
AN ASYNCHRONOUS SOUNDNESS THEOREM
FOR CONCURRENT SEPARATION LOGIC

PAUL-ANDRÉ MELLIÈS AND LÉO STEFANESCO

Abstract. Concurrent separation logic (CSL) is a specification logic for concurrent
imperative programs with shared memory and locks. In this paper, we develop a concurrent
and interactive account of the logic inspired by asynchronous game semantics. To every
program C, we associate a pair of asynchronous transition systems JCKS and JCKL which
describe the operational behavior of the Code when confronted to its Environment or Frame
— both at the level of machine states (S) and of machine instructions and locks (L). We then
establish that every derivation tree π of a judgment Γ ` {P}C{Q} defines a winning and
asynchronous strategy JπKSep with respect to both asynchronous semantics JCKS and JCKL.
From this, we deduce an asynchronous soundness theorem for CSL, which states that
the canonical map L : JCKS → JCKL from the stateful semantics JCKS to the stateless
semantics JCKL satisfies a basic fibrational property. We advocate that this provides a
clean and conceptual explanation for the usual soundness theorem of CSL, including the
absence of data races.

1. Introduction

A simple way to understand an imperative (possibly nondeterministic) program C is to
interpret it as a binary relation [C] ⊆ S × S between machine states s, s′ ∈ S. In that
approach, the statement s[C]s′ indicates that one execution trace (at least) of the program
C has initial state s ∈ S and final state s′ ∈ S. One practical advantage of this description
is that the binary relation [C] abstracts away from the execution traces of the program C,
and only retains their initial and final states. However crude, this abstraction is generally
sufficient to analyze the properties of sequential imperative programs, and to establish the
soundness of Hoare logic. Unfortunately, the abstraction becomes too coarse when one
decides to shift to concurrent imperative programs with shared memory and locks, and to
establish the soundness of a specification logic like Concurrent Separation Logic (CSL). To
that purpose, it has long been recognized that one needs a proper account of the execution
traces of the program C, see Brookes [Bro04]. In this paper, we go one step further, and
advocate that the soundness theorem of CSL, and more specifically the absence of data races,
is intrinsically related to the asynchronous structure of the execution paths of C. Inspired by
asynchronous game semantics, we interpret every concurrent imperative program C as a pair
of asynchronous graphs JCKS and JCKL related by an asynchronous graph homomorphism

LC : JCKS JCKL (1.1)

We thus start by recalling the notion of asynchronous graph [MM07; Mel17] before discussing
the relationship between time and space separation.

1

2 PAUL-ANDRÉ MELLIÈS AND LÉO STEFANESCO

Asynchronous graphs. A graph G = (V,E, ∂−, ∂+) consists of a set V of vertices or nodes, a
set of E of edges or transitions, and a source and a target function ∂−, ∂+ : E → V . An
asynchronous graph (G, �) is a graph G equipped with a binary relation � between paths
f, g : P � Q of length 2, with the same source and target vertices. A pair (f, g) such that
f � g is called a permutation tile and is depicted as a 2-dimensional tile between the paths
f = u · v′ and g = v · u′ as follows:

v

u

u´

v ´

(1.2)

The intuition conveyed by such a permutation tile u · v′ � v · u′ is that the two transitions u
and v are independent. For that reason, the two paths u · v′ and v · u′ may be seen as
equivalent up to scheduling. The binary relation � is required to satisfy the following two
axioms axiomatic properties below.
Axiom 1. The permutation relation � is symmetric, in the sense that u · v′ � v · u′ implies
v · u′ � u · v′ for all transitions u, v, u′, v′.
Axiom 2. In the situation below where u · w1 � v1 · u1 and u · w2 � v2 · u2, one has that
v1 = v2 if and only if w1 = w2.

v

u w

v

u w

Two paths f, g : M � N of an asynchronous graph are equivalent modulo one permu-
tation tile h1 � h2 when f and g factor as f = d · h1 · e and g = d · h2 · e for two paths
d : M � P and e : Q � N . We write f ∼ g when the path f : M � N is equivalent to the
path g : M � N modulo a number of such permutation tiles. Note that the relation ∼ is
symmetric, reflexive and transitive, and thus defines an equivalence relation, closed under
composition.

Separation in space and time. The 2-dimensional permutation tiles f � g provide a topo-
logical means to reflect the temporal nature of independence in concurrency theory. Every
permutation tile (1.2) indicates that the two transitions u and v are independent in time:
they may be equivalently executed in the sequential order u · v′ or in the sequential order
v · u′. Although all the asynchronous graphs considered in this paper are discrete, it is
enlightening to take the topological intuition of “homotopy” seriously, and to imagine that
the path u · v′ could be transformed “continuously” into the path v ·u′ by a sequence of local
deformations of the form

v

u

u´

v ´

as it would be possible if one embedded our asynchronous graphs (G, �) in the topological
framework of directed homotopy, see [Faj+16]. In the same spirit, we could replace our 2-
dimensional graphs by higher-dimensional automata admitting n-dimensional cubes [Pra91].

AN ASYNCHRONOUS SOUNDNESS THEOREM FOR CSL 3

Interestingly, in practical situations, the temporal independence of two transitions u
and v is not primitive: it is a consequence of their spatial separation. In that respect, the
idea of temporal independence may be seen as a layer of abstraction above the more concrete
and machine-dependent idea of spatial separation. We illustrate this basic but important
point by constructing an asynchronous graph (G, �G) based on a very simple machine model,
consisting of

• a countable set Var of variables, written x, y, . . . ,
• a countable set Val of values, written v, w, . . . ,
• a countable set Loc ⊆ Val of memory locations, written `.

A memory state µ = (s, h) of the machine is defined as a pair consisting of two partial
functions

s : Var ⇀fin Val h : Loc ⇀fin Val (1.3)
with finite domains, called the stack s and the heap h of the memory state µ. The
instructions m of our machine are of three kinds:

x := v x := [`] [`] := x (1.4)
where (1) the instruction x := v assigns a value v to the variable x, (2) the instruction x := [`]
loads the value h(`) at location ` and assigns it to the variable x, and (3) the instruction
[`] := x stores at location ` the current value s(x) of the variable x. The asynchronous graph
(G, �G) is defined in the following way. Its nodes are the memory states (1.3) of the machine,
and its transitions are of the form

(s, h) (s′, h)x:=v when s′ = s{x 7→ v},

(s, h) (s′, h)
x:=[`] when h(`) is defined and

s′ = s{x 7→ h(`)},

(s, h) (s, h′)
[`]:=x when s(x) is defined and

h′ = h{` 7→ s(x)}.
Here, we use the following convenient notation: given a partial function f : X ⇀fin Y with
finite domain between two sets X and Y , and an element y ∈ Y , we write f{x 7→ y} :
X ⇀fin Y for the partial function with finite domain defined as

f{x 7→ y} : x′ 7→
{

f(x) when x′ 6= x,
y when x′ = x.

In order to define the permutation tiles of the asynchronous graph (G, �G), one observes
that every transition

u : (s, h) (s′, h′)m

performed by an instruction m reads and writes on a specific area
rd(u) ⊆ Var+ Loc wr(u) ⊆ Var+ Loc

of the memory of the machine, which we shall call its footprint. This footprint may be
computed from the instruction m performing the transition u = (µ,m, µ′) in the following
way:

4 PAUL-ANDRÉ MELLIÈS AND LÉO STEFANESCO

rd(x := v) = ∅
wr(x := v) = {x}

rd(x := [`]) = {`} rd([`] := x) = {x}
wr(x := [`]) = {x} wr([`] := x) = {`}

Now, suppose given two transitions u : µ → µ1 and v : µ → µ2 starting from the same
memory state µ in the graph G. The two transitions u and v are declared independent when

(rd(u) ∪ wr(u)) ∩ wr(v) = ∅ and wr(u) ∩ (rd(v) ∪ wr(v)) = ∅.
Note that the independence of the transitions u and v is a consequence of their spatial
separation. It is not difficult to see that for every pair of such independent transitions

u : µ1 µ2
m1 v : µ2 µ3

m2

there exists a unique memory state µ′
2 such that

u′ : µ′
2 µ3

m1 v′ : µ1 µ′
2

m2

are transitions of the graph G. In that case, we say that u′ is the residual of u after v and,
symmetrically, that v′ is the residual of v after u. This basic confluence property leads us to
the following definition. A permutation tile of the form (1.2)

u · v′ �G v · u′

in the asynchronous graph (G, �G) is defined as a pair of independent transitions u and v
where the transition u′ is defined as the residual of u after v, and the transition v′ is defined
as the residual of v after u. It is not difficult to see that the graph G = (V,E) of memory
states and transitions between them, together with the notion of permutation tile u ·v′�Gv ·u′
just defined, satisfy the axioms required of an asynchronous graph (G, �G).

Stateful vs. stateless semantics. Along the stateful description of the machine provided by
the asynchronous graph (G, �G), comes a stateless description of the same machine, conveyed
this time by an asynchronous graph (H, �H) where only the instructions are considered, not
their action on the machine states. Accordingly, the graph H has a single node ∗ and a
transition

a : ∗ ∗m

for each instruction m of the machine displayed in (1.4) parametrized by x ∈ Var, v ∈ Val
and ` ∈ Loc. The graph H is moreover equipped with a permutation tile

a · b′ �H b · a′

for every pair a = a′ and b = b′ of instructions of the machine. The two asynchronous
transition graphs (G, �G) and (H, �H) are related by an asynchronous graph homomorphism

L : (G, �G) −→ (H, �H) (1.5)
which maps every memory state µ to the node ∗, and every instruction to itself. We recall
the definition of such a homomorphism:

AN ASYNCHRONOUS SOUNDNESS THEOREM FOR CSL 5

Definition 1.1 (homomorphism). An asynchronous graph homomorphism
F : (G, �G) −→ (H, �H) (1.6)

is a graph homomorphism F : G → H between the underlying graphs, such that
u · v′ �G v · u′ ⇒ F(u) · F(v′) �H F(v) · F(u′)

for all transitions u, u′, v, v′ of the asynchronous graph G.

Note that, in that situation, one has
f ∼ g ⇒ L(f) ≈ L(g)

for all paths f, g : M � N in G, where ≈ denotes the permutation equivalence in the
asynchronous graph (H, �H).

Data races as topological obstructions. The reason for the liberal definition of �H is that
nothing should forbid two instructions m1 and m2 to commute at the stateless level of
abstraction. By way of illustration, there exists a permutation tile in H (depicted below in
light yellow) which permutes the two instructions x := 2 and x := 3 in the following way:

x := 2

x := 3

x := 3

x := 2

(1.7)

This permutation tile (1.7) should be understood as a basic example of data race in the
machine, where the two instructions x := 2 and x := 3 compete for the same variable x. As a
matter of fact, one key observation and guiding idea of the paper is that such a data race may
be detected by the fact that it defines a permutation tile in the stateless semantics (H, �H)
which does not lift along L to a permutation tile in the stateful semantics (G, �G). This
line of thought leads us to the following definitions of 1-fibration and 2-fibration.

