
Under consideration for publication in Math. Struct. in Comp. Science

An Isbell Duality Theorem for Type Refinement
Systems

P A U L - A N D R É M E L L I È S1 and N O A M Z E I L B E R G E R2

1 CNRS, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.
2 MSR-Inria Joint Centre, Palaiseau, France.

Received 31 July 2015

Any refinement system (= functor) has a fully faithful representation in the refinement
system of presheaves, by interpreting types as relative slice categories, and refinement
types as presheaves over those categories. Motivated by an analogy between side effects in
programming and context effects in linear logic, we study logical aspects of this “positive”
(covariant) representation, as well as of an associated “negative” (contravariant)
representation. We establish several preservation properties for these representations,
including a generalization of Day’s embedding theorem for monoidal closed categories.
Then we establish that the positive and negative representations satisfy an Isbell-style
duality. As corollaries, we derive two different formulas for the positive representation of a
pushforward (inspired by the classical negative translations of proof theory), which
express it either as the dual of a pullback of a dual, or as the double dual of a pushforward.
Besides explaining how these constructions on refinement systems generalize familiar
category-theoretic ones (by viewing categories as special refinement systems), our main
running examples involve representations of Hoare Logic and linear sequent calculus.

Contents

1 Introduction 2
2 Preliminaries 4

2.1 Basic conventions and definitions 4
2.2 Morphisms of refinement systems 7
2.3 Right adjoints preserve pullbacks 9

3 Representing refinement systems 11
3.1 The refinement systems of presheaves and of pointed categories 11
3.2 The positive representation of a refinement system 13
3.3 Factorization via the free opfibration 16
3.4 The negative representation 17
3.5 Preservation of pullbacks 20
3.6 Preservation of logical connectives up to change-of-basis 21

4 Duality and negative translation 25
4.1 Overview 25
4.2 The category of judgments and the presheaf of derivations 27

P-A. Melliès and N. Zeilberger 2

4.3 The duality theorem 28
4.4 Negative encodings 30

References 35
Appendix A Proof of Prop. 2.2 36

A.1 The β equation 37
A.2 The η equation 39

1. Introduction

This paper continues the study of type systems from the perspective outlined in (Melliès
and Zeilberger 2015). There, we suggested that it is useful to view a type system as a
functor from a category of typing derivations to a category of underlying terms, and that
this can even serve as a working definition of “type system” (or what we call a refinement
system), as being (in the most general case) simply an arbitrary functor.

Definition 1.1. A (type) refinement system is a functor t : D→ T .

Definition 1.2. We say that an object P ∈ D refines an object A ∈ T (notated P @ A) if
t(P) = A.

Definition 1.3. A typing judgment is a triple (P, c,Q), where c is a morphism of T such
that P @ dom(c) and Q @ cod(c) (notated P =⇒

c
Q). In the special case where P and

Q refine the same object P,Q @ A and c is the identity morphism c = idA, the typing
judgment (P, c,Q) is also called a subtyping judgment (notated P =⇒ Q).

Definition 1.4. A derivation of a (sub)typing judgment (P, c,Q) is a morphism α : P→ Q

inD such that t(α) = c (notated
α

P =⇒
c

Q).

It is useful to think of any category C as a trivial example of a refinement system
in at least two ways – either as the identity functor idC : C → C or as the terminal
functor !C : C → 1 – and in the sequel we will describe several general constructions on
refinement systems, which reduce to classical constructions on categories seen as such
degenerate refinement systems. Another important (and more guiding) example of a
refinement system is Hoare Logic (Hoare 1969):

— Take T to be a category with a single object W representing the state space and
morphisms c : W →W corresponding to state transformers.

— Take D to be a category whose objects P,Q ∈ D are predicates over the state space
W and whose morphisms (c, α) : P→ Q are commands c : W → W equipped with a
verification α that c will take any state satisfying P to a state satisfying Q.

— Take t : D→ T to be the evident forgetful functor.

In this case, a typing judgment is nothing but a Hoare triple {P}c{Q}, and what the example
highlights is that a typing judgment can describe not just a logical entailment but also a
side effect (here the transformation c upon the state).

In fact, one of our original motivations for studying this framework came from ap-
parent connections between side effects and linear logic, and in particular its proof theory

An Isbell Duality Theorem for Type Refinement Systems 3

(Girard 1987; Andreoli 1992). Let us illustrate this idea by considering the right-rule for
multiplicative conjunction (“tensor”) in intuitionistic linear logic:

Γ ` A ∆ ` B
Γ,∆ ` A ⊗ B ⊗R

Following the tradition of (Gentzen 1935), it is common to call A ⊗ B the principal
formula of the ⊗R rule, and A and B its side formulas. The letters Γ and ∆ then stand
for arbitrary sequences of formulas – often called contexts – which are carried through
from the premises into the conclusion. Now, one can try to internalize the fact that the
inference rule is parametric in Γ and ∆ by first organizing contexts into some categoryW.
Assuming a reasonable definition of morphism (between contexts) inW, any formula
C then induces a presheaf C+ :Wop

→ Set by considering all the proofs of C in a given
context:

C+ = Γ 7→ {π |
π

Γ ` C }

For example, we could takeW as a category whose objects are lists (or multisets) of linear
logic formulas and whose morphisms are linear substitutions, i.e., where a morphism
∆→ Γ is given by a list of proofs

π1
∆1 ` A1 · · ·

πn
∆n ` An

such that ∆ = ∆1, . . . ,∆n and Γ = A1, . . . ,An. With that definition of W, the functorial
action of C+ is just to perform a multicut: given a proofπ of Γ ` C and a linear substitution
σ : ∆ → Γ, one obtains a proof C+(σ)(π) of ∆ ` C by cutting the proofs σ = (π1, . . . , πn)
for the assumptions Γ = A1, . . . ,An in π.

Next, noting that for any pair of presheaves

φ1 : Cop
1 → Set and φ2 : Cop

2 → Set

one can construct their external tensor product as the presheaf φ1 • φ2 : (C1 × C2)op
→ Set

defined by

(φ1 • φ2)(x1, x2) = φ1(x1) × φ2(x2),

we might hope to represent the fact that the ⊗R rule is parametric in Γ and ∆ by
interpreting ⊗R as a natural transformation from the external tensor product A+

• B+ to
the “internal” tensor product (A ⊗ B)+. The difficulty is that this is not well-typed! The
point is that A+

• B+ is a presheaf over the product categoryW×W, whereas (A ⊗ B)+

is a presheaf over W, and so, literally interpreted, it does not make sense to speak of
natural transformations between them. What is missing is that the ⊗R rule also has an
implicit “context effect”, namely the operation of concatenating (or taking a multiset
union of) Γ and ∆. If we make this operation explicit as a functor

m :W×W→W

then we can literally interpret the ⊗R rule as an honest natural transformation: not
directly between the two presheaves A+

• B+ to (A ⊗ B)+, but rather from A+
• B+ to the

presheaf (A ⊗ B)+ precomposed with the functor m.
What this example exposes is the danger of limiting one’s attention to a single presheaf

P-A. Melliès and N. Zeilberger 4

category, and it suggests taking an alternative approach: to use the language of type
refinement to speak directly about presheaves living in different presheaf categories.
Concretely, there is a refinement system defined as the forgetful functor u : Psh→ Cat,
which sends a pair (C, φ) of a category C equipped with a presheaf φ : Cop

→ Set to
the underlying category C. Our tentative interpretation of the ⊗R rule of linear logic as
a “natural transformation with side effects” can now be given a concise formulation,
simply stating that ⊗R can be interpreted as a derivation of the typing judgment

A+
• B+ =⇒

m
(A ⊗ B)+

in the refinement system u : Psh→ Cat.
Moreover, it turns out that this presheaf interpretation of the sequent calculus of linear

logic may be vastly generalized: in fact, any refinement system t : D → T can be given
a presheaf interpretation, as a morphism of refinement systems t → u which is fully
faithful in an appropriate sense. The idea of representing logical formulas as presheaves
over context categories was one of our original motivations for studying the notion of
type refinement, and we believe that this embedding theorem sending any refinement
system into u : Psh→ Cat justifies that point of view. After presenting some background
in Section 2, we describe the “positive” representation (−)+ : t→ u of a refinement system
together with an associated “negative” representation (−)− : top

→ u in Section 3. We
also establish there a few basic properties of these representations and consider various
examples. Then, in Section 4 we show that the two presheaf representations P+ and P−

of a refinement type P @ A satisfy a form of duality generalizing Isbell duality (i.e., the
duality between the covariant and contravariant representable presheaves associated to
an object of a category under the Yoneda embedding). Finally, by combining this duality
theorem with preservation properties of the two presheaf representations, we show that
the positive representation (c P)+ of a pushforward of a refinement P @ A (in t : D→ T)
along a morphism c : A→ B can be explicitly computed (in u : Psh→ Cat) using either
of two “negative translation”-style formulas, which express (c P)+ both as the dual of a
pullback of a dual and as the double dual of a pushforward.

2. Preliminaries

2.1. Basic conventions and definitions

We recall some conventions from (Melliès and Zeilberger 2015) for working with functors
as type refinement systems. Given a fixed functor t : D → T , we refer to the objects of
T as types, to the morphisms of T as terms, and to the objects ofD as refinement types (or
refinements for short). Since these notions are relative to a functor t, to avoid ambiguity
one can speak of t-types, t-refinements, and so on. We say that a judgment (P, c,Q) is valid
in a given refinement system t if it has a derivation in the sense of Defn. 1.4, i.e., there
exists a morphism α : P→ Q inDwhich is mapped to c by the functor t. More generally,
we say that a typing rule is valid when there is an operation transforming derivations of

An Isbell Duality Theorem for Type Refinement Systems 5

the premises into a derivation of the conclusion. For example, the rule

P =⇒
c

Q Q =⇒
d

R

P =⇒
c;d

R
;

is valid for any refinement system as an immediate consequence of functoriality: given
a morphism α : P→ Q such that t(α) = c and a morphism β : Q→ R such that t(β) = d,
there is a morphism (α; β) : P→ R and moreover t(α; β) = (t(α); t(β)) = (c; d).

