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Abstract. Some computations on a symbolic term M are more judicious
than others, for instance the leftmost outermost derivations in the
A-calculus. In order to characterise generically that kind of judicious
computations, [M] introduces the notion of external derivations in its
axiomatic description of Rewriting Systems: a derivation e : M — P
is said to be external when the derivation e; f : M — @ is standard
whenever the derivation f: P — @ is standard.

In this article, we show that in every Axiomatic Rewriting System [M,1]
every derivation d : M — @Q can be factorised as an external derivation
e : M — P followed by an internal derivation m : P — Q. Moreover,
this epi-mono factorisation is functorial (i.e there is a nice diagram) in
the sense of Freyd and Kelly [FK].

Conceptually, the factorisation property means that the efficient part
of a computation can always be separated from its junk. Technically,
the property is the key step towards our illuminating interpretation of
Berry’s stability (semantics) as a syntactic phenomenon (rewriting). In
fact, contrary to the usual Lévy derivation spaces, the external derivation
spaces enjoy meets.

1 Motivations on two syntactic A-calculi

There are algebraic reasons behind the confluence of the A-calculus: [Lé] shows
that the category [C)] of derivations up to redex-permutationenjoys pushouts.
Our first move is to recall the construction of [Cy].

THE CONSTRUCTION OF [Cy]. The A-calculus generates a transition graph G,
whose vertices are the A-terms up to a-conversion, and whose arrows M — P
are the f-redexes from M to P. We recall that a 8-redex M — P is a couple
(M, 0, P) where o is the occurrence in M where the p-reduction occurs. The
category C, is the free category on this graph Gy:

1. its objects are the vertices of Gy,

2. its morphisms from M to P are the sequences (My, 71, Ma, -+, My, 7n, Mpy1)
where M;’s are vertices and r;’s f-redexes such that My = M and M, = P
and r; : M; — M;4q for every j. A morphismin C, is called a derivation,

3. composition of derivation is just concatenation. If d : M — P ande : P —
@, we write d; e their composite from M to @. In particular, the notation
71; -5 rp denotes the derivation (My, 71, Ma, -+ My, rp, Myi1).



The crux in the construction of [C)] is to identify the derivations from M to P
with the same computational content but different reduction orders. To do this,
Lévy introduces a permutation equivalence = which identifies the different de-
velopments of a set {u, v} of coinitial F-redexes. We recall that a development
of a set of coinitial B-redexes is a derivation which sequentialises their simul-
taneous reduction. In [Lé], the sequentialisation is formalised with a notion of
restdual which permits to trace S-redexes in the course of computation.

A redex permutation in the A-calculus can be of two species whose para-
digms are permutations (1) and (2):

v '@ v AP
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In the first permutation, the permuted (3-redexes u and v are disjoint. In the
second one, the G-redex u contains the other B-redex v. Anticipating Section 2,
the permutation (1) from v;u’ to u; v’ is declared disjoint because it permutes
disjoint redexes, and the permutation (2) from v;u’ to u;v1; v standardising
because it permutes the outer redex u before the inner redex v.

Lévy defines the permutation equivalence relation = as the least equi-
valence relation

1. which identifies the different developments of {u, v} for every couple (u,v)
of coinitial F-redexes,
2. which 1s closed under composition: if f = g for f,g: P — @ then dy; f;d> =
dyi;g;ds for every dy - M — P and dy : Q — N.
In other words, two derivations f and g are identified by = when a sequence of
permutations operates on f (to and fro) and transforms it into g.
The category [Cy] is defined as the quotient of C, by the equivalence relation =:
1. its objects are the A-terms up to a-conversion,

2. 1ts morphisms M — P are the derivations up to the permutation equival-
ence =.

The category [Cy] is not just a preorder category. The A-term I(7a) for I = Az.x
can be rewritten in two different ways to 7a, and these two computations are
mirrored in the category [C.].

PusnouTs. [Lé] shows that [C)] enjoys the pushout property. This result can

be read as follows: if M —5 P and M L5 @ in [Cy], then there exists two
morphisms f’ and ¢’ such that the following diagram commutes in [C,]:

T
\
P > N



and furthermore, if two morphisms f; hy and g¢; hs from M to O are equal in [C,]
(equivalence by permutation in C,), there exists a unique morphismh : N — O
(uniqueness up to = in C, ) such that the following diagram commutes in [Cy]:

M—1=Q

|,

p—Lan

Clearly, the confluence property of the A-calculus (the so-called Church-Rosser
property) is a direct consequence of the existence of pushouts in [Cy].

PLACARD. We claim that this pushout property is one of the most important
results obtained in the field of rewriting theory. From our point of view, it justifies
all further attempts to understand rewriting from a structural or algebraic point
of view.

