Comparing hierarchies of types
in models of linear logic
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Abstract

We show that two model®1 andN of linear logic collapse to the same extensional hi-
erarchy of types, when (1) their monoidal categoiteand D are related by a pair of
monoidal functorg” : ¢ = D : G and transformationéde = GF andIdp = F'G, and

(2) their exponentials!™ and !V are related by distributive laws : 'NF = F ™ and

n : MG = G N commuting to the promotion rule. The key ingredient of the proof is a
notion of back-and-forth translation between the hierarchies of types inducedandN.

We apply this result to compare (1) the qualitative and the quantitative hierarchies induced
by the coherence (or hypercoherence) space model, (2) several paradigms of games seman-
tics: error-free vs. error-aware, alternated vs. non-alternated, backtracking vs. repetitive,
uniform vs. non-uniform.
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1 Introduction

Coherence space&irard designed linear logic after his discovery of the coherence
space model [19]Coherence spads another name for “non-oriented graph”, that
is, a pair(|A|, Z ,) consisting of aveb|A| and a reflexive and symmetric relation
_ , over the elements dfi|. A clique f of A is a subset of the wel!| such that:

Va,be f, a,0b.

The negationA+ = (]A|, < ,) of a coherence spacé = (|A|,_,) is its dual
graph, defined as

Va,be |Al, a=,b <= a=0bor ~(a_ D).

Thetensor producbf two coherence spaces= (|A|, Z ,) andB = (|B|,Z,) is

7vB

their product as graphst ® B = (|A| x |B|,Z , x Zp). The categoneOJ has

coherence spaces as objects, and cliques 6 B = (A ® B+)* as morphisms.

Morphisms are composed as in the category of sets and relations. The resulting

categoryCOXH is x-autonomous, and has finite products. As such, it is a model of

multiplicative additive linear logic.

The exponential modalityof linear logic may be interpreted in two different ways,

inducing either a “qualitative” or a “quantitative” model of proofs:

e The qualitative exponential*** is introduced in Girard’s seminal article [19].
The commutative comonoidt A has the finite cliques oft as elements of the
web, union of cliques as comultiplication, and the empty clique as counit. This
defines a comonati** over the categor@ O, which “linearizes” Berry’s stable
model of PCF, in the sense that the co-kleisli category associatétt ambeds
(as a model of PCF) in the category of dI-domains and stable functions.

e The quantitative exponential™s* is formulated by Van de Wiele and Winskel
(and possibly others) who establish — in harmony with Lafont’s ideas in [25]
— that the exponential™¢t is the free comonoidal construction @#JH. The
commutative comonoid™** A has the finitanulti-cliquesof A as elements of the
web, addition of multi-cliques as comultiplication, and the empty multi-clique as
counit.



We recall briefly that a multiset over a set¥ is a functionw : £ — N to the set
of natural numbers. Its support is the subset

support(w) = {e € E | w(e) > 0}.

Every subset of £ induces the “characteristic” multiset

e — 1 if eis element ofc
char(zx) :
e — 0 otherwise

A multi-clique of a coherence spackis a multiset with support a clique of. A
multi-clique is finite (resp. empty) when its support is finite (resp. empty).

So, the category of coherence spaces inducgmbtativeand aquantitativemodel

of linear logic. Are the two models related in some way? The answer is positive:
Barreiro and Ehrhard establish in [7] that teetensional collapsef the quanti-
tative hierarchy is precisely the qualitative hierarchy. But their proof is difficult:
what we call in french #@our de force Here, we would like to prove the same re-
sult by another simpler route, starting from this elementary observation: For every
coherence spacé, there exists an embedding-retraction {air, 04) making the
coherence spacke* A a retract of the coherence spalf& A:

id 1set 4

Iset A nA |mset eA Iset 4 = set A Iset A (1)

na = {(support(w), w) | w is a finite multiclique ofA}
04 = {(char(x),z) | z is afinite clique ofA}
The mapy, may be deduced from the fact théit=* A is the free comonoid ovet.

It is the unique comonoidal morphisfft A — ™t 4 making the diagram below
commute:

set A nA |mset 4

set mset
\ /

On the other hand, the projection map is not comonoidal in general, since the
diagram below does not necessarily commute (tdke | the singleton coherence
space).

|mset 4 eA Iset A

@

Imset A |mset A 04804 Iset A 1set 4

Given a coherence spaceand a cliquef : 1 — A, let f*¢* : 1 — !***4 and
fmeet o 1 — Imset 4 denote the cligug’ promoted with respect td*s* and !™set



respectively. Remarkably, the maps and o, commute to the promotion rules of
It and ™=t in the sense that:

fset — QA o fmset and f'mset — 7714 o fset' (3)
In particular,
dfqet o fset — fset ® fset — (QA ® QA) o (fmset ® fmset)‘

Thus, precomposing diagram (2) with the promoted nf&f* : 1 — Im™=t4
induces a commutative diagram:

fset
1 \fmset
|mset A eA Iset A
fmset®fmset dxset dsjt
[mset A |mset 4 0A®0A set A 1set 4

To summarize, diagram (2) does not commute, but the objbetievesthat dia-

gram (2) commutes. Now, the objelcplays a very special role for the hierarchies
[—]%* and [—|™** which, we recall, are defined as hierarchieglubal elements

1 — [T]*** and1l — [T]™* of the categorf2 O, for T" a simple type. So, when

it comes to hierarchies extracted from a model of linear logic, what really matters
is what the object believes in the underlying monoidal category! And indeed, as
we will see in the course of the article, the equalities (3) are sufficient to deduce
diagrammaticallythat the hierarchiejs-]** and[—]|™** collapse to the same exten-
sional hierarchy: in that case, Berry’s stable hierarichy*.

This proves Barreiro and Ehrhard’s collapse theorem by another route, and clarifies
the situation. New translations (calléack-and-forth are exhibited between the
gualitative and the quantitative hierarchies. These translations play a key role in
our proof that the two hierarchi¢s|*t and[—]™* collapse to the same extensional
hierarchy — see section 3 for details.

Game modelsMany game models of (intuitionistic) linear logic have been intro-
duced in the last decade, but they are still poorly connected. We are working here
at building a “topography” which would connect these models in a dense network
of (effective) translations.

We are guided by the idea that all the sequential game models live roughly in the
same interactive universe, and differ only in the way the connectives (or constants)
of linear logic are reflected in it. So, the translations we are looking for should be
deduced algebraically from coercion laws between the various interpretations of
the tensor product, the exponential modality, etc. in this universe.

Coherence spaces illustrate this idea perfectly: the qualitative and quantitative hi-
erarchies differ only by their interpretatiotic® or !™s* of the exponentials, and

the translations between the two hierarchies follow mechanically from the coercion
laws (1) between** and !™set,



We show in the last part of the article (section 7) that the same phenomenon oc-
curs in games semantics, and that it explains many differences between the exist-
ing models of sequentiality. We restrict ourselves to sequential games played on
decision trees [24,1,26,15,5] and leave the so-called arena games [22,32,3] for an-
other study. So, aequential gameneans here a tripld = (Ma, A4, P4) Where

(M4, \4) is a polarized alphabet of moves, in whigh : My — {-1,+1}
assigns a polarity-1 (Player) or—1 (Opponent) to every move; and, is a non-
empty prefix-closed set of finite strings over the alphaldat called the plays of

the gameA. We will consider only “negative” games, in which a play is either
empty, or starts by an Opponent move.

Every sequential gama is represented as a rooted tree, whose branches coincide
with the plays ofA. A play s = m; ---my is called alternated wheh(m;) =

(—1)7 for everyl < j < k. The sub-tree of alternated plays is denati¢A). It is

a bipartite graph, whose nodes (=branches=plays) are assigned peola(Riayer)

when the distance to the root (=the length of the branch) is even, and poldrity
(Opponent) otherwise. Note that the root has polarity Player in a negative game.
Now, a strategy of A is defined as a subtree aft(A) which branches only at
Player nodes: that is, the moves andm, are equal when € ¢ is of odd-length,

ands -m; € o ands - me € o. This definition is more liberal than what one
generally finds in the litterature, because it enables strategies to withdraw and play
“error” (or rather: “I loose”) at any point of the interaction. A strategy in the usual
sense is just an error-free strategy, that is, a strategywhich every odd-length
play s € ¢ may be extended to a (necessarily unique) even-lengthsplay € o,

for m a Player move.

