
Resource modalities in tensor logic

Paul-André Melliès Nicolas Tabareau ∗

Abstract

The description of resources in game semantics has never achieved the simplicity and
precision of linear logic, because of the misleading conception that linear logic is more
primitive than game semantics. Here, we defend the opposite view, and thus advocate that
game semantics is conceptually more primitive than linear logic. This revised point of view
leads us to introduce tensor logic, a primitive variant of linear logic where negation is not
involutive. After formulating its categorical semantics, we interpret tensor logic in a model
based on Conway games equipped with a notion of payoff, in order to reflect the various
resource policies of the logic: linear, affine, relevant or exponential.

Keywords: Game semantics, Conway games, linear logic, tensor logic, resource
modalities, linear negation, categorical semantics.

1 Introduction

Game semantics and linear logic. Born (or rather reborn) at the beginning of the
1990s in the turmoil produced by the discovery of linear logic by Girard [13], game se-
mantics remained under its spiritual influence for a very long time. This patronage was
extraordinarily healthy and profitable in the early days: properly guided, game semantics
developed steadily, along the idea that every formula of linear logic describes a game, and
that every proof of the formula describes a strategy for playing that game. This corre-
spondence between formulas of linear logic and games is supported by a series of elegant
and striking analogies. One basic principle of linear logic is that negation

A 7→ ¬A

is involutive. This means that every formula A is equal (or at least isomorphic) to the
formula negated twice:

A ∼= ¬¬A. (1)

This principle is nicely reflected in game semantics by the idea that negating a game A
consists in permuting the roles of the two players. Hence, negating a game twice amounts

∗This work is supported by the ANR Curry-Howard Correspondence and Concurrency The-
ory (CHOCO). Postal address: Laboratoire PPS, Université Paris Denis Diderot, 2 place Jussieu,
Case 7014, 75251 Paris Cedex 05, FRANCE. Email addresses: mellies@pps.jussieu.fr and
tabareau@pps.jussieu.fr

1

to permuting the role of Proponent and Opponent twice, which is just like doing nothing.
Typically, if A is a chess board where White starts, ¬A is the chess board where Black
starts, and ¬¬A is again the chess board where White starts.

Another basic principle of linear logic is that every formula behaves as a resource, which
disappears once consumed. In particular, a proof of the formula

A(B

enables to deduce the conclusion B by using (one should say : consuming) its hypothesis A
– seen here as a resource – exactly once. Again, this principle is nicely reflected in game
semantics, by the idea that playing a game is just like consuming a resource: the game
itself.

The connectives of linear logic are also nicely reflected in game semantics. For instance,
the tensor product

A⊗B

of two formulas A and B is suitably interpreted as the game (or formula) A played in
parallel with the game (or formula) B, where only Opponent may switch from a component
to the other one. This amounts to place two boards on the same table and to say that
Black must respond on the board where White has just played. Similarly, the sum

A⊕B

of two formulas A and B is nicely interpreted as the game where Proponent plays the first
move, which consists in choosing between the game A and the game B, before carrying
on in the selected component. This amounts to place two boards on the same table and
to let Black decides if he wants to play on the left or right board. This choice is then
irreversible. Finally, the exponential modality of linear logic

!A

applied to the formula A is interpreted as the game where several copies of the game A are
played in parallel, and only Opponent is allowed (a) to switch from a copy to another and
(b) to open a fresh copy of the game A. This amounts to play on parallel chess boards as
for tensor but with the ability for White to add a new chess board to those already there.

What we describe here is in essence the game semantics of linear logic described by
Blass [10]. The model is simple and elegant, and reflects the full flavor of the resource
policies of linear logic. Interestingly, Blass described the linear decomposition of intuition-
istic implication in a much earlier game semantics, which may be thus seen as a precursor
of linear logic [9]. Another important precursor is the sequential algorithm model de-
fined by Berry and Curien, which provided the first interactive model of the programming
language PCF [8]. From an historical point of view, it should be also mentioned that
game semantics was revisiting and extending ideas previously investigated by Lorenzen’s
school [27, 28].

A schism with linear logic. The destiny of game semantics has been to emancipate
itself from linear logic in the mid–1990s, in order to comply with its own designs, inherited
from denotational semantics:

2

1. the desire to interpret programs written in programming languages with effects (re-
cursion, states, etc.) and to characterize exactly their interactive behavior inside
fully abstract models;

2. the desire to understand the algebraic principles of programming languages and
effects, using the language of category theory.

A new generation of game semantics arose, propelled by (at least) two different lines of
research:

1. Abramsky and Jagadeesan [2] noticed that the (alternating variant of the) Blass
model does not define a categorical model of linear logic. Worse: it does not even
define a category, for lack of associativity. Abramsky calls this phenomenon the
Blass problem and describes it in [1].

2. Hyland and Ong [18] introduced the notion of arena game, and characterized the
interactive behavior of programs written in the functional language PCF — the
simply-typed λ-calculus with conditional test, arithmetic and recursion. A simi-
lar result with a slightly different model based on the geometry of interaction has
been obtained by Abramsky, Malacaria and Jagadeesan [3]. Note that despite their
publication dates, those works have both been done during 1994.

So, the Blass problem indicates that it is difficult to construct a (sequential) game model
of linear logic. At the same time, arena games became mainstream in the mid–1990s,
although they do not define a model of linear logic. These two reasons (at least) opened
a schism between game semantics and linear logic: it suddenly became accepted that
categories of (sequential) games and strategies would only capture fragments of linear
logic (intuitionistic or polarized) but not the whole thing.

A conciliation through tensor logic. In order to understand properly how the re-
source modalities of linear logic may be adapted to game semantics, it appears necessary
to reunify the two subjects. Since the disagreement started with category theory, we be-
lieve that this reunification should occur at the categorical level. We explain (in §2) how
to achieve this by relaxing the involutive negation of linear logic into a less constrained
tensorial negation. This negation induces in turn a linear continuation monad, whose unit

ηA : A −→ ¬¬A (2)

refines the isomorphism (1) of linear logic. Moving from an involutive to a tensorial
negation means that we replace linear logic by a more general and primitive logic – which
we call tensor logic. As we will see, this shift to tensor logic clarifies the Blass problem,
and describes the structure of arena games. It also enables to express resource modalities
in game semantics, just as it is usually done in linear logic.

Tensor logic provides a new insight on polarization in logic, an idea discovered by Girard
in his work on classical logic and system LC [14] and later exploited by Laurent in his
work on polarized linear logic [25]. Indeed, an unexpected phenomenon shows up in these
polarized logic: the resource modality !•pol changes the polarity of formulas. This peculiar
fact is nicely explained in tensor logic, by the decomposition of the modality !•pol into two
constructors: the exponential modality ! which does not change the polarity of formulas,

3

and the tensorial negation, noted ´ in this framework (rather that ¬), whose role as a
negation is to swap the point of view of Opponent and Proponent on a formula, which
amounts to reversing its polarity:

!•pol A = ! ´ A.

More generally, we would like to promote a radical change of perspective on polarization.
As we see it, tensor logic is not reduced to a fragment of linear logic, as one generally
thinks of polarized logic. On the contrary, we defend the thesis that tensor logic is a more
primitive logic that linear logic, closer to the mechanisms of continuations described by
game semantics. And in the same way that classical logic is interpreted in intuitionistic
logic through the Gödel translation, we will see that linear logic is interpreted in tensor
logic through a similar translation, of a categorical nature: namely, a Kleisli construction.
In a word, tensor logic is to linear logic what intuitionistic logic is to classical logic: a
formalism closer to computations and programs. This guiding principle that linear logic
should be seen as a “depolarized tensor logic” emerged from the semantic work of the first
author on asynchronous games, where the game model of polarized logic was “depolarized”
and extended in this way to full propositional linear logic [31, 32].

Plan of the paper. We describe (§2) a categorical semantics of resources in game
semantics, and explain (§3) in what sense the resulting topography refines both linear
logic and polarized logic. After that, we construct (§4) a compact-closed (that is, self-
dual) category inspired by Conway games, where the resource policy is enforced by a
notion of payoff. From this, we derive (§5) a model of our categorical semantics of tensor
logic with resource modalities, using a family construction, and conclude (§6).

2 Categorical models of resources

Despite the extraordinary efficiency of game semantics to interpret fragments of lin-
ear logic, serious difficulties arise when one tries to go beyond these fragmentary models,
in order to construct a (sequential) game model of full propositional linear logic. One
main technical obstacle was described by Abramsky and Jagadeesan as the Blass prob-
lem [2]. This says that the sequential game semantics described by Blass [10] does not
give rise to a category, because the expected definition of composition between strate-
gies is not associative. This alarming situation convinced the first author to develop a
theory of asynchronous games in order to resolve the Blass problem, and to construct a
game-theoretic model of full propositional linear logic [30, 31, 32]. Curiously, the solu-
tion requires to consider sequential strategies modulo a quotient – a quotient which, in
the light of a categorical observation of Hasegawa [16] amounts to identifying the two
canonical morphisms

¬¬A ⊗ ¬¬B ⇒ ¬¬ (A⊗B)

induced by the strength of the continuation monad. The point is that identifying the two
strategies makes the continuation monad T a commutative monad – this implying in turn
that the full subcategory of negated objects (thus of the form ¬A) defines a ∗-autonomous
category, and thus a model of linear logic.

Since the construction of the game-theoretic model of linear logic requires to identify
strategies modulo a notion of quotient, it is natural to step back, and to investigate

4

the status of a logic of tensor and negation where the continuation monad would not
be commutative. This idea leads to tensor logic – a more primitive logic deeply related
to game semantics. It appears then that a major part of the models of linear logic are
constructed in this way, starting from a model of tensor logic where the continuation
monad is commutative. This is typically the case for phase spaces, coherence spaces, or
finiteness spaces [12]. One interesting aspect of our approach is that one can define different
negations on the same model of tensor logic – this inducing different but harmoniously
related models of linear logic. See the PhD thesis of the second author for a combined
study of coherence spaces and finiteness spaces [42].