Robustness is naturally reinforced by genericity: the same pushout construc-
tion is possible on any orthogonal rewriting system, with an analogous notion
of permutation equivalence, see [HL]. For more information on the later devel-
opments of this result (standardisation, normalisation, optimality), have a look

at [Lé,HL,K,Bo,Ba,GLM,CK,M].

MoTivATIONS. This paper is motivated by a negative observation: there seems
to be no simple adaptation of the pushout property to non orthogonal (in par-
ticular non confluent) rewriting systems. Consider for instance the Ay-calculus,
a A-calculus enriched with the operator + and the two rewrite rules:

P+@Q@—P P+Q —Q

The Aj-calculus is not confluent. Nevertheless; a notion of permutation equi-
valence = can be defined in the way of [Bo,CK,M] with a permutation on non-
conflicting redexes. Hence, a category [C4] of Aj-derivations up to = (or Lévy
permutation classes) can be constructed. Clearly, by non confluence, this cat-
egory does not enjoy pushouts. Consequently, it is natural to ask whether [C]
enjoys a weaker notion of pushouts: bounded pushouts.

BOUNDED PUSHOUTS. A span in a category C is a couple (f,g) of coinitial

morphisms. A span P L M -2 @ 1s bounded in C when there exists two
morphisms hy : P — O and hs : Q — O such that f; hy = g; ho:

M—>Q
fj

Y
) 23— >0



A category enjoys bounded pushouts when every bounded span has a pushout.

A COUNTER-EXAMPLE. We adapt an example of [Lé] and show that the category
[C4] does not enjoy bounded pushouts. In fact, let P «— M -5 @Q be the
following span in [C4]:

(A\z.Ka(zbR))K <~ (A\x.Ka(zb(R+ S)))K - (A\z.Ka(xbS))K

where R and S are two different normal forms, » and s are the two conflicting
+-redexes from M, and K = (Az.\y.z). The span P «— M — @Q is bounded
in [C4] despite the critical pair formed by r and s. In fact, it is bounded twice.
On one hand r; hy = s; hs when hy and hs are the two following derivations:

hi: P — (Az.a)K ha 1 Q@ — (Az.a)K
On the other hand r;i; = s;75 when i; and ¢35 are the two following derivations:
iy : P— Ka(KbR) — Kab ip: P — Ka(KbS) — Kab

So, we obtain two different commutative diagrams in [C4]:

f\j lfw f\j liz
P — (/\a:.a)K P Z—1> Kab

Observe that each derivation hy, hs, i1 and is represents a minimal procedure
to erase R or S. What minimal means here is that any (hypothetical) pushout
diagram:

M —

Q
fj PO lf’
P

g'N

would induce commutative diagrams:

M—1=0

Kab

where h and 7 would be isos, with the consequence that (Az.a)K and Kab are
isomorphic in [C1], which is impossible because the identity morphisms are the



only isos in [C1]. We conclude that P <~ M -2+ @Q is a bounded span without
a pushout ! and that the category [C.] does not enjoy bounded pushouts.

An aside: The category specialist unhappy with the notion of bounded push-
outs should verify that the slice category ([C4])a) does not enjoy pushouts either.
This will convince him that the malicious phenomenon above cannot be overcome
with a categorically more satisfactory apparatus than bounded pushouts 2.

DIirRECTIONS. Well, observing that the category [C4] does not enjoy bounded
pushouts is a bit depressing, but there is still some hope that an interesting
subcategory of [C4] enjoys them. In particular, our counter-example arises from
the possibility of erasing two unnecessary and conflicting derivations r and
s. What would happen if we restrict our investigation to a class of necessary
derivations in [C4]7?

At this point, we decide to extend our scope (forget the Aj-calculus!) and de-
velop our analysis in the framework of Aziomatic Rewriting Systems (ARS).
Introduced in [1], ARSs are transition systems (or abstract rewriting systems)
equipped with a notion of concurrence and duplication in the spirit of Concur-
rent Transition Systems [S]. A wide range of orthogonal and non orthogonal
Rewriting Systems can be modelled as ARSs, in particular first order term re-
writing systems, the A-calculus, the A -calculus, the call-by-value A-calculus, the
Ao-calculus, combinatory reduction systems, interaction nets or the w-calculus.
Because we work in ARSs from now, all theorems in the sequel apply generically
to any of these calculi. In particular, we define in every ARS a subcategory [€]
of external derivations and prove that it enjoys the bounded pushout property
— thus solving in every ARS the problem we motivated in the Ay-calculus.

