Typed A-calculi with explicit substitutions may
not terminate

Paul-André Mellies *

Ecole Normale Supérieure, 45 rue d’Ulm, 75005 Paris, France
INRIA Rocquencourt, Domaine de Voluceau, 78153 e Chesnay Cedex, France
FWI, De Boelelaan 1081a, 1081 HV Amsterdam, Nederland
mellies@cs.vu.nl

Abstract. We present a simply typed A-term whose computation in the
Ao-calculus does not always terminate.

1 The Ao-calculus, introduction

Any effective implementation of the A-calculus requires some control on the
substitution to benefit from graph sharing [1] and avoid immediate size explosion.
The original A-calculus cannot describe these controls an easy way. The Ao-
calculus was introduced in [2] as a bridge between the classical A-calculus and its
concrete implementations. Substitutions become explicit, they can be delayed
and stored. The calculus provides a pleasant setting to study substitutions and
check 1mplementations.

The syntax of the Ao-calculus contains two classes of objects: terms and
substitutions. Terms are written in the De Brujn notation [3].

Terms a ::= 1|ab|Aala[s]
Substitutions s ::= id|t|a - s|s ot
The rule Beta is equivalent to the usual g-rule of the A-calculus. The other
rules, called o-rules, expose how substitutions are pushed inside the terms and
performed.

Beta (Aa)b — a[b - id)

Ap o (ab)ls] = alslbls

b (a)ls) = AalL(s o))
Clos als][t] = a[s o 1]

Map (a-s)ot —aft]-(sot)

Ass (s1 082) 083 — 81 0(s2083)

Varld 1[id] =1
VarCons 1la.s] = a
IdL tdos —s
Shiftld toid—1
ShiftCons to(a-s) = s

* This work was partly supported by the Esprit BRA CONFER.

When carried out inside the A-calculus, any reduction of a typed A-term
M reaches its normal form. Some Ao-reductions can mimic the A-reductions and
terminate too. Others can be more subtle and compute M in a non-standard way.
However, does any Ao-computation of a typed term normalise i1t? The question
was much debated and investigated with hopes for a positive answer. The major
clue was the strong normalisation of the o-rules which was proved effective in
[4] and then [5][6] on any Ac-term. It makes a non terminating Ae-computation
continually create and reduce new Beta-redexes, which seems to contradict the
typed structure of the term.

However, we present here a closed and simply typed A-term whose computa-
tion in the Aeo-calculus does not always terminate. The Ao-reductions are thus
not strictly bound to the A-reductions, which is a surprise.

2 Basic intuitions

Let M be the simply typed A-term Av.(Az.(Ay.y)((Az.2)x))(Aw.w)v). Like any
typed term its Ao-computation may normalise it. Next section, we show that it
may also not terminate.

Building such a non terminating strategy on M requires precision. The o-
rules enjoy strong normalisation on any Ac-term. The Beta-rule mimics the
G-rule whose computation on any well typed A-term strongly terminates. This
shows that non termination must come from thin interactions between the Beta
and o-rules. Let (Aa)b be a A-term and s a substitution on top of it. We study
next two natural strategies to reduce the root Beta-redex and begin the propaga-
tion of s.

One standard strategy begins to reduce the Beta-redex
((Aa)b)[s] — (a[b - id])[s] Beta
and then propagate the two substitutions s and (b - id) inside a using o-rules. Tf

carried on, the o-computation terminates on a A-term ec.

Another natural strategy begins with the two o-rules App and Lambda
in order to propagate s through the Beta-redex. We call s and s’ the two copies
of s by App.

((Aa)b) [s]
— ((Aa)[s]) b[s'] App
— (Aa[l -s01])) b[s'] Lambda

It then computes the root Beta-redex:

— a[l - s 0 1][b]s] - id] Beta

The two substitutions (1-(sot)) and (b[s] - id) are then propagated inside a
using o-rules. If carried on the process terminates again on the same A-term c.

The property of strong normalisation seems natural in both computations.
However, remark that the second strategy duplicates the substitution s with the
rule App. The duplications by App are safe to strong termination when carried
out within the scope of the o-rules. Intuitively, the duplicated substitutions then
are kept disjoint during o-reductions and cannot interact. We show next how
introducing Beta-redexes may combine two digjoint substitutions and provide a
potential non terminating strategy to the calculus.