We introduce now the notion of dialogue category which is a symmetric monoidal cat-
egory equipped with a tensorial negation. We then explain how such a dialogue category
may be equipped with coproducts and various resource modalities. The first author de-
scribes in [33] how to extract a syntax of proofs from a categorical semantics, by using
string diagrams and functorial boxes. In this case, we call tensor logic the resulting logic
of tensor and negation. We provide in Section 3 a sequent calculus for the logic, in order
to compare it to linear logic and to polarized logic.

Tensorial negation. A tensorial negation on a symmetric monoidal category (C,⊗, 1)
is defined as a functor

¬ : C −→ Cop (3)

together with a family of bijections

ϕA,B,C : C(A⊗B,¬C) ∼= C(A,¬(B ⊗ C))

natural in A,B and C such that the diagram

C(A⊗ (B ⊗ C),¬D)
C(αA,B,C ,¬C)

//

ϕA,B⊗C,D

��

C((A⊗B)⊗ C,¬D)
ϕA⊗B,C,D

��
C(A⊗B,¬ (C ⊗D))

ϕA,B,C⊗D
��

C(A,¬ ((B ⊗ C)⊗D))
C(A,¬α−1

B,C,D)

// C(A,¬ (B ⊗ (C ⊗D)))

commutes. A symmetric monoidal category equipped with a tensorial negation is called a
dialogue category. Given a tensorial negation, it is customary to define falsity as the object
⊥ = ¬ 1 obtained by “negating” the unit object 1 of the monoidal category. Note that
we use the notation 1 (instead of I or e) in order to remain consistent with the notations
of linear logic. Note also that the bijection ϕA,B,1 defines a one-to-one correspondence

ϕA,B,1 : C(A⊗B,⊥) ∼= C(A,¬B)

for all objects A and B. For that reason, the definition of a negation ¬ is equivalent to
the (somewhat informal) statement that “the object ⊥ is exponentiable” in the symmetric
monoidal category C, with negation ¬A noted ⊥A. More on this topic will be found in the
survey [34].

5

Self-adjunction. One fundamental aspect of the notion of tensorial negation is that
negation seen as a functor (3) is left adjoint to the opposite functor

¬ : Cop −→ C (4)

This comes from the natural bijection

C(A,¬B) ∼= C(B,¬A) = Cop(¬A,B).

This fundamental “self-adjunction” phenomenon was already mentioned by Kock [23] and
was then rediscovered by Thielecke [43] in his PhD thesis. This observation plays a key role
in an unpublished work by Selinger and the first author on polar categories, a categorical
semantics of polarized logic, continuations and arena games [35]. More generally, the
idea of adjunction also appears in the study of games and distributors (seen as polarized
categories) by Cockett and Seely [11].

Continuation monad. Every tensorial negation ¬ induces a self-adjunction, and thus
a monad

¬¬ : C −→ C.
This monad is called the continuation monad of the negation. One fundamental fact
observed by Moggi [39] is that the continuation monad is strong but not commutative in
general. By strong monad, we mean that the monad ¬¬ is equipped with a family of
morphisms:

tA,B : A⊗ ¬¬B −→ ¬¬ (A⊗B)

natural in A and B, and satisfying a series of coherence properties. By commutative
monad, we mean a strong monad making the two canonical morphisms

¬¬A⊗ ¬¬B ⇒ ¬¬ (A⊗B) (5)

coincide. A tensorial negation ¬ is called commutative when the continuation monad
induced in C is commutative — or equivalently, a monoidal monad in the lax sense.

Linear implication. A dialogue category C, with negation ¬ is not very far from being
monoidal closed. It is possible indeed to define a linear implication (when its target ¬B
is a negated object:

A (¬B def= ¬ (A⊗B).

In this way, the functor (4) defines what we call an exponential ideal in the category C.
When the functor is faithful on objects and morphisms, we may identify this exponential
ideal with the subcategory of negated objects in the category C. The exponential ideal
discussed in McCusker’s PhD thesis [29] arises precisely in this way.

Continuation category. Every dialogue category C, with negation ¬, induces a category
of continuations C¬ with the same objects as C, and morphisms defined as

C¬(A,B) def= C(¬A,¬B).

Note that the category C¬ is the opposite of the Kleisli category associated to the con-
tinuation monad in C. Alternatively, the category C¬ may be seen as the Kleisli category
associated to the comonad in Cop induced by the adjunction.

6

Semantics of resources. A resource modality on a symmetric monoidal category (C,⊗, e)
is defined as an adjunction:

M

U

&&
⊥ C
F

gg (6)

where

• (M, •, u) is a symmetric monoidal category,

• U is a symmetric monoidal functor.

Recall that a symmetric monoidal functor U is a functor which transports the symmetric
monoidal structure of (M, •, u) to the symmetric monoidal structure of (C,⊗, e), up to
isomorphisms satisfying suitable coherence properties. Another more conceptual definition
of a resource modality is possible: it is an adjunction defined in the 2-category of symmetric
monoidal categories, lax symmetric monoidal functors, and monoidal transformations.
Now, the resource modality is called

• affine when the unit u is the terminal object of the categoryM,

• relevant when every object ofM is duplicable, that is when there exists a diagonal

δA : A −→ A ⊗ A

natural in A, compatible with the symmetry and satisfying the associativity diagram

A
δA //

δA ''PPPPPPPPPPPPP A⊗A
symmA,A

��
A⊗A

(7)

A
δA //

δA
��

A⊗A
A⊗δA

��
A⊗A

δA⊗A
// A⊗A⊗A

(8)

• exponential when the tensor product • is a cartesian product, and the unit u is the
terminal object of the categoryM.

This definition of resource modality is inspired by the categorical semantics of linear logic,
and more specifically by Benton’s notion of Linear-Non-Linear model [7] — which may be
now reformulated as a symmetric monoidal closed category C equipped with an exponential
modality in our sense. Very often, we will identify the resource modality and the induced
comonad ! = U ◦ F on the category C. We sum up the different resource modalities in
the following table.

Modality Category (M,⊗, e)
Affine the unit e is terminal

Relevant every object is duplicable
Exponential the structure is cartesian

The work of Jacobs on affine and relevant modalities [20] is based on a commutative monad
on a cartesian closed category. He then considers the Eilenberg-Moore category induced
by this (affine or relevant) monad in order to construct models of intuitionistic linear logic
equipped with an affine or relevant modality. In particular, his construction is limited to
the special case of models of intuitionistic linear logic obtained as categories of algebras.

7

3 Tensor logic

In our algebraic philosophy, tensor logic is entirely described by its categorical semantics,
which is defined in the following way. First of all, every dialogue category C defines a model
of multiplicative tensor logic. It then defines a model of multiplicative additive tensor logic
when the category C has finite coproducts (noted ⊕) which distribute over the tensor
product: this means that the canonical morphisms

(A⊗B)⊕ (A⊗ C) −→ A⊗ (B ⊕ C)

0 −→ A⊗ 0

are isomorphisms. Then, a model of full propositional tensor logic is defined as a model of
multiplicative additive tensor logic, equipped with an exponential resource modality (with
comonad noted !•e) as well as, ideally, an affine resource modality (with comonad noted !•w)
and a relevant resource modality (with comonad noted !•c). A diagrammatic syntax of
tensor logic may be then extracted from its categorical definition, along the line of [33].
However, we find useful to give a more familiar presentation of tensor logic, in order to
compare it to linear logic and to polarized linear logic. To that purpose, we formulate
below the sequent calculus of tensor logic in two different but equivalent ways: either
two-sided or one-sided.

Two-sided presentation. The formulas A,B, . . . of tensor logic (in its two-sided pre-
sentation) are constructed as follows:

multiplicatives 1 | ¬A | A⊗B
additives 0 | A⊕B
resource modalities !•wA | !•cA | !•eA

The sequents are of two forms: Γ ` A where Γ is a context, andA is a formula; Γ ` where Γ
is a context (the notation [A] expresses the unessential presence of A in the sequent). The
sequent calculus of the multiplicative fragment appears in Figure 1. The first four rules
express the monoidal structure on C, the two below define a tensorial negation and the
last two just represent identity and composition of our category C. Figure 2 describes the
rules managing finite coproducts. Figure 3 depicts the expected rules for the exponential
modality (those are the rules of the ! of linear logic). The rules for the affine modality,
given in Figure 4, are the same as for the exponential modality, but without contraction.
The rules for the relevant modality, given in Figure 5, are the same as for the exponential
modality, but without weakening.

One-sided presentation. In order to switch to the one-sided formulation of tensor
logic, we need to introduce polarities. The formulas that were on the right in the two-
sided presentation remain there, and are called positive. Dually, the formulas on the left
move on the right, and are now called negative.

Two-sided presentation One-sided presentation
Γ ` ` Γ∗

Γ ` A ` Γ∗, A

8

Γ ` A ∆ ` B Tensor-Right
Γ,∆ ` A⊗B

Γ1, A,B,Γ2 ` [C]
Tensor-LeftΓ1, A⊗B,Γ2 ` [C]

Unit-Right
` 1

Γ ` [A]
Unit-LeftΓ, 1 ` [A]

Γ, A `
Negation-Right

Γ ` ¬A
Γ ` A Negation-Left

Γ,¬A `

Axiom
A ` A

Γ ` A A,∆ ` [B]
CutΓ,∆ ` [B]

Figure 1. Multiplicative tensor logic: two-sided presentation

Γ ` A Sum-Right-1
Γ ` A⊕B

Γ ` B Sum-Right-2
Γ ` A⊕B

Γ, A ` [C] Γ, B ` [C]
Sum-LeftΓ, A⊕B ` [C]

No right introduction rule for the zero Zero-LeftΓ, 0 ` [A]

Figure 2. Additive tensor logic: two-sided presentation

!•eΓ ` A Strengthening
!•eΓ ` !•eA

Γ, A ` [B]
DerelictionΓ, !•eA ` [B]

Γ ` [B]
Weakening

Γ, !•eA ` [B]
Γ, !•eA, !•eA ` [B]

ContractionΓ, !•eA ` [B]

Figure 3. Exponential modality: two-sided presentation

!•wΓ ` A Strengthening
!•wΓ ` !•wA

Γ, A ` [B]
DerelictionΓ, !•wA ` [B]

Γ ` [B]
Weakening

Γ, !•wA ` [B]

Figure 4. Affine modality: two-sided presentation

!•cΓ ` A Strengthening
!•cΓ ` !•cA

Γ, A ` [B]
DerelictionΓ, !•cA ` [B]

Γ, !•cA, !•cA ` [B]
ContractionΓ, !•cA ` [B]

Figure 5. Relevant modality: two-sided presentation

9

So, there are two kinds of sequents in this formulation: the sequents ` Γ where Γ contains
only negative formulas, and the sequents ` Γ, P containing exactly one positive formula P ,
(the notation [P] expresses the unessential presence of P in the sequent). To distinguish
between positive and negative formulas, we have to clone each construct 0, 1,⊕,⊗, !•w, !•c, !•e
into itself: 0, 1,⊕,⊗, !•w, !•c, !•e and its dual: >,⊥,&,`, ?•w, ?•c, ?•e. The negation ¬ itself is cloned
in two operations ˆ and ´, each of them with a specific effect:

• ˆ transports the positive formulas into the negative formulas,

• ´ transports the negative formulas into the positive formulas.