We consider t-typing judgments modulo equality of terms (i.e., equality of morphisms
inT), but often we mark applications of an equality by an explicit conversion step (which
can be seen as admitting the possibility thatT is a higher-dimensional category, although
we will not pursue that idea rigorously here). For example, the rule of “covariant sub-
sumption” of subtyping (also called “post-strengthening” in Hoare Logic)

P =⇒
c

Q Q =⇒ R

P =⇒
c

R

can be derived from the composition typing rule (;) just above by

P =⇒
c

Q Q =⇒ R

P =⇒
c;id

R
;

P =⇒
c

R
∼

where at ∼we have applied the axiom c = (c; id) which is valid in any category.
The notions of a cartesian morphism and of a fibration of categories (Borceux 1994) may be

naturally expressed in the language of refinement systems by first defining a pullback
of Q along c as a refinement c∗Q

c : A→ B Q @ B
c∗Q @ A

equipped with a pair of typing rules

c∗Q =⇒
c

Q Lc∗
P =⇒

d;c
Q

P =⇒
d

c∗Q Rc∗

satisfying equations

P
β

=⇒
d;c

Q

P =⇒
d

c∗Q Rc∗ c∗Q =⇒
c

Q Lc∗

P =⇒
d;c

Q
;

= P
β

=⇒
d;c

Q

P-A. Melliès and N. Zeilberger 6

and

P
η

=⇒
d

c∗Q =

P
η

=⇒
d

c∗Q c∗Q =⇒
c

Q Lc∗

P =⇒
d;c

Q
;

P =⇒
d

c∗Q Rc∗

Dually, a pushforward of P along c is defined as a refinement c P

P @ A c : A→ B
c P @ B

equipped with a pair of typing rules

P =⇒
c;d

Q

c P =⇒
d

Q Lc P =⇒
c

c P Rc

satisfying a similar pair of equations. Note that pullbacks and pushforwards are always
determined up to vertical isomorphism, where we say that two refinements P,Q @ A
of a common type are vertically isomorphic (written P ≡ Q) when there exists a pair of
subtyping derivations

α
P =⇒ Q

β
Q =⇒ P

which compose to the identities on P and Q. We record the following type-theoretic
transcriptions of standard facts in the categorical literature:

Proposition 2.1. Whenever the corresponding pullbacks and/or pushforwards exist:

1) the following subtyping rules are valid:

Q1 =⇒ Q2

c∗Q1 =⇒ c∗Q2

P1 =⇒ P2

c P1 =⇒ c P2

2) we have vertical isomorphisms

(d; c)∗Q ≡ d∗ c∗Q (c; d) P ≡ d c P id∗Q ≡ Q id P ≡ P

A functor t : D→ T is a fibration (respectively opfibration) if and only if a pullback c∗Q
(pushforward c P) exists for all compatible c and Q (c and P). The definition of a fibration
(originally due to Grothendieck) is to a large extent motivated by the fact that there is an
equivalence between fibrationsD→ T and (pseudo)functors T op

→ Cat, and similarly
between opfibrations D → T and (pseudo)functors T → Cat. The reader will observe
that one direction of these equivalences is contained in Prop. 2.1. As the definitions make
plain, though, it is possible to speak of specific pullbacks and pushforwards, even if t is
not necessarily a fibration and/or opfibration.

Recall that a category is monoidal if it is equipped with a tensor product and unit
operation

• : C × C → C I : 1→ C

which are associative and unital up to coherent isomorphism, and that it is closed if it is

An Isbell Duality Theorem for Type Refinement Systems 7

additionally equipped with left and right residuation operations

\ : Cop
× C → C / : C × Cop

→ C

which are right adjoint to tensor product in each component:

C(Y,X \ Z) � C(X • Y,Z) � C(X,Z / Y)

A (closed) monoidal refinement system is a refinement system t : D → T such thatD
andT are (closed) monoidal, and t strictly preserves tensor products (and residuals) and
the unit. By our conventions, a monoidal refinement system thus admits the following
refinement rules and typing rules

P1 @ A1 P2 @ A2

P1 • P2 @ A1 • A2 I @ I

P1 =⇒
c1

Q1 P2 =⇒
c2

Q2

P1 • P2 =⇒
c1•c2

Q1 •Q2
•

I =⇒
I

I I

(we are overloading notation for the monoidal structure on D and T) while a closed
monoidal refinement system admits the following additional rules:

P @ A R @ C
P \ R @ A \ C

R @ C Q @ B
R /Q @ C / B

P • (P \ R) =⇒
leval

R leval
P •Q =⇒

m
R

Q =⇒
λ[m]

P \ R λ (R /Q) •Q =⇒
reval

R reval
P •Q =⇒

m
R

P =⇒
ρ[m]

R /Q
ρ

Moreover, derivations built using these typing rules satisfy a few equations, which we
elide here. Finally, we remark that the notion of a closed monoidal refinement system can
be generalized by allowing the residuation operations to be partial, i.e., by weakening the
requirement thatD andT be closed, while maintaining the requirement that the functor
t : D→ T preserves any residuals which may exist inD. We call such a functor a logical
refinement system. Whenever the corresponding residuals exist, a logical refinement
system can be treated in essentially the same way as a closed monoidal refinement
system, and in particular all of the above rules are valid.

2.2. Morphisms of refinement systems

Given a pair of refinement systems t : D → T and b : E → B, by a morphism of
refinement systems from t to b we mean a pair F = (FD,FT) of functors FD : D→ E and
FT : T → B such that the square

D
FD //

t
��

E

b
��

T
FT
// B

commutes strictly. Omitting subscripts on the functors F, a morphism from t to b thus
induces a pair of rules

P @ A
F[P] @ F[A]

P =⇒
c

Q

F[P] =⇒
F[c]

F[Q] F

P-A. Melliès and N. Zeilberger 8

transporting t-refinements to b-refinements and derivations of t-judgments to deriva-
tions of b-judgments.

Given a pair of morphisms of refinement systems F = (FD,FT) : t → b and G =

(GD,GT) : b → t, an adjunction of refinement systems F a G consists of a pair of
adjunctions of categories FD a GD and FT a GT such that the unit and counit of the
adjunction FD a GD are mapped by t and b onto the unit and counit of FT a GT .

D

FD
''

GD

gg ⊥

t

��

E

b

��
T

FT
''

GT

gg ⊥ B

Writing ι and o (without subscripts) for the unit and counit of both adjunctions FD a GD
and FT a GT , an adjunction of refinement systems thus induces a pair of typing rules

P =⇒
ι

GF[P]
ι

FG[Q] =⇒
o

Q
o

in addition to the typing rules F and G, and we remark moreover that typing deriva-
tions constructed using these four rules are subject to various equations implied by the
definition of an adjunction of categories, such as the triangle laws.

Finally, we say that a morphism of refinement systems F : t→ b is fully faithful if the
induced typing rule

P =⇒
c

Q

F[P] =⇒
F[c]

F[Q] F

is invertible, in the sense that to any b-derivation

β
F[P] =⇒

F[c]
F[Q]

there is a unique t-derivation

F∗ β
P =⇒

c
Q

such that

β
F[P] =⇒

F[c]
F[Q] =

F∗ β
P =⇒

c
Q

F[P] =⇒
F[c]

F[Q] F
.

Equivalently, a morphism of refinement systems F : t → b is fully faithful when the
induced functor D → E ×B T to the pullback of FT and b is fully faithful in the
traditional categorical sense.

An Isbell Duality Theorem for Type Refinement Systems 9

2.3. Right adjoints preserve pullbacks

We begin by establishing a basic result about adjunctions of refinement systems, analo-
gous to the well-known fact that in an adjunction of categories the right adjoint functor
preserves limits. Although a similar lemma was proved in (Ghani, Johann, Fumex 2013)
for the specific case of two fibrations over the same base, we do not know whether
this elementary observation on general functors has already appeared somewhere in
the literature. In particular, it is worth pointing out that Prop. 2.2 becomes vacuous if
stated in terms of traditional fibred adjunctions (Borceux 1994; Hermida 1993), since any
morphism in the usual 2-category of fibrations must (by definition) preserve cartesian
arrows.

Proposition 2.2. If G : b → t is a right adjoint, then G sends b-pullbacks to t-pullbacks, i.e.,
for all c : A→ B and Q @ B, whenever the b-pullback c∗Q exists, then the t-pullback G[c]∗ G[Q]
exists, and moreover we have that G[c∗Q] ≡ G[c]∗ G[Q].

Proof. We need to show that G[c∗Q] is a pullback of G[Q] along G[c]. By definition, this
means constructing a pair of typing rules

G[c∗Q] =⇒
G[c]

G[Q]
LG[c]∗

P =⇒
d;G[c]

G[Q]

P =⇒
d

G[c∗Q]
RG[c]∗

satisfying the β and η equations. The left-rule is derived immediately from the left-rule
for c∗Q by applying G:

c∗Q =⇒
c

Q Lc∗

G[c∗Q] =⇒
G[c]

G[Q] G

The right-rule can be derived in a few more steps from the right-rule for c∗Q, assuming
the existence of an F such that F a G:

P =⇒
ι

GF[P]
ι

P =⇒
d;G[c]

G[Q]

F[P] =⇒
F[d];FG[c]

FG[Q] F FG[Q] =⇒
o

Q
o

F[P] =⇒
F[d];FG[c];o

Q
;

F[P] =⇒
F[d];o;c

Q
∼1

F[P] =⇒
F[d];o

c∗Q Rc∗

GF[P] =⇒
GF[d];G[o]

G[c∗Q] G

P =⇒
ι;GF[d];G[o]

G[c∗Q]
;

P =⇒
d

G[c∗Q]
∼2

Here at ∼1 and ∼2 we invoke, respectively, naturality of the counit and a triangle law
for FT a GT . Finally, the fact that these typing rules satisfy the β and η equations can be
verified by a long but mechanical calculation (see Appendix A). �

P-A. Melliès and N. Zeilberger 10

By duality, we also immediately obtain the following:

Proposition 2.3. If F : t→ b is a left adjoint, then F sends t-pushforwards to b-pushforwards,
i.e., for all c : A→ B and P @ A, whenever the t-pushforward c P exists, then the b-pushforward
F[c] F[P] exists, and moreover we have that F[c] F[P] ≡ F[c P].

In passing, we note that Propositions 2.2 and 2.3 also imply the classical result about
ordinary adjunctions of categories. To see this, begin by observing that for any category
C, one can consider the forgetful functor Cat � C → Cat as the refinement system of
diagrams in C. Here Cat � C is the category whose objects are pairs of an indexing
category I together with a functor φ : I → C (hence, “diagrams in C”), and whose
morphisms (I, φ) → (J , ψ) consist of a reindexing functor F : I → J together with a
natural transformation θ : φ ⇒ (F;ψ). The important point is that with respect to this
refinement system, a pushforward of a diagram (I, φ) along the unique functor !I : I → 1
corresponds precisely to a colimit of the diagram φ : I → C (and more generally, the
pushforward along a functor F : I → J corresponds to a left Kan extension of φ along
F). Since an adjunction

C

L
''

R

ee ⊥ D

between two categories C andD lifts to a vertical adjunction

Cat � C
Cat�L

,,

Cat�R
kk ⊥

��

Cat �D

��
Cat

between the respective refinement systems of diagrams, Prop. 2.3 then implies that the
left adjoint functor L sends colimits inC to colimits inD (and more generally, it preserves
left Kan extensions in Cat). By a similar argument, one can use Prop. 2.2 to derive that
the right adjoint functor R sends limits inD to limits in C.

Our main application of Propositions 2.2 and 2.3 in this paper will be the following
corollary, about the distributivity properties of pullbacks and pushforwards with respect
to tensors and residuals.