There exist several models of intuitionistic linear logic based on sequential games.
We will organize them here according to a series of simple distinctions:

(1) error-aware vs. error-free: a strategy is allowed (error-aware model) or is not
allowed (error-free model) to withdraw and play “error”;

(2) alternated vs. non alternated: the interpretafignof every formulal” is al-
ternated (ie[7] = alt([T])) or not necessarily alternated;

(3) backtracking vs. repetitive: Opponent repeats the same question to Player as
many times as necessary (repetitive model) or Opponent remembers Player’s
answers, and thus does not need to repeat a question twice (backtracking
model);

(4) uniformvs. non uniform: this distinction holds only in repetitive models: when
Opponent asks Player the same question several times, Player always provides
the same answer to Opponent (uniform model) or may vary his answers in the
course of the interaction (non uniform model.) Note that every backtracking
model may be called uniform in the sense that Player provides his answer once
and for all.

Two remarkable models lie at both extremes of the spectrum:

e Lamarche [26] reformulates Berry and Curien sequential algorithm model of
PCF [9] as an error-free, alternated, backtracking, uniform game model of in-
tuitionistic linear logic. The interested reader will find a nice exposition of that



work by Curien in [15,5]

e We indicate in section 7.5 that the less constrained of all arena game models,
introduced by Abramsky, Honda and McCusker [2] is equivalent to an error-
free, non alternated, repetitive, non uniform game model of intuitionistic linear
logic.

Intermediate models were also considered in the litterature, most notably an al-

ternated, repetitive, non uniform model by Hyland in [21]. We connect all these

models by coercion laws in section 7; and deduce the following “topography” of
models:

(&) Allerror-aware hierarchies are related by back-and-forth translations, and thus
collapse extensionally to the same hierarchy: Berry and Curien sequential al-
gorithm hierarchy with one error, what we call thenifestly sequentiddier-
archy after Cartwright, Curien and Felleisen [9,14].

(b) All error-free hierarchies are related by back-and-forth translations, and thus
collapse extensionally to the same hierarchy: Bucciarelliand Ehrhard strongly
stable hierarchy, by Ehrhard collapse theorem [17].

(c) All error-aware and error-free hierarchies are related by back-and-forth trans-
lations when erroes are not taken into account in the base types (using partial
equivalence relations).

There is a recent thesis (defended by Longley [28] among others) that every suf-

ficiently expressiveerror-free model of sequential computations collapses to the

strongly stable hierarchy. After points (a)(b)(c), it is naturala@ctorizeLongley’s

thesis into:

(1) athesis: every sufficiently expressiggor-aware model of sequential com-

putations collapses to the manifestly sequential hierarchy,

(2) afact: the manifestly sequential hierarchy collapses to the strongly stable hi-
erarchy when errors are not taken into account in the base types.

Diagrammatically:

Any sufficiently expressive model of sequentiality with errgrs
extensional collapse (1)
Manifestly sequential hierarchy
extensional collapse (2)
Strongly stable hierarchy

This sits the manifestly sequential hierarchy (with one or several errors) at a key po-
sition in the theory of sequentiality, and reveals at the same time its true nature: the
extensional collapse of other (possibly more immediate) models of sequentiality.

Synopsisin section 2, we deliver the necessary preliminaries on categorical models
of linear logic, hierarchies of simple types, and extensional collapse. In section 3,
we formulate the notion dfack-and-forth translatiobetween hierarchies of types,

and prove that two hierarchies related by a back-and-forth translation collapse to



the same extensional hierarchy. In section 4, we axiomatize the notion of linear
coercion between models of linear logic. Our main theorem 15 appears in section
5. It states that two models related by a linear coercion, induce hierarchies related
by a back-and-forth translation. In section 6, we illustrate the theorem by relating
the qualitative and quantitative exponentials on coherence (and hypercoherence)
space models ; we also analyze in detail the action of the back-and-forth transla-
tion at typeso = o and (o = o) = o. In section 7, we introduce the error-free
and error-aware variants of two categories of sequential games, and compare three
exponential structures on these categories: backtracking, repetitive uniform, and
repetitive non uniform. We establish a series of linear coercions between the ex-
ponentials and models, and deduce from it that (1) all error-aware models collapse
to the manifestly sequential hierarchy, and (2) all error-free models collapse to the
strongly stable hierarchy.

Related worksT. Ehrhard [17] proves that the sequential algorithm hierarchy [9]
collapses to the strongly stable hierarchy [13]. This result is important because it
relates for the first time staticand adynamicmodel of sequentiality. The theorem

is proved another time by J. Van Oosten [36] and J. Longley [28] in a similar and
somewhat indirect way: first, they establish that every finite strongly stable func-
tional is equal to a PCF-term applied to some strongly stable functiohainall

order (several of them of order 2 in [17], exactly one of order 3 in [28]) ; then they
deduce Ehrhard’s collapse theorem by denotational techniques.

After publishing his collapse theorem in [17], T. Ehrhard started studying other
(possibly simpler) cases of extensional collapse, in order to extract general proof-
techniques, which would lead ideally to a more direct proof of his theorem. For
instance, T. Ehrhard establishes in collaboration with N. Barreiro [7] that the quan-
titative hierarchy of coherence spaces collapses to qualitative one, by exhibiting
an heterogeneous relation between the two hierarchies, which is then shown to be
onto for finite functionals. The same pattern of proof appears in A. Bucciarelli’s
work on bidomains [12]. One feels that a general proof-technique remains to be
extracted, but the proof in [7] does not help much, because it requires a very pre-
cise and “anatomic” description of the extensional collapse, which seems difficult
to generalize to other situations.

In a recent article inspired by concurrency [31], the author relates Lamarche se-
guential games and Ehrhard hypercoherence spaces; and delivers an “anatomic”
proof of Ehrhard’s collapse theorem based on games semantics. The present article
results from the author’s efforts to simplify the proof of [31] as much as possible:
in particular, a back-and-forth translation between the sequential algorithm hierar-
chies on thdlat and on thdazy natural numbers enables to decompose the proof
of [31] in two steps: first, the finitely branching games are treated by a compact-
ness argument (&nig’s lemma); the result is then generalized to (possibly infinitely
branching) games like the flat natural numbers, by exhibiting the back-and-forth
translation and applying the results established in the present article.

Finally, recent discussions with J. Longley indicate that our definition of linear co-
ercion between models of linear logic makes sense in (a linear and typed version



of) the 2-category of Partial Combinatory Algebra considered in [27]. This point
deserves to be further investigated, because it could very well lead to a more con-
ceptual proof of corollary 16 based on realisability.

2 Preliminaries
2.1 Monoidal closed categories

By monoidal closed category, we mean a monoidal categamywhich the functor
(A® —) : € — C has aright adjoinfA — —) : @ — C for every objectA of

C. Thanks to a theorem on adjunctions with parameters [29], the family of functors
(A — —) may be seen as a bifuncter: C°? x € — C for which there exists a
family of bijections

¢A,B,03 G(A(X)B,C) = G(B,A—OC’)

natural in A contravariantly, inB, C' covariantly. In particular, every morphism
f € C(A, B) is in one-to-one relation with itsame™ f7 € €(1, A — B) defined
as" = ¢a15(fops)

Remark. We write 1 for the monoidal unit of the categof, instead of the usual
notation/. We follow here an habit of linear logic, dating back to the origin of the
subject [19].

By (symmetric) monoidal functor between (symmetric) monoidal categories, we
mean thdax definition, that is, a functoF’ : ¢ — D equipped with mediating
natural transformations

mA7B:F(A) ®NF<B)—>F(A®MB> M 1N—>F(13\/[)

making the usual diagrams commute. It is worth mentioning here a useful property
of monoidal functors.
Lemma 1 Suppose that’ : € — D is a monoidal functor between monoidal
closed categories. Then, there exist a fangilgf morphisms indexed by objects
A, BofC:

dA.B : F(A —OMB> — (FA —ONFB)
such that, for every morphisih: A — B, the diagram below commutes:

F(1y) PO L F(A —oy B)
My 9A.B (5)
1fN TFfT (FA —ON FB)

where” f1and™ F f ™ are the names of the morphistisn Cand F f in D.