Note that the affine and exponential modalities do not change polarities themselves: this
is a main difference with polarized logic. We use the letters P and Q for the positive
formulas, the letters L and M for the negative formulas, and the letters Γ,∆ for the
contexts of negative formulas. Formulas are constructed by the following grammar:

Positives 0 | 1 | ´L | P ⊗Q | P ⊕Q | !•wP | !•cP | !•eP
Negatives ⊥ | > | ˆP | L`M | L&M | ?•wL | ?•cL | ?•eL

Every positive formula P has a dual negative formula P⊥, obtained by dualizing every
logical construct appearing in the formula P . The sequent calculus in Figure 6 for the
multiplicatives adapts Figure 1; Figure 7 for the additives adapts Figure 2. Figures 8, 9
and 10 for the resource modalities adapt Figures 3, 4 and 5.

Classical logic and polarized linear logic. Starting from Thielecke’s work [43],
Selinger designs the notion of control category in order to axiomatize the categorical se-
mantics of classical logic [41]. Then, prompted by a nice completeness result discovered by
Hofmann and Streicher [17], Selinger establishes a fundamental structure theorem, stating
that every control category P is the continuation category C¬ of a response category C.
Now, a response category C – where the monic requirement on the units (2) is relaxed –
is the same thing as a model of multiplicative additive tensor logic, where the tensor ⊗ is
cartesian and the tensor unit 1 is terminal.

Interestingly, a purely proof-theoretic analysis of classical logic leads exactly to the
same conclusion. Exploiting Girard’s work on polarities in LC [14], Laurent developed
an extensive analysis of polarities in logic, incorporating classical logic, arena games and
control categories [25, 26]. The main ingredient of his work is a logic called polarized linear
logic, which happens to coincide with the multiplicative additive fragment of tensor logic,
where the tensor product is cartesian, rather than monoidal. This fact appears clearly in
the one-sided formulation of tensor logic. Note that the shift operators ´ and ˆ of tensor
logic are noted ! and ? in polarized linear logic, this leading to annoying confusions between
negations and resource modalities. On the other hand, it should be observed that Laurent
considered the multiplicative additive fragment of tensor logic in his PhD thesis [24] which
he defined then as a “linear” version of polarized linear logic. Our point here is simply
that one should proceed as in linear logic, and start from this linear version of polarized
linear logic, rather than polarized linear logic itself. This starting point enables to get rid
of the cartesian paradigm which haunts polarized logics since the early work by Girard on
LC [14]. We sum up the difference between tensor logic and polarized linear logic in this
very schematic table:

10

` Γ, P ` ∆, Q
Tensor` Γ,∆, P ⊗Q

` Γ1, L,M,Γ2, [P]
Par` Γ1, L`M,Γ2, [P]

One` 1
` Γ, [P]

Bottom` Γ,⊥, [P]

` Γ, L
Linear strengthening

` Γ, ´L
` Γ, P

Linear dereliction` Γ, ˆP
Axiom

` P⊥, P
` Γ, P ` P⊥,∆, [Q]

Cut` Γ,∆, [Q]

Figure 6. Multiplicative tensor logic: one-sided presentation

` Γ, P
Sum-Left` Γ, P ⊕Q

` Γ, Q
Sum-Right

` Γ, P ⊕Q

` Γ, L, [P] ` Γ,M, [P]
With` Γ, L&M, [P]

No introduction rule for the zero Top
` Γ,>, [P]

Figure 7. Additive tensor logic: one-sided presentation

` ?•eΓ, P Strengthening
` ?•eΓ, !•eP

` Γ, L, [P]
Dereliction` Γ, ?•eL, [P]

` Γ, [P]
Weakening

` Γ, ?•eL, [P]
` Γ, ?•eL, ?•eL, [P]

Contraction` Γ, ?•eL, [P]

Figure 8. Exponential modality: one-sided presentation

` ?•wΓ, P
Strengthening

` ?•wΓ, !•wP
` Γ, L, [P]

Dereliction` Γ, ?•wL, [P]

` Γ, [P]
Weakening

` Γ, ?•wL, [P]

Figure 9. Affine modality: one-sided presentation

` ?•cΓ, P Strengthening
` ?•cΓ, !•cP

` Γ, L, [P]
Dereliction` Γ, ?•cL, [P]

` Γ, ?•cL, ?•cL, [P]
Contraction` Γ, ?•cL, [P]

Figure 10. Relevant modality: one-sided presentation

11

Tensor logic ⊗ is monoidal
¬ is tensorial

Polarized linear logic ⊗ is cartesian
¬ is tensorial

One advantage of the approach is that every resource modality (6) on a dialogue category C
induces a structure of dialogue category on the categoryM, where negation is defined as

F op ◦ ¬ ◦ U : M→Mop.

Note that the self-adjunction induced by the tensorial negation on the category M may
be alternatively described as the composite of the three adjunctions

M

U

&&
⊥ C
F

gg

¬
''

⊥ Cop
¬

ff

F op

))

¬

ff ⊥ Mop

Uop

hh

In particular, when the resource modality (6) is exponential, the monoidal structure of
the category M is provided by the cartesian product, and one thus obtains a model of
polarized linear logic. This construction should be thought as a polarized version of the
familiar construction in linear logic of a cartesian closed category from an ∗-autonomous
category equipped with a resource modality.

Linear logic. The continuation monad A 7→ O¬P¬ A of game semantics lifts an Opponent-
starting game A with an Opponent move ¬O followed by a Player move ¬P . Now, it ap-
pears that the Blass problem mentioned in §1 arises precisely because the monad is strong,
but not commutative, see [35, 31] for details. Motivated by this key observation, the first
autho developed asynchronous game semantics in order to establish that innocent strate-
gies are positional [30]. This positionality result enables then to identify the two canonical
strategies (5) and to obtain in this way a game-theoretic model of full propositional linear
logic. This approach leads eventually to a fully complete model of linear logic, based on
an appropriate winning condition on strategies, described in [31, 32].

It appears that this game-theoretic construction has a nice categorical counterpart. It
is well-known since the work by Power and Robinson [40] that the Kleisli category CT
associated to a monad T inherits a premonoidal structure from the monoidal structure
of the category C, when the monad T is strong. Moreover, when the monad T is not
only strong, but also commutative, the premonoidal structure on the Kleisli category CT
becomes monoidal. A conceptual explanation for this phenomenon is that a commutative
monad is the same thing as a monoidal monad, in a lax sense [20, 34]. So, when the
continuation monad T is not only strong, but also commutative, its Kleisli category CT is
symmetric monoidal. Now, Hasegawa observed a much stronger property [16]:

Proposition 1 Given a dialogue category C, the following are equivalent:

• the continuation monad is commutative,

• the continuation monad is idempotent, this meaning that the multiplication of the
monad

µA : ¬¬¬¬ A −→ ¬¬ A
is an isomorphism, for every object A of the category,

12

• the morphisms
η¬A : ¬ A � ¬¬¬ A : ¬ ηA

are inverse morphisms, for every object A of the category C,

• the Kleisli category CT equipped with the premonoidal structure inherited from monoidal
structure of the dialogue category is ∗-autonomous.

This construction provides in fact a categorification of Girard’s phase space semantics [13].
It should be observed in particular that the Kleisli category CT is equivalent in that case
to the full subcategory of C consisting of the negated objects (that is, of the form ¬A).
This result demonstrates that linear logic is essentially the same thing as tensor logic
where the tensorial negation is commutative (in the sense that it induces a commutative
continutation monad).

Linear logic ⊗ is monoidal
¬ is commutative

We now develop this idea and show that any model of full propositional tensor logic,
where the continuation monad is commutative, induces a model of linear logic on the
Kleisli category CT of the continuation monad. The idea is to start from the adjunction

C

FT

""
⊥ CT

GT

aa (9)

between the category C and its Kleisli category CT . Since we are considering the case
of a commutative continuation monad T , the adjunction is symmetric monoidal. This
establishes already that when the continuation monad is commutative,

Lemma 1 Every exponential modality on the category C induces an exponential modality
on the ∗-autonomous category CT , and thus a model of multiplicative exponential linear
logic.

Proof: The proof is simply based on the fact that the two symmetric monoidal adjunc-
tions

M

U

&&
⊥ C
F

gg

FT

''
⊥ CT
GT

ff

compose as a symmetric monoidal adjunction. Now, since the monoidal structure of
the category M is provided by its finite product, this adjunction defines an exponential
modality on the ∗-autonomous category CT . �

Next, we show how to interpret the additive structure of linear logic, from a model of
tensor logic with sums. The recipe is based on a folklore result in category theory, which
states that the Kleisli category of a category with finite coproducts is also a category with
finite coproducts. More precisely,

13

Proposition 2 Suppose that T is a monad on a category C with finite coproducts. In that
case, the Kleisli category CT is also equipped with finite coproducts.

From this, it follows that the Kleisli category CT has finite coproducts, when the dialogue
category C has finite coproducts. Moreover, the Kleisli category CT has also finite products
defined by duality as

A&B
def= ¬(¬A⊕ ¬B)

when the continuation monad is commutative. From this, it follows that

Theorem 1 Suppose that C is a model of propositional tensor logic (multiplicative, ad-
ditive, exponential) where the continuation monad ¬¬ is commutative. Then, the Kleisli
category CT defines a model of propositional linear logic (multiplicative, additive, exponen-
tial).