Definition 1.2 (1-fibration). An asynchronous graph homomorphism F : (G, �G) → (H, �H)
is called a 1-fibration when for every node x of G and transitions v : F(x) → z, there exists
a transition u : x → y such that F(u) = v.

Definition 1.3 (2-fibration). An asynchronous graph homomorphism F : (G, �G) → (H, �H)
is called a 2-fibration when for every pair of transitions u and v′ defining a path u · v′ of
length 2 in G and for every permutation tile

F(u) · F(v′) �H b · a′

in H, there exists a pair of transitions v and u′ in G such that
u · v′ �G v · u′ and F(v) = b and F(u′) = a′.

Coming back to our construction, our point is that the asynchronous graph homomorphism
L defined in (1.5) is not a 2-fibration because of the presence of data races such as (1.7) in
the stateless semantics. Typically, any sequence of transitions in (G, �G)

µ1 µ2 µ3
x:=2 x:=3 (1.8)

mapped by L to the upward border ∗ ∗ ∗x:=2 x:=3 of the permutation tile (1.7)
in the asynchronous graph (H, �H) satisfies µ2(x) = 2 and µ3(x) = 3. For that reason, there

6 PAUL-ANDRÉ MELLIÈS AND LÉO STEFANESCO

exists no way to lift the permutation tile (1.7) along L and to permute the sequence of
instructions (1.8) accordingly in (G, �G) as follows:

µ1 µ′
2 µ3

x:=3 x:=2 (1.9)

because this would mean that µ3(x) = 2, and this would contradict the fact that µ3(x) = 3.
More generally, every data race in the machine may be detected as a topological obstruction
to the fact that the stateful-to-stateless homomorphism L is a 2-fibration. Note that, in
the same way but for different reasons, the data race between the two instructions x := 1
described by the permutation tile in H below

x := 1

x := 1

x := 1

x := 1

(1.10)

does not lift along L to a permutation tile in G. Indeed, the instruction x := 1 : µ → µ′

starting from any memory state µ has the nontrivial footprint wr(x := 1) = {x}, and is thus
not independent of itself in the asynchronous graph (G, �G).

An asynchronous semantics of code. The machine just considered is a very elementary toy
model, which can be easily extended with locks and with memory allocation and deallocation.
Also, more than in the machine itself, we are interested in the asynchronous description of
the code C we want to analyse. We thus need to explain how we shift from the machine to
the code. Interestingly, the story remains essentially the same. To every program C, we
associate a stateful interpretation JCKS and a stateless interpretation JCKL which reflect the
interactive behavior of the program C when confronted to its Environment, called Frame
in that context. The two interpretations JCKS and JCKL are formulated as asynchronous
transition systems (ATS) related by a homomorphism

LC : JCKS JCKL (1.11)

mentioned in (1.1) which plays the same role for the code C as the homomorphism (1.5)
for the machine model. The two ATSs JCKS and JCKL are defined uniformly by structural
induction on the program C. Their construction — and more specifically the interpretation
of the parallel product C1 ‖ C2 — requires to develop a number of new techniques, in
particular an asynchronous parallel product of two ATSs based on the same machine model.

The asynchronous soundness theorem. As in the case of the machine model, the data races
produced by the program C will be detected as obstructions to the fact that LC is a
2-fibration. Typically, the program C defined as x := 2 ; x := 3 is data-race-free because the
permutation tile (1.7) does not appear in the stateless semantics JCKL, while the program C ′

defined as x := 2 ‖ x := 3 produces a data race reflected by the fact that the permutation
tile (1.7) appears in the stateless interpretation JC ′KL and cannot be lifted along L to the
stateful interpretation JC ′KS .

AN ASYNCHRONOUS SOUNDNESS THEOREM FOR CSL 7

In the present paper, we carry on our game-theoretic investigation of Concurrent
Separation Logic (CSL) initiated in [MS17] and establish that well-specified programs are
data-race-free. We achieve this by interpreting every derivation tree

... π

Γ`{P}C{Q} (1.12)
of CSL as an asynchronous strategy JπKSep playing on the asynchronous game of separated
states. Our asynchronous version of the Soundness Theorem is then formulated in the
following fibrational way. Suppose that a code C comes equipped with a proof of the Hoare
triple Γ`{P}C{Q} in CSL, and consider the asynchronous subgraph J{P}CKτS obtained by
restricting JCKS to the nodes reachable from an initial node satisfying the precondition P .
In that situation, we establish (see Thm. 8.3 in §8 for details) that
Asynchronous Soundness Theorem. The stateful-to-stateless homomorphism LC :
JCKS → JCKL is a 2-fibration when restricted to the asynchronous subgraph J{P}CKτS.
The 2-fibrational property is conceptually new and provides the first structural explanation
for the absence of data races in concurrent programs specified by CSL.

Related works. Stephen Brookes established the first proof of soundness of CSL in [Bro04],
using a stateless trace semantics similar to JCKL for the concurrent imperative programs.
More recently, Viktor Vafeiadis [Vaf11] gave a new proof of soundness, based this time on a
stateful operational semantics, similar to JCKS . Our approach can be seen as unifying the
two schools of semantics, by revealing the asynchronous graph morphism (1.11) between
them. Also, one main benefit of our asynchronous approach is that we can directly describe
and analyze the concurrent execution of two instructions.

In the same way as we do here, Jonathan Hayman and Glynn Winskel [hayman-Winskel]
establish the soundness of CSL in a “truly concurrent” setting. They interpret programs as
Petri nets, where the interference of the environment is modeled by adding events to the
Petri net. In contrast to our work, precision of the invariants is necessary for their semantics
to work whereas [GBC11] has shown that precision is only needed in order to interpret
properly the conjunction rule of CSL. Another difference is that they consider a language
somewhat different from Brookes’ original language [Bro04], without local variables, but
with dynamic binding of resources.

We give in [MS17] a game-theoretic interpretation of CSL, where every Hoare triple is
interpreted as a game between Adam and Eve, and every derivation tree π as a winning
strategy for Eve in that game. Every program is interpreted there as a set of purely sequential
traces. For that reason, it is not possible to establish in this framework the absence of data
races, at least in a nice and conceptual way. One main achievement of the paper is thus to
define a properly asynchronous game semantics of CSL, and to derive for the first time the
absence of data races from purely semantic considerations on the model.

Synopsis of the paper. After the machine states and instructions are described in §2, we
construct in §3 the two asynchronous graphs �S and �L defining our stateful and stateless
machine models. We then explain in §4 how to interpret every code C as a pair JCKS and
JCKL of asynchronous transition systems (ATS) with respective machine models �S and �L.
Once the notions of logical state and of separated state are recalled in §5 and in §6, we explain
in §7 how to interpret every proof π of CSL as an asynchronous strategy JπKSep playing

8 PAUL-ANDRÉ MELLIÈS AND LÉO STEFANESCO

on the machine model �Sep of separated states. From this, we establish our asynchronous
soundness theorem in §8, and conclude in §9.

2. Machine states and machine instructions

We introduce below the notions of machine state and of machine instruction which will be
used throughout the paper. We suppose given countable sets Var of variable names, Val
of values, Loc ⊆ Val of memory locations, and LockName of resources. In practice, we
consider the case where Loc = N and Val = Z.

Definition 2.1 (Memory states). A memory state µ is a pair (s, h) of partial functions with
finite domains s : Var ⇀fin Val and h : Loc ⇀fin Val called the stack s and the heap h of
the memory state µ. The set of memory states is denoted by State. The domains of the
partial function s and of h are denoted by vdom(µ) and hdom(µ) respectively, and we write
dom(µ) for their disjoint union.

Definition 2.2 (Machine states). A machine state is either a pair s = (µ,L) consisting of
a memory state µ and a subset of resources L ⊆ LockName, called the lock state, which
describes the subset of locked resources in s; or an error state . The set of machine states
is denoted by MState. Formally:

MState = State×℘(LockName) + { }

A machine step is defined as a labeled transition between machine states. There are two
kinds of transitions:

(µ,L) (µ′, L′)m (µ,L) m (2.1)

depending on whether the instruction m ∈ Instr has been executed successfully (on the
left) or has produced a runtime error (on the right). In particular, has no successor. The
machine instructions m ∈ Instr which label the machine steps are of the following form:

m ::= x := E | x := [E] | [E] := E′ | nop
| x := alloc(E, `) | dispose(E) | P (r) | V (r)

where x ∈ Var is a variable, r ∈ LockName is a resource name, ` is a location, and
E,E′ are arithmetic expressions, possibly with “free” variables in Var. For example, the
instruction x := E executed in a machine state s = (µ,L) assigns to the variable x the value
E(µ) ∈ Val when the value of the expression E can be evaluated in the memory state µ,
and produces the runtime error otherwise. The instruction P (r) acquires the resource
variable r when it is available, while the instruction V (r) releases it when r is locked, as
described below:

E(µ) = v

(µ,L) (µ[x 7→ v], L)x:=E

E(µ) not defined

(µ,L) x:=E

r /∈ L

(µ,L) (µ,L] {r})P (r)

r /∈ L

(µ,L] {r}) (µ,L)
V (r)

The inclusion Loc ⊆ Val means that an expression E may also denote a location. In that
case, [E] refers to the value stored at location E in the heap. The instruction x := alloc(E, `)
allocates some memory space on the heap at address ` ∈ Loc, initializes it with the value
of the expression E, and assigns the address ` to the variable x ∈ Var if location was free,

AN ASYNCHRONOUS SOUNDNESS THEOREM FOR CSL 9

otherwise there is no transition. dispose(E) deallocates the location denoted by E when it
is allocated, and returns otherwise. Finally, the instruction nop (for no-operation) does
not alter the state.

3. Asynchronous Machine Models

As explained in the introduction, machine models are described using asynchronous graphs.
Since we consider stateful as well as stateless descriptions of the machine and of the code,
we will consider two kinds of machine models, organized into a pair of asynchronous graphs:
the stateful model �S based on machine states, and the stateless model �L based on locks.
Their tiles will be defined using the notion of footprint, which summarizes which area of the
state (memory, locks) an instruction relies on, and how it uses it. In both cases, we write
footprints(m) for the footprint of an instruction m in state s, omitting the subscript when
it is clear from the context. Our machine models �S and �L are parameterized over the
finite set Locks ⊆ LockName of locks, or resources, which are considered well-defined. We
sometimes write �S(Locks) or �L(Locks) to make it explicit.

The stateful model. A machine state footprint
ρ ∈ ℘(Var+ Loc)×℘(Var+ Loc)×℘(Locks)×℘(Loc)

is, made of: (i) rd(ρ), the part of the memory that is read, (ii) wr(ρ), the part of the memory
that is written, (iii) lock(ρ), the locks that are touched, and (iv) mem(ρ) the addresses that
are allocated or deallocated. Two footprints ρ and ρ′ are declared independent when:

(rd(ρ) ∪ wr(ρ)) ∩ wr(ρ′) = ∅
(rd(ρ′) ∪ wr(ρ′)) ∩ wr(ρ) = ∅

lock(ρ) ∩ lock(ρ′) = ∅
mem(ρ) ∩ mem(ρ′) = ∅

The stateful model �S is the following asynchronous graph: its nodes are the machine states
in MState, its transitions are of the form

(µ,L)
m−−−→ (µ′, L′) or (µ,L)

m−−−→

corresponding to the machine steps, defined in §2. The asynchronous tiles of �S are the
squares of the form

s
m−−−→ s1

m′
−−−−→ s′ ∼ s

m′
−−−−→ s2

m−−−→ s′

where their footprints are independent in the sense above.