STRUCTURE OF THE PAPER. Section 2 introduces Axiomatic Rewriting Systems
and explains the derived notions of standard and external derivation. The
categories [C], [€] and [M] are defined. A summary of the paper’s results is
provided at the end of the section. Section 3 introduces a 2-categorical notion of
oriented 2-pushouts, a precious tool to prove subsequently [section 3.2] that
[£] enjoys bounded pushouts in every Lévy permutation category [C] constructed
from an ARS (G, 1>), [section 3.3] that [£] and [M] are orthogonal subcategories
of [C]. An ingenious characterisation of the factorisation systems defined in
[FK] is given in Section 4 and subsequently applied to prove that ([£], [M]) is
a factorisation system in every Lévy permutation category [C] constructed from

an ARS.

! Another simpler example suggested by Vincent van Qostrom (private communica-
tion) is the bounded span F'(A, B) +— F(A, A) — F(A, C) in the first order rewrit-
ing system whose rules are A — B, A — C, F(B,z) — B and F(C,z) — C.
In posets, bounded pushouts correspond to bounded binary joins z V y and pushouts
in ([C4+)}a) to binary joins z V, y in the principal ideal {z,z < a}. The first notion
is stronger than the second one since -1- the existence of x V y implies the existence
of x V4 y whenever x < a and y < a, with in that case x V, y =  V y, and -2- when
z V y does not exist the existence and value of x V, y may depend on a.



2 Axiomatic Rewriting Theory

In Section 1, we shew that the Lévy pushout construction is difficult to extend
from orthogonal to non orthogonal rewriting systems. The example of the A -
calculus bears evidence that only a subcategory of well-behaved computations
can enjoy bounded pushouts.

Here, we generalise our prospect and introduce Axiomatic Rewriting Sys-
tems (ARS) to describe there -1- the generic construction of a category [C] of
derivations up to Lévy permutation equivalence, generalising in this the construc-
tions above of [Cy] and [C4], -2- the generic standardisation theorem obtained
in [GLM M, 1], -3- the generic construction of a subcategory [£] composed of the
external morphisms in [C].

ARS. An Axiomatic Rewriting System is defined in [1] as a couple (G, >) com-
posed of:

1. a graph G = (T, R, 9y, 01) where T is a set of terms, R is a set of redexes,
Oy : R — T and 01 : R — T are respectively the source and target
functions. We write M —— N when dou = M and d1u = N,

2. a binary relation > between coinitial and cofinal paths of G.

We recall that a path in a graph G is a sequence
(Ml, Uy, Mz, ceny Mm, Uy Mm+1)

where M; % M4 for every i € [1...m]. When m = 0, the path (M) is said to
be empty. Two paths (My,u1, ..., um, My ) and (N1, v1, ..., v, Nyy) are coinitial
(resp. cofinal) when My = Ny (resp. My, = N,). In the sequel, paths are also
called derivations to follow the Rewriting terminology.

Many concrete Rewriting Systems can be modelled as an ARS (G, >). For
instance, the A-calculus:

— the graph G is the transition graph of the calculus, in that case Gy,

— the relation > mirrors the oriented redex permutations of the calculus. By
oriented permutations we mean either (1) disjoint permutations from u; v’ to
v;u', (2) standardising permutations from v; u’ to u; f (where the derivation
f reduces the copies of v through ). In this case, (1) and (2) are mirrored
by relations v; o’ 1> u;v" and v;u’ > u; f in the ARS (G, >).

Many important concepts in Rewriting Theory are expressed in (G, >) without
referring to the concrete underlying calculus. For instance, a disjoint (resp.
standardising) permutation is formally defined in (G,1>) as a couple (f, g) of
(coinitial & cofinal) derivations such that f > g and g > f (resp. f > g but not
g > f). A one-step oriented permutation from d to e is defined in (G,>) as a
quadruple (dy, f, g, d2) such that f > g, d = dy; f;d2 and e = dy; g; da.

Thence, every ARS (G, 1>) gives rise to a 2-category C whose carrier is C, the
free category on G:



1. C’s objects are the vertices of the graph G,
its morphisms f : P — @ are the derivations from P to @,
3. 1ts 2-cells a : f = ¢ are the sequences of one-step oriented permutations, up

to disjoint permutations 3.

[\

Lévy permutation equivalence = can also be expressed in (G,>) (or in the 2-
category C) as the least equivalence relation containing =. In fact, the equi-
valence classes of = correspond exactly to the connected components of the
hom-categories C(P, Q). The category [C] is thence defined as the quotient of
C by =. The canonical functor [-] from the free category C to the category [C]
transports a derivation d to its Lévy class [d]:

[]:C——[C]

STANDARD DERIVATIONS. A derivation d in (G,>>) is called standard when
no standardising permutation appears from d after any sequence of disjoint per-
mutations. The derivation d is thus a =-normal form up to disjoint permutations:
if o : d = e then « is a sequence of digjoint permutations.

Ten elementary axioms are introduced in [1] to establish the standardisa-
tion theorem which states that there exists in every Lévy class = a unique
standard derivation, up to disjoint permutations. Every standard derivation is

therefore a canonical representative of its Lévy permutation class.