Remark. Suppose given a dialogue category C equipped with an exponential modality
described as a comonad !•e. Suppose moreover that the continuation monad induced by the
dialogue category is commutative. We have seen in Proposition 1 that the continuation
monad is also idempotent. From this follows that the Kleisli category CT of the monad is
equivalent to its category CT of Eilenberg-Moore algebras. This leads to two alternative
descriptions of the adjunction (9). In the first formulation, the objects of the Kleisli
category CT are defined as the objects of the category C, and FT is defined as the identity
on objects whereas GT is defined as double negation on objects. One obtains the formula

! A = !•e ¬¬A

for the exponential modality of linear logic on the ∗-autonomous category CT . In the
second formulation, the objects of the Kleisli category CT are defined as the algebras of
the category C, and FT is defined as double negation whereas GT is defined as the identity
on objects. One obtains the formula

! A = ¬¬ !•e A

for the exponential modality of linear logic on the ∗-autonomous category CT . Despite their
superficial difference, it should be stressed that the two constructions of the exponential
modality ! are equivalent when the continuation monad is commutative.

Three translations of linear logic into tensor logic. We describe three syntactical
translations of linear logic into tensor logic, whose difference lies in the number of nega-
tions introduced between the logical connectives of linear logic. In particular, the three
translations are isomorphic when the continuation monad is commutative, or equivalently,
when the continuation monad is idempotent. So, they provide in that case three alterna-
tive but isomorphic descriptions of the categorical translation implemented by the Kleisli
construction in Theorem 1.

First translation: negative translation. The first translation provides a direct and
somewhat naive syntactical counterpart of the Kleisli construction. The translation is a
variant of the Gödel-Gentzen negative translation of classical logic (LK) into intuitionistic
logic (LJ). The idea is to translate every formula A of linear logic as its negation (A)N

14

(>)N def= 0

(⊥)N def= 1

(A&B)N def= (A)N ⊕ (B)N

(A`B)N def= (A)N ⊗ (B)N

(?A)N def= !•e(A)N

(0)N def= ¬ 0

(1)N def= ¬ 1

(A⊕B)N def= ¬ (¬(A)N ⊕ ¬(B)N)

(A⊗B)N def= ¬ (¬(A)N ⊗ ¬(B)N)

(!A)N def= ¬ !•e ¬(A)N

Figure 11. Negative translation of linear logic into tensor logic (two-sided).

in tensor logic. This negative translation on formulas is described in Figure 11. Every
sequent

` A1, . . . , Ak

of linear logic is then translated as the sequent

(A1)N , . . . , (Ak)N `

of tensor logic. One establishes that

Proposition 3 Every proof of the sequent ` A1, . . . , Ak in linear logic induces a proof of
the sequent (A1)N , . . . , (Ak)N ` in tensor logic.

The proof of Proposition 3 is performed by structural induction on the derivation tree of
the sequent ` A1, . . . , Ak in linear logic. Every step of the derivation tree in linear logic is
translated:

• in one step in the case of the connectives & and `, and the constants > and ⊥,

• in two steps in the case of the constants 0 and 1,

• in three steps in the case of the connectives ⊕ and ⊗.

Typically, the introduction of the connective ` in linear logic

` Γ , A , B

` Γ , A`B
is translated in one step as

(Γ)N , (A)N , (B)N `
(Γ)N , (A)N ⊗ (B)N `

in tensor logic. On the other hand, the introduction of the connective ⊗ in linear logic

` Γ , A ` ∆ , B

` Γ , ∆ , A⊗B

is translated in three steps as

(Γ)N , (A)N `
(Γ)N ` ¬(A)N

(∆)N , (B)N `
(∆)N ` ¬(B)N

(Γ)N ` ¬(A)N ⊗ ¬(B)N

(Γ)N , ¬(¬(A)N ⊗ ¬(B)N) `

15

The negative translation may be equivalently described as a translation of linear logic
into tensor logic, seen from the one-sided point of view, rather than from the two-sided
point of view. Formulated in this way, the negative translation translates a formula A of
linear logic into a formula (A)N of tensor logic by introducing a sufficient number of shift
operators ´ or ˆ between the connectives of the formula A, as explained in Figure 12. Of
course, every sequent

` A1, . . . , Ak

of linear logic is then translated as the sequent

` (A1)N , . . . , (Ak)N

of tensor logic, formulated in the one-sided point of view. A converse of Proposition 3 may
be established, where we keep the one-sided formulation for clarity’s sake:

Proposition 4 Every proof of ` (A1)N , . . . , (Ak)N in tensor logic induces a proof of the
sequent ` A1, . . . , Ak in linear logic.

The proof is performed by structural induction on the derivation tree of ` (A1)N , . . . , (Ak)N

in tensor logic. Every step of the derivation tree of tensor logic is interpreted in

• no step for the shift connectives ´ or ˆ,
• one step for all the other connectives

in linear logic. So, the translation from tensor logic is to remove all the logical steps
introducing a shift operator ´ or ˆ, this leading to a proof of the sequent ` A1, . . . , Ak
of linear logic. This last point follows from the previous observation that the negative
translation, seen from the one-sided point of view, consists only in introducing a sufficient
number of shift operators ´ or ˆ between the connectives of the formula A of linear logic.

Remark. The pair of back and forth translations formulated in Propositions 3 and 4
establishes that tensor logic is a refinement of linear logic, in the sense that every proof in
tensor logic translates (in a canonical way) as a proof of linear logic, obtained by removing
the shift operators ´ or ˆ from the formulas and from the proofs, and conversely, every
proof of linear logic lifts (in a non canonical way) to a proof of tensor logic obtained by
adding a sufficient number of shift operators ´ or ˆ in the formulas and in the proofs.
Let us illustrate here the fact that the lifting from linear logic to tensor logic is far from
canonical. It is customary to consider that the two proofs of linear logic

` A ` B , C

` A⊗B , C ` D

` A⊗B , C ⊗D
` A

` B , C ` D

` B ,C ⊗D
` A⊗B , C ⊗D

(10)

are equal, because they are interpreted as the same morphism in any ∗-autonomous cate-
gory. The negative translation translates the proof on the left-hand side as

` (A)N

` ´ (A)N
` (B)N , (C)N

` ´ (B)N , (C)N

` ´ (A)N ⊗ ´ (B)N , (C)N

` ˆ (´ (A)N ⊗ ´ (B)N) , (C)N

` ˆ (´ (A)N ⊗ ´ (B)N) , ´ (C)N
` (D)N

` ´ (D)N

` ˆ (´ (A)N ⊗ ´ (B)N) , ´ (C)N ⊗ ´ (D)N

` ˆ (´ (A)N ⊗ ´ (B)N) , ˆ (´ (C)N ⊗ ´ (D)N)

16

(>)N def= >
(⊥)N def= ⊥

(A&B)N def= (A)N & (B)N

(A`B)N def= (A)N ` (B)N

(?A)N def= ?•e (A)N

(0)N def= ˆ 0

(1)N def= ˆ 1

(A⊕B)N def= ˆ (´ (A)N ⊕ ´ (B)N)

(A⊗B)N def= ˆ (´ (A)N ⊗ ´ (B)N)

(!A)N def= ˆ !•e ´ (A)N

Figure 12. Negative translation of linear logic into tensor logic (one-sided)

whereas it translates the proof on the right-hand side as

` (A)N

` ´ (A)N

` (B)N , (C)N

` (B)N , ´ (C)N
` (D)N

` ´ (D)N

` (B)N , ´ (C)N ⊗ ´ (D)N

` (B)N , ˆ (´ (C)N ⊗ ´ (D)N)
` ´(B)N , ˆ (´ (C)N ⊗ ´ (D)N)

` ´ (A)N ⊗ ´ (B)N , ˆ (´ (C)N ⊗ ´ (D)N)
` ˆ (´ (A)N ⊗ ´ (B)N) , ˆ (´ (C)N ⊗ ´ (D)N)

These two proofs of tensor logic should not be considered equal in tensor logic, because
they are interpreted as different morphisms in a typical dialogue category like the cate-
gory Games defined in §4. This illustrates the fact that the same proof of linear logic
may be lifted in several ways to tensor logic. Each translation implements a particular
scheduling for the exploration of the logical connectives, nicely reflected as a sequential
strategy in game semantics.

Second translation: linear translation. The second translation is called the linear
translation because we believe that it reflects the familiar structure of linear logic: in par-
ticular, the translation introduces one shift operator (at least) between any two connectives
of linear logic, which is not the case with the negative translation. The linear translation
is mainly motivated by an unpleasant aspect of the negative translation: the fact that it
is not symmetric, in the sense that the negative translation (A∗)N of the dual A∗ of a
formula A of linear logic... is not the dual of the formula (A)N in tensor logic. In order
to achieve such a symmetric translation, we need to separate the formulas of linear logic
in two classes: the positive formulas of the form

A⊕B | 0 | A⊗B | 1 | !A

and the negative formulas of the form

A&B | > | A`B | ⊥ | ?A.

The linear translation is then performed by translating the units 0 and 1 as the formu-
las (0)L = ´ˆ0 and (1)L = ´ˆ1, and dually, the units > and ⊥ as the formulas (>)L = ˆ´>
and (>)L = ˆ´⊥. And then, by carefully applying the table below for each connective
of linear logic. Note in particular that a positive formula of linear logic is translated as

17

a positive formula of tensor logic, whereas a negative formula is translated as a negative
formula of tensor logic.