Proposition 2.4. If t : D → T is a closed monoidal refinement system, then whenever the
corresponding pullbacks and pushforwards exist we have vertical isomorphisms

(c • d) (P •Q) ≡ c P • d Q (a)

c P \ d∗ R ≡ (c \ d)∗ (P \ R) (b)

d∗ R / c Q ≡ (d / c)∗ (R /Q) (c)

Proof. The subtyping judgments in the left-to-right direction are easy to derive, e.g., (a)

An Isbell Duality Theorem for Type Refinement Systems 11

can be derived in any monoidal refinement system:

P =⇒
c

c P Rc Q =⇒
d

d Q Rd

P •Q =⇒
c•d

c P • d Q
•

(c • d) (P •Q) =⇒ c P • d Q
L(c • d)

The assumption of monoidal closure implies that these are vertical isomorphisms, using
the fact that t comes equipped with a family of adjunctions

D

P•−
''

P\−

gg ⊥

t

��

D

t

��
T

A•−
''

A\−

gg ⊥ T

D

−•Q
''

−/Q

gg ⊥

t

��

D

t

��
T

−•B
''

−/B

gg ⊥ T

as well as a family of contravariant adjunctions

D

R/−
))

−\R

hh ⊥

t

��

D
op

top

��
T

C/−
))

−\C

hh ⊥ T
op

D

−\R
))

R/−

hh ⊥

t

��

D
op

top

��
T

−\C
))

C/−

hh ⊥ T
op

for all P @ A, Q @ B, R @ C. Explicitly, we have (a) by

(c • d) (P •Q) ≡ (id • d) (c • id) (P •Q) (Prop. 2.1)

≡ (id • d) (c P •Q) (− •Q a − /Q)

≡ c P • d Q (c P • − a c P \ −)

and (b) (and similarly (c)) by

c P \ d∗ R ≡ (id \ d)∗ (c P \ R) (c P • − a c P \ −)

≡ (id \ d)∗ (c \ id)∗ (P \ R) (R / − a − \ R)

≡ (c \ d)∗ (P \ R) (Prop. 2.1)

where in the second-to-last step we use the fact that a top-pullback is the same thing as
a t-pushforward. �

3. Representing refinement systems

3.1. The refinement systems of presheaves and of pointed categories

The refinement system of presheaves u : Psh→ Cat is defined as follows:

— Cat is the category whose objects are categories and whose morphisms are functors.

P-A. Melliès and N. Zeilberger 12

— Objects of Psh are pairs (A, φ), where A is a category and φ : Aop
→ Set is a

contravariant presheaf over that category.
— Morphisms (A, φ)→ (B, ψ) of Psh are pairs (F, θ), where F : A→ B is a functor and
θ : φ⇒ (F;ψ) is a natural transformation.

— u : Psh→ Cat is the evident forgetful functor.

We typically write φ @ A to indicate that φ is a presheaf over A, rather than the more
verbose (A, φ) @ A. This convention is unproblematic so long as we understand that
there is an implicit coercion to view φ as an object of Psh.

Proposition 3.1. u is a closed monoidal refinement system with all pullbacks and pushforwards.

Proof. Pullbacks are defined by precomposition, pushforwards as coends:†

F : A→ B ψ @ B

F∗ ψ @ A F∗ ψ def
= a 7→ ψ(Fa)

φ @ A F : A→ B
Fφ @ B Fφ def

= b 7→ ∃a.B(b,Fa) × φ(a)

Tensor products and residuals in Cat are defined using its usual cartesian closed structure
(i.e., by building product categories and functor categories), and lifted to Psh as follows
(we show only the definitions of presheaves, not the structural maps):

I @ 1
φ @ A ψ @ B

φ • ψ @ A×B φ • ψ
def
= (a, b) 7→ φ(a) × ψ(b) I def

= ∗ 7→ { ∗ }

φ @ A ω @ C

φ \ ω @ [A,C] φ \ ω
def
= F 7→ ∀a.φ(a)→ ω(Fa)

ω @ C ψ @ B

ω / ψ @ [B,C] ω / ψ
def
= F 7→ ∀a.ψ(a)→ ω(Fa)

Note that these definitions may be naturally generalized to the refinement system of
V-valued presheaves over V-enriched categories, but for concreteness we only work
with ordinary categories here. �

We can also identify a subsystem of u that will play an important analytical role later on.
Let Cat• be the category whose objects consist of categories A together with a chosen
object a ∈ A, and whose morphisms (A, a)→ (B, b) are pairs (F, h) consisting of a functor
F : A → B together with a morphism h : F(a) → b of B. The refinement system of
pointed categories is defined as the evident forgetful functor s : Cat• → Cat. This is a
“subsystem” of u in the sense that there is a vertical morphism of refinement systems

† In this paper we adopt the logical notation∀x.Φ(x, x) and∃y.Ψ(y, y) to denote ends and coends, respectively,
rather than the more traditional

∫
x Φ(x, x) and

∫ y
Ψ(y, y) of category theory (Kelly 1982).

An Isbell Duality Theorem for Type Refinement Systems 13

y : s→ u, corresponding to the classical Yoneda embedding:

Cat•

s
��

y // Psh

u
��

Cat Cat

Read as a vertical morphism of refinement systems, the Yoneda embedding interprets
an object a ∈ A as the contravariant presheafA(−, a) over the same categoryA. Finally,
since any object a ∈ A can also be seen as a functor a : 1→A in Cat, let us observe that
y : s→ u may equivalently be defined in terms of pushforward of the unit presheaf:

Proposition 3.2. For all a ∈ A, we haveA(−, a) ≡ a I in u.

Proof. Immediate from the definition of pushforwards in u (see Prop. 3.1). �

3.2. The positive representation of a refinement system

In this section we show that any refinement system t : D→ T has a sound and complete
presheaf interpretation, in the sense of a fully faithful morphism of refinement systems
t→ u. We give a direct description of this representation here, as well as some examples,
and we will provide some further motivation of the definitions in Section 3.3.

Definition 3.3. For any t-type B, the category B+t is defined as follows:

— Objects are pairs (P @ A, c : A→ B)

— Morphisms (P1, c1)→ (P2, c2) are derivations
α

P1 =⇒
e

P2 such that c1 = e; c2.

Proposition 3.4. The assignment B 7→ B+t extends to a functor (−)+t : T → Cat.

Definition 3.5. For any t-refinement Q @ B, the presheaf Q+t @ B+t is defined on objects
by

(P, c) 7→ {α |
α

P =⇒
c

Q }

and with the contravariant functorial action transforming any morphism (P1, c1) →
(P2, c2) given as a derivation

α
P1 =⇒

e
P2

such that c1 = e; c2 into a typing rule (parametric in Q)

P2 =⇒
c2

Q

P1 =⇒
c1

Q

derived as
α

P1 =⇒
e

P2 P2 =⇒
c2

Q

P1 =⇒
e;c2

Q
;

P1 =⇒
c1

Q
∼

P-A. Melliès and N. Zeilberger 14

Proposition 3.6. The assignment (Q @ B) 7→ (B+t,Q+t) extends to a functor (−)+t : D→ Psh.

Proposition 3.7. The pair of functors (−)+t : T → Cat and (−)+t : D→ Psh define a morphism
of refinement systems from t to u, i.e., a commuting square

D
(−)+t
//

t
��

Psh

u
��

T
(−)+t
// Cat

As we discussed in Section 2.2, any morphism of refinement systems induces a pair of
refinement rules and typing rules, and in this case in particular we have rules

P @ A
P+t @ A+t

P =⇒
c

Q

P+t =⇒
c+t

Q+t +t

which we call the positive representation of the refinement system t in the refinement
system of presheaves.

Proposition 3.8. The positive representation of t is sound and complete, in the sense that the
morphism of refinement systems (−)+t : t→ u is fully faithful.

Remember that we say a morphism of refinement systems is fully faithful when the
induced typing rule is invertible, in this case meaning that to any natural transformation

θ
P+t =⇒

c+t
Q+t

in u there exists a unique t-derivation

(+t)∗ θ
P =⇒

c
Q

such that

θ
P+t =⇒

c+t
Q+t =

(+t)∗ θ
P =⇒

c
Q

P+t =⇒
c+t

Q+t +t

To prove Prop. 3.8, we first observe that the presheaves P+t are representable (in the
classical sense (Mac Lane 1971, III.2)), so that the positive representation factors via the
refinement system of pointed categories.

Proposition 3.9. The morphism (−)+t : t→ u factors as a morphism (−)+t : t→ s followed by
the Yoneda embedding,

D

t
��

(−)+t
// Psh

u
��

T
(−)+t
// Cat

=

D

t
��

(−)+t
// Cat•

s
��

y // Psh

u
��

T
(−)+t
// Cat Cat

An Isbell Duality Theorem for Type Refinement Systems 15

where (−)+t : D→ Cat• is defined by P+t def
= (P, idA) ∈ A+t for all P @ A.

Proof. Immediate from the definitions. (We overload the notation P+t to stand both for
the presheaf on A+t and for its representing object, but this is harmless since the aspect
of P+t we are referring to will always be deducible from context.) �

Proof of Prop. 3.8. By Prop. 3.9, it suffices to show separately that each factor (−)+t : t→ s
and y : s→ u is a fully faithful morphism of refinement systems:

((−)+t : t→ s is fully faithful.) Suppose given a derivation of P+t =⇒
c+t

Q+t in s. By defini-

tion of the refinement system s : Cat• → Cat and of the functor c+t : A+t
→ B+t, such

a derivation is the same thing as a morphism (P, c)→ (Q, idB) in B+t. In turn, it is easy
to check from the definition of the category B+t that such a morphism is nothing but
a t-derivation of P =⇒

c
Q.

(y : s→ u is fully faithful.) This may of course be reduced to the usual Yoneda lemma,
but we can also establish it directly by using the characterization (Prop. 3.2) of
representable presheaves as pushforwards of the unit presheafA(−, a) ≡ a I. Consider
a s-typing judgment a =⇒

F
b given by a pair of objects a ∈ A and b ∈ B together with

a functor F : A→ B. By the universal property of the pushforward, u-derivations of
a I =⇒

F
b I are in bijective correspondence with u-derivations of I =⇒

a;F
b I. The latter

correspond exactly to elements of B(F(a), b), which by definition are the same thing
as derivations of a =⇒

F
b in s.

�

Example 1. Recall from the Introduction that Hoare Logic can be viewed as a refinement
system over a category with one object W. With respect to this refinement system, the
category W+ has pairs (P, c) of a state predicate P and a command c as objects, while a
morphism

(P1, c1)→ (P2, c2)

corresponds to a derivation of a triple {P1}e{P2} for some e such that c1 = e; c2. Traditionally
Hoare Logic is seen through a “proof irrelevant” lens, so that a Hoare triple is either
valid or invalid, and not much attention is paid to the derivation itself. If we adopt that
simplifying assumption, then the positive embedding is essentially just a set of guarded
commands:

Q+ = { (P, c) | ` {P}c{Q} }

In other words, (P, c) ∈ Q+ just in case it is possible to run c in a state satisfying the
precondition P to obtain a state satisfying Q.

Example 2. We will formulate the example of sequent calculus for linear logic in a bit
more abstract terms as follows. To any multicategoryF , there is associated a free monoidal
category M[F], whose objects (and morphisms) are lists of objects (and morphisms) of
F , and where the monoidal structure on M[F] is given by concatenation. Moreover this
category is equipped with a forgetful functor |−| : M[F]→ ∆ into the (augmented) sim-
plex category (whose objects are finite ordinals and monotone maps), which interprets
a list of objects by its length, and a list of morphisms as a monotone function.