PrRoOOF The morphisnmy, 5 is defined as the unique morphism making the diagram
below commute:

MA, Aoy B

FA®aas F(evy%)
FA ®N (FA o FB) G'UFA,FB FB
Commutativity of diagram (5) follows easily. ]

2.2 Models of intuitionistic linear logic

There exist several categorical definitions of what a model of intuitionistic linear
logic should be. Instead of reviewing them here, which we do in [30], we will only
indicate what properties of a model we need in this article. The reader interested in
full definitions is advised to look at [21,10,30].

So, every modeM of intuitionistic linear logic is given by (among other things) a
symmetric monoidal closed categdtyequipped with what we call here a&axpo-
nential structurethat is:

¢ afunctor! of the category into itself,

e amorphisne, : !A — A for every objectA of the category,

e a morphismf®a"e : 1 —!A for every morphisny : 1 — A of the categong,

verifying:

fbang

11— a4 = IA—A o4 (6)

and making the diagram below commute for every morphjsmt — B:

bang

f/>!A

1 lg (7

(%!B

g

Remark.Another property which should be mentioned here, even ifitis not used in
the article, is that the endofunctbdefines a comonad over the categ@rywhose
associated co-kleisli category happens to be cartesian closed.

2.3 Hierarchies of types

In this article, we consider the class of simple tyfielsuilt over a fixed clasg of
constant types € K, given by the grammar below:

T =reK|T=T.



The typical example i& = {o, .} whereo and. denote the boolean and the integer
base types respectively.
A hierarchy([—], -, ~) over K consists of:

(1) afamily of set§7"] indexed by simple typ&’,

(2) afamily of functions indexed by simple typ&sV:

v U= V]x[U — [V].

(3) a partial equivalence relationr over the se{T], for every simple typel’,
which verifies that, for every simple typé§ V', and every element§ g €
U=V

fruvsvg <= (VoyelUo~yy=f-v~vg-y). (8)

Givenf € [U = V] andx € [U], we write f -,y = or evenf - « for the image of
(f, .’L’) by UV in [V]

Remark. For expository reasons mainly, we add the family of partial equivalence
relations (point 3 above) to the usual definition of a hierar@hy, - ). Let us clarify

this. Property (8) implies that the family of partial equivalence relations is generated
by the sub-family(~,).cx Of partial equivalence relations at constant types. So, a
hierarchy in our sense is simply a hierardty:|, -) in the usual sense, equipped
with a partial equivalence relatior,, for every constant type < K. We find
convenient to integrate this famili~,).cx in our definition, in order to discuss
cases of extensional collapse in which the choicé-gf).c x matters.

2.4 Models of linear logic over a class of constants

A modelM of intuitionistic linear logic over a clas&” of constants, is a model of
intuitionistic linear logic equipped, for every constant type K, with:

(1) an objectX,, of the underlying monoidal catego6y

(2) a partial equivalence relation)® over the se€(1, X,) of global elements of

X, inthe categony.

Any such modeM induces a hierarchy{—], -, ~) over K, obtained by regarding
every object7’] of the categong as its seHome(1, [7]) of global elements. The
construction goes as follows. Every constant type K is associated to the object
[k] = X,; and every simple typd" = U = V is associated to the objeff
deduced fromiUU] and[V] by Girard’s formula:

U=V] =1[U] — [V].

The function-yy : [U = V] x [U] — [V] associates to the pajr: 1 — [U =
V]andz : 1 — [U] the compositef - = : 1 — [V] in the categon:

 — v B | D U] SE V]

10



Here, the morphism f_ denotes the “co-name” gf, that is the unique morphism
[U] — [V] such thatf =" f™.

The partial equivalence relation, over the set of global elementome(1, [17)

is given by~ at a constant type € K, and deduced fromy;; and~ by property
(8) atasimpletypd =U = V.

2.5 Extensional collapse

A hierarchy([—], -, ~) is extensionalwhen the partial equivalence relatien, is
the equality at every simple tyge. In that case, it follows from property (8) that,
for every typel/ = V and elementg, g of [U = V], one has:

Vee[U],f-z=g-2) = f=y.

Every hierarchy(|—]|, -, ~) induces an extensional hierarckly-].,.,=) called

its extensional collapseThe construction goes as followi§’]..; denotes the set

[T]/ ~r of ~p-classes ifT]; while f .y @ denotes the-y-class off -y a, for

every two elementg of the ~;_-classf anda of the ~;-classa. We leave

the reader check that the definition works, and induces an extensional hierarchy

([_]ext,-,:).

3 Back-and-forth translations between hierarchies of types
In this section, we introduce the notiontmdick-and-forth translatiobetween hier-

archies of types, and show that two hierarchies related by such a translation collapse
to the same extensional hierarchy (lemma 6).

3.1 The definition of back-and-forth translation
Definition 2 A back-and-forth translation between two hierarchies of types
([_]v'vw) and ([[—]]7-,%)
is the data of two families of (set-theoretic) functions
¢r - [T] — [T] vr : [T] — [T
indexed by simple types, such that
(1) the two function®,. and, preserve the partial equivalence relations at any
base type: € K, that is:

vxvy S ["1}7 T~ Y = ¢I€($) Rk ¢H<y>7

Va,y € [x], T Ry Y = Uu(T) ~e YY),

11



(2) the two functiong,, and, are “weak inverse” at any base typee K, that
is:

Va,y € [k], Ty =0~ U(0x(y)),
Vo,y € [5],  zRoy= 1= da(va(y)),
(3) for every typed/,V, and elementg € [U = V] andh € [U]:

Pu=v(f) - h=v év(f-Yu(h)), 9)
(4) for every type#/,V, and elementg € [U = V] andh € [U]:
Yusv(f) - h~v Vv (f - du(h)). (10)

Remark. Our definition of back-and-forth translation may be weakened by requir-
ing equivalence (9) only whefi ~y— f andh =y h, and similarly for equiva-
lence (10). Our main result, lemma 6, still holds in that weaker situation — which
we find for example in lemma 26.

Remark. Back-and-forth translations define a category between hierarchies, with
obvious identities, and composition defined as follows. Suppose that families of
functions:

¢ [T 2 [T] e ¢p: [TT=[TT:v7
define back-and-forth translations between the hierar¢hieend]—] on one hand,

and between the hierarchigs] and[—] on the other hand. Then, the families of
functions obtained by composition:

¢podr: [T] = [T] : r oYy

defines a back-and-forth translation between the hierar¢hiesnd[—]].
3.2 Back-and-forth translation and extensional collapse

Here, we prove that the existence of a back-and-forth translation befwé¢and
[—] implies that the two hierarchies collapse to the same extensional hierarchy.
Lemma 3 (preservation) ~r and= are preserved by translation. More precisely:

Vi, gelll, f~rg= ér(f)~r ér(9),

Vi, g €lT],  f=rg=vr(f) ~r ¥r(g)
PrROOF By induction on7'. The property holds for every base typec K by
definition of a back-and-forth translation, point (1). Then, suppose that the property
is established for typel§ andV'; and consider any two elemenfsg € [U = V]
such thatf ~y— g. We want to show that

du=v(f) Ru=v du=v(9). (11)

12



To that purpose, we consider=~; h’ and prove that

du=v(f) - h =v dusv(g) - B

By definition of the back-and-forth translation, this reduces to
ov(f - Yu(h)) =v ¢v(g - Yu(h)). (12)
Let us prove claim (12). By induction hypothesis@nand hypothesig ~ h':
Yu(h) ~u Yo ().
From this, and hypothesig~y_ g, it follows:
[ vu(h) ~v g - Yu(h).

We conclude that claim (12) holds by induction hypothesisionVe have just
proved (11). We prove

Vf,gelU=V], [ =usv 9= Yuav(f) ~vsv Yusv(g)

in a similar fashion. This concludes our proof by induction. |
Lemma 4 (forth and back)

Vi, gelll, f~rg=[f~rYr(or(g)).

PROOF By induction on7. The property holds for every base typec K by
definition of a back-and-forth translation, point (2). Now, suppose that/—.v g.
We prove that

[ ~v=v Yu=v(du=v(9))
by establishing that, for every ~;; 1':

fh ~v Yusv(dvsv(g)) - . (13)

The right-hand side of the equivalence may be reformulated by definition of a back-
and-forth translation:

Vusv(Pv=v(g)) - N ~v Yv(du=v(g) - du(h'))
~v Yy (ov(g - Yuleu(h')))).