Assumption: The ten axioms are so important that we integrate them in the
definition of ARSs and consider from now that every ARS (G, >) verifies them.

The standardisation theorem can also be expressed as a property of the 2-
category C.

Theorem 1 ([M,1]). Every 2-category C constructed from an ARS (G, 1>) can
be enriched to a standardisation 2-category (C,||) — see definition 2.

Definition 2. A standardisation 2-category C is a 2-category equipped with
an unary operator |} on morphisms such that:

1. Ye : P — @, if d = e then there exists a unique 2-cell a : e = |4,
2. if there 1s a 2-cell a : g = e then a 1s a 2-is0: |4 ~ e.

To express this in the categorical idiom, |4 is a strong terminal object in the
2-connected component of C(P, Q) which contains d.

We recall from [1] that two derivations f, ¢ : P — @ are 2-isomorphicin C (i.e
there exist 2-isos a : f = g and a™! : g = f) if and only if there is a sequence of
disjoint permutations from P to . We write f ~ g in that case. Observe that
assertion 1.in Definition 2 implies that |4 is unique in its connected component,
up to disjoint permutations: if d = e then {4 ~ ..

# To be honest, up to disjoint permutations and a bit more, see [1] for details.



We usually call C the derivation category, C the 2-category and [C] the Lévy
permutation category of the ARS (G, 1>) they mirror.

EXTERNAL DERIVATIONS. That a standard derivation stands among the very
best computations in its Lévy permutation class does not mean that it is judi-
cious at all. In the A-calculus, the derivation Ka(lz) — Kaxz is standard but
cannot be judicious because its Lévy class itself is not judicious. We have to find
a stronger criterion than standardness to characterise the good computations of
a calculus. [M,2] propounds the following criterion. A derivation e : M — P
is called external when the derivation e; f : M — @ is standard whenever
f: P —Q is standard.

In the A-calculus for instance, the head-redex (Az.M)N — Mz := N] is
external but not the redex u : I(Az.M)N) — I(M[z := N]) because the
derivation w; f where f: I(M[x := N]) — Mz := N] is standard:

wy f o I(Ae.MYN) — I(M[z := N]) 2 M[z := N]

can be standardised to:
Jug: I(Ae. M)N) — (Ae.M)N — M[z := N]

We observe in [M,2] that the composite d;e : M — @ of two external deriv-
ations d : M — P and e : P — @ is also external (immediate from the
definition). Consequently, the external derivations form a subcategory & of the
derivation category C. Another point: In every Axiomatic Rewriting System, ex-
ternal derivations are standard, therefore all standard normalising derivations
are in &£ (very easy). For these two reasons, we claim in [M,2] that £ is the
category of well-behaved computations (but are you convinced?)

EXTERNAL Vs INTERNAL. However, the category £ is a subcategory of C and
some translation is required to transport it to a subcategory of [C]. The category
[£] image of € under [-] is called the subcategory of external morphisms in [C].

The notion of external derivation has a dual. A derivation m : M — @ is
internal when the derivation [e] : M — P is iso whenever ¢ € £ and m =e; f.
To express this another way, a derivation is internal when it contains no external
derivation up to =. M denotes the class of internal derivations (unfortunately
we do not know yet that M is a category, this will be proved in the sequel). Of
course, the image [M] of M under [] is a class of morphisms in [C].

SUMMARY OF THE RESULTS. In this paper, we show that [£] enjoys bounded
pushouts in every ARS and consequently solve the problem opened at the end of
Section 1. To speak the truth, we prove something more fundamental perhaps.
We show that ([£],[M]) forms a factorisation system in the sense of Freyd
and Kelly [FK]. This robust property means:

1. that [£] and [M] are categories,
2. that every morphism f can be factored as f = e; m with e € [£]and m € [M],



3. that this factorisation is functorial: if (e;m);v = u; (f;n) where e, f € [£]
and m, n € [M], there is a unique w rendering commutative the diagram:

M—anN-"T.p

1

M —— N/ —— P/
We mention some important consequences of the factorisation theorem:

- if ey;eq € [€] then ey € [£],

- if my; my € [M] then my € [M],

- [€] is closed under pushouts and [M] is closed under pullbacks,
the fibered coproduct of e, : A — By, is in [£] if each e, is in [£].

ORTHOGONALITY. One guiding idea in [FK] is that two morphisms can be or-
thogonalin a category C. A morphism e is orthogonal to a morphism m when
for every commutative diagram:

M Q

Ul l’U

P—N

€
—_—

there is a unzque morphism w rendering the diagram:

M—Q

P—N

commutative: e;w = u and w; f = v. In that case, we write e L. m. Beware: the
relation L is not symmetric.

