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Abstract

We show that two modelsM andN of linear logic collapse to the same extensional hi-
erarchy of types, when (1) their monoidal categoriesC and D are related by a pair of
monoidal functorsF : C � D : G and transformationsIdC ⇒ GF andIdD ⇒ FG, and
(2) their exponentials!M and !N are related by distributive laws% : !NF ⇒ F !M and
η : !MG ⇒ G !N commuting to the promotion rule. The key ingredient of the proof is a
notion of back-and-forth translation between the hierarchies of types induced byM andN.
We apply this result to compare (1) the qualitative and the quantitative hierarchies induced
by the coherence (or hypercoherence) space model, (2) several paradigms of games seman-
tics: error-free vs. error-aware, alternated vs. non-alternated, backtracking vs. repetitive,
uniform vs. non-uniform.
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1 Introduction

Coherence spaces.Girard designed linear logic after his discovery of the coherence
space model [19].Coherence spaceis another name for “non-oriented graph”, that
is, a pair(|A|,_^A

) consisting of aweb|A| and a reflexive and symmetric relation
_
^A

over the elements of|A|. A cliquef of A is a subset of the web|A| such that:

∀a, b ∈ f, a _^A
b.

The negationA⊥ = (|A|,^_A
) of a coherence spaceA = (|A|,_^A

) is its dual
graph, defined as

∀a, b ∈ |A|, a ^_A
b ⇐⇒ a = b or ¬(a _^A

b).

Thetensor productof two coherence spacesA = (|A|,_^A
) andB = (|B|,_^B

) is
their product as graphs:A⊗B = (|A| × |B|,_^A

×_
^B

). The categoryCOH has
coherence spaces as objects, and cliques ofA( B = (A ⊗ B⊥)⊥ as morphisms.
Morphisms are composed as in the category of sets and relations. The resulting
categoryCOH is ∗-autonomous, and has finite products. As such, it is a model of
multiplicative additive linear logic.
The exponential modality! of linear logic may be interpreted in two different ways,
inducing either a “qualitative” or a “quantitative” model of proofs:
• The qualitative exponential!set is introduced in Girard’s seminal article [19].

The commutative comonoid!setA has the finite cliques ofA as elements of the
web, union of cliques as comultiplication, and the empty clique as counit. This
defines a comonad!set over the categoryCOH, which “linearizes” Berry’s stable
model of PCF, in the sense that the co-kleisli category associated to!set embeds
(as a model of PCF) in the category of dI-domains and stable functions.

• The quantitative exponential!mset is formulated by Van de Wiele and Winskel
(and possibly others) who establish — in harmony with Lafont’s ideas in [25]
— that the exponential!mset is the free comonoidal construction inCOH. The
commutative comonoid!msetA has the finitemulti-cliquesofA as elements of the
web, addition of multi-cliques as comultiplication, and the empty multi-clique as
counit.
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We recall briefly that a multisetw over a setE is a functionw : E −→ N to the set
of natural numbers. Its support is the subset

support(w) = {e ∈ E | w(e) > 0}.

Every subsetx of E induces the “characteristic” multiset

char(x) :

 e 7→ 1 if e is element ofx

e 7→ 0 otherwise

A multi-clique of a coherence spaceA is a multiset with support a clique ofA. A
multi-clique is finite (resp. empty) when its support is finite (resp. empty).
So, the category of coherence spaces induces aqualitativeand aquantitativemodel
of linear logic. Are the two models related in some way? The answer is positive:
Barreiro and Ehrhard establish in [7] that theextensional collapseof the quanti-
tative hierarchy is precisely the qualitative hierarchy. But their proof is difficult:
what we call in french atour de force. Here, we would like to prove the same re-
sult by another simpler route, starting from this elementary observation: For every
coherence spaceA, there exists an embedding-retraction pair(ηA, %A) making the
coherence space!setA a retract of the coherence space!msetA:

!setA
ηA // !msetA

%A // !setA = !setA
id !setA // !setA (1)

ηA = {(support(w), w) | w is a finite multiclique ofA}
%A = {(char(x), x) | x is a finite clique ofA}

The mapηA may be deduced from the fact that!msetA is the free comonoid overA.
It is the unique comonoidal morphism!setA −→ !msetA making the diagram below
commute:

!setA
ηA //

εset
A

!!CCCCCCCCCCCCCCCC !msetA

εmset
A

||zzzzzzzzzzzzzzzzz

A
On the other hand, the projection map%A is not comonoidal in general, since the
diagram below does not necessarily commute (takeA = ⊥ the singleton coherence
space).

!msetA
%A //

dmset
A

��

!setA

dset
A

��
!msetA⊗ !msetA

%A⊗%A // !setA⊗ !setA

(2)

Given a coherence spaceA and a cliquef : 1 −→ A, let f set : 1 −→ !setA and
fmset : 1 −→ !msetA denote the cliquef promoted with respect to!set and !mset
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respectively. Remarkably, the mapsηA and%A commute to the promotion rules of
!set and !mset, in the sense that:

f set = %A ◦ fmset and fmset = ηA ◦ f set. (3)

In particular,

dset
A ◦ f set = f set ⊗ f set = (%A ⊗ %A) ◦ (fmset ⊗ fmset).

Thus, precomposing diagram (2) with the promoted mapfmset : 1 −→ !msetA
induces a commutative diagram:

1
fmset

TTTT

**TTTT

fmset⊗fmset

''

f set

**
!msetA

%A //

dmset
A

��

!setA

dset
A

��
!msetA⊗ !msetA

%A⊗%A // !setA⊗ !setA

(4)

To summarize, diagram (2) does not commute, but the object1 believesthat dia-
gram (2) commutes. Now, the object1 plays a very special role for the hierarchies
[−]set and [−]mset which, we recall, are defined as hierarchies ofglobal elements
1 −→ [T ]set and1 −→ [T ]mset of the categoryCOH, for T a simple type. So, when
it comes to hierarchies extracted from a model of linear logic, what really matters
is what the object1 believes in the underlying monoidal category! And indeed, as
we will see in the course of the article, the equalities (3) are sufficient to deduce
diagrammaticallythat the hierarchies[−]set and[−]mset collapse to the same exten-
sional hierarchy: in that case, Berry’s stable hierarchy[−]set.
This proves Barreiro and Ehrhard’s collapse theorem by another route, and clarifies
the situation. New translations (calledback-and-forth) are exhibited between the
qualitative and the quantitative hierarchies. These translations play a key role in
our proof that the two hierarchies[−]set and[−]mset collapse to the same extensional
hierarchy — see section 3 for details.

Game models.Many game models of (intuitionistic) linear logic have been intro-
duced in the last decade, but they are still poorly connected. We are working here
at building a “topography” which would connect these models in a dense network
of (effective) translations.
We are guided by the idea that all the sequential game models live roughly in the
same interactive universe, and differ only in the way the connectives (or constants)
of linear logic are reflected in it. So, the translations we are looking for should be
deduced algebraically from coercion laws between the various interpretations of
the tensor product, the exponential modality, etc. in this universe.
Coherence spaces illustrate this idea perfectly: the qualitative and quantitative hi-
erarchies differ only by their interpretation!set or !mset of the exponentials, and
the translations between the two hierarchies follow mechanically from the coercion
laws (1) between!set and !mset.

4



We show in the last part of the article (section 7) that the same phenomenon oc-
curs in games semantics, and that it explains many differences between the exist-
ing models of sequentiality. We restrict ourselves to sequential games played on
decision trees [24,1,26,15,5] and leave the so-called arena games [22,32,3] for an-
other study. So, asequential gamemeans here a tripleA = (MA, λA, PA) where
(MA, λA) is a polarized alphabet of moves, in whichλA : MA −→ {−1,+1}
assigns a polarity+1 (Player) or−1 (Opponent) to every move; andPA is a non-
empty prefix-closed set of finite strings over the alphabetMA, called the plays of
the gameA. We will consider only “negative” games, in which a play is either
empty, or starts by an Opponent move.
Every sequential gameA is represented as a rooted tree, whose branches coincide
with the plays ofA. A play s = m1 · · ·mk is called alternated whenλA(mj) =
(−1)j for every1 ≤ j ≤ k . The sub-tree of alternated plays is denotedalt(A). It is
a bipartite graph, whose nodes (=branches=plays) are assigned polarity+1 (Player)
when the distance to the root (=the length of the branch) is even, and polarity−1
(Opponent) otherwise. Note that the root has polarity Player in a negative game.
Now, a strategyσ of A is defined as a subtree ofalt(A) which branches only at
Player nodes: that is, the movesm1 andm2 are equal whens ∈ σ is of odd-length,
and s · m1 ∈ σ and s · m2 ∈ σ. This definition is more liberal than what one
generally finds in the litterature, because it enables strategies to withdraw and play
“error” (or rather: “I loose”) at any point of the interaction. A strategy in the usual
sense is just an error-free strategy, that is, a strategyσ in which every odd-length
play s ∈ σ may be extended to a (necessarily unique) even-length plays ·m ∈ σ,
for m a Player move.
There exist several models of intuitionistic linear logic based on sequential games.
We will organize them here according to a series of simple distinctions:
(1) error-aware vs. error-free: a strategy is allowed (error-aware model) or is not

allowed (error-free model) to withdraw and play “error”;
(2) alternated vs. non alternated: the interpretation[T ] of every formulaT is al-

ternated (ie.[T ] = alt([T ])) or not necessarily alternated;
(3) backtracking vs. repetitive: Opponent repeats the same question to Player as

many times as necessary (repetitive model) or Opponent remembers Player’s
answers, and thus does not need to repeat a question twice (backtracking
model);

(4) uniform vs. non uniform: this distinction holds only in repetitive models: when
Opponent asks Player the same question several times, Player always provides
the same answer to Opponent (uniform model) or may vary his answers in the
course of the interaction (non uniform model.) Note that every backtracking
model may be called uniform in the sense that Player provides his answer once
and for all.