P-A. Melliès and N. Zeilberger 16

Similarly, there is an analogous construction of the free symmetric monoidal category
SM[F] on a symmetric multicategory F , where one simply replaces lists by multisets,
and the forgetful functor

|−| : SM[F]→ Fin

maps into the category of finite sets and functions (which contains ∆ as a subcategory).
To model intuitionistic linear sequent calculus along the lines suggested in the In-

troduction, we will assume given a symmetric multicategory F whose objects are lin-
ear logic formulas, and whose multimorphisms are sequent calculus proofs. Then, we
take the category of contexts to be W = SM[F] and consider the forgetful functor
|−| : W → Fin as a refinement system. Since the one-point set 1 is a terminal object in
Fin, the category 1+ is equivalent to W, and the positive embedding of a linear logic
formula C (seen as a singleton context C @ 1) is the presheaf C+ onW defined exactly as
in the Introduction (here we write F (Γ; C) for the set of multimorphisms from Γ to C):

C+ = Γ 7→ W(Γ,C) = F (Γ; C) = {π |
π

Γ ` C }

�

3.3. Factorization via the free opfibration

In Prop. 3.9 we explained that the positive representation (−)+t : t → u can be factored
as a morphism (−)+t : t → s followed by the Yoneda embedding y : s → u of pointed
categories into presheaves. For the interested (and categorically-minded) reader, in this
section we provide some further discussion and motivation of the embedding into
pointed categories, explaining its relationship to the free opfibration over a functor, as
well as the role played by s : Cat• → Cat as a “universal” opfibration.

We begin by remarking that the category B+t can be seen as an analogue of the
slice category over B, and reduces to the ordinary slice of T over B in the case where
t = idT : T → T . As such, we will sometimes refer to B+t as the t-slice (or “relative
slice”) of B. Note that the relative slice construction also appears in (Maltsiniotis 2005,
§1.1.2), where the notationD/B is used instead of B+t.

Remark 3.10. In the case where t = !D : D → 1, the relative slice over the unique object ∗ of 1
is D itself, and the positive representation Q+t of an object Q ∈ D is just Q itself when viewed
as a refinement in s, or the ordinary Yoneda embedding of Q when viewed as a refinement in u.
More generally, for any t : D → T and t-refinement Q @ B, if B is a terminal object in T then
B+t
≡ D, and Q+t is represented by the object Q itself.

The fact that the relative slice functor (−)+t : T → Cat reduces to the ordinary slice
functor in the case where t is the identity can also be understood in terms of the following
decomposition:

T
(−)+t
// Cat = T

B7→T (t−,B) // [Dop,Set]
∫
// Cat

That is, the relative slice functor factors as the nerve of t followed by the category of
elements construction. Seen as a covariant indexed category encoding an opfibration,

An Isbell Duality Theorem for Type Refinement Systems 17

this composite is just the free opfibration on t, in the sense that the (covariant) category
of elements of (−)+t : T → Cat is the comma category t ↓ T , which has the property that

1) The projection functor codt : t ↓ T → T is an opfibration.
2) There is a (vertical) morphism of refinement systems from t to codt,

D

t
��

(id,t) // t ↓ T

codt

��
T T

where (id, t) : D→ t ↓ T is the functor sending any Q @ B to the object (Q, idB,B).
3) Any morphism of refinement systems F : t → b from t into an opfibration b factors

uniquely as a morphism F̃ : codt → b composed with the morphism (id, t) : t→ codt.

Next, we can observe that any opfibration has a representation (what one might call the
covariant “Grothendieck representation”) in the refinement system of pointed categories,

E

b
��

∂+b // Cat•

s
��

B
∂+b

// Cat

where ∂+b : B → Cat sends any object X ∈ B to the fiber EX of b over X, while
∂+b : E → Cat• coerces any refinement R @ X (i.e., an object R ∈ E such that b(R) = X)
into the corresponding element R ∈ EX of the fiber category. Note that it is important
that b : E → B be an opfibration in order for these operations to define functors.

By combining these two separate observations, we get a simple factorization of the
positive embedding into pointed categories.

Proposition 3.11. The morphism (−)+t : t → s factors as the free opfibration on t followed by
the covariant Grothendieck representation:

D

t
��

(−)+t
// Cat•

s
��

T
(−)+t
// Cat

=

D

t
��

(id,t) // t ↓ T

codt

��

∂+codt // Cat•

s
��

T T
∂+ codt

// Cat

3.4. The negative representation

Every functor t : D → T induces an opposite functor top : Dop
→ T

op, and one can
consider the positive representation of top

D
op (−)+top

//

top

��

Psh

u
��

T
op

(−)+top
// Cat

P-A. Melliès and N. Zeilberger 18

as another negative representation of t. Letting (−)−t def
= (−)+top

: top
→ u, this means we

have rules

P @ A
P−t @ A−t

P =⇒
c

Q

Q−t =⇒
c−t

P−t −t

giving a fully faithful, contravariant embedding of t into u.
Unravelling the definitions, we can verify that

— A−t is the opposite of the category whose objects consist of pairs (c,Q) such that
c : A → B and Q @ B, and whose morphisms (c1,Q1) → (c2,Q2) correspond to

derivations
α

Q1 =⇒
e

Q2 such that c1; e = c2. Dually to A+t, we can read (A−t)op as the
t-coslice (or “relative coslice”) category out of A.

— For any t-refinement P @ A, the presheaf P−t @ A−t is defined on objects by

(c,Q) 7→ {α |
α

P =⇒
c

Q }

and on morphisms by

α
Q1 =⇒

e
Q2 7→

P =⇒
c1

Q1
α

Q1 =⇒
e

Q2

P =⇒
c1;e

Q2
;

P =⇒
c2

Q2
∼

Note that P−t is a contravariant presheaf over A−t, and thus a covariant presheaf over
the t-coslice category.

By a similar line of reasoning as in Sections 3.2 and 3.3, we can decompose the negative
representation (−)−t : top

→ u into three separate components.

Proposition 3.12. The morphism (−)−t : top
→ u factors as a morphism (−)−t : top

→ s
followed by the Yoneda embedding,

D
op

top

��

(−)−t
// Psh

u
��

T
op

(−)−t
// Cat

=

D
op

top

��

(−)−t
// Cat•

s
��

y // Psh

u
��

T
op

(−)−t
// Cat Cat

where (−)−t : Dop
→ Cat• is defined by P−t def

= (idA,P) ∈ A−t for all P @ A.

Proposition 3.13. The morphism (−)−t : top
→ s factors as the free fibration on t followed by

the contravariant Grothendieck representation:

D
op

top

��

(−)−t
// Cat•

s
��

T
op

(−)−t
// Cat

=

D
op

top

��

(t,id) // (T ↓ t)op

domop
t

��

∂−domt // Cat•

s
��

T
op

T
op

∂− domt

// Cat

An Isbell Duality Theorem for Type Refinement Systems 19

Example 3. If we again follow the classical tradition of treating a Hoare triple {P}c{Q} as
either valid or invalid (with no interesting content to the derivation), then the negative
representation of a state predicate

P− = { (c,Q) | ` {P}c{Q} }

is essentially just the set of all possible continuations of a state satisfying P.

Example 4. With respect to the refinement system |−| :W→ Fin defined in Example 2,
the relative coslice out of 1 has objects (i : 1 → n,Γ @ n) corresponding to pointed
contexts, in the sense that the map i : 1 → n serves to select a distinguished formula Ai

in Γ = A1, . . . ,An. A morphism of pointed contexts (j,∆) → (i,Γ) (by which we mean
a morphism (i,Γ) → (j,∆) in 1−) corresponds to a linear substitution σ : ∆ → Γ whose
underlying function maps j to i, implying that the chosen formula B j is used (possibly
together with other formulas of ∆) as part of the proof of Ai.

To better understand this category, it is helpful to adopt a more evocative notation for
pointed contexts. For example, we could draw the diagram

A1 A2 A3 A4

• • � •

to represent the pointed context (i,Γ) where Γ = A1, . . . ,A4 and i = 3. Any morphism of
pointed contexts

B1 B2 B3 B4

• � • •
−→

A1 A2 A3 A4

• • � •

must have an underlying function mapping 2 to 3, for example like so:

1 • // • 1

2 �
((
• 2

3 • // � 3

4 •

==

• 4

In particular, a linear substitution constructed over this specific underlying function
consists of a collection of four proofs of the form

π1
B1 ` A1,

π2
B4 ` A2,

π3
B2,B3 ` A3, and

π4
· ` A4.

Now, suppose given a formula A @ 1. Its negative representation A− @ 1− corresponds
to the presheaf which sends any pointed context

B1 . . . B j . . . Bm

• . . . � . . . •

to the collection of morphisms of pointed contexts

A
�

−→
B1 . . . B j . . . Bm

• . . . � . . . •

P-A. Melliès and N. Zeilberger 20

By definition, such a morphism must contain a proof of A ` B j together with closed proofs
of each of the B1, . . . ,B j−1,B j+1, . . . ,Bm.

As a shorthand notation, we can write ∆[B] to stand for a pointed context with chosen
formula B and remaining formulas ∆. Then the presheaf A− @ 1− is computed on objects
by the following expression:

A− = ∆[B] 7→ F (A; B) ×W(·,∆)

3.5. Preservation of pullbacks

We have seen that any refinement system (i.e., any functor) t : D→ T may be embedded
both covariantly and contravariantly into the refinement system of pointed categories,

t
(−)+t
// s top(−)−t
oo

and that by composing these morphisms with the Yoneda embedding

t
(−)+t
//

(−)+t
��

s

y

��

top(−)−t
oo

(−)−t
~~

u

one obtains two fully faithful presheaf representations of t. But why not stop at s? As
we will see, the benefit of extending the voyage of t and top all the way into u is that
this refinement system has a much richer logical structure than s, which we can apply in
order to talk about the original refinement system t. By way of illustration, an important
property of the positive presheaf representation (−)+t : t → u is that it preserves any
pullbacks which may already exist in t.

Proposition 3.14. Whenever c∗Q exists in t, we have (c∗Q)+t
≡ (c+t)∗Q+t in u.

Proof. By expanding definitions, the elements of (c∗Q)+t correspond to t-derivations

P
α

=⇒
d

c∗Q

where P @ X and d : X→ A, while the elements of (c+t)∗Q+t correspond to t-derivations

P
β

=⇒
d;c

Q.

So, the proposition follows from the universal property of the t-pullback. �

As an immediate corollary, we have that the negative representation sends (t-)pushforwards
to (u-)pullbacks.

Proposition 3.15. Whenever c P exists in t, we have (c P)−t
≡ (c−t)∗ P−t in u.

On the other hand, the positive representation need not preserve pushforwards: al-
though it’s true that the u-subtyping judgment c+t P+t =⇒ (c P)+t is valid whenever the
pushforward c P exists in t (indeed, this is true whenever one has a morphism of re-
finement systems and the pushforward exists on both sides), in general the converse

An Isbell Duality Theorem for Type Refinement Systems 21

subtyping judgment need not be valid. Fortunately, in Section 4.4 we will show that al-
though the positive representation need not preserve pushforwards, it at least preserves
them “up to double dualization” in u.