The stateless model. A lock footprint
ρ ∈ ℘(Locks)×℘(Loc)

is made of a set of locks lock(ρ) and a set of locations mem(ρ). Two such footprints are
independent when their sets are componentwise disjoint. The stateless model �L is defined
in the following way: its nodes are the subsets of Locks , and its transitions are all the edges
of the form (note the non-determinism)

L
P (r)−−−−→ L]{r} L

alloc(`)−−−−−−→ L L
τ−−→ L

L]{r} V (r)−−−−→ L L
dispose(`)−−−−−−−→ L L

m−−−→

10 PAUL-ANDRÉ MELLIÈS AND LÉO STEFANESCO

where m is a lock instruction of the form:
P (r) | V (r) | alloc(`) | dispose(`) | τ

for ` ∈ Loc and r ∈ Locks. The purpose of these transitions is to extract from each
instruction of the machine its synchronization behavior. An important special case, the
transition τ represents the absence of any synchronization mechanism in an instruction like
x := E, x := [E] or [E] := E′. The asynchronous tiles of �L are the squares of the form

L
x−−−→ L1

y−−−→ L′ ∼ L
y−−−→ L2

x−−−→ L′

when the lock footprints of x and y are independent. It is worth noting that L′ may be
equal to in such an asynchronous tile. Note that the asynchronous graph �L is more
liberal than �S about which footprints commute, because it only takes into account the
locks as well as the allocated and deallocated locations. As explained in the introduction,
this mismatch enables us to detect data races in the machine as well as in the code.

Remark. The last component mem(ρ) in the machine state footprint as well as in the lock
footprint enables us to forbid a deallocation followed by an allocation to happen at the same
address without some kind of synchronization, both at the stateful and stateless level. This
is consistent with practice, since the malloc implementation would typically synchronize its
accesses to the free-list(s) of the different threads.

4. Asynchronous Semantics of Code

In this section, we associate to every program C a pair of asynchronous transition sys-
tems JCKS and JCKL over the machine models �S and �L introduced in the previous
section. The first interpretation JCKS is stateful and describes how each instruction of the
program C acts on the memory states and on the locks. The second interpretation JCKL is
stateless and only remembers the action of the instructions on the locks.

4.1. Asynchronous transition systems (ATSs). Asynchronous transition systems (ATSs)
are specific asynchronous graphs where every transition is either executed by Code or by
Frame. We thus start by introducing the following notion:

Definition 4.1 (Asynchronous graph with polarities). An asynchronous graph with polarities
is an asynchronous graph (G, �G) where every transition is assigned a polarity Code or
Frame. One requires that in every permutation tile u · v′ �G v · u′, the two transitions u and
u′ (symmetrically v and v′) have the same polarity.

A path in an asynchronous graph G with polarities is called Code-proper when it contains
(at least) one Code transition. A node x is called initial in G when there are no Code-proper
incoming paths into x, and final when there are no Code-proper outgoing paths from x. The
sets of initial and final nodes in G are denoted ∂0G and ∂1G, respectively. The graph G is
called Code-acyclic when there are no Code-proper cycles, that is, every cycle of the graph G
contains only Frame transitions. A set S of nodes of a graph is forward-closed when x ∈ S
and x → y implies that y ∈ S.

Definition 4.2 (ATS). An asynchronous transition system (ATS) is a Code-acyclic asyn-
chronous graph with polarities (G, �G) equipped with a forward-closed subset |G| ⊆ ∂1(G)
of final nodes. A final node in |G| is called a returning node of the ATS.

AN ASYNCHRONOUS SOUNDNESS THEOREM FOR CSL 11

Definition 4.3. An ATS with machine model (�, �) is defined as an ATS (G, |G|) equipped
with an asynchronous graph homomorphism

λG : (G, �G) −−−→ (�, �)
One requires moreover that
1. the map λG defines a bijection between the set ∂0G of initial nodes and the set of nodes

of �, and an injection from the set |G| of returning nodes into the set of nodes of �.
2. the map λG is a Frame 1-fibration, in the sense that for every transition v : λG(x) → z

in the machine model �, there exists a unique Frame transition u : x → y in G such that
λG(u) = v : λG(x) → λG(y),
3. the map λG is a Code-Frame and Frame-Frame 2-fibration, in the sense that for every

sequence of transitions x y zu v′ in G where v′ : y → z is a Frame transition,
and for every permutation tile in � of the form:

u λ ()
Gλ ()

G
v ´

b a

(4.1)

there exists a sequence of transitions x y′ zv u′ and a permutation tile u ·
v′ �G v · u′ in G transported by λG to the permutation tile (4.1) in the sense that

λG(x) · λG(z)
λG(v) λG(u′)

= λG(x) · λG(z)
b a

Notation. We often find convenient to label the transitions u : x → y in G with the instruction
or lock instruction m which labels the transition λG(u) in the underlying asynchronous
graph �S or �L. We also write m : C or m : F to mean that the transition u : x → y has
the polarity Code or Frame in G, respectively.

4.2. Basic constructions on ATSs. The asynchronous interpretations JCKS and JCKL of
the program C are performed by structural induction, using a number of primitive operations
on ATSs defined below. Note that whenever a construction makes some nodes unreachable
from the initial nodes, they are implicitly removed.

Sum. The sum of two ATSs G1 and G2 with same machine model �, written G1 ⊕ G2,
is the disjoint union of the two asynchronous graphs G1 and G2, where we identify their
respective initial and returning states together, when they have the same image under λG1

and λG2 . This means that for the case of the returning states, there are three cases. If they
both have returning states, we identify ∂1(G1) with ∂1(G2); if only one of G1 and G2 has
returning states, we keep this one as our returning states; otherwise the juxtaposition has
no returning states.

Sequential composition. The sequential composition G;G′ of two ATSs G and G′ is the
disjoint union of G and G′ where we identify the returning nodes of G and the initial nodes
of G′ with the same underlying image under λG and λG′ . Because we remove the inaccessible
nodes, when G has no returning nodes, G;G′ = G.

12 PAUL-ANDRÉ MELLIÈS AND LÉO STEFANESCO

Parallel product. The parallel product G1 ‖ G2 of two ATSs G1 and G2 over the same
machine model � is defined as follows. The nodes of G1 ‖ G2 are the pairs of nodes
x1 |x2 ∈ G1 × G2 such that λG1(x1) = λG2(x2) and λG1‖G2

(x1, x2) is defined to be that
common value. The transitions of G1 ‖ G2 are of three kinds:

1. the Code transitions x1|x2
m :C−−−−−→ x′1|x′2 where

x1
m :C−−−−−→ x′1 in G1 and x2

m :F−−−−−→ x′2 in G2.

2. the Code transitions x1|x2
m :C−−−−−→ x′1|x′2 where

x1
m :F−−−−−→ x′1 in G1 and x2

m :C−−−−−→ x′2 in G2.

3. the Frame transitions x1|x2
m :F−−−−−→ x′1|x′2 where

x1
m :F−−−−−→ x′1 in G1 and x2

m :F−−−−−→ x′2 in G2.

Note that every transition u : x1|x2 → y1|y2 in the graph G1 ‖ G2 is a pair u = (u1, u2) also
written u = u1|u2 of a transition u1 : x1 → y1 in G1 and u2 : x2 → y2 in G2. A permutation
tile in G1|G2

v

´

x x

y y

z z

y y ´

 vu u ´ ´

u u´ ´v v

is then defined as a square whose projections

v

´

x

y

z

y

u ´

úv

v

´

x

y

z

y

u ´

úv

define permutation tiles in (G1, �1) and (G2, �2), respectively. Finally, the returning nodes
x1|x2 ∈ |G1||G2| are defined as the pairs x1|x2 of returning nodes x1 ∈ |G1| and x2 ∈ |G2|.

The parallel product of G1 and G2 is asynchronous in the sense that every Code
transition in G1 ‖ G2 is a Code transition performed by G1 and seen as a Frame transition
by G2, or symmetrically, a Code transition performed by G2 and seen as a Frame transition
by G1. In particular, by definition, the two components G1 and G2 never execute (or
“fire”) a Code transition simultaneously in G1 ‖ G2. At the level of permutation tiles, a
Code transition u1|u2 : x1|x2 → y1|y2 performed in G1 ‖ G2 by the component G1 and a
Code transition v′1|v′2 : y1|y2 → z1|z2 performed in G1 ‖ G2 by the component G2 define
a permutation tile precisely when the transitions λG1‖G2

(u1|u2) = λG1(u1) = λG2(u2) and
λG1‖G2

(v′1|v′2) = λG1(v
′
1) = λG2(v

′
2) define a permutation tile in the underlying machine

model �. As a matter of fact, one purpose of the machine model (�, �) is precisely to
provide that piece of information necessary to construct the parallel product of G1 and G2.

AN ASYNCHRONOUS SOUNDNESS THEOREM FOR CSL 13

Resource hiding. In order to interpret the resource introduction construct resource r do C,
we introduce a hiding operator hide[r] on ATSs which hides the new resource r, similarly
to the operator ν in the π-calculus. Formally, if G is an ATS over �(Locks]{r}), then
hide[r](G) is the ATS over �(Locks) where: (1) the resource r has been removed from the
sets of locked resources of all states, (2) the Code transitions P (r) and V (r) are replaced
with nops, (3) the Frame transitions P (r) and V (r) are removed from the graph G, and
(4) the remaining permutation tiles are preserved. Moreover, we only keep as initial and
returning states the initial and returning states x of G such that the resource r is not held
in λG(x).

Critical sections. Dually, inside critical sections, we need to “lift” ATSs over some set Locks
of locks to ATSs over Locks] {r}. This can be done naturally in this case because we know
that, during the critical section, the resource r is held by the Code. Formally, when[r](G)
has the same underlying asynchronous graph as G, where λ′ := λwhen[r](G) is defined by:

λ′(x) := L] {r} if λG(x) = L

λ′(x) := (µ,L] {r}) if λG(x) = (µ,L).

This does not define an ATS yet, for conditionň3 is not satisfied: there are not enough
Environment transitions. This is why we must freely add Frame transitions and new nodes
to make it an ATS. The returning nodes are defined to be the same as G.

Other constructions on ATSs. Given an ATS G and a Boolean formula B, we define
whentrue[B](G) as the graph G where, among the Code transitions out of initial nodes, we
only keep those where B holds on λG(x). Then, we remove the nodes made unreachable
by this edge removal. Similarly, we define whenfalse[B] for when B does not hold. Finally,
whenabort[B] is the graph with transitions from the initial states where B errors out, because
it tries to read undefined variables, to . Note that in the case of the JCKL semantics, since
the nodes do not contain information on the state, the first two constructions above are the
identity. This means that we sometimes consider impossible branches.