Two remarkable models lie at both extremes of the spectrum:
• Lamarche [26] reformulates Berry and Curien sequential algorithm model of

PCF [9] as an error-free, alternated, backtracking, uniform game model of in-
tuitionistic linear logic. The interested reader will find a nice exposition of that
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work by Curien in [15,5]
• We indicate in section 7.5 that the less constrained of all arena game models,

introduced by Abramsky, Honda and McCusker [2] is equivalent to an error-
free, non alternated, repetitive, non uniform game model of intuitionistic linear
logic.

Intermediate models were also considered in the litterature, most notably an al-
ternated, repetitive, non uniform model by Hyland in [21]. We connect all these
models by coercion laws in section 7; and deduce the following “topography” of
models:
(a) All error-aware hierarchies are related by back-and-forth translations, and thus

collapse extensionally to the same hierarchy: Berry and Curien sequential al-
gorithm hierarchy with one error, what we call themanifestly sequentialhier-
archy after Cartwright, Curien and Felleisen [9,14].

(b) All error-free hierarchies are related by back-and-forth translations, and thus
collapse extensionally to the same hierarchy: Bucciarelli and Ehrhard strongly
stable hierarchy, by Ehrhard collapse theorem [17].

(c) All error-aware and error-free hierarchies are related by back-and-forth trans-
lations when erroes are not taken into account in the base types (using partial
equivalence relations).

There is a recent thesis (defended by Longley [28] among others) that every suf-
ficiently expressiveerror-free model of sequential computations collapses to the
strongly stable hierarchy. After points (a)(b)(c), it is natural tofactorizeLongley’s
thesis into:
(1) a thesis: every sufficiently expressiveerror-awaremodel of sequential com-

putations collapses to the manifestly sequential hierarchy,
(2) a fact: the manifestly sequential hierarchy collapses to the strongly stable hi-

erarchy when errors are not taken into account in the base types.
Diagrammatically:

Any sufficiently expressive model of sequentiality with errors

extensional collapse (1)
��

Manifestly sequential hierarchy

extensional collapse (2)
��

Strongly stable hierarchy

This sits the manifestly sequential hierarchy (with one or several errors) at a key po-
sition in the theory of sequentiality, and reveals at the same time its true nature: the
extensional collapse of other (possibly more immediate) models of sequentiality.

Synopsis.In section 2, we deliver the necessary preliminaries on categorical models
of linear logic, hierarchies of simple types, and extensional collapse. In section 3,
we formulate the notion ofback-and-forth translationbetween hierarchies of types,
and prove that two hierarchies related by a back-and-forth translation collapse to
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the same extensional hierarchy. In section 4, we axiomatize the notion of linear
coercion between models of linear logic. Our main theorem 15 appears in section
5. It states that two models related by a linear coercion, induce hierarchies related
by a back-and-forth translation. In section 6, we illustrate the theorem by relating
the qualitative and quantitative exponentials on coherence (and hypercoherence)
space models ; we also analyze in detail the action of the back-and-forth transla-
tion at typeso ⇒ o and(o ⇒ o) ⇒ o. In section 7, we introduce the error-free
and error-aware variants of two categories of sequential games, and compare three
exponential structures on these categories: backtracking, repetitive uniform, and
repetitive non uniform. We establish a series of linear coercions between the ex-
ponentials and models, and deduce from it that (1) all error-aware models collapse
to the manifestly sequential hierarchy, and (2) all error-free models collapse to the
strongly stable hierarchy.

Related works.T. Ehrhard [17] proves that the sequential algorithm hierarchy [9]
collapses to the strongly stable hierarchy [13]. This result is important because it
relates for the first time astaticand adynamicmodel of sequentiality. The theorem
is proved another time by J. Van Oosten [36] and J. Longley [28] in a similar and
somewhat indirect way: first, they establish that every finite strongly stable func-
tional is equal to a PCF-term applied to some strongly stable functionalsof small
order (several of them of order 2 in [17], exactly one of order 3 in [28]) ; then they
deduce Ehrhard’s collapse theorem by denotational techniques.
After publishing his collapse theorem in [17], T. Ehrhard started studying other
(possibly simpler) cases of extensional collapse, in order to extract general proof-
techniques, which would lead ideally to a more direct proof of his theorem. For
instance, T. Ehrhard establishes in collaboration with N. Barreiro [7] that the quan-
titative hierarchy of coherence spaces collapses to qualitative one, by exhibiting
an heterogeneous relation between the two hierarchies, which is then shown to be
onto for finite functionals. The same pattern of proof appears in A. Bucciarelli’s
work on bidomains [12]. One feels that a general proof-technique remains to be
extracted, but the proof in [7] does not help much, because it requires a very pre-
cise and “anatomic” description of the extensional collapse, which seems difficult
to generalize to other situations.
In a recent article inspired by concurrency [31], the author relates Lamarche se-
quential games and Ehrhard hypercoherence spaces; and delivers an “anatomic”
proof of Ehrhard’s collapse theorem based on games semantics. The present article
results from the author’s efforts to simplify the proof of [31] as much as possible:
in particular, a back-and-forth translation between the sequential algorithm hierar-
chies on theflat and on thelazynatural numbers enables to decompose the proof
of [31] in two steps: first, the finitely branching games are treated by a compact-
ness argument (K̈onig’s lemma); the result is then generalized to (possibly infinitely
branching) games like the flat natural numbers, by exhibiting the back-and-forth
translation and applying the results established in the present article.
Finally, recent discussions with J. Longley indicate that our definition of linear co-
ercion between models of linear logic makes sense in (a linear and typed version
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of) the 2-category of Partial Combinatory Algebra considered in [27]. This point
deserves to be further investigated, because it could very well lead to a more con-
ceptual proof of corollary 16 based on realisability.

2 Preliminaries

2.1 Monoidal closed categories

By monoidal closed category, we mean a monoidal categoryC in which the functor
(A ⊗ −) : C −→ C has a right adjoint(A( −) : C −→ C for every objectA of
C. Thanks to a theorem on adjunctions with parameters [29], the family of functors
(A ( −) may be seen as a bifunctor(: Cop × C −→ C for which there exists a
family of bijections

φA,B,C : C(A⊗B,C) ∼= C(B,A( C)

natural inA contravariantly, inB,C covariantly. In particular, every morphism
f ∈ C(A,B) is in one-to-one relation with itsnamepfq ∈ C(1, A ( B) defined
aspfq = φA,1,B(f ◦ ρ−1

A ).

Remark. We write1 for the monoidal unit of the categoryC, instead of the usual
notationI. We follow here an habit of linear logic, dating back to the origin of the
subject [19].

By (symmetric) monoidal functor between (symmetric) monoidal categories, we
mean thelax definition, that is, a functorF : C −→ D equipped with mediating
natural transformations

mA,B : F (A)⊗N F (B) −→ F (A⊗M B) m1M
: 1N −→ F (1M)

making the usual diagrams commute. It is worth mentioning here a useful property
of monoidal functors.
Lemma 1 Suppose thatF : C −→ D is a monoidal functor between monoidal
closed categories. Then, there exist a familyq of morphisms indexed by objects
A,B of C:

qA,B : F (A(M B) −→ (FA(N FB)

such that, for every morphismf : A −→ B, the diagram below commutes:

F (1M)
F (pfq) //F (A(M B)

qA,B

��
1N

ppFfqq //

m1M

OO

(FA(N FB)

(5)

wherepfq andppFfqq are the names of the morphismsf in C andFf in D.
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PROOF The morphismqA,B is defined as the unique morphism making the diagram
below commute:

FA⊗N F (A(M B)
mA,A(MB //

FA⊗qA,B

��

F (A⊗M (A(M B))

F (evone
A,B)

��
FA⊗N (FA(N FB)

evtwo
FA,FB //FB

Commutativity of diagram (5) follows easily.

2.2 Models of intuitionistic linear logic

There exist several categorical definitions of what a model of intuitionistic linear
logic should be. Instead of reviewing them here, which we do in [30], we will only
indicate what properties of a model we need in this article. The reader interested in
full definitions is advised to look at [21,10,30].
So, every modelM of intuitionistic linear logic is given by (among other things) a
symmetric monoidal closed categoryC equipped with what we call here anexpo-
nential structure, that is:
• a functor! of the categoryC into itself,
• a morphismεA : !A −→ A for every objectA of the category,
• a morphismfbang : 1 −→!A for every morphismf : 1 −→ A of the categoryC,

verifying:

1
f //A = 1

fbang
// !A

εA //A (6)

and making the diagram below commute for every morphismg : A −→ B:

!A

!g

��

1

fbang 11

(g◦f)bang -- !B

(7)

Remark.Another property which should be mentioned here, even if it is not used in
the article, is that the endofunctor! defines a comonad over the categoryC, whose
associated co-kleisli category happens to be cartesian closed.

2.3 Hierarchies of types

In this article, we consider the class of simple typesT built over a fixed classK of
constant typesκ ∈ K, given by the grammar below:

T ::= κ ∈ K | T ⇒ T.

9



The typical example isK = {o, ι}whereo andι denote the boolean and the integer
base types respectively.
A hierarchy([−], ·,∼) overK consists of:
(1) a family of sets[T ] indexed by simple typeT ,
(2) a family of functions indexed by simple typesU, V :

·UV : [U ⇒ V ]× [U ] −→ [V ].

(3) a partial equivalence relation∼T over the set[T ], for every simple typeT ,
which verifies that, for every simple typesU, V , and every elementsf, g ∈
[U ⇒ V ]:

f ∼U⇒V g ⇐⇒ (∀x, y ∈ [U ], x ∼U y ⇒ f · x ∼V g · y). (8)

Givenf ∈ [U ⇒ V ] andx ∈ [U ], we writef ·UV x or evenf · x for the image of
(f, x) by ·UV in [V ].