3.6. Preservation of logical connectives up to change-of-basis

Suppose that t : D→ T is a monoidal refinement system. By definition, this means that
D and T are monoidal and that we have a commuting square

D×D

•

��

t×t // T × T

•

��
D

t
// T

(as well as a commuting triangle associated to the tensor unit, but we will ignore the
unit in this section, since its treatment is completely analogous). Since u : Psh→ Cat is
also a monoidal refinement system, the positive representation of t thus induces a cube

Psh × Psh //

��

Cat × Cat

��

D×D

::

//

��

a

T × T

::

��

b

Psh // Cat

D //

::

T

::

where all but the left and right faces marked a and b commute strictly.
These latter faces need only commute in the lax sense that there are natural transfor-

mations

D×D
(−)+t

×(−)+t
//

•

��
�� m

Psh × Psh

•

��
D

(−)+t
// Psh

T × T
(−)+t

×(−)+t
//

•

��
�� m

Cat × Cat

×

��
T

(−)+t
// Cat

and moreover the natural transformation on the right is the projection of the one on the
left along the cube, this meaning that we have a family of functors

mB1,B2 : B+t
1 × B+t

2 → (B1 • B2)+t (1)

and a family of u-derivations

Q+t
1 •Q+t

2

mQ1,Q2

=⇒
mB1 ,B2

(Q1 •Q2)+t (2)

natural in Q1 @ B1 and Q2 @ B2. Explicitly, the functors mB1,B2 are defined by the action
sending any pair of objects

(P1, c1) (P2, c2)

P-A. Melliès and N. Zeilberger 22

(where P1 @ A1, c1 : A1 → B1,P2 @ A2, c2 : A2 → B2) to the object

(P1 • P2, c1 • c2)

while the natural transformations mQ1,Q2 are defined by the action sending any pair of
t-derivations

α1
P1 =⇒

c1
Q1

α2
P2 =⇒

c2
Q2

to the t-derivation
α1

P1 =⇒
c1

Q1

α2
P2 =⇒

c2
Q2

P1 • P2 =⇒
c1•c2

Q1 •Q2
•

We can summarize all this by saying that the positive representation is a lax morphism
of monoidal refinement systems in the expected sense.

From this it follows for purely formal reasons that when t is a logical refinement system
(i.e., it is monoidal and strictly preserves residuals) we can likewise build functors

aA,C : (A \ C)+t
→ A+t

\ C+t (3)

whenever the corresponding residual A \ C exists in T , and u-derivations

(P \ R)+t
aP,R
=⇒
aA,C

P+t
\ R+t (4)

whenever the residual P \ R exists inD. For example, we can define aA,C by

aA,C
def
= λ[mA,A\C; leval+t]

and then construct the derivations as follows:

P+t
• (P \ R)+t =⇒

m
(P • (P \ R))+t m

P • (P \ R) =⇒
leval

R leval

(P • (P \ R))+t =⇒
leval+t

R+t +t

P+t
• (P \ R)+t =⇒

m;leval+t
R+t

;

(P \ R)+t =⇒
λ[m;leval+t]

P+t
\ R+t λ

Finally, we also have

(R /Q)+t
a′Q,R
=⇒
a′B,C

R+t /Q+t (5)

defined in the analogous way. Again, all this can be summarized as saying that the
positive representation is a lax morphism of logical refinement systems.

However, we can actually establish a much better property about the positive rep-
resentation, which says that in a certain precise sense it strongly preserves the logical
structure of t, but only “up to change-of-basis”.

Proposition 3.16. Let P @ A, Q @ B, R @ C be refinements in a logical refinement system t.
Then all of the following vertical isomorphisms hold in u, where (2) and (3) are conditioned on

An Isbell Duality Theorem for Type Refinement Systems 23

the assumption that the corresponding residuals exist in t:

mA,B (P+t
•Q+t) ≡ (P •Q)+t (a)

(P \ R)+t
≡ aA,C

∗ (P+t
\ R+t) (b)

(R /Q)+t
≡ a′B,C

∗ (R+t /Q+t) (c)

Proof. We can give a purely formal calculation of (a):

mA,B (P+t
•Q+t) ≡ mA,B (P+t I •Q+t I) (Propositions 3.2 and 3.9)

≡ mA,B (P+t
•Q+t) (I • I) (Prop. 2.4)

≡ mA,B (P+t
•Q+t) I (I ≡ I • I)

≡ (P+t
•Q+t; mA,B) I (Prop. 2.1)

≡ ((P, idA) • (Q, idB); mA,B) I (defn. of P+t and Q+t)

≡ (P •Q, idA • idB) I (defn. of mA,B)

≡ (P •Q, idA•B) I (idA•B = idA • idB)

≡ (P •Q)+t I (defn. of (P •Q)+t)

≡ (P •Q)+t (Propositions 3.2 and 3.9)

For (b), through similar reasoning we can derive that

aA,C
∗ (P+t

\ R+t) ≡ (aA,C; (P+t
\ idC))∗ R+t

and by expanding definitions we can compute that the elements of the presheaf on the
right correspond to derivations

P •Q
α

=⇒
id•d

R

where Q @ B and d : B → A \ C. But then the universal property of the left residual
in t says that these derivations are in one-to-one correspondence with the elements of
(P \ R)+t. The case of (c) is similar. �

In categorical language, an equivalent way of stating Prop. 3.16 is that the morphisms

mP,Q : P+
•Q+

→ (P •Q)+

aP,R : (P \ R)+
→ P+

\ R+

a′Q,R : (R /Q)+
→ R+ /Q+

which come from the lax monoidal structure of the functor (−)+t : D → Psh are in fact
opcartesian, cartesian, and cartesian, respectively, relative to the functor u : Psh→ Cat.
As a consequence, Prop. 3.16 is really an analogue of Day’s embedding theorem for
monoidal categories (Day 1970), generalized to the case of logical refinement systems.

Remark 3.17. Consider the case where D is a monoidal category and t = !D : D → 1
(cf. Remark 3.10). In this case there is a single functor m∗,∗ : D×D → D corresponding to the
tensor product onD, and we get a type-theoretic decomposition of the “Day construction” (Day
1970; Kelly 1982), which transports any monoidal category into a closed monoidal category.
In particular, the operation of taking an (“external”) tensor product of presheaves and pushing

P-A. Melliès and N. Zeilberger 24

forward along m defines an (“internal”) monoidal structure on the presheaf category [Dop,Set],
while the operations of taking an (“external”) residual and pulling back along the functors a or
a′ (which are the left/right curryings of m) places an (“internal”) closed structure on [Dop,Set].
Thus, Prop. 3.16 specializes to the fact that the Yoneda functor preserves the monoidal structure
ofD, as well as any closed structure which may exist.

Moreover, this remark can be extended to the general case of a monoidal refinement
system t : D → T . We have shown in (Melliès and Zeilberger 2015) that in any such
refinement system with enough pushforwards, the fiber DW of any monoid W in T
comes equipped with a monoidal structure defined by pushing forward along the mul-
tiplication map p : W •W →W:

P ⊗W Q def
= p (P •Q) (P,Q @W)

The positive representation induces (by restriction) a functor

(−)+ : DW → [(W+)op,Set] (6)

from the fiber of W into the presheaf category over W+. Moreover, the category W+

inherits a monoidal structure from the monoid W, defined as:

W+
×W+

mW,W // (W •W)+
p+

// W+

The associated presheaf category [(W+)op,Set] comes thus equipped with a (closed)
monoidal structure provided by the Day tensor product. Now, the functor (6) is in
general only lax monoidal, with the coercion morphism

P+
⊗W+ Q+ // (P ⊗W Q)+

constructed by applying the universal property of P+
⊗W+ Q+ (defined as the u-pushforward

of P+
•Q+ along (mW,W ; p+)) to the composite derivation

P+
•Q+

mP,Q
=⇒
mW,W

(P •Q)+
α+

=⇒
p+

(P ⊗W Q)+

where the right-hand derivation is built by applying the positive representation functor
to the derivation

P •Q
α

=⇒
p

P ⊗W Q

coming from the definition of P ⊗W Q as a t-pushforward of P •Q along p.

Proposition 3.18. Let W be a monoid in a monoidal refinement system t with enough push-
forwards. Then the functor (−)+ : DW → [(W+)op,Set] is lax monoidal. In particular, the
subtyping judgment P+

⊗W+ Q+ =⇒ (P⊗W Q)+ is valid (in u : Psh→ Set) for all t-refinements
P,Q @W.

Since the derivation mP,Q is cocartesian (Prop. 3.16), the coercion P+
⊗W+ Q+

→ (P⊗W Q)+

is an isomorphism just in case the positive representation transports the cocartesian
derivation α to a cocartesian derivation α+. This is precisely what happens in the special
case discussed in Remark 3.17, where p is equal to the identity.

In the case of a logical refinement system t : D → T with enough pullbacks, the

An Isbell Duality Theorem for Type Refinement Systems 25

fiber DW is not just monoidal, but also closed (Melliès and Zeilberger 2015), with the
residuals defined by pulling back along the left and right curryings of the monoid
multiplication map:

P(W R def
= λ[p]∗ (P \ R) (P,R @W)

R W (Q def
= ρ[p]∗ (R /Q) (Q,R @W)

There are two canonical coercion morphisms

(P(W R)+ // P+(W+ R+ and (R W (Q)+ // R+
W+ (Q+

induced by the lax monoidal structure of (6), which can be constructed as the composite
derivations

(P(W R)+
α+

1
=⇒

(λ[p])+
(P \ R)+

aP,R
=⇒
aW,W

P+
\ R+

and

(R W (Q)+
α+

2
=⇒

(ρ[p])+
(R /Q)+

a′Q,R
=⇒
a′W,W

R+ /Q+

where α1 and α2 are the cartesian derivations coming from the definition of P(W R and
R W (Q as pullbacks. One key difference with the previous situation is that the positive
representation preserves all cartesian morphisms (Prop. 3.14), which implies that the
two coercion morphisms are in fact isomorphisms.

Proposition 3.19. Let W be a monoid in a logical refinement system t with enough residuals
and pullbacks. Then the functor (−)+ : DW → [(W+)op,Set] preserves residuals. In particular,
we have vertical isomorphisms (P(W R)+

≡ P+(W+ R+ and (R W (Q)+
≡ R+

W+ (Q+ for all
t-refinements P,Q,R @W.

4. Duality and negative translation

4.1. Overview

The definition of the linear implications P(W R and R W (Q relative to a monoid W
are in fact instances of a more general pattern, which can be implemented in any logical
refinement system b : E → B with enough residuals and pullbacks. Suppose given an
arbitrary binary operation

p : X • Y→ Z

in the basis B. Then every refinement R @ Z defines a pair of dualization operators

P⊥ def
= λ[p]∗ (P \ R) (P @ X)

⊥Q def
= ρ[p]∗ (R /Q) (Q @ Y)

P-A. Melliès and N. Zeilberger 26

inducing a contravariant adjunction

EX

(−)⊥

&&
⊥ E

op
Y

⊥(−)

ff

between the refinements of X and the refinements of Y, as witnessed by the following
equivalences of typing and subtyping judgments:

P •Q =⇒
p

R

P =⇒
λ[p]

R /Q

P =⇒ ⊥Q

P •Q =⇒
p

R

Q =⇒
ρ[p]

P \ R

Q =⇒ P⊥

Observe that we don’t require that p be the multiplication of a monoid W in order to
implement this pattern, although of course we can apply it in that situation.

For example, consider this construction in the refinement system u : Psh → Cat,
applied to a monoidal category C seen as an object of Cat having a tensor product
operation p : C × C → C. In that case, the fiber associated to C is the presheaf category
[Cop,Set], and given a fixed presheaf R ∈ [Cop,Set] one recovers a familiar pattern
from the theory of linear continuations (Thielecke 1997; Melliès 2012): a contravariant
adjunction

[Cop,Set]

−(R
**

⊥ [Cop,Set]op

R (−

jj

induced by negation into R, where the definition of the two dualization operators coin-
cides with the biclosed monoidal structure on [Cop,Set] equipped with the Day tensor
product (cf. Remark 3.17).