A B (A⊗B)L (A`B)L (A⊕B)L (A&B)L (!A)L (?A)L

+ + ´ˆAL ⊗ ´ˆBL ˆAL ` ˆBL ´ˆAL ⊕ ´ˆBL ˆAL & ˆBL !•e´ˆAL ?•eˆAL
+ − ´ˆAL ⊗ ´BL ˆAL ` ˆ´BL ´ˆAL ⊕ ´BL ˆAL & ˆ´BL

− + ´AL ⊗ ´ˆBL ˆ´AL ` ˆBL ´AL ⊕ ´ˆBL ˆ´AL & ˆBL !•e´AL ?•eˆ´AL
− − ´AL ⊗ ´BL ˆ´AL ` ˆ´BL ´AL ⊕ ´BL ˆ´AL & ˆ´BL

Third translation: focalized translation. This last translation is a variant of the
linear translation: in particular, both translations are symmetric. The translation is called
focalized because it introduces as few shift operators as possible between the connectives of
linear logic. Each connective of linear logic becomes part of a cluster of positive or negative
connectives after translation in tensor logic, this reflecting the focalization property of
linear logic, noticed for the first time by Andreoli [5]. Note that the focusing translation
starts by translating the positive units 0 and 1 as themselves, and similarly for the negative
units > and ⊥.

A B (A⊗B)F (A`B)F (A⊕B)F (A&B)F (!A)F (?A)F

+ + AF ⊗BF ˆAF ` ˆBF AF ⊕BF ˆAF & ˆBF !•eAF ?•eˆAF
+ − AF ⊗ ´BF ˆAF `BF AF ⊕ ´BF ˆAF &BF

− + ´AF ⊗BF AF ` ˆBF ´AF ⊕BF AF & ˆBF !•e´AF ?•eAF

− − ´AF ⊗ ´BF AF `BF ´AF ⊕ ´BF AF &BF

Free finite coproducts. In several important situations arising in game semantics, one
finds a dialogue category C with finite products, but without finite coproducts. In that
case, it is tempting to add these coproducts in a free way, by using the family construction
described by Abramsky and McCusker in [4]. Recall that the category Fam(C) is defined
as follows:

• its objects are the families {Ai | i ∈ I} of objects of C, where I is a finite set,

• its morphisms from {Ai | i ∈ I} to {Bj | j ∈ J} are the pairs consisting of a
reindexing function f : I → J together with a family of morphisms {fi : Ai →
Bf(i) | i ∈ I} of the category C.

It is folklore that this family construction defines the free completion Fam(C) under finite
coproducts generated by the category C. This family construction defines a 2-monad on
the 2-category of categories, functors and natural transformations. In fact, Hyland and
Power use this 2-monad as a concrete illustration of their notion of symmetric pseudo-
commutative 2-monad [19]. In particular, they deduce from this property of the 2-monad
Fam that it distributes with the 2-monad constructing the free symmetric monoidal cat-
egory generated by a category. From this follows that

1. the category Fam(C) inherits the symmetric monoidal structure from the category C,

2. finite coproducts in Fam(C) distributes with the tensor product,

3. the 2-functor Fam preserves symmetric monoidal adjunction.

18

Typically, the tensor product of A = {Ai|i ∈ I} and B = {Bj |j ∈ J} is defined as

A⊗B def= {Ai ⊗Bj | (i, j) ∈ I × J}.
Moreover, Abramsky and McCusker show that the family construction transports cate-
gories with finite product into categories with finite products [4]. From all this follows
that the family construction preserves affine and exponential modalities, and that the fi-
nite products of the category C (when they exist) lift to the category Fam(C). Typically,
the cartesian product of A = {Ai|i ∈ I} and B = {Bj |j ∈ J} is defined as

A&B
def= {Ai &Bj | (i, j) ∈ I × J}.

Now, suppose that the dialogue category C has finite products, noted¯
i∈I

Ai

for a family (Ai)i∈I of objects of the category C, indexed by the finite set I. In that case,
it is equip the category Fam(C) with a tensorial negation defined as

¬A = {
¯
i∈I

(¬Ai) }. (11)

for every object A = {Ai |i ∈ I} of the category Fam(C). This establishes that

Proposition 5 Suppose that the category C is a dialogue category with finite products.
Then, the category Fam(C) is a dialogue category with finite products.

Putting all this together, one obtains the following property:

Theorem 2 Suppose that the category C is a dialogue category with finite products, equipped
with an affine, a relevant and an exponential resource modality. Then, the category
Fam(C) is a model of propositional tensor logic (multiplicative, additive, affine, relevant,
exponential).

4 Payoff Conway games

In this section and in the next one, we construct a simple game semantics of tensor
logic, starting from the graph-theoretic notion of Conway game introduced by Joyal in his
pioneering work on categories of games [21]. The main idea of our construction is to refine
the original definition of Conway games with a notion of payoff on positions, in order to
reflect the resource modalities of tensor logic. The purpose of this section is to construct
a dialogue category Games of Conway games with payoff (see Proposition 10) while the
purpose of the next section is to interpret the resource modalities in this category.

Conway games. A Conway game is defined as a rooted graph (V,E, λ) consisting of

- a set V of vertices called the positions of the game,

- a set E ⊂ V × V of edges called the moves of the game,

- a function λ : E → {−1,+1} indicating whether a move belongs to Opponent (−1)
or Proponent (+1),

The root of the game A will be denoted ?A. A Conway game is called negative (resp.
positive) when all the moves starting from the root belong to Opponent (resp. Proponent).

19

Path and play. A play m1 ·m2 · . . . ·mk−1 ·mk of a Conway game A is a path starting
from the root ?A :

?A
m1−−→ x1

m2−−→ . . .
mk−1−−−→ xk−1

mk−−→ xk (12)

A play (12) is alternating when:

∀i ∈ {1, . . . , k − 1}, λA(mi+1) = −λA(mi).

We note PlayA the set of plays of a game A.

Strategies. A strategy σ of a Conway game A is defined as a non empty set of alternating
plays of even length such that

• every non empty play starts with an Opponent move,

• σ is closed by even length prefix: for all plays s and for all moves m,n,

s ·m · n ∈ σ implies s ∈ σ;

• σ is deterministic: for all plays s, and for all moves m,n, n′,

s ·m · n ∈ σ and s ·m · n′ ∈ σ implies n = n′.

Note that our notion of strategy is partial because a strategy does not necessarily have
to answer to an Opponent move. We write σ : A to indicate that σ is strategy over the
game A.

Remark. It is worth observing that the definition of Conway game does not require that
the plays of the game are alternating. The notion of alternation between Opponent and
Proponent only appears at the level of strategies (i.e. proofs) and not at the level of games
(i.e. formulas). This corresponds to the intuition that a game describes a fairly liberal
space of interaction whereas a strategy implements regulated executions.

Dual. Every Conway game A induces a dual game A∗ obtained simply by reversing the
polarity of moves. Formally speaking, A∗ = (VA∗ , EA∗ , λA∗) is defined by

• VA∗ = VA;

• EA∗ = EA;

• λA∗ = −λA.

Tensor product. The tensor product A⊗B of two Conway games A and B is essentially
the asynchronous product of the two underlying graphs. More formally, it is defined as:

- its positions are the pairs (x, y) noted x⊗ y with ?A⊗B = ?A ⊗ ?B, that is

VA⊗B = VA × VB,

20

- its moves are of two kinds :

x⊗ y →
{
z ⊗ y if x→ z in the game A
x⊗ z if y → z in the game B,

- the polarity of a move in the game A ⊗ B is inherited from the polarity of the
underlying move in the game A or B.

The Conway game with a unique position ? and no move will be denoted 1. It is the
neutral element of the tensor product. Observe that every play s of the game A⊗B may
be seen as the interleaving of a play s|A of the game A and a play s|B of the game B.

Composition. The composite of two strategies is defined by “parallel composition plus
hiding”, a formal description of composition meaningful in game semantics and more gen-
erally in any compact closed category. We proceed as in [29, 15] and define an interaction u
on the three games A,B,C as a play of the game A⊗B ⊗C, what we write u ∈ intABC .
Note that a word u on the alphabet EA+EB +EC is an element of intABC precisely when
the projection of u on each component EA + EB and EB + EC and EA + EC defines a
play in the game A∗ ⊗ B, B∗ ⊗ C and A∗ ⊗ C, respectively. The composite σ; τ of two
strategies σ : A∗ ⊗B and τ : B∗ ⊗ C is then defined as

σ; τ = {u|A∗⊗C | u ∈ intABC , u|A∗⊗B ∈ σ, u|B∗⊗C ∈ τ}

One then checks that the composite σ; τ defines a strategy of the game A∗ ⊗B.

Identity morphism. The identity morphism idA on a game A is defined as the copycat
strategy on the game A∗⊗A described by Joyal [21]. The idea is that for every Opponent
move in one of the component A∗ or A, the copycat strategy responds with the dual move
in the other component. Formally speaking, the identity is defined as

idA
def= {s ∈ PlayevenA∗1⊗A2

| ∀t �even s , t|A1
= t|A2

}

where one uses the tags 1 and 2 in order to distinguish between the two occurrences of
the game A and where the exponent even restricts the prefix relation to the paths of even
length.

The category of Conway games. The category Conway has Conway games as
objects, and strategies σ of A∗ ⊗ B as morphisms σ : A → B. The resulting cate-
gory Conway is compact-closed in the sense of [22] with units ηA : 1 → A ⊗ A∗ and
counits εA : A∗ ⊗ A → 1 defined as copycat strategies. Interestingly, all we need here is
that Conway is symmetric monoidal closed, with linear implication defined as

A−•B def= A∗ ⊗B.

In particular, the full subcategory Conway− of negative Conway games is no longer
compact closed, but still, it inherits a linear implication of Conway. The reason is that
the embedding functor from Conway− to Conway is full and faithful (by definition) and
has a right adjoint: the functor which transports every Conway game A to the negative
game A− obtained by removing all Proponent moves starting from the root. This functor

21

is full (but not faithful) from Conway to Conway−, and makes Conway− a coreflective
subcategory of Conway. This is enough to deduce the linear implication of the category
Conway− from the linear implication of the category Conway, as follows:

A(B
def= (A −• B)−

This general fact is established in the following proposition.

Proposition 6 Suppose that (C,⊗,−•) is a symmetric monoidal closed category and that
(D,⊗) is a symmetric monoidal category. Suppose that there exists a monoidal adjunction
U a F : D → C where the functor U is full and faithful. In that case, the category D is
symmetric monoidal closed with linear implication defined as

A(B
def= F (U(A) −• U(B))

for all objects A,B of the category D.