Remark. For expository reasons mainly, we add the family of partial equivalence
relations (point 3 above) to the usual definition of a hierarchy([−], ·). Let us clarify
this. Property (8) implies that the family of partial equivalence relations is generated
by the sub-family(∼κ)κ∈K of partial equivalence relations at constant types. So, a
hierarchy in our sense is simply a hierarchy([−], ·) in the usual sense, equipped
with a partial equivalence relation∼κ for every constant typeκ ∈ K. We find
convenient to integrate this family(∼κ)κ∈K in our definition, in order to discuss
cases of extensional collapse in which the choice of(∼κ)κ∈K matters.

2.4 Models of linear logic over a class of constants

A modelM of intuitionistic linear logic over a classK of constants, is a model of
intuitionistic linear logic equipped, for every constant typeκ ∈ K, with:
(1) an objectXκ of the underlying monoidal categoryC,
(2) a partial equivalence relation∼M

κ over the setC(1, Xκ) of global elements of
Xκ in the categoryC.

Any such modelM induces a hierarchy([−], ·,∼) overK, obtained by regarding
every object[T ] of the categoryC as its setHomC(1, [T ]) of global elements. The
construction goes as follows. Every constant typeκ ∈ K is associated to the object
[κ] = Xκ; and every simple typeT = U ⇒ V is associated to the object[T ]
deduced from[U ] and[V ] by Girard’s formula:

[U ⇒ V ] = ! [U ] ( [V ].

The function·UV : [U ⇒ V ] × [U ] −→ [V ] associates to the pairf : 1 −→ [U ⇒
V ] andx : 1 −→ [U ] the compositef · x : 1 −→ [V ] in the categoryC:

1
f ·x // [V ] = 1 xbang // ![U ]

xfy // [V ]
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Here, the morphismxfy denotes the “co-name” off , that is the unique morphism
![U ] −→ [V ] such thatf = pxfyq.
The partial equivalence relation∼T over the set of global elementsHomC(1, [T ])
is given by∼M

κ at a constant typeκ ∈ K, and deduced from∼U and∼V by property
(8) at a simple typeT = U ⇒ V .

2.5 Extensional collapse

A hierarchy([−], ·,∼) is extensionalwhen the partial equivalence relation∼T is
the equality at every simple typeT . In that case, it follows from property (8) that,
for every typeU ⇒ V and elementsf, g of [U ⇒ V ], one has:

(∀x ∈ [U ], f · x = g · x) ⇒ f = g.

Every hierarchy([−], ·,∼) induces an extensional hierarchy([−]ext, �,=) called
its extensional collapse. The construction goes as follows:[T ]ext denotes the set
[T ]/∼T of ∼T -classes in[T ]; while f �UV a denotes the∼V -class off ·UV a, for
every two elementsf of the∼U⇒V -classf and a of the∼U -classa. We leave
the reader check that the definition works, and induces an extensional hierarchy
([−]ext, �,=).

3 Back-and-forth translations between hierarchies of types

In this section, we introduce the notion ofback-and-forth translationbetween hier-
archies of types, and show that two hierarchies related by such a translation collapse
to the same extensional hierarchy (lemma 6).

3.1 The definition of back-and-forth translation

Definition 2 A back-and-forth translation between two hierarchies of types

([−], ·,∼) and ([[−]], ·,≈)

is the data of two families of (set-theoretic) functions

φT : [T ] −→ [[T ]] ψT : [[T ]] −→ [T ]

indexed by simple types, such that
(1) the two functionsφκ andψκ preserve the partial equivalence relations at any

base typeκ ∈ K, that is:

∀x, y ∈ [κ], x ∼κ y ⇒ φκ(x) ≈κ φκ(y),

∀x, y ∈ [[κ]], x ≈κ y ⇒ ψκ(x) ∼κ ψκ(y),
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(2) the two functionsφκ andψκ are “weak inverse” at any base typeκ ∈ K, that
is:

∀x, y ∈ [κ], x ∼κ y ⇒ x ∼κ ψκ(φκ(y)),

∀x, y ∈ [[κ]], x ≈κ y ⇒ x ≈κ φκ(ψκ(y)),

(3) for every typesU, V , and elementsf ∈ [U ⇒ V ] andh ∈ [[U ]]:

φU⇒V (f) · h ≈V φV (f · ψU(h)), (9)

(4) for every typesU, V , and elementsf ∈ [[U ⇒ V ]] andh ∈ [U ]:

ψU⇒V (f) · h ∼V ψV (f · φU(h)). (10)

Remark.Our definition of back-and-forth translation may be weakened by requir-
ing equivalence (9) only whenf ∼U⇒V f andh ≈U h, and similarly for equiva-
lence (10). Our main result, lemma 6, still holds in that weaker situation — which
we find for example in lemma 26.

Remark. Back-and-forth translations define a category between hierarchies, with
obvious identities, and composition defined as follows. Suppose that families of
functions:

φT : [T ]� [[T ]] : ψT φ′T : [[T ]]� [[[T ]]] : ψ′T

define back-and-forth translations between the hierarchies[−] and[[−]] on one hand,
and between the hierarchies[[−]] and[[[−]]] on the other hand. Then, the families of
functions obtained by composition:

φ′T ◦ φT : [T ]� [[[T ]]] : ψT ◦ ψ′T

defines a back-and-forth translation between the hierarchies[−] and[[[−]]].

3.2 Back-and-forth translation and extensional collapse

Here, we prove that the existence of a back-and-forth translation between[−] and
[[−]] implies that the two hierarchies collapse to the same extensional hierarchy.
Lemma 3 (preservation) ∼T and≈T are preserved by translation. More precisely:

∀f, g ∈ [T ], f ∼T g ⇒ φT (f) ≈T φT (g),

∀f, g ∈ [[T ]], f ≈T g ⇒ ψT (f) ∼T ψT (g).

PROOF By induction onT . The property holds for every base typeκ ∈ K by
definition of a back-and-forth translation, point (1). Then, suppose that the property
is established for typesU andV ; and consider any two elementsf, g ∈ [U ⇒ V ]
such thatf ∼U⇒V g. We want to show that

φU⇒V (f) ≈U⇒V φU⇒V (g). (11)

12



To that purpose, we considerh ≈U h′ and prove that

φU⇒V (f) · h ≈V φU⇒V (g) · h′.

By definition of the back-and-forth translation, this reduces to

φV (f · ψU(h)) ≈V φV (g · ψU(h′)). (12)

Let us prove claim (12). By induction hypothesis onU , and hypothesish ≈U h′:

ψU(h) ∼U ψU(h′).

From this, and hypothesisf ∼U⇒V g, it follows:

f · ψU(h) ∼V g · ψU(h′).

We conclude that claim (12) holds by induction hypothesis onV . We have just
proved (11). We prove

∀f, g ∈ [[U ⇒ V ]], f ≈U⇒V g ⇒ ψU⇒V (f) ∼U⇒V ψU⇒V (g)

in a similar fashion. This concludes our proof by induction.

Lemma 4 (forth and back)

∀f, g ∈ [T ], f ∼T g ⇒ f ∼T ψT (φT (g)).

PROOF By induction onT . The property holds for every base typeκ ∈ K by
definition of a back-and-forth translation, point (2). Now, suppose thatf ∼U⇒V g.
We prove that

f ∼U⇒V ψU⇒V (φU⇒V (g))

by establishing that, for everyh ∼U h′:

f · h ∼V ψU⇒V (φU⇒V (g)) · h′. (13)

The right-hand side of the equivalence may be reformulated by definition of a back-
and-forth translation:

ψU⇒V (φU⇒V (g)) · h′ ∼V ψV (φU⇒V (g) · φU(h′))

∼V ψV (φV (g · ψU(φU(h′)))).

Equation (13) follows by induction hypothesis onU andV , and hypothesisf ∼U⇒V
g.

Lemma 5 (back and forth)

∀f, g ∈ [[T ]], f ≈T g ⇒ f ≈T φT (ψT (g)).

Lemma 6 Two hierarchies related by a back-and-forth translation, collapse to the
same extensional hierarchy.
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4 Linear coercion between models of linear logic

In sections 4.2, 4.3 and 4.4, we define what we mean by alinear coercionbetween
two modelsM andN of intuitionistic linear logic over a classK of base types.
Before that, in section 4.1, we focus on the particular case of two modelsM andN

constructed over the same underlying monoidal categoryC, and the same interpre-
tationXκ and∼κ of the base typesκ ∈ K.

Notation: in this section 4, as well as in section 5, we instantiate the notationfbang

introduced in section 2.2, and write

1M
f† // !MA 1N

g†† // !NB

for the morphisms induced from the exponential structures ofM andN applied on
the morphismf : 1M −→ A in C andg : 1N −→ B in D, respectively.

4.1 Linear coercion between exponential structures

We specialize our later definition of linear coercion (see section 4.4) to the particu-
lar case of two modelsM andN of linear logic with the same underlying monoidal
categoryC. In that case, the two modelsM andN are only distinguished by their
respective exponential structures!M and !N.
Definition 7 (linear coercion) A linear coercionbetween two exponential struc-
tures !M and !N consists in two familiesη and% of morphisms indexed by objects
of the categoryC

!MA
ηA // !NA

%A // !MA

making the two diagrams below commute,

!MA

ηA

��

1

f† 22

f†† ,,
!NA

!NA

%A

��

1

f†† 22

f† ,,
!MA

for every morphismf : 1 −→ A of the categoryC.
Definition 7 is an instance of a linear coercion between two models of intuitionistic
linear logic overK, as formulated in section 4.4. More precisely, every choice of
a family (Xκ)κ∈K of objects of the category, and of a family(∼κ)κ∈K of partial
equivalence relations over their global elements, induces a modelM andN of intu-
itionistic linear logic overK. The linear coercion between!M and !N formulated
in definition 7 induces a linear coercion between the two modelsM andN in the
sense of definition 10. In particular, theorem 15 holds, and thus, for any choice
of families (Xκ)κ∈K and(∼κ)κ∈K , the two hierarchies deduced from!M and !N

collapse to the same extensional hierarchy.
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4.2 Monoidal elementwise transformation

Definition 8 (monoidal elementwise transformation) A monoidal elementwise trans-
formation ξ : F ⇒ G between two monoidal functors(F,m) : C −→ D and
(G, n) : C −→ D is a family of morphismsξA : F (A) −→ G(A) indexed by
objects ofC, making the two diagrams commute:

F (1C)

ξ1C

��

1D

m1C
88

n1C &&
G(1C)

F (1C)

ξ1C

��

F (f) //F (A)

ξA

��
G(1C)

G(f) //G(A)

for every morphismf : 1C −→ A.