But besides the connection with linear continuations, the situation is also strongly
reminiscent of Isbell duality (Isbell 1966) between the categories of covariant and con-
travariant presheaves over a given category C. In that case, however, while still working
in the refinement system u : Psh→ Cat, one takes

X = C Y = Cop Z = C × Cop p = id : C × Cop
→ C× C

op

together with R = C(−,−) the hom-bimodule of C. Then one recovers the contravariant
adjunction

[Cop,Set]

(−)⊥

))
⊥ [C,Set]op

⊥(−)

ii

called Isbell conjugation (Lawvere 2005, §7), which transforms any contravariant presheaf
into a covariant one, and vice versa. Expanding the definitions of the refinement type
constructors in u : Psh→ Cat (Prop. 3.1), these conjugation operations can be computed

An Isbell Duality Theorem for Type Refinement Systems 27

explicitly by the following end formulas:

φ⊥ = y 7→ ∀x.φ(x)→ C(x, y)
⊥ψ = x 7→ ∀y.ψ(y)→ C(x, y)

One fascinating observation by Isbell is that every pair of representable presheaves

a+ = C(−, a) : Cop
→ Set

a− = C(a,−) : C → Set

generated by the same object a ∈ C form a dual pair, in the sense that

a+
≡
⊥(a−) and a− ≡ (a+)⊥ (7)

as can be verified by direct application of the Yoneda lemma:

C(x, a) � ∀y.C(a, y)→ C(x, y)

C(a, y) � ∀x.C(x, a)→ C(x, y)

Although the equations (7) may appear counterintuitive if one thinks about the tradi-
tional way of working with continuations, the philosophy of Isbell duality says that one
can find objects which are invariant with respect to double dualization, provided that
the answer type R is sufficiently large and discriminating.

In the specific case of classical Isbell duality, the operation p is trivial, and the role
of R is provided by the hom-bimodule. Our main theorem in this section states that an
even more general Isbell-style duality arises for refinement systems, in the sense that
any refinement P @ A in an arbitrary refinement system t gives rise to a dual pair

P+t @ A+t P−t @ A−t

in the refinement system of presheaves. We then develop one application of this theorem,
showing how it can be used to explicitly calculate the positive representation of a push-
forward, through a sort of negative encoding analogous to the classical double-negation
translations of first-order logic into intuitionistic first-order logic. As a consequence,
we also obtain a negative encoding of the positive representation of a fiberwise tensor
product, as the double dualization of a Day tensor product.

4.2. The category of judgments and the presheaf of derivations

Again, we suppose given an arbitrary refinement system t : D→ T .

Definition 4.1. The category of judgments T]t is defined as follows:

— objects are t-typing judgments: triples (P, c,Q) where P @ A, c : A→ B, and Q @ B.
— morphisms (P1, c1,Q1)→ (P2, c2,Q2) are pairs of t-derivations

β
P1 =⇒

e
P2

γ
Q2 =⇒

e′
Q1

such that c1 = e; c2; e′.

P-A. Melliès and N. Zeilberger 28

Definition 4.2. The presheaf of derivations is the refinementD]t @ T]t in u : Psh→ Cat
defined by

D
]t = (P, c,Q) 7→ {α |

α
P =⇒

c
Q }

on objects, and with the functorial action transforming any morphism (P1, c1,Q1) →
(P2, c2,Q2) in T]t given as a pair of t-derivations

β
P1 =⇒

e
P2

γ
Q2 =⇒

e′
Q1

such that c1 = e; c2; e′ into a typing rule

P2 =⇒
c2

Q2

P1 =⇒
c1

Q1

derived as
β

P1 =⇒
e

P2 P2 =⇒
c2

Q2

γ
Q2 =⇒

e′
Q1

P1 =⇒
e;c2;e′

Q1
;−;

P1 =⇒
c1

Q1
∼

Remark 4.3. The category of judgments T]t can be seen as an analogue of the “twisted arrow
category” ofT (Mac Lane 1971) (see also (Lawvere 1970, p.11) and (Maltsiniotis 2005, §1.1.18)),
reducing to the opposite of the usual twisted arrow category of T in the case t = idT .

Remark 4.4. In the case where t = !D : D → 1, the presheaf of derivations of t reduces to the
hom-bimoduleD]t = D(−,−) (noting that in that case T]t

≡ D ×D
op).

Example 5. For the Hoare Logic refinement system, the category of judgments has
objects corresponding to Hoare triples, and has a morphism

{P1}c1{Q1} → {P2}c2{Q2}

whenever c1 can be factored as c1 = e; c2; e′ for some e and e′ such that the triples

{P1}e{P2} and {Q2}e′{Q1}

are valid. In particular (in the case where e and e′ are equal to the identity), this means
that T]t includes morphisms between Hoare triples generated by inverting the “Rules
of Consequence” (Hoare 1969), i.e., that there is a morphism

{P1}c{Q1} → {P2}c{Q2}

whenever ` P1 ⊃ P2 and ` Q2 ⊃ Q1.

4.3. The duality theorem

We begin by defining a family of bracket operations, which will play the role of “p” in
the template described in Section 4.1.

An Isbell Duality Theorem for Type Refinement Systems 29

Definition 4.5. Let B be a t-type. The B-bracket is the functor ~B : B+t
× B−t

→ T
]t

defined by ~B((P, c), (d,R)) = (P, (c; d),R).

One way to understand the family of bracket operations is as an extranatural transforma-
tion from the external product of the relative slice and coslice functors

T × T
op (−)+t

×(−)−t
// Cat × Cat × // Cat

into the category of judgments, in the sense of

Proposition 4.6. For any t-term c : A→ B we have (c+t
× idB−t);~B = (idA+t × c−t);~A.

Moreover, although we will not need this fact, the extranatural transformation is univer-
sal in the sense that it exhibits the category of judgments as a coend T]t

≡ ∃A.A+t
× A−t

(Mac Lane 1971, see exercise 3 on p. 227 for an analogous remark).
Following the general pattern described in Section 4.1, we can use the B-bracket in

combination with the presheaf of derivations to build a contravariant adjunction

[(B+t)op,Set]

(−)⊥

++
⊥ [(B−t)op,Set]op

⊥(−)

kk

between presheaves over B+t and presheaves over B−t, where the dualization operators
are defined by

φ⊥
def
= λ[~B]∗ (φ \ D]t) (φ @ B+t)

⊥ψ
def
= ρ[~B]∗ (D]t / ψ) (ψ @ B−t)

Moreover, we can establish an Isbell-like duality between the positive and negative
representations, relying on the fact that both can be expressed as pullbacks of the presheaf
of derivations. Recall from Sections 3.2 and 3.4 that every t-refinement Q @ B induces a
pair of objects Q+t

∈ B+t and Q−t
∈ B−t, which represent the corresponding presheaves

Q+t @ B+t and Q−t @ B−t in u : Psh→ Cat. Given such a t-refinement Q @ B, define two
functors kQ : B+t

→ T
]t and vQ : B−t

→ T
]t by

kQ
def
= (idB+t ×Q−t);~B and vQ

def
= (Q+t

× idB−t);~B.

Lemma 4.7. For any t-refinement Q @ B, we have Q+t
≡ kQ

∗
D
]t and Q−t

≡ vQ
∗
D
]t.

Proof. Expanding definitions, kQ and vQ reduce to the following actions on objects:

kQ = (P, c) 7→ (P, c,Q)

vQ = (d,R) 7→ (Q, d,R)

The identities Q+t
≡ kQ

∗
D
]t and Q−t

≡ vQ
∗
D
]t are immediate by definition ofD]t. �

Theorem 4.8. For any t-refinement Q @ B, we have Q−t
≡ (Q+t)⊥ and Q+t

≡
⊥(Q−t).

Proof. The proof is similar to the proof of Prop. 3.16. We show one case (the other is

P-A. Melliès and N. Zeilberger 30

symmetric):

(Q+t)⊥ def
= λ[~B]∗ (Q+t

\ D
]t)

≡ λ[~B]∗ (Q+t I \ D]t) (Propositions 3.2 and 3.9)

≡ λ[~B]∗ (Q+t
\ id)∗ (I \ D]t) (Prop. 2.4)

≡ λ[~B]∗ (Q+t
\ id)∗D]t (D]t

≡ I \ D]t)

≡ (λ[~B]; (Q+t
\ id))∗D]t (Prop. 2.1)

≡ ((Q+t
× id);~B)∗D]t (β conversion)

≡ Q−t (Lemma 4.7)

�

Remark 4.9. When t = !D : D → 1, the operations φ 7→ φ⊥ and ψ 7→ ⊥ψ reduce to
Isbell conjugation between the category [Dop,Set] of contravariant presheaves and the category
[D,Set]op of op’d covariant presheaves, and Thm. 4.8 reduces to the fact that Isbell conjugation
restricts to an equivalence on representable presheaves.

4.4. Negative encodings

We begin by proving a useful lemma.

Lemma 4.10. For any t-term c : A→ B and presheaf φ @ A+t we have (c−t)∗ φ⊥ ≡ (c+t φ)⊥.

Proof. The reasoning is similar to the proofs of Prop. 3.16 and Thm. 4.8, except for the
appeal in the middle to extranaturality of the bracket operations:

(c+t φ)⊥ ≡ (λ[~B]; (c+t
\ id))∗ (φ \ D]t)

≡ (c+t
• id;~B)∗ (φ \ D]t)

≡ (id • c−t;~A)∗ (φ \ D]t) (Prop. 4.6)

≡ (c−t;λ[~A])∗ (φ \ D]t)

≡ (c−t)∗ φ⊥

�

A more conceptual way of understanding the lemma is as follows. Given any term
c : A→ B in T , pulling back and pushing forward along the functors c+ and c− induces
a pair of adjunctions

[(A+)op,Set]

c+

**
⊥ [(B+)op,Set]

(c+)∗
jj [(B−)op,Set]

c−
**

⊥ [(A−)op,Set]

(c−)∗
jj

which may be combined with the adjunctions induced by the dualization operators to

An Isbell Duality Theorem for Type Refinement Systems 31

build a “thickened square”:

[(B+)op,Set]

(c+)∗

��

(−)⊥

**
⊥ [(B−)op,Set]op

c− op

��

⊥(−)

jj

a a

[(A+)op,Set]

c+

HH

(−)⊥

**
⊥ [(A−)op,Set]op

(c−)∗ op

HH

⊥(−)

jj

Beware: not all paths along this diagram commute! However, Lemma 4.10 says that
travelling from the lower left corner to the upper right corner along the outer face is
equivalent to travelling with the same origin and destination along the inner face. More-
over, from the existence of the adjunctions we can automatically derive the following
statements, which summarize what happens when one takes different paths along the
square.

Corollary 4.11. For any t-term c : A→ B and presheaves ψ @ B−t, ρ @ B+t, and σ @ A−t:

(c+t)∗ ⊥ψ ≡ ⊥(c−t ψ) (a)

(c−t)ρ⊥ =⇒ ((c+t)∗ ρ)
⊥

(b)

(c+t) ⊥σ =⇒ ⊥((c−t)∗ σ) (c)

Proof. (a) follows immediately from Lemma 4.10, since the two composite functors (c+t)∗ ◦
⊥(−) and ⊥(−) ◦ c−t are right adjoints to the two composite functors (−)⊥ ◦ c+t and
(c−t)∗ ◦ (−)⊥. Likewise, (b) and (c) follow automatically as mates (Kelly 1982, §1.11) of
the subtyping relations

(c−t)∗ φ⊥ =⇒ (c+t φ)⊥ and (c+t)∗ ⊥ψ =⇒ ⊥(c−t ψ).