Proof: Recall that a monoidal adjunction U a F is the same thing as an adjunction
where the left adjoint functor U is strong monoidal. The fact that A(B defines a linear
implication is deduced from the following series of natural bijections:

D(B,A(C) ∼= D(B,F (U(A) −• U(C)))
∼= C(U(B), U(A) −• U(C)) adjunction U a F
∼= C(U(A)⊗ U(B), U(C)) linear implication in C
∼= C(U(A⊗B), U(C)) U is strong monoidal
∼= D(A⊗B,C) U is full and faithful

�

This established that

Proposition 7 The category Conway− is symmetric monoidal closed.

Our next step is to refine our definition of Conway game with a notion of payoff function
on positions. As we will see, this leads to the definition of a self-dual category Payoff of
payoff Conway games and winning strategies. This category extends the category Conway
in the sense that the category Conway may be identified as the full subcategory of games
with only neutral positions in the category Payoff .

Payoff Conway games. A payoff Conway game is a Conway game A = (VA, EA, λA)
equipped with a payoff function (defined on positions)

κA : VA → {−1, 0,+1}.

A position is called winning when κA(x) ∈ {0,+1}. Intuitively, the value −1 denotes a
winning position for Opponent, the value +1 denotes a winning position for Proponent,
and the value 0 denotes a “neutral” position.

22

⊗ −1 0 +1
−1 −1 −1 −1
0 −1 0 +1

+1 −1 +1 +1

−• −1 0 +1
−1 +1 +1 +1
0 −1 0 +1

+1 −1 −1 +1

Figure 13. Payoff tables of the tensor product and the linear implication.

Tensor product and linear implication of payoff games. We now extend the tensor
product and the linear implication to payoff Conway games. As the payoff is positional,
it is sufficient to provide a “truth table” (cf. Figure 13) for each connective ⊗ and −•.
The construction of the two payoff tables is guided by the intuition that ⊗ corresponds to
a boolean conjunction on payoffs, that −• corresponds to a boolean implication, that −1
corresponds to false, that +1 corresponds to true, and that 0 corresponds to a third (and
neutral) truth value. Note that these tables are simplified versions of the payoff tables
appearing in [31, 32].

The payoff Conway game A⊗B is thus defined as the underlying Conway game A⊗B,
equipped with the payoff function

κA⊗B(x⊗ y) = κA(x)⊗ κB(y)

and the payoff Conway game A −• B is defined as the underlying Conway game A −• B,
equipped with the payoff function

κA−•B(x −• y) = κA(x) −• κB(y).

We assign payoff 0 to the unique position ? of the game 1.

Winning strategies. With the traditional notion of strategy between Conway games,
every negative game has a unique morphism to the unit game 1. In the model of tensor
logic constructed below, we use the payoff function in order to define a notion of winning
strategy, which enables us to distinguish between affine games (whose payoff at the root
is 0) and linear games (whose payoff at the root is +1).

A strategy σ on a payoff Conway game A is winning when every play s : x� y in the
strategy ends on a winning position y, that is, in a position of payoff 0 or +1:

for all s ∈ σ, s : x� y implies κA(y) ∈ {0,+1}.

We define below a category Payoff of payoff Conway games whose morphisms from a
game A to a game B are the winning strategies on the game A −• B. In particular, our
definition of winning strategy on A −• B implies that there exists no winning strategy
from a linear game A to an affine game B because the payoff κA(?A) −• κB(?B) of the
root ?A−•B is equal to +1 −• 0 = −1. In order to define a category, one needs to show
that winning strategies do compose.

Proposition 8 The strategy τ ◦ σ : A−•C is winning when the two strategies σ : A−•B
and τ : B −•C are winning.

23

Proof: We already know that strategies do compose, it just remains to check the winning
condition. As it is defined positionally, it suffices to observe by a case analysis that the
composite of two winning positions on −• is winning, in the sense that

κA(x)−• κB(y) ∈ {0,+1} (x−• y : winning)
κB(y)−• κC(z) ∈ {0,+1} (y −• z : winning)
κA(x)−• κC(z) ∈ {0,+1} (x−• z : winning)

This works because the definition of the payoff function on −• comes from the boolean
implication ⇒, which is itself stable under composition. �

Proposition 9 The category Payoff whose objects are payoff Conway games and whose
morphisms from A to B are winning strategies on A−•B is symmetric monoidal closed,
and in fact ∗-autonomous, with dualizing object the unit game 1.

Proof: We already know that the category Conway is symmetric monoidal closed, and
in fact, compact closed. So, in order to establish that the category Payoff is symmetric
monoidal closed, it is sufficient to check that

(κA(x)⊗ κB(y))−• κC(z) = κA(x)−• (κB(y)−• κC(z))

for all positions x ∈ VA, y ∈ VB and z ∈ VC . This equation is equivalent to the validity of
the boolean formula

(A ∧B)⇒ C ≡ A⇒ (B ⇒ C)

in a three-valued boolean logic. Then, the fact that the category Payoff is ∗-autonomous
with dualizing object the unit game 1 follows from the observation that the position

(x−• ?1)−• ?1

in the game (A−• 1)−• 1 has payoff

(κA(x)−• 0)−• 0 = κA(x)

for every position x of the payoff Conway game A. and the fact that the unique position ?1

�

Note that the category Payoff is ∗-autonomous but not compact-closed, because the
payoff function distinguishes the tensor product and its dual. On the other hand, the
subcategory Payoff− of negative games is related by an adjunction to the category Payoff
in the same way as the categories Conway− is related to the category Conway. In
particular, Proposition 6 implies that the category Payoff− is symmetric monoidal closed,
with linear implication A(B defined as

A(B
def= (A−•B)−

for all negative payoff Conway games A and B.

24

A dialogue category of games. In order to define an affine modality on our notion
of payoff Conway games, it appears necessary to restrict the category Payoff− to its full
subcategory Games of negative games whose root is a winning position. Note that every
such game is either linear (when the root has payoff +1) or affine (when the root has
payoff 0). An interesting point is that the category Games is still symmetric monoidal
but no longer closed because the game A(B

• is linear when the game B is linear,

• is affine when the games A and B are both affine,

• is not an object of Games when the game A is linear and the game B is affine.

Let ⊥ define the linear game with two positions ? and done, and a unique move ? → done
played by Opponent, with payoff function

κ⊥(?) = +1 and κ⊥(done) = 0.

The following property follows immediately from the fact that the game ¬A defined as
A(⊥ is linear for every game A.

Proposition 10 The category Games defines a dialogue category.

Note that the game ¬A is obtained by reversing the payoff and the role of Player and Op-
ponent in the game A, and by “lifting” the resulting game A∗ = A−• 1 with an Opponent
move, starting from the root position ?¬A of payoff +1.

5 A game model with resources

We now give an explicit description of the three resource modalities of tensor logic in the
dialogue category Games constructed in the previous section. We establish the additional
properties that the affine and exponential modalities are free, but not the relevant modality.

Affine modality. Recall that a payoff game A is called affine when its root is of payoff 0.
In that case, the trivial (and unique) strategy tA from the affine game A to the unit
game 1 is winning. The full subcategory of affine games in the category Games will be
denoted Gamesw. We want to show that the embedding functor

Gamesw −→ Games

has a right adjoint, tranporting every game A to the affine game !•wA obtained by assigning
the payoff 0 to the root of the game A. A first observation is that the operation !•w defines
a functor

!•w : Games −→ Gamesw

which transports every winning strategy σ : A(B to itself, seen this time as a winning
strategy !•wσ = σ of the affine game !•wA(!•wB. Note that !•wσ defines a winning strategy in
the game !•wA(!•wB because assigning the null payoff to the roots of the games A and B
transports every winning position of A(B to a winning position of !•wA(!•wB.

This last point is interesting. It follows from the fact that the root ?A(?B is the only
position of the game A(B of the form a(?B for a position a of the game A. Indeed,

25

the two games A and B are negative, and hence, Opponent should start the game A(B
by playing in the component B. The same reason implies that for every two payoff games A
and B,

Lemma 2 Suppose that the game A is affine. Then, every position x (y of the game
A(B (or alternatively of the game A(!•wB) satisfies

x(y is winning in A(B iff x(y is winning in A(!•wB.

Proof: By definition of a winning position as a position with payoff either 0 or +1, and
by definition of the payoff function on the games A(B and A(!•wB, the property just
stated means that

κA(x)(κB(y) ∈ {0,+1} iff κA(x)(κ !•wB(y) ∈ {0,+1}.

We proceed by case analysis. Suppose that the position y is not the root of B: in that
case, the position y has the same polarity in the two games B and !•wB, and the property
is thus immediate. Suppose that the position y is the root ?B of the game B: in that case,
the position x is necessarily the root ?A of the game A, by definition of the game A(B
as a game where Opponent plays its first move in the component B. So, there remains to
compare the payoff of the root of the game A(B

κA(?A)(κB(?B) = 0(κB(?B) = κB(?B)

which is either 0 or +1, to the payoff of the root of the game A(!•wB

κA(?A)(κ !•wB(? !•wB) = 0(0 = 0

and conclude the proof by observing that the root is a winning position in both games. �

Proposition 11 The functor !•w defines an affine modality on the category Games.

Proof: The category of affine games Gamesw is a symmetric monoidal subcategory of
Games. In particular, the embedding functor from Gamesw to Games is symmetric and
strong monoidal. The category Gamesw is also an affine category, in the sense that its
monoidal unit 1 is terminal. There remains to show that the functor !•w is right adjoint to
the embedding functor. To that purpose, one needs to define a natural bijection between
Games(A,B) and Gamesw(A, !•wB) for every affine game A, and every game B. This
is precisely the task of Lemma 2, which establishes that a winning strategy of the game
A(B is the same thing as a winning strategy of the game A(!•wB. The natural bijection
is thus defined as the identity. �

It is worth observing that the modality !•w is free, in the sense that the category Gamesw
is the category of coalgebras of the comonad !•w on the category Games, and at the same
time, the slice category (Games ↓ 1) over the monoidal unit 1. This last point means
that an affine game A may be alternatively defined as a pair consisting of a game A and
a morphism A −→ 1 in the category Games.