Remark.Elementwise means that the naturality diagram commutes for every global
elementsf : 1 −→ A; and monoidal that the object1 believesthat the two coher-
ence diagrams of monoidal natural transformations commute. Check in particular
that, for every global elementf : 1C −→ A andg : 1C −→ B, the diagram below
commutes:

F (A)⊗ F (B)
mA,B //

ξA⊗ξB
��

F (A⊗B)

ξA⊗B
��

G(A)⊗G(B)
nA,B //G(A⊗B)

when precomposed with the global element(F (f)⊗ F (g)) ◦ (m1C
⊗m1C

) ◦ ρ−1
1D

.

Remark. In the particular case of two monoidal functorsF : C −→ D andG :
D −→ C, a monoidal elementwise transformationξ : IdC ⇒ GF (resp.ζ : IdD ⇒
FG) is alternatively defined as a family of morphisms making the lefthand (resp.
righthand) diagram below commute:

1C
f //

n1D

��

A

ξA

��

G(1D)

G(m1C
)

��
GF (1C)

GF (f) //GF (A)

1D
g //

m1C

��

B

ζB

��

F (1C)

F (n1D
)

��
FG(1D)

FG(g) //FG(B)

(14)

for every pair of global elementsf : 1C −→ A andg : 1D −→ B.

4.3 Distributive law

Suppose given two modelsM andN of intuitionistic linear logic, and a monoidal
functor(F,m) : (C,⊗M, 1M) −→ (D,⊗N, 1N) between their underlying monoidal
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categoriesC andD.
Definition 9 (distributive law) A distributive law

% : !NF ⇒ F !M

is a family of morphisms(%A) of D indexed by objects ofC, making the diagram
below commute for every morphismf : 1M −→ A of the categoryC:

1N

m1M

��

(F (f) ◦ m1M
)
††

// !NF (A)

%A

��
F (1M)

F (f†) //F ( !MA)

(15)

Remark. In every model of intuitionistic linear logic, the functor! defines amo-
noidal comonad, see [21,10,30]. So, a condition stronger than commutativity of
diagram (15) would be to require that% is a monoidalnatural transformation% :
!NF

·−→ F !M. Commutativity of diagram (15) would then follow from commu-
tativity of the diagram below, which follows from monoidality (lefthand-side) and
naturality (righthand-side) of%. Note thatm1M

andn1N
denote the monoidal coer-

cions of !M and !N respectively.

1N

n1N //

m1M

��

!N1N

!Nm1M // !NF (1M)

%1M

��

!NF (f) // !NF (A)

%A

��
F (1M)

F (m1M
)

//F ( !M1M)
F ( !Mf) //F ( !MA)

We choose definition 9 instead of this more conceptual definition, for practical
reasons. In the introduction, we exhibit a family of morphisms%A : !msetA −→ !setA
in the category of coherence spaces, see (1). This family defines a distributive law
in our sense (definition 9) but at the same time, isnot natural inA. Indeed, if
∆ : A −→ A&A denotes the diagonal morphism induced by the cartesian product
&, the diagram below does not necessarily commute, for similar reasons as diagram
(2) (again, takeA = ⊥ the singleton coherence space).

!msetA
%A //

!mset∆A

��

!setA

!set∆A

��
!mset(A&A)

%A&A // !set(A&A)

Remark. Our definition differs also from Hyland and Schalk’s definition [23] of
a linearly distributive lawλ : !NF ⇒ F !N as a distributive law in the sense of
Beck [8,34] respecting the comonoid structure, that is, making the diagram below
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commute:

1N

m1M

��

!NF (A)
eN
FAoo

dN
F (A) //

λA

��

!NF (A)⊗N !NFA

λA⊗NλA

��
F ( !MA)⊗N F ( !MA)

m
!MA, !MA

��
F (1M) F ( !MA)

F (eM
A )oo F (dM

A ) //F ( !MA⊗M !MA)

(16)

for every objectA of the categoryC. This definition implies that the functorF
lifts to a functor between the kleisli category of cofree coalgebras — which does
not necessarily happen with our notion of distributivity. Again, we choose a less
conceptual definition for practical reasons: diagram (16) specializes as diagram (2)
when applied to the categoryCOH equipped with the qualitative and quantitative
exponentials!set and !mset, and this diagram (2) does not commute generally.

4.4 Linear coercion between models of linear logic

In this section, we consider two modelsM andN of intuitionistic linear logic over
a classK of constants, as formulated in section 2.4. Their underlying monoidal
categories are denotedC andD, and their families of constants(Xκ,∼κ)κ∈K and
(Yκ,≈κ)κ∈K respectively.
Definition 10 (linear coercion) A linear coercion betweenM andN is given by:
(1) a pair of monoidal functors(F,m) : C −→ D and(G, n) : D −→ C,
(2) a pair of monoidal elementwise transformationsξ : IdC ⇒ GF and ζ :

IdD ⇒ FG,
(3) a pair of distributive lawsη : !MG⇒ G !N and% : !NF ⇒ F !M,
(4) for every constantκ ∈ K, a pair of morphismsφκ : F (Xκ) −→ Yκ and

ψκ : G(Yκ) −→ Xκ making the two diagrams below commute modulo≈κ and
∼κ respectively, when the two morphismsx, y : 1M −→ Xκ verifyx ∼κ y:

F (1M)
F (x) //F (Xκ)

φκ

��
1N

m1M
88

m1M &&

≈κ Yκ

F (1M)
F (y)

//F (Xκ)
φκ

CC

1M

n1N

��

x //

∼κ

Xκ

G(1N)

G(m1M
)

��

G(Yκ)

ψκ

OO

GF (1M)
GF (y)

//GF (Xκ)

G(φκ)

OO

and making the two diagrams below commute modulo∼κ and≈κ respectively,
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when the two morphismsx, y : 1N −→ Yκ verifyx ≈κ y:

G(1N)
G(x) //G(Yκ)

ψκ

��
1M

n1N
77

n1N ''

∼κ Xκ

G(1N)
G(y)

//G(Yκ)
ψκ

CC

1N

m1M

��

x //

≈κ

Yκ

F (1M)

F (n1N
)

��

F (Xκ)

φκ

OO

FG(1N)
FG(y)

//FG(Yκ)

F (ψκ)

OO

Remark. It is not difficult to show that, given a linear coercion betweenM andN,
the diagrams below commute for every pair of morphismsf : 1M −→ A in the
categoryC andg : 1N −→ B in the categoryD:

1M

n1N

��

f† // !MA
!MξA��

!MGF (A)
ηF (A)
��

G(1N)
G( F (f) ◦ m1M

)
††

//G !NF (A)

1N

m1M

��

g†† // !NB
!MζB��

!NFG(B)
%G(B)
��

F (1M)
F( G(g) ◦ n1N

)
†

//F !MG(B)

(17)

Point (2) of definition 10 is slightly enigmatic. It is mainly here to ensure the exis-
tence of morphismsA −→ G !NF (A) andB −→ F !MG(B) making the diagrams
(17) commute. In fact, we could very well remove point (2) of definition 10 and
forget the two transformationsξ andζ, but at a heavy price: we need to replace the
distributive laws of point (3) by the (slightly unorthodox) laws!M ⇒ F !NG and
!N ⇒ G !NF ; and we must require accordingly that the straightforward variant of
diagram (17) commutes. If we do so, our main result (theorem 15 in section 5) still
holds.

5 From linear coercions to back-and-forth translations

We prove our main result here (theorem 15). Given two modelsM andN of in-
tuitionistic linear logic over a classK of constants, we proceed as in section 2.4,
and derive their respective hierarchies([−], ·,∼) and([[−]], ·,≈). Theorem 15 states
that there exists a back-and-forth translation between the hierarchies([−], ·,∼) and
([[−]], ·,≈) when there exists a linear coercion between the two modelsM andN.
So, we suppose from now on that the two modelsM andN are related by a linear
coercion, with same notations as in section 4.4. Our first step is to extend to every
simple typeT the families of coercion maps(φκ)κ∈K and(ψκ)κ∈K given at constant
types in definition 10.
Definition 11 (coercion maps at every type (1))The two families of morphisms
below

F ([T ])
φT // [[T ]] G([[T ]])

ψT // [T ]
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indexed by simple typesT , are defined by structural induction:

φU⇒V =
((
F ( !MψU) ◦ %G[[U ]]◦ !Nζ[[U ]]

)
(N φV

)
◦ qF!M[U ],[V ]

ψU⇒V =
((
G( !NφU) ◦ ηF [U ]◦ !Mξ[U ]

)
(M ψV

)
◦ qG!N[[U ]],[[V ]]

Definition 12 (coercion maps at every type (2))For every elementf ∈ [T ], the
elementφT (f) ∈ [[T ]] is defined as follows:

1N

m1M //F (1M)
F (f) //F ([T ])

φT // [[T ]]

Similarly, for every elementf ∈ [[T ]], the elementψT (f) ∈ [T ] is defined as follows:

1M

n1N //G(1N)
G(f) //G([[T ]])

ψT // [T ]

Lemma 13 For every elementf ∈ [U ⇒ V ] andh ∈ [[U ]],

φU⇒V (f) · h = φV (f · ψU(h)).

