,!C◦nA,B⊗ nB,C◦!supp (σ)⊗!supp (τ))

meaning if and only if

image(nA,C ◦ !compA,B,C ◦ µA(B,B(C) ∼= image(comp!A,!B,!C ◦ nA,B ⊗ nB,C)

An important remark is that µA(B,B(C transfers plays p of (!(A ( B)⊗!(B (
C)) such that there exists (e, (φ, a), (ψ, c))p ∈ image(comp!A,!B,!C ◦ nA,B ⊗ nB,C)
to plays p′ of !(A ( B ⊗ B ( C) such that there exists (e, (φ, a), (ψ, c))′p ∈
image(nA,C ◦ !compA,B,C).

In other words µ, when restricted to plays that play a role in the images we out-
lined, acts as a function from the set of plays of (!(A( B)⊗!(B ( C)) to the set
of plays of !(A( B ⊗ B ( C) . This can be proved by looking at the respective
structures of the plays and induces one half of the isomorphism we need.

We do a similar study by introducing a P -strategy of !(A ( B ⊗ B ( C) (
(!(A ( B)⊗!(B ( C)) that acts as a converse of µA(B,B(C for such plays and
thus get a converse to our morphism, which will give us the second half of the
isomorphism we need. Here is how we proceed :

Let (t, (φ, e, a, b), (ψ, f, b, c)) be a play of (!(A ( B)⊗!(B ( C)) such that there
exists

(e!A(!C , (φ!A, a), (φ!C , c))e,(t,φ,e,a,b,ψ,f,b,c) ∈ image(comp!A,!B,!C ◦ nA,B ⊗ nB,C).

In particular, that implies that, since nA,B ⊗ nB,C doesn’t change the order of
moves, the sequence of moves of (t, (φ, e, a, b), (ψ, f, b, c)) must be able to be the
left projection of comp!A,!B,!C . This restricts the way the moves can be played.

In particular, B moves from the two components must must answer each other
right away, giving sequences without backtrack of the form c(br.bl.bl.br) ∗ c, with
similar structures for sequences starting and/or finishing with a A move. In ad-
dition, there cannot be any backtrack in A or any of the two B component that
would not be initiated by a backtrack in a C component.

The idea is that a backtrack in C induces a backtrack in B which is mirrored on
the left component and induces a backtrack in A. Those backtracks give us a heap



structure and the moves inside a sequence follow a proper tensor schedule, so it
can be seen as a play of !(A( B ⊗B ( C) and it is easy to verify that this play
would produce an element of image(nA,C ◦ !compA,B,C ◦ µA(B,B(C) and that the
P -strategy of !(A( B⊗B ( C)( (!(A( B)⊗!(B ( C)) built by reorganizing
structure without changing order of moves is a converse to µA(B,B(C .

Consequently, we have the bijection of images we needed and thus an isomorphic
simulation between !P(τ ◦ σ) and !P(τ) ◦ !P(σ). It is natural since µ and the iso-
morphisms involved in the manipulation of images are natural.

The few additional diagrams that must be checked are easy to verify with
similar methods, and thus we have that !P is a pseudofunctor.

K Proof that ! is a pseudocomonad

In the following section, we’ll detail the construction of the pseudonatural trans-
formations δ and ε and prove their naturality. From those definitions, verifying
that ! is a pseudocomonad is easy as the morphism part of the two natural trans-
formations coincides with their definition in the deterministic case, making the
diagrams commute instantly. After that, we may do a similar study on d, e to
give ! the necessary structure to be a linear exponential modality.

We will handle here the case of δσ for a P -strategy σ : A → B. This is, by
definiton 26, a bijective 2-morphism between !P!Pσ◦δA and δB ◦ !Pσ, both being
P -strategies of !A(!!B.

First note that

!P!Pσ ◦ δA = image(comp!A,!!A,!!B ◦ supp !P!Pσ
⊗ supp δA)

and that

δB ◦ !Pσ = image(comp!A,!B,!!B ◦ supp δB ⊗ supp !Pσ
).

We want to study the structure of both images to find an isomorphic simulation
between them.



R!Pσ ⊗RδB RδA ⊗R!P!Pσ

!A(!B⊗!B(!!B !A(!!A⊗!!A(!!B

!A(!!B

supp !Pσ
⊗ supp δB

comp!A,!B,!!B

supp δA ⊗ supp !P!Pσ

comp!A,!!A,!!B

What we will do is start from a position

e, (φA, a), (ψB , φB , b)

of !A (!!B and go back along the arrows to see what structure the positions
that produce this position must have.