26

Relevant modality. A diagonal object of a symmetric monoidal category C is defined
as a pair (A, dA) consisting of an object A and a morphism dA : A −→ A ⊗ A of the
category C making the Diagrams (7) and (8) commute. In order to construct a relevant
modality on the category one starts by defining the category Diag as the category whose
objects are the diagonal objects (A, dA) of the category Games, and whose morphisms σ :
(A, dA) −→ (B, dB) are the morphisms σ : A −→ B of the category Games making the
diagram

A
σ //

dA

��

B

dB

��
A⊗A σ⊗σ // B ⊗B

commute. The category Diag is symmetric monoidal, with tensor product of two diagonal
objects (A, dA) and (B, dB) defined as the tensor product A⊗B of the underlying object,
equipped with the morphism

A⊗B
dA⊗dB // A⊗A⊗B ⊗B

A⊗symmA,B⊗B // A⊗B ⊗A⊗B .

Note that the family of morphisms

δ(A,dA) : (A, dA) −→ (A, dA)⊗ (A, dA)

is natural in (A, dA) and makes the Diagrams (7) and (8) commute in the category Diag.
Moreover, the forgetful functor

Diag −→ Games (13)

is symmetric monoidal. We start the construction of the relevant modality on Games
by defining a functor in the reverse direction. The idea of the construction is that every
game A generates a game !•cA which may be seen as some kind of infinite tensor product
of the game A, defined as follows:

• its positions are the words w = x1 · · ·xk whose letters are the positions xi of the
game A different from the root; the intuition is that each letter xi describes the
current position in the ith copy of the game A,

• its root ? !•cA is the empty word,

• its moves w → w′ are either moves played in one copy :

w1 ·m · w2 : w1 · x · w2 −→ w1 · y · w2

where m : x → y is a move of the game A; or moves where Opponent opens a new
copy:

w ·m : w −→ w · x

where m : ?A → x is an initial move of the game A.

• the polarity of a move w1·m·w2 or w·m in the game !•cA is equal to the polarity λA(m)
of the underlying move m in the game A,

27

• its payoff function is defined on a position w = x1 · · ·xk as

κ !•cA(w) =
⊗

1≤i≤k
κA(xi)

according to the payoff table in Figure 13, and on the root as

κ !•cA(? !•cA) = κA(?A).

Every game !•cA is equipped with a diagonal strategy

δA : !•cA −→ !•cA ⊗ !•cA

which implements a copycat strategy together with a management of the copy indices.
Intuitively, whenever Opponent opens a new copy in the game !•cA⊗ !•cA, the strategy δA
reacts by opening a new copy in the game !•cA. Then, the two copies of the game A are
linked together until the end of the interaction, in the sense that to every time a move is
played by Opponent in one of the two copies, the strategy δA reacts by playing the same
move in the other copy.

We will define the strategy δA in a formal way. To that purpose, we define a function 〈〉
(called interleaving function) whose task is to translate every play s of the game !•cA⊗ !•cA
into a play 〈s〉 of the same shape in the game !•cA. Given a play s : ? � w1 ⊗ w2 and its
translation as 〈s〉 : ? � w, we also define a bijective function [s] (called copy function)
which associates a copy index in the position w to every copy index in the position w1

and to every copy index in the position w2. The two functions 〈〉 and [s] are defined by
induction on the length of the play s in the game !•cA⊗ !•cA.

• The empty play of !•cA⊗ !•cA is transported to the empty play of !•cA.

• Suppose that the play s : ? � w1 ⊗ w2 of the game !•cA⊗ !•cA is transported to the
play 〈s〉 : ? � w of the game !•cA. In that case, the play s extended with the move

n = (w1 ·m)⊗ w2 : w1 ⊗ w2 → (w1 · x)⊗ w2

which opens a new copy of A in the left component of the tensor product, is trans-
ported into the play 〈s〉 extended with the move

w ·m : w → w · x

which opens a new copy of A in the game !•cA with the same move m : ? → x.
Moreover, the copy function [s · n] extends the copy function [s] by associating the
index of the last opened copy in the position w2 · x to the index of the last opened
copy in the position w · x.

• Suppose that the play s : ? � (w1 · x · w2, w) of the game !•cA⊗ !•cA is transported
into the play 〈s〉 : ? � w′1 · x · w′2 of the game !•cA, and that the two copies of A
in position x are related by the copy function [s]. In that case, the play s extended
with the move

(w1 ·m · w2)⊗ w : (w1 · x · w2)⊗ w → (w1 · y · w2)⊗ w

28

which plays in the left component of the tensor product is translated into the play 〈s〉
extended with the move

w′1 ·m · w′2 : w′1 · x · w′2 → w′1 · y · w′2
in the game !•cA. Moreover, the copy function [s · n] is equal to the function [s].

• We define similarly the interleaving and the copy functions for moves played in the
right component of the tensor product.

Using the interleaving function, the strategy δA can be defined as

δA
def= {s ∈ Playeven!•cA1((!•cA2⊗ !•cA3) | ∀t �

even s , t| !•cA1
= 〈t| !•cA2⊗ !•cA3

〉}

where the tags 1, 2 and 3 are used to distinguish between the different occurrences of the
game A. Note that this strategy is winning because every position w((w1⊗w2) it plays
has the same payoff κ(w) on the left and κ(w1⊗w2) on the right of the linear implication.
We also leave the reader check that δA satisfies Diagrams (7) and (8) and thus defines a
diagonal on the game !•cA. This establishes that the pair (A, δA) defines an object of the
category Diag, for every game A. There remains to show that the operation !•c defines a
functor

!•c : Games −→ Diag (14)

which transports every strategy σ : A(B into a strategy !•cσ : !•cA(!•cB which commutes
with the diagonals δA and δB. This is not particularly difficult, although it should be done
with care. An interesting aspect of the construction is that the resulting strategy !•cσ plays
exactly the positions

(x1 · · ·xk) ((y1 · · · yk)
where the position xi (yi is played by the strategy σ, for 1 ≤ i ≤ k. The following
lemma ensures then that the strategy !•c σ is winning when the strategy σ is winning, and
thus defines a morphism of Diag.

Lemma 3 Suppose that the positions xi (yi are winning in the game A (B, for
1 ≤ i ≤ k. Then, the position (x1 · · ·xk)((y1 · · · yk) is winning in the game !•cA (!•cB.

The question at this point is whether the functor !•c is right adjoint to the embedding
functor (13). We show that this is not the case by considering the affine game

comm
def= !•w ¬¬ 1 = !•w ´ ˆ 1.

and its winning strategy run which reacts to the unique Opponent move by playing the
unique Proponent move. The game is affine. It is thus possible to define the strategy

dcomm : comm
tcomm−−→ 1 ∼= 1⊗ 1 run⊗run−−−−−−→ comm⊗ comm

which defines the diagonal object (comm, dcomm). Now, consider any game A in the category
Games, and observe that a strategy σ : comm→ !•cA which makes the diagram

comm

tA

��

σ // !•cA

δA

��

1 ∼= 1⊗ 1

run⊗run
��

comm⊗ comm
σ⊗σ // !•cA⊗ !•cA

29

commute factors through the game 1, and thus, does not play any move in the game comm.
We leave the reader establish that there is a one-to-one relationship between these strate-
gies and the strategies of the game A:

Diag((comm, dcomm), !•cA) ∼= Games(1, A).

On the other hand, if the functor !•c was right adjoint to the forgetful functor (13), there
would be a bijection between the sets

Diag((comm, dcomm), !•cA) ∼= Games(comm, A).

This establishes that the functor !•c is not right adjoint to the forgetful functor, since there
exists no such bijection between Games(comm, A) and Games(1, A): simply consider the
particular case when A = comm.

This shows that the relevant modality !•c we are constructing is not free in the cate-
gory Games. This mainly comes from a lack of compatibility between the duplication
and the weakening, which enables any affine game A (with a strategy) to define a diagonal
game (A, d) whose morphism d : A −→ A⊗A does not implement any duplication mech-
anism. We will see in the next paragraph that this kind of fake duplication is rejected
when one considers commutative comonoids instead of diagonal objects.

The category Gamesc is defined as the full subcategory of Diag consisting of all the
diagonal objects isomorphic in Diag to a tensor product of the form:

!•cA1 ⊗ · · · ⊗ !•cAk.

By construction, the category Gamesc is symmetric monoidal, and the composite functor

Gamesc −→ Diag −→ Games

is symmetric monoidal. It appears moreover that the functor is left adjoint to the functor !•c
seen this time as a functor from Games to Gamesc. This enables us to conclude that

Proposition 12 The functor !•c defines a relevant modality on the category Games.

Exponential modality. From now on, Gamese will denote the category whose objects
are the commutative comonoids of the category Games, and whose morphisms are the
comonoid morphisms between them. The exponential modality

!•e : Games −→ Gamese

is obtained by applying successively the affine and the relevant modality, in any order:

!•e
def= !•c !•w = !•w !•c.

Observe in particular that the commutation of !•w and !•c induces two distributivity laws in
the sense of Beck [6]:

!•w !•c −→ !•c !•w and !•c !•w −→ !•w !•c.

We establish that

Proposition 13 The functor !•e defines an exponential modality on Games.

30

Proof: The distributivity law !•w !•c → !•c !•w implies that the comonad !•c extends to a comonad
on the category Gamesw of coalgebras of the comonad !•w. It appears then that this
comonad is induced by a symmetric monoidal adjunction

Gamese

U
++

⊥ Gamesw
!•c

kk

whose left adjoint is the forgetful functor V from the category Gamese to the cate-
gory Gamesw, and whose right adjoint is the functor !•c defined in Equation (14), restricted
to the full subcategory Gamesw of affine games. We conclude by observing that the two
symmetric monoidal adjunctions compose

Gamese

V
++

⊥ Gamesw
!•c

kk

U
**

⊥ Games

!•w

jj

and define a symmetric monoidal adjunction

Gamese

U◦V
**

⊥ Games.