PROOF Consider two elementsf ∈ [U ⇒ V ] andh ∈ [[U ]].
It is worth recalling that the elementφU⇒V (f) · h ∈ [[V ]] is defined in section 2.4
as the composite:

1N
h†† // ![[U ]]

xxφU⇒V (f)yy // [[V ]]

wherexxφU⇒V (f)yy denotes the morphism of nameφU⇒V (f) ∈ [[U ⇒ V ]]. Now,
let

xfy : !M[U ] −→ [V ]

denote the morphism of namef = pxfyq in the categoryC; and let

ppFxfyqq : 1N −→ F ( !M[U ])(N F ([V ])

denote the name of the morphismFxfy in the categoryD.
By lemma 1, the diagram below commutes:

F (1M)
Ff //F ( !M[U ](M [V ])

qF
!M[U ],[V ]

��
1N

ppFxfyqq //

m1M

OO

(F !M[U ])(N F ([V ])

From this and definitions 11 and 12, it follows thatφU⇒V (f) is equal to the mor-
phism

1N
ppFxfyqq //F ( !M[U ])(N F ([V ])
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post-composed with(
F ( !MψU) ◦ %G[[U ]]◦ !Nζ[[U ]]

)
(N φV .

From this, and naturality inA andB of the bijection

D(A,B) ∼= D(1N, A(N B)

the diagram below commutes:

!N[[U ]]
xxφU⇒V (f)yy //

!Nζ[[U ]]

��

[[V ]]

!NFG[[U ]]

%G[[U ]]

��
F !MG[[U ]]

F !MψU
��

F !M[U ]
Fxfy //F [V ]

φV

OO

(18)

Now, we show that diagram (19) commutes. Diagram a. commutes by the property
of exponential structures recalled in section 2.2. Diagram b. commutes by defi-
nition 8 of a monoidal elementwise transformationζ : IdC ⇒ FG. Diagram c.
commutes by definition of the distributive lawρ. Finally, diagram d. commutes by
definition 12 ofψU(h) as the composite

ψU(h) = ψU ◦G(h) ◦m1N

and functoriality ofF . We conclude that diagram (19) commutes.

1N
h†† //

a.

!N[[U ]]
xxφU⇒V (f)yy //

!Nζ[[U ]]

��

[[V ]]

1N (ζ[[U ]] ◦ h)†† //

b.

!NFG[[U ]]

1N (F (G(h) ◦ n1N
) ◦ m1M

)
†† //

m1M

��
c.

!NFG[[U ]]

%G[[U ]]

��
F (1M) F( G(h) ◦ n1N

)
† //

d.

F !MG[[U ]]

F !MψU
��

F (1M)
F( ψU (h) )

†

//F !M[U ]
Fxfy //F [V ]

φV

OO

(19)

It follows thatφU⇒V (f) · h is equal to the composite

1N

m1M //F (1M)
F (f · ψU (h)) //F [V ]

φV // [[V ]]
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which is precisely the elementφV (f · ψU(h)). This concludes the proof.

Lemma 14 For every elementsf ∈ [[U ⇒ V ]] andh ∈ [U ],

ψU⇒V (f) · h = ψV (f · φU(h)).

PROOF As for lemma 13.

Theorem 15 (main result) Suppose that two models of intuitionistic linear logic
over a classK of constant typesM andN are related by a linear coercion. Then,
their associated hierarchies([−], ·,∼) and ([[−]], ·,≈) are related by a back-and-
forth translation.
In that case, it follows from lemma 6 that:
Corollary 16 The two hierarchies([−], ·,∼) and([[−]], ·,≈) collapse to the same
extensional hierarchy.

6 Application 1: coherence and hypercoherence spaces

6.1 A linear coercion between the qualitative and the quantitative exponentials

In the introduction, we exhibit a family of embedding-retraction pairs (1) in the
categoryCOH of coherence spaces:

ηA : !setA −→ !msetA, %A : !msetA −→ !setA.

We claim that the familiesη and% define a linear coercion (in the sense of definition
7) between the exponentials!set and !mset. Indeed, consider any morphismf :
1 −→ A, or equivalently any cliquef of A. The cliquesf set of !setA andfmset of
!msetA are defined as follows:

f set = {x ∈ | !setA|
∣∣∣ x ⊂ f}, fmset = {w ∈ | !msetA|

∣∣∣ support(w) ⊂ f}.

The equalityf set ◦ ηA = fmset holds by definition offmset; while the equality
fmset ◦ %A = f set holds because for every elementx ∈ | !setA|,

x ⊂ f ⇐⇒ support(char(x)) ⊂ f.

So, theorem 15 implies:
Corollary 17 (Barreiro-Ehrhard) The qualitative hierarchy over coherence spaces,
(also called the stable hierarchy) is the extensional collapse of the quantitative one.
Theorem 15 applied in a similar fashion to the hypercoherence space model intro-
duced in [16], shows that:
Corollary 18 The qualitative hierarchy over hypercoherence spaces (also called
the strongly stable hierarchy) is the extensional collapse of the quantitative one.

Remark. The interested reader will find theorem 15 applied in Boudes’ PhD the-
sis [11] to relate refinements of the quantitative and qualitative strongly stable hier-
archies.
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6.2 An illustration at typeso⇒ o and(o⇒ o)⇒ o

In our proof of corollary 17, we exhibit for every typeT an embedding-retraction
pair

[T ]set φT // [T ]mset ψT // [T ]set

between the qualitative and quantitative interpretations[T ]set and[T ]mset in the cat-
egory of coherence spaces. The morphismψT transports any clique in[T ]mset to
its “extensional content” in[T ]set, while φT transports any function in[T ]set to a
“canonical representative” in[T ]mset. By construction, the compositeψT ◦φT is the
identity on[T ]set, and the compositep = φT ◦ψT transports every cliquef ∈ [T ]mset

to a “canonical form”p(f) ∈ [T ]mset. In order to illustrate this, let us compute the
canonical form of a clique, for the typesT = o ⇒ o andT = (o ⇒ o) ⇒ o
of the hierarchy over the boolean base type (that is:K = {o}). We recall that the
coherence spaceXo = 1 ⊕ 1 representing the booleans has exactly two elements
true andfalse in its web, which are incoherent.
WhenT = (o⇒ o), the elementsf ∈ [o⇒ o]mset are of five possible forms:

(1) f is empty, (2)f = {([−], b)} is constant,

(3) f = {(
k︷ ︸︸ ︷

true, ..., true], b)}, (4) f = {([
k︷ ︸︸ ︷

false, ..., false], b)},

(5) f = {([
k︷ ︸︸ ︷

true, ..., true], b), ([

k′︷ ︸︸ ︷
false, ..., false], b′)}.

for b, b′ ∈ {true, false} andk, k′ ≥ 1. The canonical formp(f) is computed as
follows:
• p(f) = f whenf is empty, or constant,
• otherwise,p(f) is f in which every element([b, ..., b], b′) ∈ f is altered into the

element([b], b′) ∈ p(f), for b = true andb = false.
Intuitively, transformingf into p(f) amounts to replacing the “stuttering”f by the
cliquep(f) which “asks its questions only once”.
WhenT = (o ⇒ o) ⇒ o, a cliquef ∈ [T ]mset contains elements of five possible
forms only:

(1)
(
[−], b

)
(2)

([ j︷ ︸︸ ︷
([−], b), ..., ([−], b)

]
, b′
)

(3)
([ j︷ ︸︸ ︷

([truek], b), ..., ([truek], b)
]
, b′
)

(4)
([ j︷ ︸︸ ︷

([falsek], b), ..., ([falsek], b)
]
, b′
)

(5)
([ j︷ ︸︸ ︷

([truek], b), ..., ([truek], b),

j′︷ ︸︸ ︷
([falsek

′
], b′), ..., ([falsek

′
], b′)

]
, b′′
)
.

for b, b′, b′′ ∈ {true, false} andj, j′, k, k′ ≥ 1. Here,[truek] and[falsek] are shorter
notations for the multi-sets[true, ..., true] and[false, ..., false] of cardinalityk.
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The translation off ∈ [T ]mset into p(f) ∈ [T ]mset proceeds as follows:
• step a: if

(
[−], b

)
is element off , keep it inp(f),

• step b: translate every element inf of the form (2) into the element
(
[([−], b)], b′

)
in p(f),

• step c: remove fromf every element of the form (3,4,5) in whichk > 1 or
k′ > 1;

• step d: translate every remaining elementx of the form (3,4,5) inf , into all
elements of the corresponding form (3,4,5) for every pair of integersk, k′ ≥ 1:

(3)
([

([true, ..., true︸ ︷︷ ︸
k

], b)
]
, b′
)
,

(4)
([

([false, ..., false︸ ︷︷ ︸
k

], b)
]
, b′
)
,

(5)
([

([true, ..., true︸ ︷︷ ︸
k

], b), ([false, ..., false︸ ︷︷ ︸
k′

], b′)
]
, b′′
)
.

So, intuitively, transformingf into p(f) at type(o⇒ o)⇒ o amounts to:
• step a: keep the constants,
• step b: replace every Player’s “stuttering questions” by a “single question”,
• step c: remove every check by Player of Opponent’s “stuttering questions”,
• step d: expand every check by Player of an Opponent’s “single question”, by a

check on all equivalent Opponent’s “stuttering questions”.
We would like to illustrate this transformation with an example. Consider the clique
Φ of [((o⇒ o)⇒ o]mset introduced by Barreiro and Ehrhard in [7]:

Φ = {([[true], true], true), ([[true, true], true], false)}.

The cliqueΦ “tastes” whether a “function”h ∈ [o ⇒ o]mset requires its argument
true once or twice, before answeringtrue. Since the two cliques{([true], true)}}
and{([true, true], true)}} are equivalent at typeo⇒ o, the tasterΦ which separates
them, is not equivalent to itself modulo≈(o⇒o)⇒o.
Now, observe that the cliqueΦ is transported byψ(o⇒o)⇒o to the elementΨ ∈
[(o⇒ o)⇒ o]set below:

Ψ = {{({true}, true)}, true)}.