Equation (13) follows by induction hypothesis GrandV/, and hypothesig ~_.
g. [ |
Lemma 5 (back and forth)

Vi, g€lT], f=rg=[f=~ror(dr(g))

Lemma 6 Two hierarchies related by a back-and-forth translation, collapse to the
same extensional hierarchy.
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4 Linear coercion between models of linear logic

In sections 4.2, 4.3 and 4.4, we define what we meanlimear coercionbetween
two modelsM andN of intuitionistic linear logic over a clas& of base types.
Before that, in section 4.1, we focus on the particular case of two mddelsdN
constructed over the same underlying monoidal categpand the same interpre-
tation X, and~, of the base types € K.

Notation: in this section 4, as well as in section 5, we instantiate the not#tf3a
introduced in section 2.2, and write

Vil gft

Lo MA Ly NB
for the morphisms induced from the exponential structuréel@ndXN applied on

the morphismf : 1,y — A in Candg : 15 — B in D, respectively.
4.1 Linear coercion between exponential structures

We specialize our later definition of linear coercion (see section 4.4) to the particu-
lar case of two model®( andN of linear logic with the same underlying monoidal
categoryC. In that case, the two modeM andN are only distinguished by their
respective exponential structuré¥ and !,

Definition 7 (linear coercion) A linear coercionbetween two exponential struc-
tures M and !N consists in two families and ¢ of morphisms indexed by objects

of the category

A QA

IMA N A IMA

making the two diagrams below commute,

Tt

/Tr IMA f/> INA

1 nA 1 oA

e oy ey

for every morphisny : 1 — A of the category.

Definition 7 is an instance of a linear coercion between two models of intuitionistic
linear logic overk’, as formulated in section 4.4. More precisely, every choice of
a family (X, ).cx of objects of the category, and of a family.,.).cx of partial
equivalence relations over their global elements, induces a Méa@eldN of intu-
itionistic linear logic overk . The linear coercion betweeR" and ! formulated

in definition 7 induces a linear coercion between the two modelsndN in the
sense of definition 10. In particular, theorem 15 holds, and thus, for any choice
of families (X,.).cx and(~,).cx, the two hierarchies deduced froi' and !
collapse to the same extensional hierarchy.
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4.2 Monoidal elementwise transformation

Definition 8 (monoidal elementwise transformation) A monoidal elementwise trans-
formation{ : ' = G between two monoidal functo(¢’,m) : ¢ — D and
(G,n) : € — D is a family of morphismg, : F(A) — G(A) indexed by
objects of¢, making the two diagrams commute:

193\\ S1e ISP §a
“ G Gle——G(4)

for every morphisnf : 1 — A.

Remark.Elementwise means that the naturality diagram commutes for every global
elementsf : 1 — A; and monoidal that the objettbelieveshat the two coher-
ence diagrams of monoidal natural transformations commute. Check in particular
that, for every global elemerjt: 1 — A andg : 1 — B, the diagram below
commutes:

F(A)® F(B)—*2 -~ F(A® B)

£A®£Bl lfA@B
G(A) ® G(B)—22 -~ G(A® B)
when precomposed with the global eleméFit ) @ F(g)) o (m1, ® ma,) o pi,,.

Remark. In the particular case of two monoidal functars: ¢ — D andG :

D — €, amonoidal elementwise transformation/de = GF (resp.C : Idp =

FQ) is alternatively defined as a family of morphisms making the lefthand (resp.
righthand) diagram below commute:

le ! A 1p d B
7’L1Dl mlel
G(1p) €a F(le) ¢ (14)
cme)l F(nwl
GF(1e)—Y) GF(A) FG(1p)—2%Y . FG(B)

for every pair of global elementé: 1 — Aandg : 1o — B.
4.3 Distributive law

Suppose given two modeld andXN of intuitionistic linear logic, and a monoidal
functor (F,m) : (C, ®x, 1) — (D, @, 1) between their underlying monoidal
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categorie€2 andD.
Definition 9 (distributive law) A distributive law

o: "F = 1™

is a family of morphismép,) of D indexed by objects d@, making the diagram
below commute for every morphisin 1, — A of the categong:

(F(f) o may, )

In INF(A)
miy oA (15)
F(1y0) sl F(1PA)

Remark. In every model of intuitionistic linear logic, the functbdefines amo-
noidal comonad, see [21,10,30]. So, a condition stronger than commutativity of
diagram (15) would be to require thatis a monoidalnatural transformatiomn :

NE — F M Commutativity of diagram (15) would then follow from commu-
tativity of the diagram below, which follows from monoidality (lefthand-side) and
naturality (righthand-side) of. Note thatm,, . andn,,. denote the monoidal coer-
cions of 1™ and ! respectively.

Iy—— N1 Fmay NF (1) WNE(f) INF(A)
M1y J{QlM lg,q
Flma, ) M F(P) M

F(ix) ' F(Py) (14

We choose definition 9 instead of this more conceptual definition, for practical
reasons. In the introduction, we exhibit a family of morphigms It A — 15¢t A

in the category of coherence spaces, see (1). This family defines a distributive law
in our sense (definition 9) but at the same timenat natural in A. Indeed, if

A : A — A& A denotes the diagonal morphism induced by the cartesian product
&, the diagram below does not necessarily commute, for similar reasons as diagram
(2) (again, taked = | the singleton coherence space).

|mset oA Iset A
!msetAA 'SetAA

Imset( Ag A) —2ALA__ jset( AL A)

Remark. Our definition differs also from Hyland and Schalk’s definition [23] of
a linearly distributive law\ : 'NF = F N as a distributive law in the sense of
Beck [8,34] respecting the comonoid structure, that is, making the diagram below

16



commute:

en dj}[(m
Iy<— T4 NF(A)—D o INF(A)gy NFA
AA®@NAA
i Aa F(™MA) @ F(1MA) (16)

MM, M4

F(e)) F(d))

F(ly) F( ) F(MAg 1MA)

for every objectA of the categoryC. This definition implies that the functaf’

lifts to a functor between the kleisli category of cofree coalgebras — which does
not necessarily happen with our notion of distributivity. Again, we choose a less
conceptual definition for practical reasons: diagram (16) specializes as diagram (2)
when applied to the categoBOXH equipped with the qualitative and quantitative
exponentials!**t and !™*, and this diagram (2) does not commute generally.

4.4 Linear coercion between models of linear logic

In this section, we consider two modéig andN of intuitionistic linear logic over
a classK of constants, as formulated in section 2.4. Their underlying monoidal
categories are denotédand D, and their families of constants\,;, ~,).cx and
(Ys, =« ) ek respectively.
Definition 10 (linear coercion) A linear coercion betweeh( andN is given by:
(1) a pair of monoidal functoréF, m) : € — D and(G,n) : D — C,
(2) a pair of monoidal elementwise transformatiopns /de = GF and( :
Idp = FG,
(3) a pair of distributive laws) : MG = G ™ andp : 'NF = F M,
(4) for every constant € K, a pair of morphismsy, : F(X,) — Y, and
¥, G(Y,) — X, making the two diagrams below commute modyjand
~, respectively, when the two morphismg : 1, — X, verifyx ~,, y:

F (1) g F(Xe) ’

o PR :

M K K

7 X

1 o Y, G(1x) e G(Ye)

mlM\\ / G(may) ]G(Eﬁ,)
(

GF(1n)

and making the two diagrams below commute modyland~, respectively,
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when the two morphisms y : 1,y — Y, verifyx =, y:

n1 (L) == G(Y) G My ]5

N K K

/ \ F(1 ~ F(X

1t ~n X, (1) o (Xx)
nk /E F(niy) F(,)

Gl -G 7 FG(1y)

e FG(Y,)

Remark. It is not difficult to show that, given a linear coercion betw@drandN,
the diagrams below commute for every pair of morphisfns1,; — A in the
categoryC andg : 1,y — B in the categonyD:

Ing ! 13154 i a PIB
M Mg
niy MG F(A) iy WFG(B)  (17)
i \LUF(A) i ¢9G<B)
G(IN)G( F(f) o muy, ) & IF(A) F(ly) F( G(g) o nuy ) FIMG(B)

Point (2) of definition 10 is slightly enigmatic. It is mainly here to ensure the exis-
tence of morphismgl — G F(A) andB — F ™MG(B) making the diagrams
(17) commute. In fact, we could very well remove point (2) of definition 10 and
forget the two transformatiortsand(, but at a heavy price: we need to replace the
distributive laws of point (3) by the (slightly unorthodox) law&' = F NG and

N = @ INF; and we must require accordingly that the straightforward variant of
diagram (17) commutes. If we do so, our main result (theorem 15 in section 5) still
holds.