!•e

jj

This adjunction means that the exponential modality !•e is free, in the sense that it computes
the free commutative comonoid !•eA generated by an object A in the category Games. A
pleasant way to establish this fact is to apply the general formula for computing the free
exponential modalities, which the interested reader will find in [38]. �

Products. The category Games does not have finite coproducts and thus does not
interpret tensor logic with additives. This provides us with a nice opportunity to apply
the family construction described in Section 3, in order to construct a model of tensor
logic with additives and exponentials.

Given a family (Ai)i∈I of objects of the category Games indexed by a set I, the product
&i∈IAi in the category Games is defined as follows:

• its underlying graph is obtained by taking the disjoint union of the graphs underlying
each game Ai, and by merging their root,

• the polarity of moves is directly inherited from the polarity of the moves in Ai;

• the payoff function is inherited from the payoff function of each Ai, except for the
root. The root has payoff +1 when all the roots of the Ai have payoff +1, and had
payoff 0 when one of the roots of the Ai has payoff 0.

In other words, the game &i∈IAi is linear when all the games Ai are linear, and affine
otherwise. The ith projection is provided by the obvious copycat strategy between the
game Ai and the ith component of the game &i∈IAi.

31

The category Fam(Games). Here, we deduce from Theorem 2 at the end of §3 that
the category Fam(Games) is a dialogue category equipped with an affine, a relevant and
an exponential modality. We conclude that:

Proposition 14 The category Fam(Games) is a model of full propositional tensor logic
(multiplicative, additive, affine, relevant, exponential).

Note that a family (Ai)i∈I may be seen alternatively as a positive payoff game, whose
Player moves from the root are the indices i, leading to the negative game Ai, and whose
root has payoff 0. In this way, the category Fam(Games) may be seen as a subcategory
of the category Payoff+ of positive games, whose morphisms A −→ B are “transversal”
strategies, which always react to an opening move i ∈ I played in the positive game A =
(Ai)i∈I by playing an opening move j ∈ J in the positive game B = (Bj)j∈J .

A remark on multi-bracketed Conway games. The category of multi-bracketed
Conway games introduced by the two authors in [36] provides another model of tensor
logic. The category Games is a much simpler model of the logic, but it is based on the
category Payoff which is ∗-autonomous, instead of compact closed. The model based
on multi-bracketing is precisely designed to preserve the compact closed structure of the
original category Conway of Conway games. From this, one extracts a canonical trace
operator, which then plays an important role in the game-theoretic description of the
memory cell of a functional language with general references [37]. So, summarized in a
few words, the category Games describes a simple model of tensor logic, based on Conway
games equipped with a payoff function, whereas the category of multi-bracketed Conway
games introduced in [36] describes a more complicated model of tensor logic, but equipped
this time with a trace operator.

6 Conclusion

In this paper, we integrate resource modalities in game semantics, a task which has
been considered difficult to accomplish in the past. The task requires indeed to put many
ideas together, and to reunderstand the topography of the field. In particular, linear logic
is refined here into tensor logic, where the involutive negation of linear logic is replaced by
a more general (and non involutive) notion of tensorial negation. In that way, it becomes
possible to keep the best of linear logic: its proof theory, its resource modalities, etc. and to
work on games and continuations instead. Moreover, it appears that linear logic coincides
with tensor logic with the additional axiom that the continuation monad is commutative.
In that sense, tensor logic is more primitive than linear logic, in the same way that groups
are more primitive than abelian groups. So, this work reunifies the fields of linear logic and
game semantics, and opens the nice research problem of understanding how the principles
and constructions of linear logic should be refined (and extended) in order to apply to
game semantics and tensor logic.

References

[1] S. Abramsky, Sequentiality vs. concurrency in games and logic, Mathematical Struc-
tures in Computer Science 13 (2003) 531–565.

32

[2] S. Abramsky, R. Jagadeesan, Games and full completeness for multiplicative linear
logic, Journal of Symbolic Logic 59 (2) (1994) 543–574.

[3] S. Abramsky, R. Jagadeesan, P. Malacaria, Full abstraction for PCF, Information
and Computation 163 (2) (2000) 409–470.

[4] S. Abramsky, G. McCusker, Call-by-value games, in: M. Nielsen, W. Thomas (eds.),
6th Annual Conference of the European Association for Computer Science Logic, vol.
1414 of Lecture Notes in Computer Science, Springer, 1998.

[5] J.-M. Andréoli, Logic programming with focusing proofs in linear logic, Journal of
Logic and Computation 2 (3).

[6] J. Beck, Distributive laws, in: Seminar on Triples and Categorical Homology Theory,
vol. 80 of Lecture Notes in Mathematics, 1969.

[7] N. Benton, A mixed linear and non-linear logic: Proofs, terms and models, in: Third
Annual Conference of the European Association for Computer Science Logic, vol. 933
of LNCS, Springer-Verlag, Poland, 1995.

[8] G. Berry, P.-L. Curien, Sequential algorithms on concrete data structures, Theoretical
Computer Science 20 (1982) 265–321.

[9] A. Blass, Degrees of indeterminacy of games, Fundations of Mathematics 77 (1972)
151–166.

[10] A. Blass, A games semantics for linear logic, Annals of Pure and Applied Logic 56
(1992) 183–220.

[11] R. Cockett, R. Seely, Polarized category theory, modules, and game semantics, Theory
and Applications of Categories 18 (2) (2007) 4–101.

[12] T. Ehrhard, Finiteness spaces, Mathematical Structures in Computer Science 15 (04)
(2005) 615–646.

[13] J.-Y. Girard, Linear logic, Theoretical Computer Science 50 (1987) 1–102.

[14] J.-Y. Girard, A new constructive logic: Classical logic, Mathematical Structures in
Computer Science 1 (3) (1991) 255–296.

[15] R. Harmer, Games and full abstraction for nondeterministic languages, Ph.D. thesis,
University of London (2000).

[16] M. Hasegawa, Private communication (July 2005).

[17] M. Hofmann, T. Streicher, Completeness of continuation models for λµ-calculus, In-
formation and Computation 179 (2) (2002) 332–355.

[18] M. Hyland, L. Ong, On full abstraction for PCF: I, II and III, Information and
Computation 163 (2) (2000) 285–408.

[19] M. Hyland, J. Power, Pseudo-commutative monads and pseudo-closed 2-categories,
Journal of Pure and Applied Algebra 175 (1-3) (2002) 141–185.

33

[20] B. Jacobs, Semantics of weakening and contraction., Annals of Pure and Applied
Logic 69 (1) (1994) 73–106.

[21] A. Joyal, Remarques sur la théorie des jeux à deux personnes, Gazette des Sciences
Mathématiques du Québec 1 (4) (1977) 46–52, english version by Robin Houston
available.

[22] M. Kelly, M. Laplaza, Coherence for compact closed categories, Journal of Pure and
Applied Algebra 19 (1980) 193–213.

[23] A. Kock, On double dualization monads, Mathematica Scandinavica 27 (1970) 151–
165.

[24] O. Laurent, Etude de la polarisation en logique, Ph.D. thesis, Université Aix-
Marseille II (2002).

[25] O. Laurent, Polarized games (extended abstract), in: 17th IEEE Symposium on Logic
in Computer Science, IEEE Computer Society Press, Copenhagen, 2002.

[26] O. Laurent, L. Regnier, About translations of classical logic into polarized linear logic,
in: 18th IEEE Symposium on Logic in Computer Science, IEEE Computer Society
Press, Ottawa, 2003.

[27] P. Lorenzen, Ein dialogisches Konstruktivitatskriterium, Infinitistic Methods (1961)
193–200.

[28] P. Lorenzen, K. Lorenz, Dialogische Logik, Wissenschaftliche Buchgesellschaft, 1978.

[29] G. McCusker, Games and full abstraction for a functional metalanguage with recursive
types, Ph.D. thesis, University of London (1996).

[30] P.-A. Melliès, Asynchronous games 2: the true concurrency of innocence, in: P. Gard-
ner, N. Yoshida (eds.), Proceedings of the 15th International Conference on Concur-
rency Theory (CONCUR 2004), No. 3170 in LNCS, Springer Verlag, 2004.

[31] P.-A. Melliès, Asynchronous games 3: an innocent model of linear logic, Electronic
Notes in Theoretical Computer Science 122 (2005) 171–192.

[32] P.-A. Melliès, Asynchronous games 4: a fully complete model of propositional linear
logic, in: 20th IEEE Symposium on Logic in Computer Science, IEEE Computer
Society Press, Chicago, 2005.

[33] P.-A. Melliès, Functorial boxes in string diagrams, in: 15th Annual Conference of
the European Association for Computer Science Logic, vol. 4207 of Lecture Notes in
Computer Science, Springer, 2006.

[34] P.-A. Melliès, Categorical semantics of linear logic, in: Interactive models of compu-
tation and program behaviour, Panoramas et Synthèses, Société Mathématique de
France, 2009.

[35] P.-A. Melliès, P. Selinger, Games are continuation models!, talk at Full Completeness
and Full Abstraction, Satellite workshop of LICS 2001.

34

[36] P.-A. Melliès, N. Tabareau, Resource modalities in game semantics, in: 22th IEEE
Symposium on Logic in Computer Science, IEEE Computer Society, Warsaw, 2007.

[37] P.-A. Melliès, N. Tabareau, An algebraic account of reference in game semantics,
in: 25th conference on Mathematical Foundations of Programme Semantics, ENTCS,
2009.

[38] P.-A. Melliès, N. Tabareau, C. Tasson, An explicit formula for the free exponential
modality of linear logic, in: 36th International Colloquium on Automata, Languages
and Programming, July 2009, Rhodes, Greece, 2009.

[39] E. Moggi, Notions of computation and monads, Information and Computation 93
(1991) 55–92.

[40] J. Power, E. Robinson, Premonoidal categories and notions of computation, Mathe-
matical Structures in Computer Science 7 (1997) 453–468.

[41] P. Selinger, Control categories and duality: on the categorical semantics of the λµ-
calculus, Mathematical Structures in Computer Science 11 (2) (2001) 207–260.

[42] N. Tabareau, Modalités de ressources et contrôle en logique tensorielle, Ph.D. thesis,
Université Paris 7 – Denis Diderot (2008).

[43] H. Thielecke, Continuation semantics and self-adjointness, Electronic Notes in Theo-
retical Computer Science 6 (1997) 348–364.

35