If X is a class of morphim in a category C, we write X'+ the set of morphisms
m such that 2 L m for every z € X, and X" the set of morphisms e such that
e L x for every # € X'. We say that two classes X' and Y of morphisms of C are
orthogonal when X+ > Y or (equivalently) when X C V.

3 A 2-categorical proof that [£] enjoys bounded pushouts

This section is concerned with a proof that [£] enjoys bounded pushouts. The res-
ult is obtained from 2-categorical considerations on oriented pushout diagrams
in the 2-category C constructed from (G, >). This detour through 2-categorical
techniques should not be a surprise. It testifies that the standardisation struc-
tures behind the construction of the Lévy category [C] cannot be neglected during
the analysis of non orthogonal ARSs.



3.1 Oriented 2-pushouts

ORIENTED PUSHOUTS. An oriented (f, g)-pushout diagram (written OPO in
the diagrams) in a 2-category is a diagram

M—1=0Q

fj orPo |f’
P

—_—
I

g
such that:

1. thereisacell o : g; f' = f:q',

2. for every two morphisms hy : P — O and hy : Q — O, if there is a cell
8 : g;hs = f;hy, then there exists a morphism h : N — O and a cell
~ :hy = f’; h such that hy = ¢’; h.

M —

- Q
I
p—2

%N

ha

3. Moreover, if h' is another morphism such that hy = ¢’; ' and hy = f/; B/,
then h = h’. We call this last requirement the universality condition.

Observe that the definition (point 2.) is not symmetric. This justifies our tax-
onomy of oriented pushouts: in general, a (f, g)-pushout is not a (g, f)-pushout.

Lemma 3 (Horizontal Pasting). .

M1 g1 Mz Mz g2 M3 M1 g1;92 M3
If fl OPO lf’ and f’l OPO lf” then fl OPO lf”
Pl —— P Py —— P53 Pl ———P3
g1 9a 91592

Proof. We use the traditional technique of diagram chasing. Let us call (A) and (B)
the two first O-pushout diagrams.

First of all, observe (by cell composition) that g1;g2; f" = fi91;92.

Then, let there be two morphisms hy : P — O and hy : Ms; — O and a cell
B g1;92,he = fihi. We will show the existence of a morphism h : Ps — O and
acell v :hy = f”;h such that hi = g1;g5;h. By diagram chasing on (A), there is a



morphism ¢: P — O and a cell 41 : g2;ha = f';4 such that h1 = g1;4. The existence
of 1 permits to chase on (B) and deduce that there is a morphism h: Ps — O and a
cell 45 : hy = f"; h such that 1 = g5; h. The morphism h then verifies the two expected
conditions: hy =g1:g5h and v = 2 : ho = f"; h.

M1L>M2 M2L>M3

f”l

We show the universality condition on h. Let h' be another morphism such that
hi = gi:95:h and he = f”;h'. The cell B : g1;g2;ha = f;h1 permits to apply the
universality condition on (A) and deduce g3;h =1 = g5; h’ from the relations:

g1;(ghsh) = ha = gi; (g5 1)
I'5(92:h) = g2 (f"s h) = g2sha = go; (f'5h') = f'5 (925 h')

Because g2; ha = f';4, we can apply the universality condition on (B) and deduce from

ga;h =g B’ proved above
f"sh=ha = f”;h' hypothesis

that h = h’. We conclude. |

Lemma 4 (Vertical Pasting). Suppose that (C,|}) is a standardisation 2-cate-
gory whose morphism fo is external.

My, L P My —L > p, M, —L= p,
If fll OPO lf{ and le OPO lf; then fl;le OPO lf{;fé

M27>P2 My ———= Ps M37>P3

1

Proof. Less traditional than lemma 3 because we use the fact that f> is external. Let
us call (A) and (B) the two first O-pushout diagrams.

First of all, observe that g; f1; f+ = fi; f2;9" by vertical composition of the cells
underlying (A) and (B).

Suppose the existence of two morphisms hy : Ms — O and he : P — O and
of a cell B : g;ha = fi; fa;h1. We construct a morphism h : P — O and a cell
v : ha = f{;fs;h such that hy = g¢"”;h. By chasing on (A), there is a morphism
t: P, — O and a cell v1 : ha = f{;1 such that fo;h; = ¢';i. Because f2 is external,
the morphism fo; p, is standard, hence g’;i = fa;{n,. This allows to chase on (B)
and deduce that there is a morphism h : P» — O and a cell y2 : ¢ = f3;h such that
Un, = g";h. We deduce from the equivalence h1 = {5, that h verifies the existential
conditions of oriented 2-pushouts: by = ¢”;h and v : ho = f{; f3; h, with ~ the vertical
composite of the cells v1 and ~2.