First, on the left branch, the presence of comp!A,!B,!!B indicates that the
position in !A(!B⊗!B(!!B must be of the form

t, (e1, (φA, a), (ΦB , b′), (e2, (ΦB , b′), (ψB , φB , b)))

for some t, e1, e2, ΦB , b′ such that e1 · e2 = e.
Since the right component of this position comes from δB , we actually have
b′ = b, ΦB = φB , e2 = c and thus e1 = e and we actually have the position

t, (e, (φA, a), (φB , b), (c, (φB , b), (ψB , φB , b)))

for some t which is fixed by the two components for the composition to work.

And thus, this gives us the following position of R!Pσ ⊗RδB :

(t, ((φA, e, π), x), (c, (φB , b), (ψB , φB , b)))

where x is a sequence of moves that gets projected to the sequence of moves of
(e, (φA, a), (φB , b)). There is no modification of the order the moves are played
in this step, just a reorganization of the structure.
Thus a position of RδB◦ !Pσ is of the form

(e, (φA, a), (ψB , φB , b))(t,((φA,e,π),x),(c,(φB ,b),(ψB ,φB ,b))).



We apply a similar reasoning to the right branch to obtain the form of a
position of R!P!Pσ◦δA :

(e, (φA, a), (ψB , φB , b))(t′,(c,(φA,a),(e∗ψB ,φA,a)),((e∗ψB ,e,π),(φA,e,π),x′))

where t′ is fixed by the composition and the sequence of moves x′ gets projected
to the same sequence of moves than x in the left branch. In particular, both
sequences have the same length.

Since everything is fixed from the initial position (e, (φA, a), (ψB , φB , b)) but
the two sequences x and x′, we can then build δσ as the simulation sending
one position to the other one sharing that same initial structure and the same
sequence x.

With a simlar study, we build εσ as the simulation that sends positions of
the form

(e, (π, a), b)t,(c,(π,a),a),x)

to positions of the form

(e, (π, a), b)t′,(π,x),(c,(π,b),b)).

where t, t′ are fixed by construction and x is the branch of positions finishing in
x in Rσ.

Proof. We will now prove the pseudonaturality of ε, δ is handled in a similar way.
Let us look at the naturality first. Let A,B be two games, σ, τ two P -strategies
of A( B and α : σ → τ a simulation We require that the two following pasting
diagrams are equivalent :

!A !B

A B

εA εB

!Pσ

σ

τ

α

εσ



!A !B

A B

εA εB

!Pτ

τ

!Pσ

!Pα

ετ

This amounts to the following equality of simulations :

(εA / α) · ε−1σ = ε−1τ · (!Pα . εB)

where /, . indicate the whiskering that results from the composition of P -strategies
and · indicates the vertical composition which is simply the composition of func-
tions. Thus, for a position

(e, (π, a), b)t′,(π,x),(c,(π,b),b)

of εB ◦ !Pσ, we have :

(εA/α)·ε−1σ ((e, (π, a), b)t′,(π,x),(c,(π,b),b)) = (εA/α) ((e, (π, a), b)t,(c,(π,a),a),x) by def of εσ

(εA/α)·ε−1σ ((e, (π, a), b)t′,(π,x),(c,(π,b),b)) = (e, (π, a), b)t,(c,(π,a),a),α(x) by def of P, εA

On the other hand,

ε−1τ ·(!Pα.εB) ((e, (π, a), b)t′,(π,x),(c,(π,b),b)) = ε−1τ ((e, (π, a), b)
t′,(π,α(x)),(c,(π,b),b)

) by def of P, εB , !P

ε−1τ ·(!Pα.εB) ((e, (π, a), b)t′,(π,x),(c,(π,b),b)) = (e, (π, a), b)t,(c,(π,a),a),α(x)) by def of ετ

And thus, we have the equivalence we require. The other diagram equalitiies
we need to verify are done in a similar way.

The key point to remember from this proof and the similar ones that need
to be done, is that, while the form of the positions is a bit heavy, the structures
that underly them do most of the work for us, making most of the needed veri-
fications very easy, once the positions have been properly described.

We apply those methods to verify that ! is indeed a pseudocomonad, to define
and verify that dA, eA are proper pseudonatural transformations and to check
that !, along with those transformations, does have the structure of a linear
exponential modality.