Part of the information has disappeared in the translation. Recall that the qualitative
hierarchy[−]set is extensional. So,∼(o⇒o)⇒o is just the equality, and the singleton
Ψ is therefore equivalent to itself modulo∼(o⇒o)⇒o. The functionψT transportsΨ
back to the canonical elementp(Φ) of [(o⇒ o)⇒ o]mset:

p(Φ) = {([([true, ..., true︸ ︷︷ ︸
k

], true)], true) | k ≥ 1}

It follows from lemma 3 thatp(Φ) is equivalent to itself modulo≈(o⇒o)⇒o. This
illustrates the fact that the embedding-retraction between[T ]set and[T ]mset defines

23



a procedure which “repairs” cliques of[T ]mset by pruning out their non-extensional
behaviours.

Remark.The choice of the projection map%A is somewhat arbitrary. For instance,
we may have chosen any of the alternative family of cliques

%nA = {(n× char(x), x) | x is a finite clique ofA}

to play the role of% = %1. To clarify our notation,n × char(x) denotes here the
characteristic function of the setx, multiplied by the integern ≥ 1: that is, the
multiset of supportx in which every element is repeatedn times. Any of the%nA
defines withηA a linear coercion (and even embedding-projection pair) between
!set and !mset. Observe that the projectionp explicated above is already altered at
typeso ⇒ o and(o ⇒ o) ⇒ o, by a choice of coercion%n different from%. For
instance,p(Φ) is replaced by

p′(Φ) = {([([true, ..., true︸ ︷︷ ︸
k

], true)], false) | k ≥ 1}

whenn = 2.

Remark. In their proof that the quantitative hierarchy collapses to the stable hi-
erarchy, Barreiro and Ehrhard deliver an interesting “anatomy” of the extensional
collapse, quite far from what we explain here. It would be instructive to understand
how the two analysis are precisely related.

7 Application 2: sequential games

The definitions of sequential gameA = (MA, λA, PA) and of sequential strategyσ
are given in the introduction, and we do not recall them. We only mention that a
strategyσ of A is alternatively defined as a set of alternated plays ofA verifying
that, for every plays and movesm,n1, n2:
(1) σ is nonempty: the empty playε is element ofσ,
(2) σ is closed under prefix: ifs ·m ∈ σ, thens ∈ σ,
(3) σ is deterministic: ifs ·m ·n1 ∈ σ ands ·m ·n2 ∈ σ andλA(n1) = λA(n2) =

+1, thens ·m · n1 = s ·m · n2.
As already indicated, this definition enables a strategy to withdraw at any point of
the interaction, and play “error”. The usual definition oferror-freestrategy is given
in definition 20.
Definition 19 (deadlock,error,fixpoint) We suppose below thatσ is a strategy.
• a plays is called maximal inσ whens ∈ σ and∀m ∈MA, s ·m 6∈ σ,
• a deadlock ofσ is an odd-length plays ·m such thats ·m 6∈ σ buts ∈ σ,
• an error ofσ is an odd-length plays ·m maximal inσ,
• a fixpoint ofσ is an error or an even-length play ofσ.
Notation: We writeP even

A , P odd
A andP alt

A for the even-length, odd-length and alter-
nated plays of a sequential gameA. We writeσ : A whenσ is a strategy ofA, and
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even(σ) anderror(σ) andfix(σ) = even(σ) ∪ error(σ) for the sets of even-length
plays, errors and fixpoints ofσ respectively.
Definition 20 (error-free strategy) A strategyσ : A is error-free whenerror(σ) =
∅, or equivalently, when:

∀s ∈ P odd
A , s ∈ σ ⇒ ∃m ∈MA, s ·m ∈ σ.

Remark.Every strategyσ may be recovered fromfix(σ) by the equality below:

σ = fix(σ) ∪ {s ∈ PA,∃m ∈MA, s ·m ∈ fix(σ)}. (20)

In particular, every error-free strategy is characterized by the seteven(σ) which
coincides withfix(σ) in that case.

7.1 The categoryGerr of sequential games (error-aware)

The categoryGerr is a negative and error-aware variant of the category of Conway
games formulated by Joyal in [24]. By negative, we mean that all games start by an
Opponent move; and by error-aware, that the strategies possibly admit errors.
The categoryGerr has sequential games as objects and strategies ofA ( B as
morphismsA −→ B. Given two sequential gamesA,B, the sequential gameA(
B is defined by reversing the polarities of the moves ofA, and interleaving the
plays ofA andB:
• MA(B = MA +MB andλA(B = [−λA, λB],
• a plays of A( B is a string over the alphabetMA(B such that (1) the projec-

tion s|A overMA is a play ofA and (2) the projections|B overMB is a play of
B and (3)s starts by a move ofB if non empty.

Composition is defined inGerr by sequential composition+ hiding, identities by
copycatstrategies, in the usual fashion, see e.g. [1,21]. In the presence of errors,
the composition and identity laws are better defined on sets of fixpoints, rather than
on strategies — just as in concurrent games [4]. Typically, the identity ofA has
fixpoints;

fix(idA) = {s ∈ P even
A(A,∀t ∈ P even

A(A, t is prefix ofs⇒ t|A1 = t|A2}

where the indices1, 2 indicate on which component ofA1 ( A2 the playt is
projected. The composite of two strategiesσ : A ( B andτ : B ( C is the
strategyτ ◦ σ : A( C whose set of fixpointsfix(τ ◦ σ) is given by:

{s ∈ P alt
A(C | ∃t ∈ (MA +MB +MC)∗, t|A,B ∈ fix(σ), t|B,C ∈ fix(τ), t|A,C = s}

where(MA+MB +MC)∗ denotes the set of finite strings (=words) on the alphabet
MA +MB +MC .
The categoryGerr is symmetric monoidal closed, with tensor productA⊗B of two
sequential gamesA,B defined as the sequential game obtained by ”freely inter-
leaving” the plays ofA andB:
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• MA⊗B = MA +MB andλA⊗B = [λA, λB],
• a play ofA⊗B is a string of moves inMA⊗B such thats|A ∈ PA ands|B ∈ PB.
The monoidal unit1 is the game with an empty set of moves.

7.2 The categoryAerr of alternated games (error-aware)

The categoryAerr is an error-aware variant of the category of negative alternated
games generally considered in the litterature, typically in [1,26,15,21,5]. The cate-
goryAerr is defined as the full subcategory of alternated games inGerr. The resulting
categoryAerr is not a submonoidal category ofGerr, since the tensor product of two
alternated games inAerr may not be alternated. But fortunately, the categoryAerr

is the “intersection” of a reflective subcategory and a co-reflective subcategory of
Gerr, and the monoidal structure ofAerr may be deduced from that. Let us explain
this point below.
Call a sequential game OP-alternated (resp. PO-alternated) when only Player (resp.
Opponent) may play two successive moves in a play of the gameA. The full subcat-
egory of OP-alternated games is reflective inGerr: every strategyA −→ B to an OP-
alternated gameB factorizes asA −→ T (A) −→ B in a unique way, whereT (A)
is the OP-alternated game obtained fromA by removing every play containing two
successive Opponent moves, andA −→ T (A) is the obvious error-free copycat
strategy. Dually, the full subcategory of PO-alternated games is coreflective, with
counitD(A) −→ A the copycat strategy betweenA and the PO-alternated game
obtained by removing every play containing two successive Player moves inA.
The categoryAerr is symmetric monoidal closed, with tensor and closed structure
deduced from their counterpart inGerr, as follows. LetA andB denote two alter-
nated games:
• their tensor productA⊗altB in the categoryAerr is the alternated gameT (A⊗B),
• their closed structureA(alt B is the alternated gameD(A( B),
• the monoidal units ofGerr andAerr coincide.
There is certainly more to say about the categorical situation: for instance, the
monadT distributes over the comonadD in the sense of [35,33], the distributive
law λ : TD ⇒ DT being just the identity; and the categoryAerr is precisely the
category ofλ-bialgebras. An axiomatic account in the vein of [6] would be interest-
ing, but beyond the scope of this article. We indicate only what is needed to build a
linear coercion betweenGerr andAerr.
We write U : Aerr −→ Gerr for the inclusion functor andalt : Gerr −→ Aerr

for the functor which transports every morphismf : A −→ B to the morphism
DT (f) : DT (A) −→ DT (B). These two functors define monoidal functors(U,m)
and(alt, n) with mediating natural transformations:
• mA,B : A ⊗ B −→ A ⊗alt B is the unit ofT at instanceA ⊗ B; andm1 is the

identity of1 = U(1);
• nA,B : alt(A) ⊗alt alt(B) −→ alt(A ⊗ B) is the obvious error-free copycat

strategy restricted to the plays ofalt(A) ⊗alt alt(B); andn1 is the identity of
1 = alt(1).
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Every morphismσ : 1 −→ B in the categoryGerr is a strategy ofB, thus a set of
alternated plays ofB. It follows that the diagram below commutes:

1 σ //

alt(σ) ''OOOOOOOOOOOOO B

ζB
��

alt(B)

for ζB : B −→ alt(B) the obvious error-free copycat strategy. On the other hand,
the functor(alt ◦ U) coincides with the identity functor of the categoryAerr. Thus,
the family(ξA) = (idA) of identities indexed by alternated games, and the family
(ζB) indexed by sequential games, define two monoidal elementwise transforma-
tionsξ : Id⇒ alt ◦ U andζ : Id⇒ U ◦ alt in the sense of definition 8 — see also
diagram (14).

7.3 The categoriesG andA of sequential and alternated games (error-free)

We writeG andA for the subcategories of error-free strategies in the categoriesGerr

andAerr respectively. The two categoriesG andA are symmetric monoidal closed,
their structure being inherited in each case from the surrounding categoryGerr and
Aerr.