M1—9>P1 M2L>P2

We show that the morphism h is unique up to =. Let h’' : Ps — O be another
morphism k' : P — O such that ¢";h = hy = ¢”;h’ and fi; f3;h = ha = f1; 5, k.
The existence of a cell g; ha = fi; f2; h1 permits to apply the universality condition on
(A) and derive the equivalence f3;h =i = f3;h' from

g5 (f2:h) = fai (9" h) = fos (") = /s (f2;0)  and 15 (f2h) = f15(f2; 1)
Because ¢';4 = fo;n,, we can apply the universality condition on (B) to establish
h =h' from

g h=h=4¢";h and fo;h=fs:h
We conclude. |

Lemma 5. Let (C,}) be a standardisation 2-category. Ife : M — P is external
in an oriented (e, f)-pushout diagram of the form

M Q
e\j OPO le’
P

then ¢’ : Q — N 1is external too.

Proof. Easy. Let h: N — O be any morphism. We will show that e’; 5 ~ {}./,;, and
conclude. Consider the following diagram:

HN\
\
fileon=fiesh=e f'sh

implies the existence of a cell f; ..., = ./, Because the derivation e is external,
Ue;p1,n > €5, and we deduce the existence of a cell

The series of equivalence

v:fillenn = e dpin



The existence of 4 allows to chase on the O-pushout diagram and deduce the existence
of a morphism 1 such that

‘Ue’;h = 6/;i ‘Uf’;h = f/7l (1)

The equivalence e';h = €’;4 and f';h = f';4 follow (1). By universality, the equivalence
h =i follows. The definition of a standardisation 2-category tells that {}; is termanal
in its connected component in C(N, O), in particular that there exists a cell 1 = {s.

We deduce from this and (1) that
‘Ue’;h = 6/;i = 6/;‘Uh

The definition of a standardisation 2-category tells also that ./, is strong in its
connected component in C(@, O), thus that ..., ~ €’; J». We conclude. |

3.2 Consequence 1 on ARSs: The subcategory [€] enjoys bounded
pushouts

We apply the 2-categorical results of section 3.1 to ARSs. First of all, we import
a lemma from [M]:
Lemma 6. Let C be the 2-category of an ARS (G,1>). Suppose that P +—

ML @ s a span i C and that r 1s a redex. If there exists two derivations hy, hy
and a cell v : f;ho = r; hy, then there exists an oriented 2-pushout diagram:

I
r

2<—8

I

r\j OPO

pP——
fl

where r' is either a redex or an empty derivation.
Proof. The property is a consequence of two results of [M]: the transitivity lemma
(see lemma 4.21) and the left-simplification or epi theorem (see theorem 4.58). MW

We use the Vertical Pasting lemma4 and lemma 6 to prove the following theorem,
a key step towards theorem 8.

Theorem 7. Let C be the 2-category of an ARS (G, 1>), and let P <— M AN Q
be a span in C. Suppose that e 1s external: e € £, and that there exists two
derivations hy and ho such that e;hy = f;hs. Then, there is an oriented 2-
pushout diagram in C:

!
—_—

M Q@
e\j OPO le’
PT)N

Moreover, the morphism €’ is external: ¢/ € £.



Proof. By induction on the number of rewrite steps in the external derivation e. First
of all, the equivalence e;h1 = f;hs and e € £ implies that f;hs = €;{n,. Suppose
that e = r; F for a redex r. The existence of a cell f;hs = r;(E;{n, ) permits to apply
lemma 6 and deduce that there is an oriented (r, f)-pushout. In particular, there exists
a morphism h : N' — O such that hs = r';h and h = E; {n,:

Because e € £, the right decomposition lemma, see [M,2], establishes that F € £. By
externality of E, F';h = FE;{,. By induction hypothesis, there is an oriented (FE, F')-
pushout diagram, which by lemma 4 can be pasted to the OPO-diagram above. We
conclude.

Externality of e’ is a corollary of lemma 5. |

Theorem 8 (bounded pushouts). Let [C] be the Lévy permutation category
of an ARS (G,1>) and let P «— M AN Q be a bounded span in [C]. If e is

external: e € [E], then there erists a pushout diagram of the form:

M—1>0

e\j e lel
P T) N
More over, the morphism ¢’ : Q — N 1is external: ¢’ € [£].

Proof. Fairly simple with theorem 7. The equality e;h1 = f;hz in [C] implies that
F,H, = F; Hy for derivations F, F', Hy and H; in the permutation classes e, f, hi
and h». Moreover, since e € [£], the derivation F can be chosen external: E € £. This
establishes the existence of a cell F'; H> = F;{x,. Henceforth, there is an oriented
(E, F)-pushout diagram in C:

E\J OPO l B
P——N
F

By externality of F, it should be clear that the diagram:

ej OPO le/

P——N

I



is a pushout in [C] for €’ and f’ the permutation classes of E’ and F’. Observe that e’
is external: ¢’ € [£], because, by theorem 7, E' € £. We conclude. |

3.3 Consequence 2 on ARSs: the classes [€] and [M] are orthogonal
in [C]

We use theorem 8 to prove that external morphisms and internal morphisms are
orthogonal in [C].