5 From linear coercions to back-and-forth translations

We prove our main result here (theorem 15). Given two mo@iélandN of in-
tuitionistic linear logic over a clask of constants, we proceed as in section 2.4,
and derive their respective hierarchigs], -, ~) and([—], -, ). Theorem 15 states
that there exists a back-and-forth translation between the hieraf¢hies ~) and
(I-1, -, ~) when there exists a linear coercion between the two mddedsidN.

So, we suppose from now on that the two modelandN are related by a linear
coercion, with same notations as in section 4.4. Our first step is to extend to every
simple typel the families of coercion mag®,.).cx and(1,.).cx given at constant
types in definition 10.

Definition 11 (coercion maps at every type (1))The two families of morphisms
below
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indexed by simple typds, are defined by structural induction:

Pymy = ((F( Miyr) 0 oapugo !NCHUH) —oN 5\/) © ¢'nejp) v

Vysy = <(G( N6 0 nrwe P€uy) —one JV> ° by pv)

Definition 12 (coercion maps at every type (2))For every elemenf € [T], the
elementyr(f) € [T] is defined as follows:

Iy 2 F(1ng) — s F([T]) —2 1]

N1~

Ing G(1n) — s q([1]) [T

Lemma 13 For every elemenf € [U = V] andh € [U],

du=v(f) - h = ov(f - Yu(h)).

PROOF Consider two elementg € [U = V] andh € [U].
It is worth recalling that the element,_.(f) - h € [V] is defined in section 2.4
as the composite:

1N hit 'HUH wLou=v(f)u [[Vﬂ

wherew ¢y () denotes the morphism of name_.(f) € [U = V]. Now,
let

Lfa MUl — [V]
denote the morphism of nanfe= "L " in the category; and let

TEfIT Iy — F(PU]) o F([V])

denote the name of the morphidr /. in the categond.
By lemma 1, the diagram below commutes:

F(1y) H F(PUT o [V])
My qITM 01,[v]
Iy — = (F ™MU)) —on F([V])

From this and definitions 11 and 12, it follows that_., (f) is equal to the mor-
phism
TR fom

1y F(PU)) —on F([V])
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post-composed with
(F(P%y) 0 acquge NGuy) —on by-
From this, and naturality ial and B of the bijection
D(A, B) = D(1n, A —on B)

the diagram below commutes:

N[UT wou=v (f) V]
N¢pug
NEGIU]
oa[U] by (18)
FIMGIU]
F My,

F ™MU] sE F[V]

Now, we show that diagram (19) commutes. Diagram a. commutes by the property
of exponential structures recalled in section 2.2. Diagram b. commutes by defi-
nition 8 of a monoidal elementwise transformation /de = F(G. Diagram c.
commutes by definition of the distributive law Finally, diagram d. commutes by
definition 12 ofyy; (k) as the composite

Yu(h) = Yy o G(h) o muy

and functoriality ofF’. We conclude that diagram (19) commutes.

N it N[ e V]

H . l e

Iy———— oy © W INFGIU]

| b‘ |

I ——(F(G(h) o n1y) o mry, ) — NFG[U] oy (19)

mlMl ¢ lQGﬂU]]

F(1n) F( G ony, ) —F MG[UJ
H d. . lF My

It follows that¢y - (f) - his equal to the composite

My
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which is precisely the element, (f - 1y (h)). This concludes the proof. ]
Lemma 14 For every elementg € [U = V] andh € [U],

Yusv(f) - h = v(f - du(h)).

PrRoOF As for lemma 13. ]

Theorem 15 (main result) Suppose that two models of intuitionistic linear logic
over a classk of constant type®( andN are related by a linear coercion. Then,
their associated hierarchie§—|, -, ~) and ([—], -, ~) are related by a back-and-
forth translation.

In that case, it follows from lemma 6 that:

Corollary 16 The two hierarchieg[—], -, ~) and([—], -, ~) collapse to the same
extensional hierarchy.

6 Application 1: coherence and hypercoherence spaces
6.1 A linear coercion between the qualitative and the quantitative exponentials

In the introduction, we exhibit a family of embedding-retraction pairs (1) in the
categoryCOX of coherence spaces:

T’A : !SetA !msetA’ QA : !msetA !SetA‘

We claim that the families ando define a linear coercion (in the sense of definition
7) between the exponentials® and !™t. Indeed, consider any morphisii :

1 — A, or equivalently any cliqug of A. The cliquesf® of !**tA and f™* of
Imset A are defined as follows:

fset — {$ c | !setA| ‘ xC f}, fmset — {w c | !msetA| ’ support(w) C f}

The equality f*¢* o n, = f™** holds by definition off™t; while the equality
fmto g4 = f** holds because for every element | It A,

x C f <= support(char(x)) C f.

So, theorem 15 implies:

Corollary 17 (Barreiro-Ehrhard) The qualitative hierarchy over coherence spaces,
(also called the stable hierarchy) is the extensional collapse of the quantitative one.
Theorem 15 applied in a similar fashion to the hypercoherence space model intro-
duced in [16], shows that:

Corollary 18 The qualitative hierarchy over hypercoherence spaces (also called
the strongly stable hierarchy) is the extensional collapse of the quantitative one.

Remark. The interested reader will find theorem 15 applied in Boudes’ PhD the-
sis [11] to relate refinements of the quantitative and qualitative strongly stable hier-
archies.
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6.2 Anillustration at types = o and(o = 0) = o

In our proof of corollary 17, we exhibit for every type an embedding-retraction
pair
[T] set ¢r [T] mset YT [T] set

between the qualitative and quantitative interpretat{@i$t and[7]™* in the cat-
egory of coherence spaces. The morphigmtransports any clique ifil’]™** to

its “extensional content” if7"***, while ¢ transports any function ifi’|*** to a
“canonical representative” ifi’|™t. By construction, the compositer o ¢r is the
identity on[T']***, and the composite = ¢ o1 transports every cliqug € [T]mset

to a “canonical form™(f) € [T]™*. In order to illustrate this, let us compute the
canonical form of a clique, for the typds = 0 = oandT = (0 = 0) = o

of the hierarchy over the boolean base type (thakis:= {0}). We recall that the
coherence spack, = 1 & 1 representing the booleans has exactly two elements
true andfalse in its web, which are incoherent.

WhenT = (o = o), the elementg € [o = o]™** are of five possible forms:

(1) f is empty, (2)f = {([-],b)} is constant,
k k

(3) f = {(true, ..., true], b) }, 4) f = {([false, ..., false|, b) },
k K’

——
(5) f = {([true, ..., true], b), ([false, ..., false|, ') }.
for b,/ € {true,false} andk,k’ > 1. The canonical fornp(f) is computed as
follows:
e p(f) = f whenf is empty, or constant,
e otherwisep(f) is f in which every elemenf(b, ..., 0], ') € f is altered into the
element([b],0') € p(f), for b = true andb = false.
Intuitively, transformingf into p(f) amounts to replacing the “stuttering’by the
cliquep(f) which “asks its questions only once”.
WhenT = (0o = o) = o, acliqguef € [T|™** contains elements of five possible
forms only:

:([tr“ekL b), e ([true®], b) } , b/)
:([fa|sek], b), o ([false®], b) } , b’) |
) ([Teroe'], b), . (frue'], b), (false ], ), . (false* . 6) | 7).

for b, 1/, b" € {true, false} andj, j', k, k' > 1. Here,[true*] and[false*] are shorter
notations for the multi-setsrue, ..., true] and[false, ..., false] of cardinalityk:.
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The translation off € [T]™*" into p(f) € [T]™** proceeds as follows:

e step a: if([—], b) is element off, keep it inp(f),

e step b: translate every elementfiof the form (2) into the elemer@[([—], b)], b’)
inp(f),

e step c: remove frony every element of the form (3,4,5) in whidh > 1 or
k' > 1;

e step d: translate every remaining elemenof the form (3,4,5) inf, into all
elements of the corresponding form (3,4,5) for every pair of integges> 1:

(3) ([([true, ..., true], b)} , b’),
4) ([([false, ..., false], b)] , b’),

(5) ([([true, ..., true|, b), ([false, ..., false|, b’)} : b”).