Let us nonetheless observe, though, that (b) and (c) are equivalent to the fact that the
following typing rules are valid in u : Psh→ Cat:

ρ • ψ =⇒
~B
D
]t

(c+t)∗ ρ • (c−t ψ) =⇒
~A
D
]t

φ • σ =⇒
~A
D
]t

(c+t φ) • (c−t)∗ σ =⇒
~B
D
]t

P-A. Melliès and N. Zeilberger 32

The rule on the left, for example, can be derived as follows:

(c+)∗ φ =⇒
c+
φ

L(c+)∗
ψ =⇒

idB−
ψ id

(c+)∗ φ • ψ =⇒
c+×idB−

φ • ψ
•

φ • ψ =⇒
~B
D
]t

(c+)∗ φ • ψ =⇒
(c+×idB−);~B

D
]t

;

(c+)∗ φ • ψ =⇒
(idA+×c−);~A

D
]t

Prop. 4.6

(idA+ × c−)((c+)∗ φ • ψ) =⇒
~A
D
]t

L(id × c−)

(c+)∗ φ • (c− ψ) =⇒
~A
D
]t

Prop. 2.4

�

As we mentioned at the end of Section 3.5, the positive representation does not in
general preserve pushforwards, although there is always a coercion c+ P+ =⇒ (c P)+

whenever the pushforward c P exists in t : D → T . Similarly, as we discussed at the
end of Section 3.6, given a monoid W in T , the induced fiberwise tensor product ⊗W on
DW is not strictly mapped by the functor (−)+ : DW → [(W+)op,Set] to the Day tensor
product ⊗W+ , although we have a coercion P+

⊗W+ Q+ =⇒ (P⊗W Q)+ for all t-refinements
P,Q @W (Prop. 3.18). One could say that the situation with pullbacks c∗Q and fiberwise
residuals P(W R and R W (Q is nicer, since they are both preserved by the positive
representation (Propositions 3.14 and 3.19). However, things are not as bad as they seem
for pushforward and fiberwise tensor product, because as we alluded to earlier, this
discrepancy may be resolved “up to double dualization”, by appeal to the Isbell duality
theorem for type refinement systems.

Proposition 4.12. Whenever the pushforward c P exists in t, we have

(c P)+t
≡
⊥((c−t)∗ P−t) (a)

(c P)+t
≡
⊥((c+t P+t)⊥) (b)

Proof. We can derive equation (a) in two steps:

(c P)+t
(Thm. 4.8)

≡
⊥(c P)−t

(Prop. 3.15)
≡

⊥((c−t)∗ P−t)

Then equation (b) follows in two more steps from (a):

⊥((c−t)∗ P−t)
(Thm. 4.8)

≡
⊥((c−t)∗ (P+t)⊥)

(Lemma 4.10)
≡

⊥((c+t P+t)⊥)

�

Proposition 4.13. Let W be a monoid in a monoidal refinement system with enough pushfor-
wards. Then for any t-refinements P,Q @W, we have (P ⊗W Q)+t

≡
⊥((P+t

⊗W+t Q+t)⊥).

An Isbell Duality Theorem for Type Refinement Systems 33

Proof. We have that

P+t
⊗W+ Q+t def

= (mW,W ; p+) (P+
•Q+)

≡ p+ mW,W (P+
•Q+) (Prop. 2.1)

≡ p+ (P •Q)+ (Prop. 3.16)

and moreover P ⊗W Q def
= p (P • Q), so that the proposition follows as a corollary of

Prop. 4.12. �

Example 6. In Hoare Logic, a pushforward c P is called a strongest postcondition (Gordon
and Collavizza 2010, see §2). Although in general strongest postconditions need not
exist, it is easy to check that in the case when c P does exist, its positive representation

(c P)+ = { (P′, c′) | ` {P′}c′{c P} }

(as computed in Example 1) contains exactly the same guarded commands as
⊥((c−)∗ P−) = { (P′, c′) | ∀(d,R). {P}c; d{R} ` {P′}c′; d{R} }.

Conversely, this latter formula provides a way of reasoning using strongest postcondi-
tions, even when they do not exist. �

Example 7. Let A,B ∈ F be two formulas of linear logic, considered as singleton contexts
A @ 1 and B @ 1 in the refinement system |−| : W → Fin of Example 2. The object 1
is a monoid in Fin, with multiplication µ : 2 → 1 defined as the unique map from the
two-point set onto the one-point set. In linear logic, the left introduction rule

A,B,Γ ` C
A ⊗ B,Γ ` C ⊗L

for multiplicative conjunction is invertible, in the sense that it induces a bijection between
the proofs of A,B,Γ ` C and the proofs of A ⊗ B,Γ ` C (considered up to the appropriate
equational theory). Taking Γ to be empty, this ensures that the pushforward µ (A,B)
exists in |−| :W→ Fin, and is given by the formula A ⊗ B @ 1. Since this pushforward
exists for every pair of formulas, by Prop. 3.18 there is a lax monoidal functor

(−)+ :W1 → [Wop,Set]

(recall thatW is equivalent to 1+), with a coercion

A+
⊗+ B+ =⇒ (A ⊗ B)+

for every A @ 1 and B @ 1. Here we write ⊗+ for the Day tensor product on [Wop,Set],
which can be computed as

φ ⊗+ ψ
def
= (m1,1;µ+) (φ • ψ) ≡ µ+ m1,1 (φ • ψ)

for any pair of presheaves φ,ψ @W, where m1,1 :W×W → 2+ is the functor defined
by the lax monoidal structure of (−)+ : Fin → Cat (see (1) in Section 3.6). In particular,
we have that A+

⊗+ B+
≡ µ+ m1,1 (A+

• B+).
Now, an object of 2+ (namely, a context Γ @ n together with a function f : n → 2) is

nothing but a partition of a context Γ into two disjoint pieces Γ1 and Γ2, which may be

P-A. Melliès and N. Zeilberger 34

notated conveniently as a shuffle Γ = Γ1 � Γ2. So, the functor m1,1 : W ×W → 2+ is
the operation which takes a pair of contexts Γ1 and Γ2 into the corresponding partition
Γ = (Γ1,Γ2) of a single context into two contiguous pieces. By Prop. 3.16, we know that
m1,1 (A+

• B+) ≡ (A,B)+, and the latter simplifies to

(A,B)+ = Γ1 � Γ2 7→ W(Γ1,A) ×W(Γ2,B).

Next, consider the pushforward of (A,B)+ along µ+ : 2+
→ 1+. By the coend formula

for pushforwards of presheaves (see Prop. 3.1), the presheaf µ+ (A,B)+ @ W may be
calculated as follows:

µ+ (A,B)+ = Γ 7→ ∃Γ1,Γ2.W(Γ, (Γ1,Γ2)) ×W(Γ1,A) ×W(Γ2,B)

There is no reason why this presheaf should be isomorphic to

(A ⊗ B)+ = Γ 7→ W(Γ,A ⊗ B).

In particular, a counterexample is provided by evaluating both presheaves at the single-
ton context Γ = A ⊗ B, since one can certainly prove A ⊗ B ` A ⊗ B, but in general there
is no way to split Γ into a context proving A and a context proving B.

On the other hand, Prop. 4.12(b) tells us that this mismatch is accounted for by taking
a double dual:

(A ⊗ B)+
≡
⊥((µ+ (A,B)+)⊥) (8)

By Lemma 4.10 and Thm. 4.8, Equation (8) is equivalent to

(A ⊗ B)+
≡
⊥((µ−)∗ (A,B)−) (9)

which can be derived from the simple equation

(A ⊗ B)− ≡ (µ−)∗ (A,B)− (10)

by one application of Thm. 4.8. Equation (10) itself follows from the definition of A ⊗ B
as a pushforward and Prop. 3.15. In order to understand this equation, recall from
Example 4 that 1− is the category of pointed contexts, and that the negative representation
(A ⊗ B)− @ 1− is defined by the action

∆[C] 7→ F (A ⊗ B; C) ×W(·,∆).

In other words, (A⊗B)− transports a pointed context ∆[C] into the set of tuples consisting
of a proof of A ⊗ B ` C together with a closed proof of each formula in ∆. A careful
computation shows that (µ−)∗ (A,B)− is defined by the action

∆[C] 7→ F (A,B; C) ×W(·,∆).

So Equation (10) reduces to the fact that the left introduction rule ⊗L is invertible.
In particular, observe that whereas we could distinguish (A ⊗ B)+ from µ+ (A,B)+ by
considering the context Γ = A ⊗ B, their duals (A ⊗ B)− and (µ−)∗ (A,B)− cannot be
distinguished by pointed contexts.

An Isbell Duality Theorem for Type Refinement Systems 35

References

Jean-Marc Andreoli. Logic programming with focussing proofs in Linear Logic. Journal of Logic
and Computation 2:3 (1992).

Francis Borceux. Handbook of Categorical Algebra 2: Categories and Structures. Cambridge University
Press, 1994.

B.J. Day. On closed categories of functors, Lecture Notes in Mathematics 137 (1970), 1–38.
Gerhard Gentzen. Untersuchungen über das logische Schliessen (Investigations into Logical Inference),

Ph.D. thesis, Universität Göttingen. English translation in The Collected Papers of Gerhard Gentzen,
M. Szabo (ed.), Amsterdam: North Holland (1969).

Neil Ghani, Patricia Johann, Clément Fumex. Indexed Induction and Coinduction, Fibrationally.
Logical Methods in Computer Science 9(3:6) (2013), 1–31.

Jean-Yves Girard. Linear logic. Theoretical Computer Science 50 (1987), 1–102.
Mike Gordon and Hélène Collavizza. Forward with Hoare. In Reflections on the Work of C.A.R.

Hoare, Cliff Jones, A. W. Roscoe, Kenneth R. Wood (eds.). Springer, 2010.
Claudio Hermida. Fibrations, Logical predicates and indeterminates, Ph.D. thesis, University of Edin-

burgh, November 1993.
C.A.R. Hoare. An Axiomatic Basis for Computer Programming, Communications of the ACM 12:10

(1969).
John Isbell. Structure of categories, Bulletin of the American Mathematical Society 72 (1966), 619–655.
Max Kelly. Basic concepts in enriched category theory. Cambridge University Press, 1982.
F. William Lawvere. Equality in hyperdoctrines and comprehension schema as an adjoint functor,

In Proceedings of the AMS Symposium on Pure Mathematics XVII (1970), 1–14.
F. William Lawvere. Taking Categories Seriously. Reprints in Theory and Applications of Categories 8

(2005), 1–24.
Saunders Mac Lane. Categories for the Working Mathematician. Springer, 1971.
Georges Maltsiniotis. La théorie de l’homotopie de Grothendieck. Astérisque, 2005.
Paul-André Melliès. Game Semantics in String Diagrams. In Proceedings of the 27th Annual IEEE

Conference on Logic in Computer Science, Dubrovnik, 2012.
Paul-André Melliès and Noam Zeilberger. Functors are Type Refinement Systems. In Proceedings

of the 42nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming, Mumbai, 2015.
Hayo Thielecke. Categorical Structure of Continuation Passing Style, Ph.D. thesis, University of

Edinburgh, 1997.