Corollary 9 (orthogonality). Let [C] be the Lévy permutation category of an
ARS (G,1>). If e € [£] and m € [M] then e L m.

Proof. Let the following diagram be commutative in [C]:
P—0

By theorem 8 there is a pushout diagram e;u’ = u;e’, and therefore a commutative

diagram:
M
P

|

e
I

e

with e’ € [£] and m = €’; h. Because m is internal and e’ is external by theorem 8, the
morphism e’ is an iso. This establishes that there is a pushout diagram of the form (we
write w = u'; (e')71).

’Ml PO lw
P P
idp
Observe that w;m = v and that w = w’ whenever e; w’ = u. The property e L m
follows. |

4 The factorisation theorem

4.1 Three equivalent definitions

This section is concerned with various (three) equivalent definitions of a factor-
isation system. The two first definitions appear in a seminal paper by Freyd and



Kelly, see [FK]. The third definition was specially designed * to apply on ARSs
and solve our specific rewriting problem: to prove that ([£],[M]) is a factorisa-
tion system of the Lévy permutation category [C].

REMARK. Sections 4.1 and 4.2 use C to denote a category, £ and M to denote two
classes of morphisms in C. Tn fact, we reuse the notations of [FK] and forget for
some time (except when explicitly mentionned) our rewriting theoretic meanings

of £ and M.

FACTORISATION SYSTEM. A factorisation system on a category C is a pair (£, M)
such that:

1. every morphism f in C can be factored as f = e;m withe € £ and m € M,
2. £Cc MY and M C &Y,

3. both & and M contain the isos and are closed under composition.

SECOND DEFINITION. Unfortunately, we cannot use directly the definition above:
we do not know yet that our class [M] of internal morphisms in [C] is a category.
There is another possibility: to use the following lemma, also appearing in [FK].

Lemma 10 ([FK]). Let £ and M be classes of morphisms in a category C.
(€, M) is a factorisation system if and only if:

1. every morphism f in C can be factored as f = e;m withe € £ and m € M,
2. &E=M" and M = &Y.

THIRD DEFINITION. Again, we cannot apply lemma 10 on ARSs, this time be-
cause we do not know if the equalities [£] = [M]" and [M] = [€]* hold in our
rewriting categories. So, we take the opportunity to establish another character-
isation of factorisation systems, see section 4.2 for a proof.

Lemma 11 (characterisation). Let £ and M be classes of morphisms in a
category C. (£, M) is a factorisation system if and only if:

every morphism f in C can be factored as f = e;m withe € £ and m € M,
EC M and M C &Y,

e € & and j iso imply that e; j € &,

m € M and j iso imply that j;m € M.

T Lete

To our knowledge, lemma 11 is the weakest characterisation of factorisation
systems in the literature. Section 4.3 applies the characterisation to establish
that ([£],[M]) is a factorisation system of the Lévy permutation category [C].

* 1 believed for some time that the third characterisation was mine. In fact, the result
was already known to some people as I could check later on the category mailing
list, look at [AHS,DT,T] for more information.



4.2 A useful characterisation of factorisation systems

This section 1s devoted to the proof of lemma 11. First of all, we prove that
simple and nice result:

Lemma 12. Let e be epi or m mono ore L m. Then
e;flm=f1lm
Proof. suppose that e; f L m. Let the diagram:

¥y sy

Yo ——> 7

be commutative. We may left compose it with e to obtain a diagram:

X0—6>X—f>Y1

Yo —— 2

By e; f L m, there exists a morphism w : Y7 — Y2 such that e; f;w = e;u and
w;m = v. We initiate a case study to show that f;w = u:

1. if the morphism e is epi: the two arrows f;w and u are equal,
2. if the morphism m is mono: f; (w;m) = f;v = u;m implies that f;w = u,
3. if the morphism e is orthogonal to m, then consider the commutative diagram

X0_6>X

N

Yo ——> 17

and conclude that u = w’ = f;w from the unicity of the arrow w’.

We show the unicity of w: suppose that f;x = w and z;m = v for a morphism
2 : X — Vs ; then e; f;w’ = e;u and therefore ¥ = w by definition of e; f L m.
Consequently the unicity of w is trivial.