The combining strategy begins with the two o-rules App and Lambda
which propagate s through the Beta-redex:

((Aa)b)[s]
= ((Aa)[s])o[s’] — App
— (Aa[1 - s o 1])b[s'] Lambda

We call sy = s. The situation is clear. The two substitutions 1 (s; o1) and
s’ stand over the two disjoint terms: a and b. The Beta-redex mixes them:

a[l - sy o1][b[s'] - id] Beta

The substitution 1 - (s1 o 1) still acts on a whereas (b[s] - id) and hence s’
may be propagated through a and also s; ot. The propagation begins with some
o-rules:

—a(1-s101) 0 (b]s'] - id)] Clos

— a[1[b[s] -id] - (s1 o 1) o (b[s'] - id)] Map

— a[b[s'] - (51 o) o (b[s] - id)] VarCons

— alb[s'] - s1 0 (to (b[s'] - id))] Ass (%)
—_——

$2

The rule Map duplicates (b[s']-id) and divides its propagation in two distinct
works. The first one is essential. It is devoted to substitute b[s’] in a via the
substitution of 1. The second one is superfluous. It intends to substitute b[s’]
inside s; o 1 although no variable in s is bound to b: sy is therefore vacuous.
Applying ShiftCons at that point would clarify the situation to a[b[s'] - (s1 0id)]
which roughly corresponds to a term obtained from ((Aa)b)[s] with the first
strategy:

— (alb - id])[s] Beta
— a[(b-id) o s] Clos
— a[b[s'] - (id 0 s1)] Map
— a[b[s'] - s1] IdL

Suppose that sq is ((Aa)b) - id. The substitution s; in (%) may then capture
the useless so with o-rules, and duplicate 1t:

s10 82 = ((Aa)b) -id) o so
— ((Aa)b)[sz2] - (id o 52)
=7 ((Aa)[s2])(Bs2]) - 5
— (Alafl - 52 01]))(b]s])
—>a[1 so 0 f][bso] -id] - s
—a[(L-s501) o (b[s2] -)]
— a[1[b[so] - id] - (s501) o ([52]
— a[b[ss] - (s2 0 1) o (b[s2] - id)] - s
— afb[sa] - 52 0 (10 (b[so] - id))] - s
——

$3

Map

App + IdL
Lambda
Beta

Clos

d)] -89 Map

VarCons
Ass

Let ¢ be any substitution. Call rec(t) = 1o (b[t] - id).

The substitution we obtain from s; o s contains the substitution ss o s3 =
sgorec(sz) as a subterm. More generally, s; = (Aa)b-id behaves like a duplicator:
any substitution s; o¢ may be computed to a substitution containing ¢ o rec(t).
If the substitution s, = rec(sy) behaves like a duplicator too then ss o s3 may
be reduced to a substitution containing s3 o rec(ss).

This sounds like the beginning of an infinite iteration. Let us call (sp)n>0
the sequence defined by s; and s,11 = rec(s,) and suppose that (s; o?) may be
reduced for any k to a substitution which contains ¢ o rec(t). The substitution
sk © Sg41 may be computed to a substitution containing sii1 o rec(sgy1) =
Sk+41 © Sk+2. The process may therefore be iterated for ever and provide a non

terminating computation of ((Aa)b)[s].

3 The counter-example

3.1 The proof

Let us introduce the sequence (s;);s0 of substitutions:

Definition

|
o
X
I

The further lemma describes how sy duplicates a substitution ¢ and nests its two

copies.

Lemma 1 Duplication Step. s; ot —T D;(t o rec(t))

Proof:

(A1) -id) ot

= ((AD)1)[t] -id ot Map

=2 (AL)[t]L[t] - ¢ App+ IdL

— (AL[L-tot])L[t] - ¢ Abs

— (1[1 -t of][L]t] - id] - ¢ Beta
1[(1~toT) (1[¢] - id)] - ¢ Clos

S A id) - (to1) o (1] -id) -t Map

=2 1[L[t] -t o (to (L[] -id))] -t VarCons + Ass

[
a =1[1[t] -t orec(t)] - ¢

The further lemma explains how s, captures any substitution ¢ step by step.
Lemma 2 Capture Step. rec(s) ot =1 Cy(sot)

Proof:
(to(L[s]-i
—to((1
—>To(1[

=240 (1

d)) o
[s] - zd)ot) Ass
5[][] (idot)) Map

t]-1) Clos + IdL
O

We use our two lemmas on s, 0 $,,41:
Sp 0 Spt1 = rec(rec(..rec(si))) o sp41 written with (n — 1) rec.
It may be reduced with a capture step:
-t Cs, . (rec(rec(...rec(s1))) o sp41) with (n — 2) rec.
...with (n — 2) capture steps more:
=% Cyi (Copyy (Cs, (510 8041))) with (n—1) Cy, 4, ().
...and the duplication step:

_>+ C8n+1 (C8n+1 ("'Csn+1 (D8n+1 (5”+1 © rec(5”+1)))))

= C8n+1 (C8n+1 ("'Csn+1 (D8n+1 (5”+1 © 5”+2))))

We obtain a substitution with (s,41 o 5,42) inside. It proves that the Ao-
computation of (s, o s,41) may keep on incrementing k& on (Sp4k © Snikt1)
and never terminate.