! - v
So, intuitively, transformingf into p(f) at type(o = o) = o amounts to:
e step a: keep the constants,
e step b: replace every Player’s “stuttering questions” by a “single question”,
e step c: remove every check by Player of Opponent’s “stuttering questions”,
e step d: expand every check by Player of an Opponent’s “single question”, by a
check on all equivalent Opponent’s “stuttering questions”.
We would like to illustrate this transformation with an example. Consider the clique

® of [((0 = 0) = o™ introduced by Barreiro and Ehrhard in [7]:
& = {([[true], true], true), ([[true, true], true], false)}.

The clique® “tastes” whether a “functionh € [o = o]™* requires its argument
true once or twice, before answeringue. Since the two clique$([true], true)}}
and{([true, true|, true) } } are equivalent at type=- o, the taste® which separates
them, is not equivalent to itself modutg . ;)—..

Now, observe that the clique is transported by),—0-, t0 the elementl ¢
[(0 = 0) = o*** below:

U = {{({true}, true)}, true)}.

Part of the information has disappeared in the translation. Recall that the qualitative
hierarchy[—]*** is extensional. SOy (,-.0)=., IS just the equality, and the singleton

U is therefore equivalent to itself modutg ,—.,)—.,. The functior); transportsl

back to the canonical elemep(td) of [(0 = 0) = o]™*":

p(®) = {([([true, ..., true|, true)|, true) | k> 1}

It follows from lemma 3 thap(®) is equivalent to itself modulez,—.o).,. This
illustrates the fact that the embedding-retraction betW&¢fi and 7| defines
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a procedure which “repairs” cliques (@f|™t by pruning out their non-extensional
behaviours.

Remark. The choice of the projection map, is somewhat arbitrary. For instance,
we may have chosen any of the alternative family of cliques

o'y = {(n x char(z), z) | « is afinite clique ofA}

to play the role ofp = '. To clarify our notationy x char(x) denotes here the
characteristic function of the set multiplied by the integen > 1: that is, the
multiset of support: in which every element is repeatedtimes. Any of theo’;
defines withn, a linear coercion (and even embedding-projection pair) between
Isst and !™t, Observe that the projectignexplicated above is already altered at
typeso = o and(o = o) = o, by a choice of coercion™ different from . For
instancep(®) is replaced by

P(®) = {([([true, ..., true], true)], false) | &k > 1}

whenn = 2.

Remark. In their proof that the quantitative hierarchy collapses to the stable hi-
erarchy, Barreiro and Ehrhard deliver an interesting “anatomy” of the extensional
collapse, quite far from what we explain here. It would be instructive to understand
how the two analysis are precisely related.

7 Application 2: sequential games

The definitions of sequential game= (M4, A4, P4) and of sequential strategy
are given in the introduction, and we do not recall them. We only mention that a
strategyo of A is alternatively defined as a set of alternated plays okrifying
that, for every play and movesn, nq, ns:
(1) o is nonempty: the empty playis element otr,
(2) o is closed under prefix: i - m € o, thens € o,
(3) o is deterministic: ifs-m-n; € o ands-m-ny € o anda(ny) = Aa(ng) =
+1,thens-m-ny =s-m - no.
As already indicated, this definition enables a strategy to withdraw at any point of
the interaction, and play “error”. The usual definitioneofor-free strategy is given
in definition 20.
Definition 19 (deadlock,error,fixpoint) We suppose below thatis a strategy.
e aplaysis called maximal irr whens € o andVm € My,s-m ¢ o,
e a deadlock of is an odd-length play - m such thats - m ¢ o buts € o,
e an error of s is an odd-length play - m maximal ino,
e a fixpoint ofo is an error or an even-length play of
Notation: We write P§", P44 and P3!* for the even-length, odd-length and alter-
nated plays of a sequential gamieWe writeo : A wheno is a strategy o4, and
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even(o) anderror(o) andfix(c) = even(o) U error(o) for the sets of even-length
plays, errors and fixpoints of respectively.

Definition 20 (error-free strategy) A strategy : A is error-free wherrror(o) =
(), or equivalently, when:

Vse P sco = Ime My, s-méeo.

Remark.Every strategy may be recovered froffix(o) by the equality below:
o="fix(c)U{s € Py,a3m € Ma,s-m € fix(o)}. (20)

In particular, every error-free strategy is characterized by thewset o) which
coincides withfix(¢) in that case.

7.1 The categorg®" of sequential games (error-aware)

The categong®™ is a negative and error-aware variant of the category of Conway
games formulated by Joyal in [24]. By negative, we mean that all games start by an
Opponent move; and by error-aware, that the strategies possibly admit errors.
The categoryG®™ has sequential games as objects and strategies 66 B as
morphismsd — B. Given two sequential games B, the sequential gamé —
B is defined by reversing the polarities of the movesApfand interleaving the
plays of A and B:
o My op=Ms+ Mpganddy_op =[—Aa, gl
e aplays of A — B is a string over the alphabéf, .5 such that (1) the projec-

tion s;4 over M, is a play of A and (2) the projectior,z over My is a play of

B and (3)s starts by a move of if non empty.
Composition is defined i§*" by sequential composition- hiding, identities by
copycatstrategies, in the usual fashion, see e.g. [1,21]. In the presence of errors,
the composition and identity laws are better defined on sets of fixpoints, rather than
on strategies — just as in concurrent games [4]. Typically, the identity bas
fixpoints;

fix(ida) = {s € Py, Vt € Py tis prefix ofs = |4, = t|a,}

where the indiced, 2 indicate on which component of; — A, the playt is
projected. The composite of two strategies A — B andt : B — (C'is the
strategyr o o : A — C whose set of fixpointfix(7 o o) is given by:

{8 S leioc ‘ dt € (MA + Mp + MC>*,t|A,B S ﬁX(O’),t|B7C € ﬁX(T),tM,C = 8}

where(M 4+ Mg+ Mc)* denotes the set of finite strings (=words) on the alphabet
My + Mg + M.

The categong®™ is symmetric monoidal closed, with tensor proddct B of two
sequential gamed, B defined as the sequential game obtained by "freely inter-
leaving” the plays ofA and B:
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o Magp = Ma+ Mpandiags = [Aa, Agl,
e aplay ofA ® B is a string of moves i/, 5 such thats 4 € P4 ands|p € Pp.
The monoidal unit is the game with an empty set of moves.

7.2 The categoryl®™ of alternated games (error-aware)

The categoryA®™ is an error-aware variant of the category of negative alternated
games generally considered in the litterature, typically in [1,26,15,21,5]. The cate-
gory A" is defined as the full subcategory of alternated gamg8inThe resulting
categoryA“™ is not a submonoidal category §f", since the tensor product of two
alternated games iA“"" may not be alternated. But fortunately, the categéfy
is the “intersection” of a reflective subcategory and a co-reflective subcategory of
ger, and the monoidal structure g may be deduced from that. Let us explain
this point below.
Call a sequential game OP-alternated (resp. PO-alternated) when only Player (resp.
Opponent) may play two successive moves in a play of the garfiée full subcat-
egory of OP-alternated games is reflectivgifi: every strategyl — B to an OP-
alternated gam® factorizes asi — T(A) — B in a unique way, wherg'(A)
is the OP-alternated game obtained frdrby removing every play containing two
successive Opponent moves, attd— T'(A) is the obvious error-free copycat
strategy. Dually, the full subcategory of PO-alternated games is coreflective, with
counit D(A) — A the copycat strategy betweehand the PO-alternated game
obtained by removing every play containing two successive Player moves in
The categoryAd®™ is symmetric monoidal closed, with tensor and closed structure
deduced from their counterpart §i"*, as follows. LetA and B denote two alter-
nated games:
e their tensor product ®,. B in the categoryl®” is the alternated gani& A® B),
e their closed structurd —,; B is the alternated gam@(A — B),
¢ the monoidal units o§°™" andA™* coincide.
There is certainly more to say about the categorical situation: for instance, the
monad7’ distributes over the comonad in the sense of [35,33], the distributive
law )\ : TD = DT being just the identity; and the categofy™ is precisely the
category of\-bialgebras. An axiomatic account in the vein of [6] would be interest-
ing, but beyond the scope of this article. We indicate only what is needed to build a
linear coercion betwee§g ™ andA"".
We write U : A" — G for the inclusion functor andlt : " — A"
for the functor which transports every morphisim A — B to the morphism
DT(f): DT(A) — DT(B). These two functors define monoidal functrsm)
and(alt, n) with mediating natural transformations:
e muyp: A® B — A ®,: Bis the unit ofT at instanced ® B; andm; is the
identity of 1 = U(1);
o nyp : alt(A) @ alt(B) — alt(A ® B) is the obvious error-free copycat
strategy restricted to the plays oft(A) ®, alt(B); andn, is the identity of
1 = alt(1).