7.4 Three models on alternated games (error-aware + error-free)

Each categoryAerr andA gives rise to three models of intuitionistic linear logic,
which differ only in their interpretation of the exponential modality, either as the
backtracking !btk, the repetitive non uniform!rpt or the repetitive uniform !unif

exponential. Each exponential structure!btk and !rpt and !unif expresses a particular
memory or uniformity paradigm, which we recall briefly now.
The backtracking exponential !btk is defined by Lamarche [26] on the category
A, but is easily adapted to the error-aware setting ofAerr. The reader is advised
to follow the presentation of Lamarche’s work by Curien [15,5]. The model of
intuitionistic linear logic induced byA and !btk linearizesthe sequential algo-
rithm model of PCF [9], in the sense that the co-kleisli category associated to the
comonad !btk embeds (as a model of PCF) in the category of concrete data struc-
tures and sequential algorithms. Similarly, the model of intuitionistic linear logic
based onAerr and !btk linearizes an error-aware variant of the sequential algorithm
model, already formulated by Cartwright, Curien and Felleisen in [14]: themani-
festly sequential functionmodel of PCF — with exactly one error. The associated
hierarchy of types — which we call themanifestly sequentialhierarchy — isexten-
sional. This important fact reappears in corollary 22.
The repetitive non uniform exponential !rpt is defined by Hyland in his course
notes on game semantics [21]. Like the exponential!btk, the exponential!rpt is
defined on the categoryA but is easily adapted to the error-aware setting ofAerr. In
the sequential game!btkA defined by Lamarche, Opponent has some kind of “mem-
ory” of the past, and thus does not need to ask Player the same question twice in the
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course of the interaction. Instead, Opponent simplybacktracksto Player’s previous
answer to the question. In contrast, in the sequential game!rptA, Opponent does not
memorize Player’s answer, and thus asks Player the same question as many times
as necessary. This “repetitive” style enables “non-uniform” behaviours by Player,
in which the same answer is not necessarily given to the same question repeated by
Opponent. Technically, the plays of the alternated game!rptA are defined in [21] as
the finite alternated strings over the alphabetMA×N such that (i) every projection
over i ∈ N is a play inA, and (ii) the first move in the(i + 1)-th copy is made
after the first move in thei-th copy. The resulting game models are closer to arena
games: in section 7.5, we observe that, once adapted to non-alternated games, the
exponential!rpt linearizes a well-known arena game model of the litterature.
The repetitive uniform exponential !unif is a variant of the exponential!rpt in
which copies are regulated by a “uniformity” principle. A play of!rptA is called
uniform when there exists a strategyσ of A, such that every projections|i ∈ PA
is element ofσ. The alternated game!unifA is simply defined as the game!rptA
restricted to its uniform plays.
Linear coercions between the exponentials!btk and !rpt and !unif may be exhib-
ited in each categoryAerr andA, inducing in each case two families of embedding-
retraction pairs indexed by alternated gamesA:

!btkA
ηA // !unifA

%A // !btkA, !unifA
η′A // !rptA

%′A // !unifA. (21)

It follows from this and theorem 15 that in the error-aware setting:
Lemma 21 The backtracking, the repetitive non uniform and the repetitive uniform
error-aware sequential hierarchies are related by back-and-forth translations.
As already noted, the backtracking sequential hierarchy is the manifestly sequential
hierarchy formulated by Cartwright, Curien and Felleisen in [14]. This hierarchy is
extensional, and it follows from lemma 6 that:
Corollary 22 The three error-aware hierarchies collapse to the manifestly sequen-
tial hierarchy.
It also follows from the linear coercions (21) and Ehrhard’s collapse theorem [17]
that in the error-free setting:
Lemma 23 The backtracking, the repetitive non uniform and the repetitive uniform
error-free sequential hierarchies are related by back-and-forth translations, and
thus collapse to the strongly stable hierarchy.

Remark.Because (21) exhibits embedding-retraction pairs and not just linear coer-
cions, the resulting back-and-forth translations areembedding-retractionpairs; that
is, both morphisms

[T ]btk −→ [T ]unif −→ [T ]btk and [T ]unif −→ [T ]rpt −→ [T ]unif

compose as identities. It is worth indicating briefly the action of the associated
projection mapsp = p ◦ p andq = q ◦ q on the elements of[T ]rpt and[T ]unif . The
projection mapp : [T ]rpt −→ [T ]rpt prunes out all “non-uniform” plays from the
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!rptbool −→ bool

(1) ∗

(2) (∗, 0)

(3) (true, 0)

(4) (∗, 1)

(5) (false, 1)

(6) false

Fig. 1. A “non-uniform” play in the interpretation[M ]rpt

!unifbool −→ bool

(1) ∗

(2) (∗, 0)

(3) (true, 0)

(4) (∗, 1)

(5) (true, 1)

(6) true

Fig. 2. A “stuttering” play in the interpretation[N ]unif

strategies of[T ]rpt. For instance, the play of figure 1 disappears after applyingp to
the interpretation[M ]rpt of the PCF-term:
M = if b then (if b then true else false) else true.

Similarly, the projection mapq : [T ]unif −→ [T ]unif prunes out all ”stuttering” plays
(as in figure 2) from the interpretation[N ]unif of the PCF-termN .

N = if b then (if b then true else true) else true.
Finally, combining the action of the two projection mapsp and q transports the
interpretation ofM andN in [o ⇒ o]rpt to the interpretation[P ]rpt of the PCF-
term:

P = if b then true else true.
Note that these projectionsp andq are very similar to the projections on cliques
described in our section 6.2 on coherence spaces.

7.5 Two models on sequential games (error-aware + error-free)

It is not difficult to adapt the two exponentials!rpt and !unif defined on alternated
games in section 7.4 to two exponentials!rpt and !unif on general sequential games.

29



In that way, each categoryGerr andG gives rise to a so-calleduniform andnon-
uniformmodel of intuitionistic linear logic. Note that the two exponential structures
!rpt and !unif are related by a linear coercion in each categoryGerr andG, in the same
way as in section 7.4.

Notations: For clarity’s sake, we write!alt for the exponential!rpt in the categories
Aerr andA, and keep the notation!rpt for the categoriesGerr andG. The notation
!unif is retained in the four categoriesAerr, Gerr, A andG.

Remark.It is worth stressing that the error-free categoryG of Conway games equip-
ped with the repetitive non uniform exponential!rpt linearizes a well-known and
particularly simple arena game model. Arena game models were introduced in or-
der to characterize PCF sequentiality by two constraints on strategies, called inno-
cence and well-bracketedness [22,32] . In a series of subsequent papers, Abramsky
and McCusker demonstrated that many programming mechanisms, like ground-
type reference, are captured in a fully abstract way, by relaxing some of these
constraints, see [3] for a survey. Eventually, by relaxing all these constraints but
single-threadedness, Abramsky, Honda and McCusker [2] obtain a fully abstract
model of a programming language with general referenceà la ML, see also [20].
This model is precisely the arena game model linearized by the categoryG and the
exponential!rpt. We establish below (lemma 24) that the single-threaded hierarchy
collapses to the strongly stable hierarchy, and that its error-aware variant collapses
to the manifestly sequential hierarchy.

We carry on our topography of models, and establish linear coercions between the
two models of sequential games based onGerr andG described above, and the three
models of alternated games described in section 7.4. Instead of treating all models,
we focus on the two error-aware modelsM andN of intuitionistic linear logic over
a classK of constants, built respectively from the categoriesAerr andGerr and the
exponentials!alt and !rpt. To fix notations, every constant typeκ ∈ K is interpreted:
• in M as an alternated gameXκ and a partial equivalence relation∼κ over the set

of strategiesAerr(1, Xκ),
• in N as a sequential gameYκ and a partial equivalence relation≈κ over the set

of strategiesGerr(1, Yκ).
We defined in section 7.2 two symmetric monoidal functors(U,m) : Aerr −→ Gerr

and(alt, n) : Gerr −→ Aerr related by monoidal elementwise transformationsξ :
Id ⇒ alt ◦ U andζ : Id ⇒ U ◦ alt. For every alternated gameA and sequential
gameB, we let:

ηA : !rptU(A) −→ U( !altA) %B : !altalt(B) −→ alt( !rptB)

denote the error-free copycat strategies restricted to the plays ofU( !altA) and
!altalt(B) respectively. We let the reader check that each familyη and% defines
a distributive law in the sense of section 4.3, that is, that the two diagrams below
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commute, for every pair of strategiesσ : A andτ : B.

!rptU(A)

ηA

��

1

(U(τ))rpt 33

U(τ alt)
++
U( !altA)

!altalt(B)

%B

��

1

(alt(σ))alt 33

alt(σrpt)
++
alt( !rptB)

We need to be more careful here about the constant typesκ ∈ K than in section 7.4
because the monoidal categories underlying the modelsM andN are different.
Suppose that for everyκ ∈ K, Xκ = alt(Yκ) and that the two partial equivalence
relations∼κ and≈κ are the identity relations onAerr(1, Xκ) = Gerr(1, Yκ). Define
the morphismφκ : Xκ −→ Yκ as the strategy with same plays as the identity on
Xκ, and the morphismψκ : alt(Yκ) −→ Xκ as the identity onXκ. In that case, one
obtains a linear coercion between the two modelsM andN. This implies that:
Lemma 24 The error-aware single-threaded hierarchy collapses to the manifestly
sequential hierarchy.
Similar results are established in the uniform case, as well as in the error-free uni-
form and non-uniform cases.