4.3. Asynchronous semantics of the code. We explain how to give a semantics to any
code C as an ATS JCK, by induction on its structure. This lets us build JCKS and JCKL in
the same way. First, we give the syntax of our imperative concurrent language, which we
borrow from [Bro04; Vaf11].

B ::= true | false | B ∧B′ | B ∨B′ | E = E′

E ::= 0 | 1 | . . . | x | E + E′ | E ∗ E′

C ::= x := E | x := [E] | [E] := E′ | C;C ′ | C1 ‖ C2 | skip
| whileB do C | resource r do C | with r whenB do C

| ifB then C1 else C2 | x := malloc(E) | dispose(E)

14 PAUL-ANDRÉ MELLIÈS AND LÉO STEFANESCO

Semantics of instructions. To every instruction m ∈ Instr, we associate the ATS JmK
with machine model � defined as two copies �0 +�1 (called source and target) of the
asynchronous graph �. Every transition in �0+�1 is assigned the Frame polarity. To this,
one adds a Code transition x0 → y1 for every transition of the form (2.1) labeled by m in the
small step semantics. Here, x0 and y1 are the nodes x and y of � taken in the source and
target components �0 and �1 of JmK, respectively. The transition x0 → y1 is mapped by
λJmK to the transition associated to the small step transition (2.1) in � =�S or � =�L.
Finally, one adds a Code-Frame permutation tile in JmK for each Code-Frame permutation
tile in �, in such a way that λJmK : JmK→� defines a Code-Frame 2-fibration.

Leaf codes. For leaf codes that correspond to instructions (all, except for malloc), their
semantics is the same as that of the instruction. For malloc(E), we take the non-deterministic
union of all the alloc(E, `):

Jmalloc(E)K :=
⊕
`∈Loc

Jalloc(E, `)K

Conditionals. Conditional branching is interpreted as
JifB then C else C1K = whentrue[B](JnopK) ; JC1K

⊕ whenfalse[B](JnopK) ; JC2K
⊕ whenabort[B]

The nops are needed because the environment can interfere between the evaluation of B
and the beginning of the execution of Ci.

Sequential and parallel compositions. We use the sequential and parallel product of ATSs
with machine models defined in §4.2, in the following way:

JC1‖C2K = JC1K‖JC2K JC1;C2K = JC1K; JC2K.

Resource introduction. The interpretation of resource r do C is defined as
Jresource r do CK = hide[r]

(
JCK

)
Critical sections. The semantics Jwith r whenB doCK is defined using the sequential compo-
sition above and whentrue:

whentrue[B]
(
JP (r)K; when[r]

(
JCK

)
; JV (r)K

)
⊕ whenabort[B].

Loops. For loops, the interpretation of C ′ = whileB doC is defined as the (possibly infinite)
least fixpoint of the function F :

F (G) = whentrue[B]
(
JnopK

)
; JCK;G⊕ whenfalse[B]

(
JnopK

)
⊕ whenabort[B].

AN ASYNCHRONOUS SOUNDNESS THEOREM FOR CSL 15

Remark. The map λG is a 2-fibration for Code-Frame and Frame-Frame permutations, but
not for Code-Code permutations in general. Consider for instance the interpretation of the
program

C = resource r do
{
(P (r);V (r)) ‖ (P (r);V (r))

}
where r ∈ LockName is a resource name. Since the resource introduction performed by
resource r do C is interpreted by hiding the resource r, the two instructions P (r) and V (r)
are both transformed in nops instructions. However the two nops do not form a tile! Another
example is, of course, the sequential composition C1;C2 of two codes C1 and C2.

4.4. Comparing the stateful and the stateless semantics. We construct a category of
ATSs with machine models, in the following way. A morphism between ATSs with machine
models

λG1 : G1 −→�1 λG2 : G2 −→�2

is a pair of asynchronous graph morphisms F :�1 →�2 and G : G1 → G2 such that the
diagram below commutes:

G1 G2

�1 �2

G

λG1
λG2

F

One requires moreover that G send initial (resp. returning) nodes of G1 to initial (resp.
returning) nodes of G2. This defines a category noted ATS. Let F : �S → �L denote
the asynchronous graph morphism which transports every machine state s = (µ,L) to the
underlying subset L ⊆ Locks of locks held in s. Every instruction m ∈ Instr comes equipped
with an ATS morphism

Lm = (F, Gm) : JmKS −−−→ JmKL
where the asynchronous graph morphism Gm is defined as

(µ,L)
m−→ (µ′, L′) 7−−−→ L

m−→ L′

Because the stateful and stateless interpretations J−KS and J−KL are defined using the same
functorial operations over F, we can associate to every code C a morphism of ATS

LC = (F, GC) : JCKS −−−→ JCKL
starting from the family of morphisms Lm associated to instructions. Note that this
morphism LC = (F, GC) living in the category ATS plays a fundamental role in the present
work, since our asynchronous refinement of the original Soundness Theorem for CSL relies
on it, see §8 for details.

5. Logical States

As discussed in [MS17], reasoning about concurrent programs in separation logic requires to
introduce an appropriate notion of logical state, including information about permissions.
The version of concurrent separation logic we consider is almost the same as its original
formulation by O’Hearn and Brookes [OHe07; Bro04]. One difference is that we benefit from
the work of Bornat, Calcagno, O’Hearn, Parkinson and Yang in [Bor+05; BCY06; PBC06]
and use permissions p and the predicate Ownp(x) in order to handle the heap as well as
variables in the stack. We suppose given an arbitrary partial cancellative commutative

16 PAUL-ANDRÉ MELLIÈS AND LÉO STEFANESCO

monoid Perm which we call the permission monoid, following [Bor+05]. The element >
will be used as the permission required for a program to write somewhere in memory. We
thus require that > does not admit any multiples, ie. ∀x ∈ Perm,> · x is not defined.
The intuition (which we will need to turn into a theorem) is that we prevent in this way
concurrent mutation and observation of the same location, that is, data races. The set
LState of logical states is defined in much the same way as the set State of memory states,
with the addition of permissions:

LState = (Var ⇀fin (Val×Perm))× (Loc ⇀fin (Val×Perm))

The main benefit of permissions is that they enable us to define a separation product σ ∗ σ′

between two logical states σ and σ′, which generalizes the disjoint union. When it is defined,
the logical state σ ∗ σ′ is defined as a partial function with domain

dom(σ ∗ σ) = dom(σ) ∪ dom(σ′)

in the following way: for a ∈ Varq Loc,

σ ∗ σ′(a) =

σ(a) if a ∈ dom(σ) \ dom(σ′)

σ′(a) if a ∈ dom(σ′) \ dom(σ)

(v, p · p′) if σ(a) = (v, p) and σ′(a) = (v, p′)

The separation product σ ∗ σ′ of the two logical states σ and σ′ is not defined otherwise.
In particular, the memory states underlying σ and σ′ agree on the values of the shared
variables and heap locations when the separation product is well defined. The syntax and
the semantics of the formulas of Concurrent Separation Logic is the same as in Separation
Logic. The grammar of formulas is:

P,Q,R, J ::= emp | true | false | P ∨Q | P ∧Q | ¬P | ∀v.P | ∃v.P
| P ∗Q | v p7→ w | Ownp(x) | E1 = E2

where x ∈ Var, p ∈ Perm, v, w ∈ Val. Given a logical state σ = (s, h) consisting of a logical
stack s and of a logical heap h, the semantics of the formulas, expressed as the predicate
σ � P , is standard:

σ � v p7→ w ⇐⇒ v ∈ Loc ∧ s = ∅ ∧ h = [v 7→ (w, p)]

σ � Ownp(x) ⇐⇒ ∃v ∈ Val, s = [x 7→ (v, p)] ∧ h = ∅
σ � E1 = E2 ⇐⇒ JE1K = JE2K ∧ fv(E1 = E2) ⊆ vdom(s)

σ � P ∧Q ⇐⇒ σ � P and σ � Q

σ � P ∗Q ⇐⇒ ∃σ1σ2, σ = σ1 ∗ σ2 and σ1 � P and σ2 � Q.

The proof system underlying concurrent separation logic is a sequent calculus, whose sequents
are Hoare triples of the form

Γ`{P}C{Q}
where C ∈ Code, P , Q are predicates, and Γ is a context, defined as a partial function with
finite domain from the set LockName of resource variables to predicates. Intuitively, the
context Γ = r1 : J1, . . . , rk : Jk describes the invariant Ji satisfied by the resource variable
ri. The purpose of these resources is to describe the fragments of memory shared between
the various threads during the execution.

The inference rules of CSL are given in Figure 1. The inference rule Res associated to
resource r do C moves a piece of logical state which is owned by the Code into the shared

AN ASYNCHRONOUS SOUNDNESS THEOREM FOR CSL 17

Aff
Γ`{(Own>(x) ∗ P) ∧ E = v}x := E{(Own>(x) ∗ P) ∧ x = v}

Store
Γ`{E 7→ −}[E] := E′{E 7→ E′}

x /∈ fv(E) Load
Γ`{E 7→p v ∗Own>(x)}x := [E]{E 7→p v ∗Own>(x) ∗ x = v}

Γ`{P}C1{Q} Γ`{Q}C2{R} Seq
Γ`{P}C1;C2{R}

P ⇒ def(B) Γ`{P ∧B}C1{Q} Γ`{P ∧ ¬B}C2{Q} If
Γ`{P}ifB then C1 else C2{Q}

Γ is precise Γ`{P1}C{Q1} Γ`{P2}C{Q2} Conj
Γ`{P1 ∧ P2}C{Q1 ∧Q2}

Γ`{P1}C{Q1} Γ`{P2}C{Q2} Disj
Γ`{P1 ∨ P2}C{Q1 ∨Q2}

Γ, r : J `{P}C{Q} Res
Γ`{P ∗ J}resource r do C{Q ∗ J}

P ⇒ def(B) Γ`{(P ∗ J) ∧B}C{Q ∗ J} With
Γ, r : J `{P}with r whenB do C{Q}

Γ`{P1}C1{Q1} Γ`{P2}C2{Q2} Par
Γ`{P1 ∗ P2}C1 ‖ C2{Q1 ∗Q2}

Γ`{P}C{Q} Frame
Γ`{P ∗R}C{Q ∗R}

Figure 1: Inference rules of Concurrent Separation Logic

context Γ, which means that it can be accessed concurrently inside the code C. However,
the access to that piece of state is mediated by the with construct, which grants temporary
access under the condition that one must give it back (rule With). Note that the rule
With has the side condition P ⇒ def(B). This means that if P is true in some logical state,
then it implies, for each free variable x of B, that there exists some permission p such that
Ownp(x) holds.

Notice that the context Γ = r1 : J1, . . . , rk : Jk is required to be precise in the rule Conj.
This means that each of the predicates Ji is precise in the following sense:

Definition 5.1 (Precise predicate). A predicate P is precise when, for every logical state
σ ∈ LState, there exists at most one logical state σ′ ∈ LState such that σ′ � P and

∃σ′′ ∈ LState, σ = σ′ ∗ σ′′.