26



Every morphisnmy : 1 — B in the categong®” is a strategy of3, thus a set of
alternated plays oB. It follows that the diagram below commutes:

1 z B
alt(o) lCB
alt(B)

for (g : B — alt(B) the obvious error-free copycat strategy. On the other hand,
the functor(alt o U) coincides with the identity functor of the categot§™. Thus,

the family (€4) = (id4) of identities indexed by alternated games, and the family
((p) indexed by sequential games, define two monoidal elementwise transforma-
tions¢ : Id = alt o U and( : Id = U o alt in the sense of definition 8 — see also
diagram (14).

7.3 The categorie§ and A of sequential and alternated games (error-free)

We writeG and.A for the subcategories of error-free strategies in the categéties
andA°" respectively. The two categori€sand.A are symmetric monoidal closed,
their structure being inherited in each case from the surrounding catggdand
Aerr.

7.4 Three models on alternated games (error-aware + error-free)

Each categoryl®™ and.A gives rise to three models of intuitionistic linear logic,
which differ only in their interpretation of the exponential modality, either as the
backtracking !°*, the repetitive non uniform!™ or the repetitive uniform!u
exponential. Each exponential structub& and !"™* and !""f expresses a particular
memory or uniformity paradigm, which we recall briefly now.

The backtracking exponential !°* is defined by Lamarche [26] on the category
A, but is easily adapted to the error-aware settingltif. The reader is advised

to follow the presentation of Lamarche’s work by Curien [15,5]. The model of
intuitionistic linear logic induced byl and ! linearizesthe sequential algo-
rithm model of PCF [9], in the sense that the co-kleisli category associated to the
comonad !** embeds (as a model of PCF) in the category of concrete data struc-
tures and sequential algorithms. Similarly, the model of intuitionistic linear logic
based omd°™ and !°* linearizes an error-aware variant of the sequential algorithm
model, already formulated by Cartwright, Curien and Felleisen in [14]nibgi-
festly sequential functiomodel of PCF — with exactly one error. The associated
hierarchy of types — which we call threanifestly sequentidierarchy — isexten-
sional This important fact reappears in corollary 22.

The repetitive non uniform exponential ! is defined by Hyland in his course
notes on game semantics [21]. Like the exponentt, the exponential!™t is
defined on the category but is easily adapted to the error-aware setting 8f. In

the sequential gami*« A defined by Lamarche, Opponent has some kind of “mem-
ory” of the past, and thus does not need to ask Player the same question twice in the
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course of the interaction. Instead, Opponent sinfyalgktrackgdo Player’s previous
answer to the question. In contrast, in the sequential gétné, Opponent does not
memorize Player’'s answer, and thus asks Player the same question as many times
as necessary. This “repetitive” style enables “non-uniform” behaviours by Player,

in which the same answer is not necessarily given to the same question repeated by
Opponent. Technically, the plays of the alternated gditid are defined in [21] as

the finite alternated strings over the alphabgt x N such that (i) every projection

overi € N is a play inA, and (ii) the first move in thé:; + 1)-th copy is made

after the first move in théth copy. The resulting game models are closer to arena
games: in section 7.5, we observe that, once adapted to non-alternated games, the
exponential!™* linearizes a well-known arena game model of the litterature.

The repetitive uniform exponential !“"f is a variant of the exponential™t in

which copies are regulated by a “uniformity” principle. A play ¢f*A is called
uniformwhen there exists a strategyof A, such that every projectios); € P,

is element ofr. The alternated gamé'" A is simply defined as the gamgrtA
restricted to its uniform plays.

Linear coercions between the exponentialg®t« and ! and !""f may be exhib-

ited in each categorl** and.A, inducing in each case two families of embedding-
retraction pairs indexed by alternated games

btk 4 —T4> qunif 4 45 btk 4 punif 4 "4 et g — s qunit 4 (21)

It follows from this and theorem 15 that in the error-aware setting:

Lemma 21 The backtracking, the repetitive non uniform and the repetitive uniform
error-aware sequential hierarchies are related by back-and-forth translations.

As already noted, the backtracking sequential hierarchy is the manifestly sequential
hierarchy formulated by Cartwright, Curien and Felleisen in [14]. This hierarchy is
extensional, and it follows from lemma 6 that:

Corollary 22 The three error-aware hierarchies collapse to the manifestly sequen-
tial hierarchy.

It also follows from the linear coercions (21) and Ehrhard’s collapse theorem [17]
that in the error-free setting:

Lemma 23 The backtracking, the repetitive non uniform and the repetitive uniform
error-free sequential hierarchies are related by back-and-forth translations, and
thus collapse to the strongly stable hierarchy.

Remark.Because (21) exhibits embedding-retraction pairs and not just linear coer-
cions, the resulting back-and-forth translationseardedding-retractiopairs; that
is, both morphisms

[T]btk _ [T]unif _ [T]btk and [T]unif _ [T]rpt _ [T]unif
compose as identities. It is worth indicating briefly the action of the associated

projection map® = p o p andq = ¢ o ¢ on the elements dff"]'** and[T]""f. The
projection mag : [T]™* — [T]™* prunes out all “non-uniform” plays from the
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I""bool — bool
(1) *
2) (%0
(3) (true,0)
4)  (x1)
(5) (false, 1)
(6) false

Fig. 1. A “non-uniform” play in the interpretatiopi\/]"™*

1unifhool — bool
(2) *
@ (x0)
(3) (true,0)
@ (n1)
(5) (true, 1)
(6) true

Fig. 2. A “stuttering” play in the interpretatiofdv] "

strategies of7']™*. For instance, the play of figure 1 disappears after applyitoy
the interpretatio/]™* of the PCF-term:

M = if b then (if b then true else false) else true.
Similarly, the projection map : [T]*"f — [T]""f prunes out all "stuttering” plays
(as in figure 2) from the interpretatidiv]“"* of the PCF-termV.

N = if b then (if b then true else true) else true.
Finally, combining the action of the two projection magpsnd ¢ transports the
interpretation ofA and N in [o = o]™* to the interpretationP]"™* of the PCF-
term:
P = if b then true else true.

Note that these projectionsandq are very similar to the projections on cliques
described in our section 6.2 on coherence spaces.

7.5 Two models on sequential games (error-aware + error-free)

It is not difficult to adapt the two exponentialgt and !“"* defined on alternated
games in section 7.4 to two exponentid® and !“"f on general sequential games.
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In that way, each categoly** and g gives rise to a so-calledniform and non-
uniformmodel of intuitionistic linear logic. Note that the two exponential structures
It and 1""f are related by a linear coercion in each catedstyandg, in the same
way as in section 7.4.

Notations: For clarity’s sake, we writd®" for the exponential ™ in the categories
AT and A, and keep the notatioh™* for the categorie§*™ and§. The notation
1unif js retained in the four categorigs™, G°, A andg.

Remark.lIt is worth stressing that the error-free categg@ryf Conway games equip-

ped with the repetitive non uniform exponenti&f* linearizes a well-known and
particularly simple arena game model. Arena game models were introduced in or-
der to characterize PCF sequentiality by two constraints on strategies, called inno-
cence and well-bracketedness [22,32] . In a series of subsequent papers, Abramsky
and McCusker demonstrated that many programming mechanisms, like ground-
type reference, are captured in a fully abstract way, by relaxing some of these
constraints, see [3] for a survey. Eventually, by relaxing all these constraints but
single-threadednes#®\bramsky, Honda and McCusker [2] obtain a fully abstract
model of a programming language with general referentee ML, see also [20].

This model is precisely the arena game model linearized by the catggorg the
exponential!t. We establish below (lemma 24) that the single-threaded hierarchy
collapses to the strongly stable hierarchy, and that its error-aware variant collapses
to the manifestly sequential hierarchy.