P-A. Melliès and N. Zeilberger 36

Appendix A. Proof of Prop. 2.2

We complete the proof of Prop. 2.2 by showing that the typing rules LG[c]∗ and RG[c]∗

defined by

c∗Q =⇒
c

Q Lc∗

G[c∗Q] =⇒
G[c]

G[Q] G

P =⇒
ι

GF[P]
ι

P =⇒
d;G[c]

G[Q]

F[P] =⇒
F[d];FG[c]

FG[Q] F FG[Q] =⇒
o

Q
o

F[P] =⇒
F[d];FG[c];o

Q
;

F[P] =⇒
F[d];o;c

Q
∼1

F[P] =⇒
F[d];o

c∗Q Rc∗

GF[P] =⇒
GF[d];G[o]

G[c∗Q] G

P =⇒
ι;GF[d];G[o]

G[c∗Q]
;

P =⇒
d

G[c∗Q]
∼2

satisfy the β equation

P
β

=⇒
d;G[c]

G[Q]

P =⇒
d

G[c∗Q]
RG[c]∗

G[c∗Q] =⇒
G[c]

G[Q]
LG[c]∗

P =⇒
d;G[c]

G[Q]
;

= P
β

=⇒
d;G[c]

G[Q]

as well as the η equation

P
η

=⇒
d

G[c∗Q] =

P
η

=⇒
d

G[c∗Q] G[c∗Q] =⇒
G[c]

G[Q]
LG[c]∗

P =⇒
d;G[c]

G[Q]
;

P =⇒
d

G[c∗Q]
RG[c]∗

In both cases, we establish these equations by showing a series of typing derivations,
with each successive derivation related to its predecessor by an elementary step of
reasoning.

An Isbell Duality Theorem for Type Refinement Systems 37

A.1. The β equation

P =⇒
ιX

GF[P]
ι

P
β

=⇒
d;G[c]

G[Q]

F[P] =⇒
F[d];FG[c]

FG[Q] F FG[Q] =⇒
oB

Q
o

F[P] =⇒
F[d];FG[c];oB

Q
;

F[P] =⇒
F[d];oA ;c

Q
∼

F[P] =⇒
F[d];oA

c∗Q Rc∗

GF[P] =⇒
GF[d];G[oA]

G[c∗Q] G

P =⇒
ιX ;GF[d];G[oA]

G[c∗Q]
;

P =⇒
d

G[c∗Q]
∼

c∗Q =⇒
c

Q Lc∗

G[c∗Q] =⇒
G[c]

G[Q] G

P =⇒
d;G[c]

G[Q]
;

P =⇒
ιX

GF[P]
ι

P
β

=⇒
d;G[c]

G[Q]

F[P] =⇒
F[d];FG[c]

FG[Q] F FG[Q] =⇒
oB

Q
o

F[P] =⇒
F[d];FG[c];oB

Q
;

F[P] =⇒
F[d];oA ;c

Q
∼

F[P] =⇒
F[d];oA

c∗Q Rc∗

GF[P] =⇒
GF[d];G[oA]

G[c∗Q] G

P =⇒
ιX ;GF[d];G[oA]

G[c∗Q]
;

c∗Q =⇒
c

Q Lc∗

G[c∗Q] =⇒
G[c]

G[Q] G

P =⇒
ιX ;GF[d];G[oA];G[c]

G[Q]
;

P =⇒
d;G[c]

G[Q]
∼

P =⇒
ιX

GF[P]
ι

P
β

=⇒
d;G[c]

G[Q]

F[P] =⇒
F[d];FG[c]

FG[Q] F FG[Q] =⇒
oB

Q
o

F[P] =⇒
F[d];FG[c];oB

Q
;

F[P] =⇒
F[d];oA ;c

Q
∼

F[P] =⇒
F[d];oA

c∗Q Rc∗

GF[P] =⇒
GF[d];G[oA]

G[c∗Q] G
c∗Q =⇒

c
Q Lc∗

G[c∗Q] =⇒
G[c]

G[Q] G

GF[P] =⇒
GF[d];G[oA];G[c]

G[c∗Q]
;

P =⇒
ιX ;GF[d];G[oA];G[c]

G[Q]
;

P =⇒
d;G[c]

G[Q]
∼

P-A. Melliès and N. Zeilberger 38

P =⇒
ιX

GF[P]
ι

P
β

=⇒
d;G[c]

G[Q]

F[P] =⇒
F[d];FG[c]

FG[Q] F FG[Q] =⇒
oB

Q
o

F[P] =⇒
F[d];FG[c];oB

Q
;

F[P] =⇒
F[d];oA ;c

Q
∼

F[P] =⇒
F[d];oA

c∗Q Rc∗ c∗Q =⇒
c

Q Lc∗

F[P] =⇒
F[d];oA ;c

G[c∗Q]
;

GF[P] =⇒
GF[d];G[oA];G[c]

G[c∗Q] G

P =⇒
ιX ;GF[d];G[oA];G[c]

G[Q]
;

P =⇒
d;G[c]

G[Q]
∼

P =⇒
ιX

GF[P]
ι

P
β

=⇒
d;G[c]

G[Q]

F[P] =⇒
F[d];FG[c]

FG[Q] F FG[Q] =⇒
oB

Q
o

F[P] =⇒
F[d];FG[c];oB

Q
;

F[P] =⇒
F[d];oA ;c

Q
∼

GF[P] =⇒
GF[d];G[oA];G[c]

G[c∗Q] G

P =⇒
ιX ;GF[d];G[oA];G[c]

G[Q]
;

P =⇒
d;G[c]

G[Q]
∼

P =⇒
ιX

GF[P]
ι

P
β

=⇒
d;G[c]

G[Q]

F[P] =⇒
F[d];FG[c]

FG[Q] F FG[Q] =⇒
oB

Q
o

F[P] =⇒
F[d];FG[c];oB

Q
;

GF[P] =⇒
GF[d];GFG[c];G[oB]

G[c∗Q] G

P =⇒
ιX ;GF[d];GFG[c];G[oA]

G[Q]
;

P =⇒
d;G[c]

G[Q]
∼

P
β

=⇒
d;G[c]

G[Q]

An Isbell Duality Theorem for Type Refinement Systems 39

A.2. The η equation

P
η

=⇒
d

G[c∗Q]

P =⇒
ιX

GF[P]
ι

P
η

=⇒
d

G[c∗Q]

F[P] =⇒
F[d]

FG[c∗Q] F FG[c∗Q] =⇒
oA

c∗Q
o

FG[c∗Q] =⇒
F[d];oA

G[Q]
;

GF[P] =⇒
GF[d];G[oA]

G[c∗Q] G

P =⇒
ιX ;GF[d];G[oA]

G[c∗Q]
;

P =⇒
d

G[c∗Q]
∼

P =⇒
ιX

GF[P]
ι

P
η

=⇒
d

G[c∗Q]

F[P] =⇒
F[d]

FG[c∗Q] F FG[c∗Q] =⇒
oA

c∗Q
o

FG[c∗Q] =⇒
F[d];oA

G[Q]
;

c∗Q =⇒
c

Q Lc∗

F[P] =⇒
F[d];oA ;c

Q
;

F[P] =⇒
F[d];oA

c∗Q Rc∗

GF[P] =⇒
GF[d];G[oA]

G[c∗Q] G

P =⇒
ιX ;GF[d];G[oA]

G[c∗Q]
;

P =⇒
d

G[c∗Q]
∼

P =⇒
ιX

GF[P]
ι

P
η

=⇒
d

G[c∗Q]

F[P] =⇒
F[d]

FG[c∗Q] F
FG[c∗Q] =⇒

oA
c∗Q

o
c∗Q =⇒

c
Q Lc∗

FG[c∗Q] =⇒
oA ;c

G[Q]
;

F[P] =⇒
F[d];oA ;c

Q
;

F[P] =⇒
F[d];oA

c∗Q Rc∗

GF[P] =⇒
GF[d];G[oA]

G[c∗Q] G

P =⇒
ιX ;GF[d];G[oA]

G[c∗Q]
;

P =⇒
d

G[c∗Q]
∼

P-A. Melliès and N. Zeilberger 40

P =⇒
ιX

GF[P]
ι

P
η

=⇒
d

G[c∗Q]

F[P] =⇒
F[d]

FG[c∗Q] F

c∗Q =⇒
c

Q Lc∗

G[c∗Q] =⇒
G[c]

G[Q] G

FG[c∗Q] =⇒
FG[c]

FG[Q] F FG[Q] =⇒
oB

Q
o

FG[c∗Q] =⇒
FG[c];oB

G[Q]
;

F[P] =⇒
F[d];FG[c];oB

Q
;

F[P] =⇒
F[d];oA ;c

Q
∼

F[P] =⇒
F[d];oA

c∗Q Rc∗

GF[P] =⇒
GF[d];G[oA]

G[c∗Q] G

P =⇒
ιX ;GF[d];G[oA]

G[c∗Q]
;

P =⇒
d

G[c∗Q]
∼

P =⇒
ιX

GF[P]
ι

P
η

=⇒
d

G[c∗Q]

F[P] =⇒
F[d]

FG[c∗Q] F

c∗Q =⇒
c

Q Lc∗

G[c∗Q] =⇒
G[c]

G[Q] G

FG[c∗Q] =⇒
FG[c]

FG[Q] F

F[P] =⇒
F[d];FG[c]

FG[Q]
;

FG[Q] =⇒
oB

Q
o

F[P] =⇒
F[d];FG[c];oB

Q
;

F[P] =⇒
F[d];oA ;c

Q
∼

F[P] =⇒
F[d];oA

c∗Q Rc∗

GF[P] =⇒
GF[d];G[oA]

G[c∗Q] G

P =⇒
ιX ;GF[d];G[oA]

G[c∗Q]
;

P =⇒
d

G[c∗Q]
∼

P =⇒
ιX

GF[P]
ι

P
η

=⇒
d

G[c∗Q]

c∗Q =⇒
c

Q Lc∗

G[c∗Q] =⇒
G[c]

G[Q] G

P =⇒
d;G[c]

G[Q]
;

F[P] =⇒
F[d];FG[c]

FG[Q] F FG[Q] =⇒
oB

Q
o

F[P] =⇒
F[d];FG[c];oB

Q
;

F[P] =⇒
F[d];oA ;c

Q
∼

F[P] =⇒
F[d];oA

c∗Q Rc∗

GF[P] =⇒
GF[d];G[oA]

G[c∗Q] G

P =⇒
ιX ;GF[d];G[oA]

G[c∗Q]
;

P =⇒
d

G[c∗Q]
∼

	Introduction
	Preliminaries
	Basic conventions and definitions
	Morphisms of refinement systems
	Right adjoints preserve pullbacks

	Representing refinement systems
	The refinement systems of presheaves and of pointed categories
	The positive representation of a refinement system
	Factorization via the free opfibration
	The negative representation
	Preservation of pullbacks
	Preservation of logical connectives up to change-of-basis

	Duality and negative translation
	Overview
	The category of judgments and the presheaf of derivations
	The duality theorem
	Negative encodings

	References
	 Proof of prop:rapp
	The equation
	The equation