6. The machine model of separated states

We recall the notion of separated state formulated in [MS17] whose purpose is to separate
the logical memory state into one region controlled by the Code, one region controlled by
the Frame, and one independent region for each unlocked resource. In order to define the
notion, we suppose given a finite set Locks ⊆ LockName of resource variables, or locks.

18 PAUL-ANDRÉ MELLIÈS AND LÉO STEFANESCO

Definition 6.1. A separated state is a triple
(σC ,σ, σF) ∈ LState× (Locks → LState+ {C,F})× LState

such that the logical state below is defined:

σC ∗
{
~

r∈dom(σ)

σ(r)
}

∗ σF ∈ LState (6.1)

where
dom(σ) = { r ∈ Locks | σ(r) ∈ LState},

domC(σ) = { r ∈ Locks | σ(r) = C },
domF(σ) = { r ∈ Locks | σ(r) = F }.

We say that a separated state (σC ,σ, σF) combines into a machine state s = (µ,L) precisely
when L = domC(σ)] domF(σ) and when the function U : LState → State which forgets
the permissions transports the logical state (6.1) into the memory state µ ∈ State. Note
that, by definition, every separated state (σC ,σ, σF) combines into a unique machine state,
which we write for concision

(µ,L) = ~(σC ,σ, σF). (6.2)
Interestingly, the notion of separated state comes with the same notion of footprint as the
machine states, defined as elements of

ρ ∈ ℘(Var+ Loc)×℘(Var+ Loc)×℘(Locks)×℘(Loc).

which describes the footprint of a transition by Eve or Adam.

Definition 6.2. The machine model of separated states �Sep is the asynchronous graph
whose nodes are the separated states and whose edges are either Adam or Eve transitions:
• Eve transitions are of the form

(σC ,σ, σF)
m :C−−−−−−→ (σ′

C ,σ
′, σF)

where m ∈ Instr is an instruction such that

~(σC ,σ, σF) ~(σ′
C ,σ

′, σF)
m

and such that the following conditions are satisfied:
∀` /∈wr(m), σC(`) = σ′

C(`) wr(m) ∪ rd(m) ⊆ dom(σC)

lock(m) ⊆ dom(σ) ∪ domC(σ) ∀r /∈ lock(m), σ(r) = σ′(r).

• Adam moves of the form
(σC ,σ, σF)

m :F−−−−→ (σC ,σ
′, σ′

F)

where m ∈ Instr is an instruction, such that

~(σC ,σ, σF) ~(σC ,σ
′, σ′

F)
m

and such that the following conditions are satisfied:
∀` /∈wr(m), σF (`) = σ′

F (`) wr(m) ∪ rd(m) ⊆ dom(σF)

lock(m) ⊆ dom(σ) ∪ domF(σ) ∀r /∈ lock(m), σ(r) = σ′(r).

Like the two other machine models �S and �L, the tiles of �Sep are the squares

AN ASYNCHRONOUS SOUNDNESS THEOREM FOR CSL 19

x z

y

y′

m m′

m′ m

where the footprints of m and m′ at state x are independent. More concretely, an Eve-Eve
tile is of the following form (where we only write the first component of each separated
state):

σ1 ∗ σ2 ∗ σ σ′
1 ∗ σ′

2 ∗ σ

σ′
1 ∗ σ2 ∗ σ

σ1 ∗ σ′
2 ∗ σ

m m′

m′ m

For example, the first state σC is split into σ1 ∗σ2 ∗σ, where the domain of σ1 is wr(m), that
of σ2 is wr(m′) and σ is the rest of σC . The resulting definition of the machine model �Sep

of separated states ensures that the operation (6.2) defines a morphism ~ :�Sep →�S of
asynchronous graphs from �Sep to the stateful model �S .

7. An asynchronous semantics of proofs

In this section, we interpret derivation trees (or proofs) of CSL in our asynchronous semantics.
In the same way as we did for the Code in §4, we interpret every proof π of a Hoare triple
Γ`{P}C{Q} as an asynchronous transition system (ATS, Definition 4.2). The underlying
asynchronous machine model is �Sep , the graph of separated states. As in the previous case,
our ATSs have the 1-fibration property, and moreover the initial states are all the states
that satisfy P , and all the final states satisfy Q. The interpretation JπKSep also satisfies that
the second component σ of all its nodes of JπKSep satisfies the invariants of Γ pointwise. In
order to define the interpretation of a proof π by induction on its structure, we start by
defining a small number of new constructions on ATSs.

The parallel product with separated states. In order to define the parallel product G1‖G2

of two ATSs on the model �Sep of separated states, we need to adapt the compatibility
condition given by the equality λG(x1) = λG(x2) in the case of the stateful and stateless
models �S and �L. In the case of �Sep , two nodes of G1 and G2 should be declared
compatible when they describe the two “subjective” (and dual) views of the same situation,
provided in this case by a separated state of G1‖G2. This leads us to the notion of three-party
separated state, defined as a tuple (σ1, σ2,σ

∗, σF) where σ1, σ2, σF ∈ LState are logical
states, where σ∗ : Locks → LState+ {C1, C2, F}, and where the product ~(σ1, σ2,σ

∗, σF)
immediately adapted from (6.1) is well-defined.

We define three functions on these new separated states: the “objective” projection,
which corresponds to the view of the whole program C1 ‖ C2, is defined by:

(σ1, σ2,σ
∗, σC) 7→ (σ1 ∗ σ2,σ∗[Ci 7→ C], σC)

20 PAUL-ANDRÉ MELLIÈS AND LÉO STEFANESCO

the left and right “subjective” projections
λ1 : (σ1, σ2,σ

∗, σC) 7→ (σ1,σ
∗[C1 7→ C,C2 7→ F], σC ∗ σ2)

λ2 : (σ1, σ2,σ
∗, σC) 7→ (σ2,σ

∗[C1 7→ F,C2 7→ C], σC ∗ σ1)
which give the state of the program from the point of view of one of the programs in parallel.
This leads us to the following definition:

Definition 7.1. Two separated states x1, x2 ∈ SState are compatible when there exists a
three-party separated state y such that λ1(y) = x1 and λ2(y) = x2. Note that the three-party
separated state y is unique in that case.

Framing. To handle framing (Frame rule), we need to be able to move a piece of (logical)
heap from the Frame side to the Code side. First, we define the framing of a logical state
σR. Given an ATS G over �Sep , we define frame[σR](G) pointwise with:

λ′(x) =

{
(σC ∗ σR,σ, σF) if λ(x) = (σC ,σ, σF ∗ σR)
undefined otherwise

Given such a graph G and a predicate R, we define frame[R](G) as the following union of
ATSs (defined in §??):

frame[R](G) =
⋃

σR�R

frame[σR](G)

Resource introduction. To give a semantics to the resource introduction rule, we need to
extend the hiding operator to separated states. More precisely, the action of hide[r], in
addition to replacing P (r) and V (r) with nop, is:

(σC ,σ] [r 7→ σ], σF) 7→ (σC ∗ σ,σ, σF)
(σC ,σ] [r 7→ C or F], σF) 7→ (σC ,σ, σF)

Critical sections. Similarly, we extend the definition of when[r](G) to separated states: to
the same underlying graph we associate the asynchronous morphism λ′ defined as

λ′(x) = (σC ,σ] [r 7→ C], σF) if λG(x) = (σC ,σ, σF)

We also need to take and release locks in the semantics of the proofs: the ATS acquire[r] is
defined by its Eve moves:

(σC ,σ] [r 7→ σ], σF)
P (r) :C−−−−−→ (σC ∗ σ,σ] [r 7→ C], σF)

and release[r] by (for all σ ∈ LState satisfying r’s invariant in Γ):

(σC ∗ σ,σ] [r 7→ C], σF)
V (r) :C−−−−−→ (σC ,σ] [r 7→ σ], σF).

AN ASYNCHRONOUS SOUNDNESS THEOREM FOR CSL 21

Union. It is sometimes necessary to combine in a single asynchronous strategy two asyn-
chronous strategies G1 and G2 whose purpose is to justify the transitions performed by
the very same Code C. This is precisely the purpose of the disjoint union G1 ∪ G2. The
disjoint union G1 ∪G2 of two ATSs G1 and G2 over the model �Sep of separated states is
defined in essentially the same way as the disjoint sum G1 ⊕G2. The only difference with
the disjoint sum G1 ⊕G2 is that the transitions (or moves) in G1 ∪G2 are meant to justify
the transitions of the same program C, whereas the transitions (or moves) of the disjoint
sum G1 ⊕G2 are meant to justify the transitions of two different programs C1 and C2. So,
given two derivation trees in CSL

... π1
Γ`{P1}C{Q1}

... π2
Γ`{P2}C{Q2}

the asynchronous homomorphism associated to Jπ1KSep ∪ Jπ2KSep is of the form
Sπ1∪π2 : Jπ1KSep ∪ Jπ2KSep −→ JCKS

whereas the homomorphism associated to the sum is of the form:
Sπ1⊕π2 : Jπ1KSep ⊕ Jπ2KSep −→ JCKS ⊕ JCKS

The disjoint union Sπ1∪π2 may be thus obtained by postcomposing Sπ1⊕π2 with the codiagonal
of JCKS :

Jπ1KSep ⊕ Jπ2KSep JCKS
Sπ1∪π2

= Jπ1KSep ⊕ Jπ2KSep JCKS ⊕ JCKS JCKS
Sπ1⊕π2 codiagonal

Intersection. In order to interpret the introduction rule of the conjunction, we need to define
the intersection of two ATSs G1 and G2 over the same machine model �. The definition of
G1 ∩G2 is very similar to the definition of the parallel product. The only difference lies in
the fact that the two ATSs G1 and G2 must behave synchronously. The nodes of G1 ∩G2

are defined in the same way as the nodes of G1‖G2, that is, as the pairs x1& x2 consisting
of a node x1 of G1 and of a node x2 of G2, such that

λG1(x1) = λG2(x2)

There are two types of transitions. The Code transitions which are pairs of Code transitions:

x1& x2
m :C−−−−−→ y1& y2

when x1
m :C−−−−−→ y1 ∈ G1 and x2

m :C−−−−−→ y2 ∈ G2

and similarly for Frame transitions. A square is a tile in G1 ∩G2 precisely when it is the
superposition of two tiles of G1 and of G2.

Machine instructions. The rules that correspond to machine instructions m ∈ Instr (such
as Load) are interpreted in the obvious way, always preserving the permission associated to
affected locations.

