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Abstract

In this invited talk, I will review five basic concepts of Axiomatic
Rewriting Theory, an axiomatic and diagrammatic theory of rewriting
started 25 years ago in a LICS paper with Georges Gonthier and Jean-
Jacques Lévy, and developed along the subsequent years into a full-
fledged 2-dimensional theory of causality and residuation in rewriting.
I will give a contemporary view on the theory, informed by my later
work on categorical semantics and higher-dimensional algebra, and also
indicate a number of current research directions in the field.

A good way to understand Axiomatic Rewriting Theory is to think of
it as a 2-dimensional refinement of Abstract Rewriting Theory. Recall that
an abstract rewriting system is defined as a set V of vertices (= terms)
equipped with a binary relation → ⊆ V × V . This abstract formulation is
convenient to formulate various notions of termination and of confluence,
and to compare them, typically:

strong normalisation vs. weak normalisation
confluence vs. local confluence

Unfortunately, the theory is not sufficiently informative to capture more so-
phisticated structures and properties of rewriting systems related to causal-
ity and residuation, like

redexes and residuals
finite developments

standardisation
head rewriting paths

These structures and properties are ubiquitous in rewriting theory. They
appear in conflict-free rewriting systems like the λ-calculus as well as in
rewriting systems with critical pairs, like action calculi and bigraphs de-
signed by Milner [9] as universal calculus integrating the λ-calculus, Petri
nets and process calculi, or the λσ-calculus introduced by Abadi, Cardelli,
Curien and Lévy [1] to express in a single rewriting system the various eval-
uation strategies of an environment machine.
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It thus makes sense to refine Abstract Rewriting Theory into a more
sophisticated framework where the causal structures of computations could
be studied for themselves, in a generic way. Intuitively, the causal structure
of a rewriting path f : M � N is the cascade of elementary computations
implemented by that path. In order to extract these elementary computa-
tions from the rewriting path f , one needs to trace operations (= redexes)
inside it. This is achieved by permuting the order of execution of indepen-
dent redexes executed by f . An axiomatic rewriting system is thus defined
as a graph G = (V,E, ∂0, ∂1) consisting of a set V of vertices (= the terms),
a set E of edges (= the redexes) and a pair of source and target functions
∂0, ∂1 : E → V equipped moreover with a family of permutation tiles, satis-
fying a number of axiomatic properties.

1. Permutation tiles. The purpose of permutation tiles is to permute
the order of execution of redexes. In our axiomatic setting, a permutation
tile (f, g) is a pair of coinitial and cofinal rewriting paths of the form:

f = M P Nv u′
g = M Q Nu h

where u, v, u′ are redexes and h is a rewriting path. The intuition is that
h computes the residuals of the redex v along the redex u. Two typical
permutation tiles in the λ-calculus are the following one:
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where h = v1 · v2 on the left-hand side and h = id on the right-hand side.

2. Standardisation cells. The permutation tiles are oriented, and gener-
ate a 2-dimensional rewriting system on the 1-dimensional rewriting paths.
In order to distinguish this rewriting system from the original rewriting
system, we call it the standardisation rewriting system. A standardisation
path θ between 1-dimensional rewriting paths f, g : M � N is then written
as

θ : f ⇒ g : M � N
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The axioms of Axiomatic Rewriting Theory are designed to ensure that
this 2-dimensional rewriting system is weakly normalising and confluent. In
order to establish weak normalisation, one needs to clarify an important
point: when should one consider that two standardisation paths

θ, θ′ : f ⇒ g : M � N

are equal? The question looks a bit esoteric, but it is in fact fundamental! By
way of illustration, consider the following permutation tile in the λ-calculus:

MN PQ

PN

MQ

v u´

u v ´

(1)

where the two β-redexes u and v should be considered as syntactically dis-
joint because u is a β-redex of the subterm M and v is a β-redex of the
disjoint subterm N . If one does not want to give a left-to-right precedence
to the β-redex u over the β-redex v, one should equip the axiomatic rewriting
system with two permutation tiles

θ1 : v · u′ ⇒ u · v′ θ2 : u · v′ ⇒ v · u′.