7.6 Error-free vs. error-aware models

We have established that all our game models collapse to exactly two extensional
hierarchies: the manifestly sequential hierarchy for the error-aware models and the
strongly stable hierarchy for the error-free models. There remains to connect the
two extensional hierarchies, by establishing that the manifestly sequential hierarchy
collapses to the strongly stable hierarchy when errors are not taken into account in
the base types.
To that purpose, we consider two modelsM and N built respectively from the
categoriesA andAerr equipped with the backtracking exponential!btk. We suppose
that every constantκ ∈ K is interpreted in the two models as the same alternated
gameXκ = Yκ equipped with the partial equivalence relations defined as:
• ∼κ is the identity overA(1, Xκ),
• ≈κ relates two strategiesσ, τ ∈ Aerr(1, Xκ) exactly wheneven(σ) = even(τ).
We writeF : A −→ Aerr for the inclusion functor, andG : Aerr −→ A for the
functor which transports every strategyσ : A −→ B to the error-free strategy
G(σ) : A −→ B defined as:fix(G(σ)) = even(σ). Note that every simple typeT
is interpreted by the “same” alternated game in the two modelsM andN, what we
may write:F ([T ]) = [[T ]] and thatG([[T ]]) = [T ].
One difficulty now is that the pair of functorsF andG (equipped with identities
as mediating morphisms) does not define a linear coercion in the sense of defini-
tion 10. More precisely, points 1, 3, 4 of definition 10 are verified, but not point 2
when it comes to the definition ofζ. Indeed, one would like to defineζA as the iden-
tity A −→ F ◦G(A) for every alternated gameA = F ◦G(A). Unfortunately, this
does not define an elementwise transformationζ : Id⇒ F ◦G, since the diagram
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below commutes in the categoryAerr only when the strategyσ : A is error-free:

A

ζA=idA

��

1

σ
11

F◦G(σ) --A

(22)

So, we need to proceed in another way: we show directly that the pair of monoidal
functorsF andG defines a back-and-forth coercion between the two hierarchies.
We prove slightly more in fact. The definitions of∼κ and≈κ imply that for every
constant typeκ ∈ K and strategiesσ, τ ∈ Aerr(1, Xκ):

σ ≈κ τ ⇐⇒ G(σ) ∼κ G(τ). (23)

We show below (lemma 25) that the equivalence (23) generalizes at every simple
typeT in fact. Before starting the proof, we indicate two useful equations (24) and
(25) verified at every simple typeT = U ⇒ V . First, for every strategiesσ ∈ [[T ]]
andν ∈ [[U ]], we have the equality:

G(σ · ν) = G(σ) · G(ν). (24)

Then, by instantiatingν by F (µ) in (24) and by observing thatG ◦ F (µ) = µ, we
obtain the equality below for every strategiesσ ∈ [[T ]] andµ ∈ [U ]:

G(σ) · µ = G(σ · F (µ)). (25)

Using these equations, we prove that for every simple typeT :
Lemma 25 ∀σ, τ ∈ [[T ]], σ ≈T τ ⇐⇒ G(σ) ∼T G(τ).
PROOF By structural induction on the simple typeT . We have already indicated
in (23) that the assertion holds at every base typeκ ∈ K. Suppose now that the
assertion holds at instanceU andV , and thatT = U ⇒ V . We establish that the
assertion holds at instanceT in two steps: we prove first the implication(⇒) then
the implication(⇐).
(⇒) Suppose thatσ ≈T τ and consider any∼U -equivalent pair of strategiesµ, µ′ ∈
[U ]. The strategiesG ◦ F (µ) andG ◦ F (µ′) are equal toµ andµ′ respectively, and
thus∼U -equivalent. It follows by induction hypothesis(⇐) on U , that the error-
free strategiesF (µ) andF (µ′) are≈U -equivalent. Thus,

G(σ) · µ = G(σ · F (µ)) by equation (25) onσ andµ,

∼V G(τ · F (µ′)) by σ ≈T τ , F (µ) ≈U F (µ′), induction hyp(⇒) onV ,

= G(τ) · µ′ by equation (25) onτ andµ′.

We conclude thatG(σ) · µ andG(τ) · µ′ are∼V -equivalent for every pair of∼U -
equivalent strategiesµ, µ′ ∈ [U ]. Thus,G(σ) ∼T G(τ).
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(⇐) Suppose that two strategiesσ, τ ∈ [[T ]] verify G(σ) ∼T G(σ), and consider
any pair of≈U -equivalent strategiesν, ν ′ ∈ [[U ]]. The equivalenceG(ν) ∼U G(ν ′)
follows from our induction hypothesis(⇒) onU . We have:

G(σ · ν) = G(σ) · G(ν) by equation (24) onσ andν,

∼V G(τ) · G(ν ′) by definition ofG(σ) ∼T G(τ) andG(ν) ∼U G(ν ′),

= G(τ · ν ′) by equation (24) onτ andν ′.

We conclude by induction hypothesis(⇐) onV thatσ · ν ≈V τ · ν ′ for every pair
of ≈U -equivalent strategiesν, ν ′ ∈ [[U ]]. Thus,σ ≈T τ . This concludes our proof
by induction.

When added to the fact that the functionσ 7→ G(σ) is onto from the set of error-
aware strategies[[T ]] to the set of error-free strategies[T ], lemma 25 implies that
the two hierarchies[−] and [[−]] collapse to the same extensional hierarchy. This
is the result we were aiming at in the section. But there is another interesting fact.
Equation (24) together with the equalityG ◦ F = IdA implies the equality below
for every strategiesσ ∈ [T ] andν ∈ [[T ]]:

G(F (σ) · ν) = σ · G(ν).

and thus:
G(F (σ) · ν) = G(F (σ · G(ν))).

We deduce easily from lemma 25 that for every strategiesσ ∈ [T ] andν ∈ [[T ]]:

σ ∼T σ andν ≈T ν ⇒ F (σ) · ν ≈T F (σ · G(ν)). (26)

Now, we conclude from equations (25) and (26) that, if we shift to theweaker
definition of back-and-forth translation indicated after definition 2 (section 3.1):
Lemma 26 The hierarchies([−],∼) and([[−]],≈) induced byM andN are related
by a back-and-forth translation.
We deduce from lemma 26, or more directly from lemma 25, what we claimed at
the beginning of the section:
Corollary 27 The manifestly sequential hierarchy collapses to the strongly stable
hierarchy when errors are not taken into account in the base types.

8 Conclusion

We formulate a series of categorical axioms which ensures that two models of in-
tuitionistic linear logic collapse to the same extensional hierarchy. We illustrate our
axiomatization on two families of models:
• clique models based on either coherence or hypercoherence spaces, and their

qualitative or quantitative exponentials,
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• sequential games, based on either error-free or error-aware strategies, and on ei-
ther a backtracking, or a repetitive uniform, or a repetitive non uniform treatment
of exponential modality.

In the case of sequential games, we deduce a “topography” of models in which:
• all error-aware models collapse to the manifestly sequential hierarchy [14],
• all error-free models collapse to the strongly stable hierarchy [17],
• the manifestly sequential hierarchy collapses to the strongly stable hierarchy

when errors are not taken into account in the base types.
The topography enables to revisit and possibly refine the so-called Longley’s the-
sis [28] that every sufficiently expressive model of sequential computations col-
lapses to the strongly stable hierarchy. More, by revealing that the manifestly se-
quential hierarchy is an artefact deduced by “extensional collapse” from other
(more immediate) models of sequentiality, the topography provides a precious hint
in the ongoing quest for concurrency in games semantics: the exploration should
probably start from somewhere else.

References

[1] S. Abramsky and R. Jagadeesan.Games and full completeness for multiplicative
linear logic. InJournal of Symbolic Logic, 59(2):543-574, June 1994.

[2] S. Abramsky, K. Honda, G. McCusker. Fully abstract game semantics for general
reference. InProceedings of IEEE Symposium on Logic in Computer Science, Computer
Society Press, 1998.

[3] S. Abramsky and G. McCusker. Game Semantics. InComputational Logic. U. Berger
and H. Schwichtenberg eds, Springer Verlag, 1999.

[4] S. Abramsky, P.-A. Melliès. Concurrent games and full completeness. InProceedings
of the Fourteenth Annual IEEE Symposium on Logic in Computer Science(LICS ’99),
IEEE Computer Society Press, 1999.

[5] R. Amadio and P.-L. Curien. Domains and Lambda-Calculi.Cambridge University
Press, 1998.

[6] M. Barr. The separated extensional Chu category. InTheory and Applications of
Categories,vol. 4, pp 127–137, 1998.

[7] N. Barreiro and T. Ehrhard. Anatomy of an extensional collapse.Manuscript, 1998.

[8] J.M. Beck. Triples, algebras and cohomology.PhD thesis, Columbia University, 1967.

[9] G. Berry and P.-L. Curien. Sequential algorithms on concrete data structures. In
Theoretical Computer Science, 20:265-321, 1982.

[10] G. Bierman. What is a categorical model of intuitionistic linear logic? InProceedings
of Typed Lambda-Calculus and Applications, TLCA’95, 1995.

[11] P. Boudes.Hypercoh́erences et Jeux.PhD thesis, Marseille, December 2002.

34



[12] A. Bucciarelli. Bi-models: relational versus domain-theoretic approaches. In
Fundamenta Informaticae 30,pp 23-41, 1997.

[13] A. Bucciarelli and T. Ehrhard. Sequentiality and strong stability. InProceedings of
the Sixth Annual IEEE Symposium on Logic in Computer Science(LICS ’91), IEEE
Computer Society Press, 1991.

[14] R. Cartwright, P.-L. Curien and M. Felleisen. Fully Abstract Semantics for
Observably Sequential Languages. InInformation and Computation111(2): 297-401,
1994.

[15] P.-L. Curien. On the symmetry of sequentiality. InProceedings of Mathematical
Foundations of Programming Semantics, MFPS’93, LNCS 802, Springer Verlag, 1993.

[16] T. Ehrhard. Hypercoherences: a strongly stable model of linear logic. In
Mathematical Structures in Computer Science, 3:365-385, 1993.

[17] T. Ehrhard. A relative definability result for strongly stable functions and some
corollaries. InInformation and Computation, 1997.

[18] T. Ehrhard. Parallel and serial hypercoherences. InTheoretical Computer Science,
247: 39-81, 2000.

[19] J.-Y. Girard. Linear logic. InTheoretical Computer Science, 50: 1-102, 1987.

[20] R. Harmer. Games and Full Abstraction for Nondeterministic Languages.PhD thesis.
University of London, 2000.

[21] M. Hyland. Game Semantics. InSemantics and logics of computation.A. Pitts and P.
Dybjer editors. Publications of the Newton Institute, Cambridge University Press, 1997.

[22] M. Hyland and L. Ong. On full abstraction for PCF. InInformation and Computation,
Volume 163, pp. 285-408, December 2000.

[23] M. Hyland and A. Schalk. Abstract Games for Linear Logic. InProceedings of CTCS
’99, Volume 29 of Electronic Notes in Theoretical Computer Science.1999.
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