22 PAUL-ANDRÉ MELLIÈS AND LÉO STEFANESCO

Semantics of proofs.
t

... π1
Γ`{P}C1{Q}

... π2
Γ`{Q}C2{R}

Γ`{P}C1;C2{R}

|

Sep

= Jπ1KSep ; Jπ2KSep

For the parallel product rule Par, we use the parallel product of ATSs using the above
notion of compatibility:
t

... π1
Γ`{P1}C1{Q1}

... π2
Γ`{P2}C2{Q2}

Γ`{P1 ∗ P2}C1 ‖ C2{Q1 ∗Q2}

|

Sep

= Jπ1KSep ‖ Jπ2KSep

t
... π

Γ`{P}C{Q}
Γ`{P ∗R}C{Q ∗R}

|

Sep

= frame[R]
(
JπK

)
t

... π
Γ, r : J `{P}C{Q}

Γ`{P ∗ J}resource r do C{Q ∗ J}

|

Sep

= hide[r]
(
JπK

)
t

... π
Γ, r : J `{(P ∗ J) ∧B}C{Q ∗ J}

Γ, r : J `{P}with r whenB do C{Q}

|

Sep

= whentrue[B]
(
acquire[r]

)
; when[r]

(
JπKSep

)
; release[r]

t
... π1

Γ`{P1}C{Q1}

... π2
Γ`{P2}C{Q2}

Γ`{P1 ∨ P2}C{Q1 ∨Q2}

|

Sep

= Jπ1KSep ∪ Jπ2KSep

The interpretation of the conjunction rule relies on the intersection of ATSs just defined:
t

... π1
Γ`{P1}C{Q1}

... π2
Γ`{P2}C{Q2}

Γ`{P1 ∧ P2}C{Q1 ∧Q2}

|

Sep

= Jπ1KSep ∩ Jπ2KSep

Note that we do not rely on the preciseness of the context Γ to define the interpretation of
the Conj proof rule, though precision is needed in order to establish the soundness of the
rule.

8. An asynchronous soundness theorem

At this stage, we are ready to state our soundness theorem for Concurrent Separation Logic.
We start by observing that every proof π in CSL of a Hoare triple of the form Γ`{P}C{Q}
comes equipped with a morphism of asynchronous graphs

Sπ : JπKSep −−−→ JCKS

AN ASYNCHRONOUS SOUNDNESS THEOREM FOR CSL 23

which makes the diagram below commute

JπKSep JCKS

�Sep �S

Sπ

λπ λC

~

The morphism Sπ thus defines a morphism of ATS which relates the interpretation of the
proof π with the stateful interpretation of C. For every such proof π of a Hoare triple
Γ`{P}C{Q}, we write

Lπ : JπKSep −−−→ JCKL
for the composite Lπ = LC ◦ Sπ below:

JπKSep JCKS JCKL
Sπ LC

Our soundness theorem follows from two properties of the asynchronous strategy JπKSep
associated to a CSL proof tree π. The first property (1-soundness) implies that a well-
specified program does not crash during a valid execution, that is, an execution which
starts from a state satisfying the precondition P and where the Frame performs only legal
transitions. The second property (2-soundness) implies that such a program does not
encounter any data race.

Theorem 8.1 (1-soundness). Sπ is a Code 1-fibration.

A Code 1-fibration is a 1-fibration (Def. 1.2) where we only ask that Code transitions
can be lifted, similarly to axiom 3 of Def. 4.3. This lifting property reflects the fact that
the strategy JπKSep interpreting the proof π is winning, in the sense that every transition
performed by the Code on machine states can be lifted (and thus logically justified) by the
strategy into a transition between separated states, see [MS17] for a discussion. This implies
in particular that well specified programs do not go wrong, because the error state cannot
be lifted to a separated state. The next statement is of a different nature: it says that
the strategy JπKSep adapts at the separated level to the possible reorderings of scheduling
performed at the stateless level:

Theorem 8.2 (2-soundness). Lπ is a 2-fibration.

This property implies (in particular) that valid executions of C never produce data races.
More deeply, it says that two executions which are equivalent modulo ≈ at the stateless level,
in the sense that they behave in the same way with respect to the locks (each thread acquires
and releases each lock in the same order), are also equivalent modulo ∼ at the stateful
level. To make this statement formal, consider a well-specified program ∅`{P}C{Q} and
define J{P}CKτS as the subgraph of JCKS obtained by removing every Frame transition, and
keeping only the states which can be reached from an initial node satisfying the precondition
P . We are interested in the morphism

LP
C : J{P}CKτS −→ JCKL

obtained by restricting LC to the asynchronous subgraph J{P}CKτS of JCKS . This enables
us to establish the soundness theorem announced in the introduction:

Theorem 8.3 (Soundness). LP
C is a 2-fibration.

24 PAUL-ANDRÉ MELLIÈS AND LÉO STEFANESCO

9. Conclusion and future works

For the first time, we devise and establish a properly asynchronous version of the Soundness
Theorem for Concurrent Separation Logic (CSL). In our formulation, the absence of data
races follows from a more fundamental lifting property of scheduling along the stateful-to-
stateless translation JCKS → JCKL. The proof of the theorem itself is original in design,
and relies on the construction of an asynchronous game semantics of CSL, building on the
foundations set in [MS17]. In future work, we wish to adapt this asynchronous semantics of
CSL to weak memory models boudol,brookes,Vafeiadis-separation-for-promising,promising-
semantics,Dreyer-weak-memory-iris and to distributed algorithms [Got+16]. In another
direction of investigation, we want to extend our version of the soundness theorem to a higher-
order and axiomatic setting like Iris [Jun+15]. Also, now that the asynchronous soundness
theorem has been established by semantic means, a nice and instructive challenge will be to
prove it again using purely syntactic techniques, in the line adopted for Mezzo [BPP14].

Acknowledgments

The authors are grateful to Richard Bornat, Stephen Brookes, Tony Hoare, François Pottier
and Viktor Vafeiadis for discussions at an early stage of this work.

References

[BCY06] Richard Bornat, Cristiano Calcagno, and Hongseok Yang. “Variables as Resource
in Separation Logic.” In: ENTCS 155 (2006).

[Bor+05] Richard Bornat, Cristiano Calcagno, Peter O’Hearn, and Matthew Parkinson.
“Permission Accounting in Separation Logic.” In: POPL. 2005.

[BPP14] Thibaut Balabonski, François Pottier, and Jonathan Protzenko. “Type Soundness
and Race Freedom for Mezzo.” In: FLOPS. 2014.

[Bro04] Stephen Brookes. “A semantics for concurrent separation logic.” In: CONCUR.
2004.

[Faj+16] Lisbeth Fajstrup, Eric Goubault, Emmanuel Haucourt, Samuel Mimram, and
Martin Raussen. Directed Algebraic Topology and Concurrency. Springer, 2016.

[GBC11] Alexey Gotsman, Josh Berdine, and Byron Cook. “Precision and the Conjunction
Rule in Concurrent Separation Logic.” In: MFPS. 2011.

[Got+16] Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, and Marc
Shapiro. “’Cause I’m strong enough: reasoning about consistency choices in
distributed systems.” In: POPL. 2016.

[Jun+15] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars
Birkedal, and Derek Dreyer. “Iris: Monoids and Invariants As an Orthogonal
Basis for Concurrent Reasoning.” In: POPL. 2015.

[Mel17] Paul-André Melliès. “Une étude micrologique de la négation.” HDR. 2017.
[MM07] Paul-André Melliès and Samuel Mimram. “Asynchronous Games: Innocence

Without Alternation.” In: CONCUR. 2007.
[MS17] Paul-André Melliès and Léo Stefanesco. “A Game Semantics for Concurrent

Separation Logic.” In: MFPS. 2017.
[OHe07] Peter W. O’Hearn. “Resources, Concurrency, and Local Reasoning.” In: TCS

375 (2007).

REFERENCES 25

[PBC06] Matthew J. Parkinson, Richard Bornat, and Cristiano Calcagno. “Variables as
Resource in Hoare Logics.” In: LICS. 2006.

[Pra91] Vaughn Pratt. “Modeling Concurrency with Geometry.” In: POPL. 1991.
[Vaf11] Viktor Vafeiadis. “Concurrent Separation Logic and Operational Semantics.” In:

ENTCS 276 (2011).

26 REFERENCES

Appendix A. Proof of the 1-soundness theorem (Thm. 8.1)

In this section we prove the 1-soundness theorem of CSL. The proof is done by induction on
the structure of the proof tree. Each case of the induction is given its own lemma. We focus
on the non-leaf rules of CSL.

A.1. Parallel composition. We begin with the rule for parallel composition. The corre-
sponding case in the induction is the following.

Lemma A.1. Suppose that π is the derivation tree
... π1

Γ`{P1}C1{Q1}

... π2
Γ`{P2}C2{Q2} Par

Γ`{P1 ∗ P2}C1 ‖ C2{Q1 ∗Q2}
and that the interpretation

Si : JπiKSep → JCiKS
is a 1-fibration on Code transitions, for i = 1, 2. In that case, the asynchronous graph
morphism

S : JπKSep → JC1 ‖ C2KS
is also a Code 1-fibration.

A Code transition in JC1 ‖ C2KS is (without loss of generality) a pair of compatible
transitions: one Code transition from JC1KS and one Frame transition from JC2KS . We
need to lift this transition into a move in JπKSep = Jπ1KSep ‖ Jπ2KSep . Using the induction
hypothesis, we can show that Eve can lift the former into Jπ1KSep , and we can lift the
latter because λπ2 is a Frame 1-fibration. Therefore, we can lift the Code transition from
JC1 ‖ C2KS into Jπ1 ‖ π2KSep .

Proof. Consider a node x in JπKSep whose label is (σC ,σ, σF), and let s = ~(σC ,σ, σF).
Consider a Code transition in JC1 ‖ C2KS of the form (writing the images of the nodes
underλ)

s
m :C−−−−−→ s′ (A.1)

whose starting node is S(x). By definition of the parallel product there exists a three-party
separated state

(σ1, σ2,σ, σF)

whose projection through proj is (σC ,σ, σF). By definition of JC1 ‖ C2KS , the transi-
tion (A.1) is of the form

a1|a2
m :C−−−−−→ b1|b2

with λ1(a1) = λ2(a2) = s and λ1(b1) = λ2(b2) = s′. Our goal is to find two moves, one in
Jπ1KSep of the form

(σ1,σ, σF ∗ σ2)
m :C−−−−−→ (σ′

1,σ
′, σF ∗ σ2)

that is mapped under S1 to the transition:
a1

m−−−→ a2

and one in Jπ2KSep of the form

(σ2,σ, σF ∗ σ1)
m :F−−−−−→ (σ2,σ

′, σF ∗ σ′
1)

REFERENCES 27

that is mapped under S2 to the transition:

b1
m :F−−−−−→ b2.

(Note that we omit to write the change of perspective on the σ.) The first exists according
to the hypothesis on S1, and the second because λ2 is a 1-fibration on Frame transitions.

A.2. Sequential composition. The case of sequential composition is easy, since a Code
transition of C1;C2 is either a transition from C1 or a transition from C2, and both cases
follow immediately from the induction hypotheses.

Lemma A.2. Suppose that π is the derivation tree
... π1

Γ`{P}C1{Q}

... π2
Γ`{Q}C2{R} Seq

Γ`{P}C1;C2{R}
and that the interpretation

Si : JπiKSep → JCiKS
is a 1-fibration on Code transitions, for i = 1, 2. In that case, the asynchronous graph
morphism

S : JπKSep → JC1;C2KS
is also a Code 1-fibration.