The task of the permutation tile θ1 is to permute u before v, while the task
of the permutation tile θ2 is to permute v before u. It thus makes sense to
require that their composite are equal to the identity in the standardisation
rewriting system:

θ1; θ2 = id : v · u′ ⇒ v · u′ θ2; θ1 = id : u · v′ ⇒ u · v′

Of course, this enforces that θ1 and θ2 are inverse. One declares in that case
that the permutation tile (1) is reversible. A standardisation path θ : f ⇒ g
consisting only of such reversible permutation tiles is called reversible, and
one writes θ : f ' g in that case. A simple and elegant way to describe the
equational theory on standardisation paths is to equip every permutation
tile (f, g) with an ancestor function ϕ : [n]→ [2] where [k] = {1, . . . , k} and
n is the length of the path g = u · h. The purpose of the function ϕ is to
map the index of redex in g = u · h to the index of its ancestor f = v · u′, in
the following way:
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By way of illustration, the permutation tiles equipped with their ancestor
functions may be composed in the following way in the λ-calculus:
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This leads us to identify two standardisation paths θ, θ′ : f ⇒ g when
they produce the same ancestor function. A standardisation cell is then
defined as an equivalence class of standardisation paths θ, θ′ : f ⇒ g modulo
this equivalence relation. Note in particular that the equivalence relation
identifies the standardisation path θ1; θ2 with the identity, and similarly for
θ2; θ1.

In this way, one defines for every axiomatic rewriting system G a 2-
category Std(G) of whose objects are the vertices (= terms) of G, whose
morphisms are the paths (= rewriting paths) of G, and whose 2-cells are the
standardisation cells. One declares that two rewriting paths f, g : M � N
are equivalent modulo redex permutation (noted f ∼ g) when f and g are
in the same connected component of the hom-category Std(G)(M,N) of
rewriting paths from M to N . This means that one can construct a zig-zag
of standardisation paths between f and g. We also like to say that the
rewriting paths f and g are homotopy equivalent when f ∼ g.

3. Standard rewriting paths. A rewriting path f : M � N is called
standard when every standardisation cell θ : f ⇒ g : M � N is reversible.
The standardisation theorem states that

Standardisation Theorem. For every rewriting path f : M � N there exists
a standardisation cell θ : f ⇒ g to a standard rewriting path g : M � N .
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Moreover, this standard rewriting path is unique in the sense that for every
standardisation cell θ′ : f ⇒ g′ to a standard rewriting path g′ : M � N ,
there exists a reversible standardisation path θ′′ : g′ ' g such that θ = θ′; θ′′.

The theorem is established in any axiomatic rewriting system G using the
elementary axioms on the permutation tiles provided by the theory. As
a matter of fact, the property is even stronger: it states that there exists
a unique standardisation cell θ from f to the standard rewriting path g.
This means that every standard path g : M � N is a terminal object in
its connected component of rewriting paths f : M � N . See [3, 4, 8] for
details.

4. External rewriting paths. An external rewriting path e : M � N
is defined as a rewriting path such that for every standard rewriting path
f : N � P , the composite rewriting path e · f : M � P is standard. Note
in particular that every external rewriting path is standard. Accordingly, a
rewriting path m : M � N is called internal when for every standardisation
cell θ : m⇒ e ·f where the rewriting path e is external, the rewriting path e
is in fact the identity on M . One establishes the following property in every
axiomatic rewriting system, see [6] for details:

Factorisation Theorem: For every rewriting path f : M � N , there exists a
unique external rewriting path e : M � P and a unique internal rewriting
path m : P � N up to permutation equivalence such that f ∼ e ·m. This
factorization is moreover functorial.

5. Head-rewriting paths. The factorization theorem is supported by
the intuition that only the external part e : M � P of a rewriting path
f : M � N performs relevant computations, while the internal part m :
P � N produces essentially useless extra computations. The factorization
property plays a fundamental role in the theory. In particular, it enables us
to establish a stability theorem which shows the existence of head-rewriting
paths in every axiomatic rewriting system, even the rewriting system is non-
deterministic and has critical pairs. The stability theorem states that under
very general and natural assumptions on a set H of head-values, see [7], the
following property holds:

Stability Theorem: For every term M of the axiomatic rewriting system,
there exists a cone of external paths (called head-rewriting paths)

ei : M � Vi with Vi ∈ H
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indexed by i ∈ I, which satisfies the following universality property: for
every rewriting path f : M �W reaching a head-value W ∈ H, there exists
a unique index i ∈ I such that the rewriting path f factors as

f ∼ ei · h : M �W

for a given rewriting path h : Vi � W . The rewriting path h : Vi � W is
moreover unique modulo permutation equivalence. In the case of axiomatic
rewriting systems without critical pairs, the theorem establishes the exis-
tence of a head-rewriting path e : M � V for every term M which can
be rewritten to a head-value W ∈ H. The stability theorem is particularly
useful in rewriting systems with critical pairs. By way of illustration, it en-
ables one to describe the head-rewriting paths ei : M � Vi which transport
a λ-term M to its head-normal forms in the λσ-calculus, see [5] for details.
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