We conclude that e L m. |

Lemma 12 may be dualised:

Lemma 13. Let m be mono or e be ept ore L m. Then
el fim=elf

Lemma 14 (Characterisation lemma 11). Let £ and M be two classes of
morphisms in a category C. The couple (£, M) is a factorisation system if and
only if:



every morphism f in C can be factored as f = e;m withe € £ and m € M,
EC M and M C &Y,

e € & and j iso imply that e; j € &,

m € M and j iso imply that j;m € M.

e to =

Proof. If (£, M) is a factorisation system then the four assertions are true. We will
prove that MT C £ and &+ C M to apply lemma 10 and show the converse. Let
t € M. This morphism may be factored in t = e;m with e € £ and m € M. Since
e € & and £ C MT we obtain that e € MT and hence e is orthogonal to any morphism
in M. That m € MT follows lemma 12.

In particular, the morphism m is orthogonal to itself and therefore m is iso. By
hypothesis 4., the morphism ¢ = e;m is in £ We conclude that £ = MT. The other
equation M = &% is proved dually. Lemma 10 shows that (£, M) is a factorisation
system. |

4.3 Consequence: The external-internal factorisation theorem in
every ARS

It is now easy to apply lemma 14 and prove the factorisation theorem 15 on every Lévy
permutation category [C] given by an ARS (G, >). Point 2. of lemma 14 is corollary 9.
Point 3. and 4. are immediate consequences of the fact that the only isos in [C] are the
identities.

Thus, we only need to prove the first point of the lemma, which means here that
every morphism F'in [C] can be factored as F; M with E € [£] and M € [M]. Because
every morphism F' in [C] is of the form [f] for f in C, we only need to prove that every
derivation f in C is Lévy equivalent to some e;m for e € £ and m € M.

The length of a derivation d is its number of rewrite steps. Let n be the length of
{}5. We say that a derivation e : M — @ is a prefix of d : M — Q (up to ~) when
there exists h : P — @ such that d ~ e; h. The length of a prefix of {5 being less than
n, there exists among its prefixes an external derivation e of maximal length. We show
that the derivation g which verifies f ~ e;g is internal. Suppose that [g] = [e']; [h]
for some external derivation e’. From that follows a series of equivalence g = e’; h and
f =e;9 = (e;€’; h) which induces by theorem 1 and e, e’ € £ that

Uf ~ Ue;e’;h ~ €§Ue’;h ~ (6§6/)§Uh

But £ is a subcategory of € and therefore e; e’ is an external prefix of |;. By definition
of e, the derivations e and e;e’ have the same length, hence €’ is iso (=empty). Thus,

g € M. Point 1. follows the [£][M]-factorisation F' = [e];[g] of F' = [f].

Theorem 15 (factorisation). The couple ([£],[M]) is a factorisation system
in every Lévy permutation category [C] constructed from an Ariomatic Rewriting
System (G, >).

In particular, every Axiomatic Rewriting System (G, >) (and related categories

C, [C], &, [€], M, [M]) verifies the three following properties:

1. the class M of internal derivations is closed under composition,
2. every morphism f in [C] (= permutation class) can be factored as f = e;m

with e € [£] and m € [M],



3. this factorisation is functorial: if (e;m);v = u;(f;n) where e, f € [£] and
m,n € [M], there is a unique w in [C] rendering commutative the diagram:

M—=N—"sp

1

M/—>N/L>P/

5 Conclusion

Duplication is the source of many conceptual and technical difficulties in re-
writing theory. To use an exzternal-internal factorisation and establish a non-
duplicating realm of external computations is a new® and promising idea. With
standardisation, 1t 1s one of the very few generic techniques available on non
confluent rewriting systems.

The factorisation theorem is the first explicit borrowing from category theory
in the author’s axiomatic exploration of rewriting systems. The robustness of
the property should convince other authors that categorical concepts can be
fruitfully imported to rewriting theory. It also justifies the abstract approach to
rewriting developed in [M], in particular the definition of external derivations.

Let us conclude the paper with a short survey of the interesting properties
of the category [£] of external derivations, interwoven with future directions.

— two external derivations e; and es equivalent by permutation: e; = ey are
also equivalent by disjoint permutation: e; ~ es,

— in the category [£], every morphism e is an epi: if €;eq =~ e;es, then ey ~ es;
and a mono: if e1;e ~ eq; e, then €7 ~ eo,

— every slice category (MJ[£]) is a partial order with bounded joins and
bounded meets. Reckon that the slice categories (M][C,]) called deriva-
tion spaces in [LéHL] are only U-semi-lattices because they do not have
meets. The existence of bounded meets in (M|[£]) shall be used in [4] to
establish a generic syntactic stability theorem.

— in important calculi like orthogonal first-order rewriting systems [HL], the
A-calculus [Lé] and the Ao-calculus [M,2], every external strategy normalises.
In particular, the external derivations from a normalising term M form
a complete rewriting system (i.e. confluent and strongly normalising). This
observation should help to apply homological techniques, see [La,LP], to
these frameworks.
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° But ideas of that nature already appear in a paper written by Boudol in the mid’80s,
see [Bo], where every computation is projected to its needed component.
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