Proof. A Code transition in JC1;C2KS is either a transition in JC1KS or a transition in JC2KS .
The result follows from the hypotheses.

A.3. The frame rule.

Lemma A.3. Suppose that π is the derivation tree
... π′

Γ`{P}C{Q} Frame
Γ`{P ∗R}C{Q ∗R}

and that the interpretation
S : Jπ′KSep → JCKS

is a 1-fibration on Code transitions. In that case, the asynchronous graph morphism
S : JπKSep → JCKS

is also a Code 1-fibration.

Proof. Let us consider a node x in JπKSep and a Code transition

a
m :C−−−−−→ b ∈ JCKS

where S(x) = a. Recall that the frame rule is interpreted as

frame[R](Jπ′KSep) =
⋃

σR�R

frame[σR](Jπ′KSep)

28 REFERENCES

Therefore, the node x belongs to one of the copies of frame[σR](Jπ′KSep), for some σR, and
there is a node x′ above a in Jπ′KSep such that

λ(x) = (σC ∗ σR,σ, σF) and λ′(x′) = (σC ,σ, σF ∗ σR)
with σR � R. By the hypothesis on S′, there is a node y′ ∈ Jπ′KSep and a move

x′
m :C−−−−−→ y′

above the Code transition above. Hence, λ′(y′) is of the form
λ′(y′) = (σ′

C ,σ
′, σF ∗ σR)

which implies that there is a transition

x
m :C−−−−−→ y

above the Code transition in frame[σR](Jπ′KSep) ⊆ JπKSep with
λ(y) = (σ′

C ∗ σR,σ′, σF)

A.4. Resource introduction. The rule for resource introduction is interpreted using the
hide[r] construction, which hides the new resource. The proof consists basically in showing
that if some Code transition t can be lifted into a move T , then hide[r](t) can be lifted intro
hide[r](T).

Lemma A.4. Suppose that π is the derivation tree
... π′

Γ, r : J `{P}C ′{Q} Res
Γ`{P ∗ J}resource r do C ′{Q ∗ J}

and that the interpretation
S′ : Jπ′KSep → JC ′KS

is a 1-fibration on Code transitions. In that case, the asynchronous morphism
S : JπKSep −→ Jresource r do C ′KS

is also a 1-fibration on Code transitions.

Proof. Let us consider a node x in JπKSep and a Code transition t

a
m :C−−−−−→ b

where S(x) = a. By definition of Jresource r do C ′KS , t is the image under hide[r] of a
transition t′:

a
m :C−−−−−→ b ∈ JC ′KS

REFERENCES 29

Case 1. Suppose m is neither P (r) nor V (r). Then m = m and the situation is:
λ(x) = (σC ∗ σ,σ, σF) and λ′(x) = (σC ,σ] [r 7→ σ], σF)

By the hypothesis on S′, there is a node y ∈ Jπ′KSep and a move

x
m :C−−−−−→ y

above the Code transition t′ and such that
λ′(y) = (σ′

C ,σ
′] [r 7→ σ], σF)

Hence, there is a lifting of t starting from x.

Case 2. Suppose, for example, that m = P (r). In that case, m = nop, and
λ(x) = (σC ∗ σ,σ, σF) and λ′(x) = (σC ,σ] [r 7→ σ], σF)

By the hypothesis on S′, there is a node y ∈ Jπ′KSep and a move

x
m :C−−−−−→ y

above the Code transition T ′ and such that
λ′(y) = (σ′

C ∗ σ,σ′] [r 7→ C], σF)

This means that there is a move above T of the form (with labels instead of nodes):

(σC ∗ σ,σ, σF)
nop :C−−−−−−→ (σC ∗ σ,σ, σF)

A.5. Critical sections.

Lemma A.5. Suppose that π is the derivation tree
... π′

Γ`{(P ∗ J) ∧B}C ′{Q ∗ J} With
Γ, r : J `{P}with r whenB do C ′{Q}

and that the interpretation
S′ : Jπ′KSep −→ JC ′KS

is a 1-fibration on Code transitions. In that case, the asynchronous morphism
S : JπKSep −→ Jwith r whenB do C ′KS

is also a 1-fibration on Code transitions.

Proof. Recall that, in that case, the semantics of the Code and of the derivation trees are
defined as

JCKSep = whentrue[B](JP (r)KS ; when[r](JC ′KS); JV (r)KS)
⊕ whenabort[B]

JπKSep = whentrue[B](acquire[r]); when[r](Jπ′KSep); release[r]

Consider a Code transition t of JCKS

a
m :C−−−−−→ b

30 REFERENCES

and a node x in JCKSep above a. According to the side-condition P ⇒ def(B), we know
that this transition is not in whenabort[B], because all the variables in B are necessarily
well-defined. There are now three possibilities:

Case 1: t ∈ when[r](JC ′KS). In that case the image of x under λ is of the form
λ(x) = (σC ,σ] [r 7→ C], σF)

and t is also a transition in JC ′KSep , whose image under λ′ is:

(µ,L] {r}) m :C−−−−−→ (µ′, L′] {r})
such that the image of t under λ is:

(µ,L)
m :C−−−−−→ (µ′, L′).

Moreover, by hypothesis, we can lift the transition t from JC ′KS to a move whose labels are
of the form

(σC ,σ, σF)
m :C−−−−−→ (σ′

C ,σ
′, σF)

Therefore, the same move is a lifting of t in JCKSep , and its labels are

(σC ,σ] [r 7→ C], σF)
m :C−−−−−→ (σ′

C ,σ
′] [r 7→ C], σF)

Cases 2 and 3: t is in whentrue[B](JP (r)KS) or in JV (r)KS . Follows from the definitions.

A.6. The conjunction. In this section, we suppose that Γ is precise and that π is the
following derivation tree:

... π1
Γ`{P1}C{Q1}

... π2
Γ`{P2}C{Q2} Conj

Γ`{P1 ∧ P2}C{Q1 ∧Q2}
This rule is not sound when the context Γ is not precise, see [GBC11]. In out setting,

precision implies that Eve has at most one way of lifting a given transition from the Code.
This is very useful, because, on the one hand, the induction hypothesis tells us that there
are two ways of lifting the same Code transition. And, on the other hand, precision implies
that they are actually the same, and therefore define a move in the interpretation of Conj,
which is defined using a synchronous product.

Lemma A.6. Suppose the interpretation
Si : JπiKSep → JCKS

is a 1-fibration on Code transitions, for i = 1, 2. In that case, the asynchronous graph
morphism

S : JπKSep → JCKS
is also a Code 1-fibration.

REFERENCES 31

Proof. Consider a Code transition of JCKS

a
m :C−−−−−→ b

and a node x in JπKSep above a. By definition of the semantics of π, there exist two nodes
x1 ∈ Jπ1KSep and x2 ∈ Jπ2KSep each above a and such that

λ1(x1) = λ2(x2) = λ(x).

Therefore, according to the hypotheses there exist two moves in Jπ1KSep and in Jπ2KSep each
of the form

xi
m :C−−−−−→ yi.

It suffices to show that λ(y1) = λ(y2), since it implies that there exists y in JπKSep such that

x
m :C−−−−−→ y

is above the transition on JCKS we considered.
Let us show, then, that λ(y1) = λ(y2). Since all the permissions are preserved, by

definition of the strategies, the first and the last component of the two separated states
coincide. Moreover, precision tells us that there is at most one sub-logical state that
satisfies the invariants, which means that the middle components coincide as well the middle
components coincide as well.

Appendix B. Proof of the 2-soundness theorem (Thm. 8.2)

In this section, we establish the 2-soundness theorem (Theorem 8.2) by induction on the
proof π of a Hoare triple of the form Γ`{P}C{Q}. First, we begin with the case of the Par
rule, which we find the most interesting.

B.1. The parallel rule.

Lemma B.1. Suppose that π is the derivation tree
... π1

Γ`{P1}C1{Q1}

... π2
Γ`{P2}C2{Q2} Par

Γ`{P1 ∗ P2}C1 ‖ C2{Q1 ∗Q2}
and that the interpretation

Li : JπiKSep → JCiKL
is a 2-fibration, for i = 1, 2. In that case, the asynchronous graph morphism

L : JπKSep → JC1 ‖ C2KL
is also a 2-fibration.

Proof. Write C = C1 ‖ C2. Let us consider a tile in JCKL:

b1|b2

a1|a2 ≈ c1|c2

b′1|b′2

m′m

m′ m

(B.1)

32 REFERENCES

such that there exist two transitions in JCKS

y1|y2

x1|x2 z1|z2

m′m (B.2)

that are sent through L onto the upper path in (B.1).
By definition of the parallel product of ATSs, since (B.1) is a tile, its two projections

are tiles as well:
b1

a1 ≈ c1

b′1

v′�1u�1

v�1 u′
�1

b2

a2 ≈ c2

b′2

v′�2u�2

v�2 u′
�2

By hypothesis, the asynchronous morphisms L1 and L2 are both 2-fibrations. This means
that the following two squares above them in JC1KS and in JC2KS are tiles as well:

y1

x1 ∼ z1

y′1

v′�1u�1

s1 t1

y2

x2 ∼ z2

y′2

v′�2u�2

s2 t2

for some nodes y′1 and y′2 in JC1KS and JC2KS respectively. By definition of tiles in JC1 ‖ C2KS ,
to show that there exists a tile completing (B.2) above (B.1), it suffices to show that the
two states λ1(y

′
1) and λ2(y

′
2) are compatible, in the sense of Definition 7.1. This follows from

the following lemma.

Lemma B.2. Suppose given two ATSs over separated states G1 and G2, and two tiles:
y1

x1 ∼ z1

y′1

v′�1u�1

s1 t1

y2

x2 ∼ z2

y′2

v′�2u�2

s2 t2

where the upper paths are compatible. Then y′1 and y′2, and the paths s1; t1 and s2; t2 define
a path in G1 ‖ G2.

Proof. By case analysis on the polarities of the transitions.

B.2. Sequential composition.

Lemma B.3. Suppose that π is the derivation tree
... π1

Γ`{P}C1{Q}

... π2
Γ`{Q}C2{R} Seq

Γ`{P}C1;C2{R}
and that the interpretation

Li : JπiKSep → JCiKL

REFERENCES 33

is a 2-fibration, for i = 1, 2. In that case, the asynchronous graph morphism
L : JπKSep → JC1;C2KL

is also a 2-fibration.
Proof. Recall that the semantics of sequential composition is defined by:

JC1;C2KL = JC1KL; JC2KL
Jπ1;π2KSep = Jπ1KSep ; Jπ2KSep

This means that a tile in JC1;C2KL, is either a tile in JC1KL or a tile in JC2KL. By the
hypothesis on Li, it is clear that in either case we can lift the tile in either Jπ1KSep or in
Jπ2KSep , and thus in Jπ1;π2KSep .