We carry on our topography of models, and establish linear coercions between the
two models of sequential games based8hand§ described above, and the three
models of alternated games described in section 7.4. Instead of treating all models,
we focus on the two error-aware modaisandXN of intuitionistic linear logic over
a classK of constants, built respectively from the categories andG** and the
exponentiald?" and !"t. To fix notations, every constant typec K is interpreted:
e in M as an alternated ganmi¢, and a partial equivalence relatien, over the set

of strategiesA" (1, X,),
e in N as a sequential ganié and a partial equivalence relatie#). over the set

of strategieg** (1, ;).
We defined in section 7.2 two symmetric monoidal functérsm) : A" — G
and(alt,n) : g — A°" related by monoidal elementwise transformatigns
Id = alt o U and( : Id = U o alt. For every alternated gamé& and sequential
gameB, we let:

na:PU(A) — U( 1" A) op : 1™Malt(B) — alt(!"™'B)

denote the error-free copycat strategies restricted to the playg d¢fA) and
lltalt(B) respectively. We let the reader check that each famignd o defines
a distributive law in the sense of section 4.3, that is, that the two diagrams below
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commute, for every pair of strategies A andr : B.

wnyw, IPU(A) (alt(o))?t 1alt(B)

1 nA 1 0B

\ \

U (12 A) alt(e™) ™ alt (™' B)

We need to be more careful here about the constant tyge&” than in section 7.4
because the monoidal categories underlying the modedsdN are different.
Suppose that for every € K, X,, = alt(Y,) and that the two partial equivalence
relations~, and~, are the identity relations aA*"(1, X,;) = §°"(1,Y,). Define

the morphismyp, : X,, — Y, as the strategy with same plays as the identity on
X,, and the morphisng, : alt(Y,) — X, as the identity onX,.. In that case, one
obtains a linear coercion between the two modélandN. This implies that:

Lemma 24 The error-aware single-threaded hierarchy collapses to the manifestly
sequential hierarchy.

Similar results are established in the uniform case, as well as in the error-free uni-
form and non-uniform cases.

7.6 Error-free vs. error-aware models

We have established that all our game models collapse to exactly two extensional
hierarchies: the manifestly sequential hierarchy for the error-aware models and the
strongly stable hierarchy for the error-free models. There remains to connect the
two extensional hierarchies, by establishing that the manifestly sequential hierarchy
collapses to the strongly stable hierarchy when errors are not taken into account in
the base types.

To that purpose, we consider two modéis and N built respectively from the
categoriesd and A" equipped with the backtracking exponenti&k. We suppose

that every constant € K is interpreted in the two models as the same alternated
gameX, = Y, equipped with the partial equivalence relations defined as:

e ~, isthe identity overd(1, X,,),

e =, relates two strategies 7 € A" (1, X,;) exactly whereven(o) = even(7).

We write F' : A — A®" for the inclusion functor, and: : A°" — A for the
functor which transports every strategy: A — B to the error-free strategy
G(o) : A — B defined asfix(G(o)) = even(o). Note that every simple typ&

is interpreted by the “same” alternated game in the two mddlesdN, what we

may write: F'([T]) = [T] and that7([T]) = [T].

One difficulty now is that the pair of functo® and G (equipped with identities

as mediating morphisms) does not define a linear coercion in the sense of defini-
tion 10. More precisely, points 1, 3, 4 of definition 10 are verified, but not point 2
when it comes to the definition gf Indeed, one would like to defirg as the iden-

tity A — F o G(A) for every alternated gamé = F o G(A). Unfortunately, this

does not define an elementwise transformationd = F o (7, since the diagram
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below commutes in the categad™ only when the strategy : A is error-free:

/ A
1 |<A=idA (22)
F%\ A

So, we need to proceed in another way: we show directly that the pair of monoidal
functorsF' and G defines a back-and-forth coercion between the two hierarchies.
We prove slightly more in fact. The definitions of, and~,, imply that for every
constant type: € K and strategies, 7 € A" (1, X,):

or, T <= G(0) ~, G(1). (23)

We show below (lemma 25) that the equivalence (23) generalizes at every simple
type T in fact. Before starting the proof, we indicate two useful equations (24) and
(25) verified at every simple typE = U = V. First, for every strategies € [77]

andv € [U], we have the equality:

G(o-v)=G(o) - G(v). (24)

Then, by instantiating by F'(x) in (24) and by observing tha&t o F(u) = p, we
obtain the equality below for every strategies [T] andu € [U]:

G(o) - p=Glo- F(u)). (25)

Using these equations, we prove that for every simple #ype

Lemma25Vo, 7 € [T], o=r7 < G(0) ~r G(7).

PROOF By structural induction on the simple tyggé We have already indicated
in (23) that the assertion holds at every base type K. Suppose now that the
assertion holds at instanééandV, and thatl’ = U = V. We establish that the
assertion holds at instan@eéin two steps: we prove first the implicatiges>) then
the implication(<=).

(=) Suppose that ~; T and consider any;,-equivalent pair of strategies i/ €
[U]. The strategie& o F'(1) andG o F'(i') are equal tq: andy respectively, and
thus ~-equivalent. It follows by induction hypothesijs=) on U, that the error-
free strategie$’(u) and F'(1') are~y-equivalent. Thus,

G(o)-n= G(o-F(n)) by equation (25) o andy,
~yv G(t- F(i)) byo =g 7, F(n) =y F(1/), induction hyp(=) onV,
= G(r)- by equation (25) o andy/’.

We conclude that?(o) - p andG(7) - i/ are~y-equivalent for every pair of -
equivalent strategigs, i/ € [U]. Thus,G(o) ~7 G(7).

32



(<) Suppose that two strategiesr € [17] verify G(o) ~r G(o), and consider
any pair of~-equivalent strategies v/ € [U]. The equivalencé(v) ~y G(V/')
follows from our induction hypothesis=-) onU. We have:

G(oc-v) = G(o)-G(v) by equation (24) o andv,
~y G(7)- G(V') by definition ofG(0) ~r G(7) andG(v) ~y G(V/),
= G(r-V) by equation (24) om andv/'.

We conclude by induction hypothesis=) onV thato - v ~y 7 - v/ for every pair
of ~y-equivalent strategieg v/ € [U]. Thus,o ~¢ 7. This concludes our proof
by induction. m

When added to the fact that the functien— G(o) is onto from the set of error-
aware strategiefl’] to the set of error-free strategi€s], lemma 25 implies that

the two hierarchie$—| and[—] collapse to the same extensional hierarchy. This
is the result we were aiming at in the section. But there is another interesting fact.
Equation (24) together with the equalityo F' = Id, implies the equality below

for every strategies < [T andv € [T7:

G(F(o)-v)=0-G(v).

and thus:
G(F(o) -v)=G(F(oc-G))).
We deduce easily from lemma 25 that for every strategies|7] andv € [T7:

or~poandy =rv= F(o) v~r F(oc-Gv)). (26)

Now, we conclude from equations (25) and (26) that, if we shift towleaker
definition of back-and-forth translation indicated after definition 2 (section 3.1):
Lemma 26 The hierarchieg[—|, ~) and([—], ~) induced byV andN are related

by a back-and-forth translation.

We deduce from lemma 26, or more directly from lemma 25, what we claimed at
the beginning of the section:

Corollary 27 The manifestly sequential hierarchy collapses to the strongly stable
hierarchy when errors are not taken into account in the base types.

8 Conclusion

We formulate a series of categorical axioms which ensures that two models of in-

tuitionistic linear logic collapse to the same extensional hierarchy. We illustrate our

axiomatization on two families of models:

e cliqgue models based on either coherence or hypercoherence spaces, and their
gualitative or quantitative exponentials,
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e sequential games, based on either error-free or error-aware strategies, and on ei-
ther a backtracking, or a repetitive uniform, or a repetitive non uniform treatment
of exponential modality.

In the case of sequential games, we deduce a “topography” of models in which:

¢ all error-aware models collapse to the manifestly sequential hierarchy [14],

¢ all error-free models collapse to the strongly stable hierarchy [17],

e the manifestly sequential hierarchy collapses to the strongly stable hierarchy
when errors are not taken into account in the base types.

The topography enables to revisit and possibly refine the so-called Longley’s the-

sis [28] that every sufficiently expressive model of sequential computations col-

lapses to the strongly stable hierarchy. More, by revealing that the manifestly se-
guential hierarchy is an artefact deduced by “extensional collapse” from other

(more immediate) models of sequentiality, the topography provides a precious hint

in the ongoing quest for concurrency in games semantics: the exploration should

probably start from somewhere else.
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