We give below an explicit report of the process. Let us write ¢ any function '
applied n times:

Proposition

Sk41 0 Spq1 =T Cyoyy (k0 Sny1)

Sp 0 snp1 = CI7l (s108041)

510 8p41 =T Dy, (Sng1 0 Snyo)

$p 0 Spt1 =T CP7l (Dys,yy (Sn41 0 Sn42))
51051 =1 Dy, (51 0 89)

o RN SR

Corollary The Ao-computation of (s1 o s1) may not terminate.

3.2 The term
Let M be the closed and simply typed A-term:

Av.(Az.(Ay.y)(Az.2)2)) (Aw.w)v)

It is translated in the De Brujn notation as:

ACAD((A1)1)) ((A1)1))

We show next that the Ao-computation of M may not terminate. Yet, many
Ao-reductions compute M to its normal form. For instance:

A(LAOD(ADL)) (A1))

A (AAD)(L[L - id])) (1[1-id]))) Beta + Beta
ACADL) 1) VarCons + VarCons
- /\((A(L[L-4d])) 1) Beta
—A((A1) 1) Varcons
= A(1[1-:d]) Beta
— Al Varcons

Proposition A((A(A1)((A1)1))((A1)1)) = A(1[s1 0 s1]).

Proof:
AAAD((A)1))((A1)1))
= A((A(L[(A1)1 -4d]))((A1)1)) Beta
= A(1[s1][(A1)1 - id] Beta
D—) A(1[s1 0 s1]) Clos

Theorem The Ao-computation of M may not terminate.

One should remark that the two rules Varld and IdL are used for clarity’s
sake. Six rules only are required for the example: Beta, App, Abs, Clos, Map
and Ass.

One can also check that similarly a non terminating Ao-computation may

occur on Av.(Az.(Ay.A)((Az.B)C))((Aw.D)E) with A-terms A,B,C|D,FE.

4 Conclusion

We give an example of a simply typed term whose computation in the Ao-calculus
does not always terminate. To our knowledge, the example cannot be avoided in
any system with explicit substitution and composition.

The Ao-calculus was designed to describe the actual implementations, not to
strongly normalise any typed term. The discovery that some gap exists between
the two things is an important result of the theory. It shows that a natural
implementation may have unexpected behaviours, which justifies the interest
for explicit substitutions.

New techniques should be investigated to avoid the cycling interactions between
the Beta-rule and the o-rules. Calculi without composition strongly normalise
on typed terms, see [7], but more power on substitutions is often required, at
least for confluence, see [8]. We believe that designing a calculus with composi-
tion of substitutions, confluence on open terms and strong termination on typed
terms is the right theoretical and technical goal.

References

1. C.P. Wadsworth. Semantics and Pragmatics of the Lambda Calculus. PhD thesis,
Oxford Universtity, 1971.

2. M. Abadi L. Cardelli P.-I.. Curien J-J. Lévy. Explicit substitutions. Journal of
Functionnal Programming, 1(4):375-416, 1991.

3. N. De Bruijn. Lambda-calculus notation with nameless dummies, a tool for auto-
matic formula manipulation. Indag. Mat., 34:381-392, 1972.

4. T. Hardin A. Laville. Proof of termination of the rewriting system subst on ccl.
Theoretical Computer Science, 46:305-312, 1986.

5. P.-L. Curien T. Hardin A. Rios. Strong normalization of substitutions. Lecture
Notes in Computer Science, 629:209-217, 1992.

6. H. Zantema. Termination of term rewriting by interpretation. Lecture Notes in
Computer Science, 656, 1993.

7. P. Lescanne J. Rouyer-Degli. The calculus of explicit substitutions Av. Submitted
to the Journal of Functionnal Programming, 1993.

8. T. Hardin, J.-J. Lévy, A Confluent Calculus of Substitutions, France-Japan Artifi-
ctal Intelligence and Computer Science Symposium, Izu, 1989.

This article was processed using the I#TEX macro package with LLNCS style