B.3. Resource introduction.
Lemma B.4. Suppose that π is the derivation tree

... π′

Γ, r : J `{P}C ′{Q} Res
Γ`{P ∗ J}resource r do C ′{Q ∗ J}

and that the interpretation
L′ : Jπ′KSep → JC ′KL

is a 2-fibration. In that case, the asynchronous morphism
L : JπKSep −→ Jresource r do C ′KL

is also a 2-fibration.
Proof. Write C = resource r do C ′. Suppose there is a tile in JCKL of the form

b

a ≈ c

b′

m′m

m′ m

and that its upper path is the image of the following tile by L

(σ′
C ,σ2, σF)

(σC ,σ1, σF) (σ′′
C ,σ3, σ

′
F)

m′m (B.3)

Recall that the semantics of resource introduction is given by
Jresource r do C ′KL := hide[r](JC ′KL)

JRes(π′)KSep := hide[r](Jπ′KSep)

By the definition of the semantics, it is the image under hide[r] of some tile

b

a ≈ c

b′

m′m

m′ m

34 REFERENCES

Suppose, first, that m touches r; say m = P (r) for example. Since the square above is a tile,
we know that, in that case, m′ is neither P (r) nor V (r). This implies that the path (B.3) is
the image by hide[r] of a path:

(σC ∗ σ,σ] [r 7→ C], σF)

(σC ,σ] [r 7→ σ], σF) (σ′′
C ,σ3] [r 7→ C], σ′

F)

m′P (r)

with σC = σC ∗σ. By induction, this path can be completed into a tile in Jπ′KSep of the form

(σC ∗ σ,σ] [r 7→ C], σF)

(σC ,σ] [r 7→ σ], σF) ∼ (σ′′
C ,σ3] [r 7→ C], σ′

F)

(σ′′′
C ,σ] [r 7→ σ], σF)

m′P (r)

m′ P (r)

which implies that σ′′
C = σ′′′

C ∗ σ. Finally, this implies that (B.3) can be completed into a tile:

(σC ,σ, σF)

(σC ,σ, σF) ∼ (σ′′
C ,σ3, σ

′
F)

(σ′′
C ,σ, σ

′
F)

m′nop

m′ nop

Note that this reasoning holds when m′ is replaced with a Frame move. (indeed, in the
proof above, we accepted that m′ change σF). The case where neither m nor m′ touch r is
similar.

B.4. Critical sections. Before we prove the 2-fibration lemma for the rule With, we
analyze the structure of when[r]. Recall that this ATS is built in two steps (see §4.2): first,
the nodes and transitions of G are lifted by adding the new resource r into the sets of locked
resources of all the states (and in the case of separated states, we add that r is locked by
the Code), and, second, we add Environment transitions to make it an ATS. Call the first
kind of transition natural, and the second artificial. The artificial transitions correspond to
the case where the Environment touches the lock while it is held by the Code. This is, of
course, a highly incorrect behavior. Thankfully, the constraints on the Frame moves in the
Machine model of Separated States, and hence in the interpretation of proofs, rule these
transitions out, in the following sense. First, natural transitions are stable by homotopy.

Lemma B.5. Given a tile T in when[r](G), if the upper path is made of two natural
transitions, then so does the lower path.

Proof sketch. In a tile, opposite transitions have the same footprints, and therefore the same
behavior on locks.

REFERENCES 35

In the interpretations of proofs, all Code transitions are natural.

Lemma B.6. If G is an ATS over the machine model of separated states, then all the Code
transitions of when[r] are natural.

Proof sketch. Since the lock r is held be the Code, the Frame cannot touch it.

Lemma B.7. Suppose that π is the derivation tree
... π′

Γ`{(P ∗ J) ∧B}C ′{Q ∗ J} With
Γ, r : J `{P}with r whenB do C ′{Q}

and that the interpretation
L′ : Jπ′KSep −→ JC ′KL

is a 2-fibration. In that case, the asynchronous morphism
L : JπKSep −→ Jwith r whenB do C ′KL

is also a 2-fibration.

Proof. Write C = with r whenB do C ′. Recall that the semantics of C is defined as:

JC ′KSep = whentrue[B](JP (r)KSep ; when[r](JCKSep); JV (r)KSep)
⊕ whenabort[B].

By definition of sequential composition of ATSs, a tile in JCKL contains a Code transition
from JP (r)KL (or JV (r)KL) only if it is a Code/Frame tile. This case is easy because P (r)
and the Adam move touch distinct components of the separated states (since it is a tile,
Adam cannot touch the r component of σ), and λ is a Code-Frame 2-fibration by definition
of ATSs.

Consider a path of the following form in JπKSep :

(σC ,σ2] [r 7→ C], σF)

(σC ,σ] [r 7→ C], σF) (σ′′
C ,σ3] [r 7→ C], σ′

F)

m′m (B.4)

and consider a tile in JCKL whose upper path is the image of the above path under L.
We can suppose that this tile is in when[r](G). According to the two lemmas above, it

is of the form (where we write, instead of the nodes themselves, their images under λ′)

L2] {r}

L1] {r} ≈ L3] {r}

L′
2] {r}

m′m

m′ m

(B.5)

36 REFERENCES

and, moreover, there is a tile in JC ′KL (on the same nodes, since the map when[r] is defined
pointwise) of the form:

L2

L1 ≈ L3

L′
2

m′m

m′ m

(B.6)

By hypothesis, and by the definition of the semantics of the rule With, there exists a tile in
Jπ′KSep above the tile (B.6), which is of the form:

(σC ,σ2, σF)

(σC ,σ, σF) ∼ (σ′′
C ,σ3, σ

′
F)

(σ′′
C ,σ

′
2, σ

′
F)

m′m

m′ m

where the domain of the σ’s does not contain r. This finally means that we can complete
the path (B.4) into the following tile above (B.5) in JπKSep :

(σC ,σ2] [r 7→ C], σF)

(σC ,σ] [r 7→ C], σF) ∼ (σ′′
C ,σ3] [r 7→ C], σ′

F)

(σ′′
C ,σ

′
2] [r 7→ C], σ′

F)

m′m

m′ m

B.5. Conjunction.

Lemma B.8. Suppose that π is the derivation tree
... π1

Γ`{P1}C{Q1}

... π2
Γ`{P2}C{Q2} Conj

Γ`{P1 ∧ P2}C{Q1 ∧Q2}
where Γ is precise, and that the interpretation

Li : JπiKSep −→ JCKL
is a 2-fibration, for i = 1, 2. In that case, the asynchronous morphism

L : JπKSep −→ JCKL
is also a 2-fibration.

REFERENCES 37

Proof. Consider a tile T in JCKL such that its upper path can be lifted to a path p in JπKSep .
By definition of JπKSep := Jπ1KSep ∩ Jπ2KSep , the path p corresponds to a path p1 in Jπ1KSep
and p2 in Jπ2KSep , which all have the same image under λ, λ1 and λ2 respectively. Moreover,
by hypothesis, the tile T can be lifted to tiles T1 and T2 in Jπ1KSep and in Jπ2KSep respectively,
such that their upper paths are p1 and p2, respectively. Since there is at most one tile which
has a given upper path (Axiom 2 of asynchronous graphs), the two tiles have equal images
under λ1 and λ2. Therefore T1 and T2 define a tile in JπKSep extending the path p.

B.6. Conditionals.

Lemma B.9. Suppose π is the following derivation tree:
... π1

Γ`{P ∧B}C1{Q}

... π2
Γ`{P ∧ ¬B}C2{Q} If

Γ`{P}C{Q}
where C := ifB then C1 else C2, and that the interpretation

Li : JπiKSep −→ JCiKL
is a 2-fibration, for i = 1, 2. In that case, the asynchronous morphism

L : JπKSep −→ JCKL
is also a 2-fibration.

Proof. Recall that the semantics of if statements is defined as
JifB then C1 else C2KSep = whentrue[B](JnopKSep); JC1KSep

⊕ whenfalse[B](JnopKSep); JC2KSep
⊕ whenabort[B]

All non trivial tiles are either in JC1KL or in JC2KL. In either case, the hypothesis on Li tells
us that this tile can be lifted to JπiKSep .

B.7. Disjunction.

Lemma B.10. Suppose that π is the derivation tree
... π1

Γ`{P1}C{Q1}

... π2
Γ`{P2}C{Q2} Disj

Γ`{P1 ∨ P2}C{Q1 ∨Q2}
and that the interpretation

Li : JπiKSep −→ JCKL
is a 2-fibration, for i = 1, 2. In that case, the asynchronous morphism

L : JπKSep −→ JCKL
is also a 2-fibration.

Proof. Similarly to the previous case, if T is a tile in JCKL, there we can either lift it to
Jπ1KSep or to Jπ2KSep , so in any case we can lift it to JπKSep .

38 REFERENCES

B.8. The frame rule.

Lemma B.11. Suppose that π is the derivation tree
... π′

Γ`{P}C{Q} Frame
Γ`{P ∗R}C{Q ∗R}

and that the interpretation
L′ : Jπ′KSep −→ JCKL

is a 2-fibration. In that case, the asynchronous morphism
L : JπKSep −→ JCKL

is also a 2-fibration.

Proof. Consider a path in JπKSep of the following form (it is in one of the frame[σR](Jπ′KSep))

(σ′
C ∗ σR,σ2, σF)

(σC ∗ σR,σ1, σF) (σ′′
C ∗ σR,σ3, σF)

m′m (B.7)

and a tile in JCKL whose upper path is the image of (B.7) under Lπ:

b

a ≈ c

b′

m′m

m′ m

(B.8)

By definition of frame[σR], and according to the hypothesis on Lπ′ , the path (B.7) in
frame[σR](Jπ′KSep) corresponds to a path in Jπ′KSep that is the upper path a tile of the form:

(σ′
C ,σ2, σF ∗ σR)

(σC ,σ1, σF ∗ σR) ∼ (σC ,σ3, σF ∗ σR)

(σ†
C ,σ

′
3, σF ∗ σR)

m′m

m′ m

which means that there is a tile that extends (B.7) above (B.8):

(σ′
C ∗ σR,σ2, σF)

(σC ∗ σR,σ1, σF) ∼ (σC ∗ σR,σ3, σF)

(σ†
C ∗ σR,σ′

3, σF)

m′m

m′ m

	1. Introduction
	2. Machine states and machine instructions
	3. Asynchronous Machine Models
	4. Asynchronous Semantics of Code
	4.1. Asynchronous transition systems (ATSs)
	4.2. Basic constructions on ATSs
	4.3. Asynchronous semantics of the code
	4.4. Comparing the stateful and the stateless semantics

	5. Logical States
	6. The machine model of separated states
	7. An asynchronous semantics of proofs
	8. An asynchronous soundness theorem
	9. Conclusion and future works
	Acknowledgments
	References
	Appendix A. Proof of the 1-soundness theorem (Thm. 8.1)
	A.1. Parallel composition
	A.2. Sequential composition
	A.3. The frame rule
	A.4. Resource introduction
	A.5. Critical sections
	A.6. The conjunction

	Appendix B. Proof of the 2-soundness theorem (Thm. 8.2)
	B.1. The parallel rule
	B.2. Sequential composition
	B.3. Resource introduction
	B.4. Critical sections
	B.5. Conjunction
	B.6. Conditionals
	B.7. Disjunction
	B.8. The frame rule

