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Abstract
We introduce a topologically-aware version of tensorial logic, called
ribbon tensorial logic. To every proof of the logic, we associate a
ribbon tangle which tracks the flow of tensorial negations inside
the proof. The translation is functorial: it is performed by exhibit-
ing a correspondence between the notion of dialogue category in
proof theory and the notion of ribbon category in knot theory. Our
main result is that the translation is also faithful: two proofs are
equal modulo the equational theory of ribbon tensorial logic if and
only if the associated ribbon tangles are equal up to topological
deformation. This “proof-as-tangle” theorem may be understood
as a coherence theorem for balanced dialogue categories, and as a
mathematical foundation for topological game semantics.

CCSConcepts •Theory of computation→Linear logic;Cate-
gorical semantics;Control primitives; •Mathematics of com-
puting → Algebraic topology;
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1 Introduction
One fundamental insight of contemporary proof theory is that
logical proofs π and counter-proofs π ′ behave in the same way
as dynamic and interactive protocols exchanging information in
the course of time. Depending on the paradigm chosen, the atomic
tokens exchanged between a proof π and a counter-proof π ′ have
received different names in the literature: they are called “particles”
in the geometry of interaction, and “moves” in game semantics. The
difference of terminology between “particles” and “moves” is not
entirely innocuous: one basic intuition conveyed by the geometry of
interaction [2, 5] and partly forgotten by game semantics is the fact
that these elementary particles “circulate” inside the proof. Working
in linear logic but using the traditional notations of classical logic
for conjunction and disjunction, one can write as sequents

(a) A ∧A∗ ⊢ false (b) true ⊢ A ∨A∗

the two basic principles (a) that a formula A and its negation A∗

cannot be true at the same time and (b) that a formulaA or its nega-
tion A∗ is always true. Once transcribed in a categorical language,

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
LICS ’18, July 9–12, 2018, Oxford, United Kingdom
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5583-4/18/07. . . $15.00
https://doi.org/10.1145/3209108.3209129

the sequents define two combinators
cut : A ∧A∗ −→ false

axiom : true −→ A ∨A∗

which may be interpreted as specific morphisms in a ∗-autonomous
category. The basic idea of the geometry of interaction is that these
two combinators cut and axiom implement input-output channels
which may be drawn directly on the formulas as depicted below:

cut

axiom

inputoutput

input output

A < A*

A
<

A*

cut

axiom

The orientation of the arrows on these input-output channels in-
dicates the direction in which the particle will cross the channel.
Now, imagine that you wake up one morning in a world which has
become “post-factual”, and where the conjunction ∧ = ⊗ and the
disjunction ∨ = M have been identified to the same connective,
noted ⊗. In this logical nightmare, and unhappy state of confusion,
the two combinators cut and axiom have the following type

cut : A ⊗ A∗ −→ false
axiom : true −→ A ⊗ A∗

and they may be thus composed into a morphism

true axiom // A ⊗ A∗
cut // false

from true to false. The morphism should be seen as a fraudulent
proof of the disjunctive unit ⊥ = false and thus as a logical incon-
sistency produced by cut-eliminating the proof π = axiom with
the counter-proof π ′ = cut on the formula A ⊗ A∗. As it turns out,
when transcribed in the geometry of interaction, the composite
morphism induces a loop consisting of two input-output channels:

A A*

cut

axiom

(1)

A categorical account of proof structures The creation of such
loops is a direct threat to the nice modularity of proofs, and of their
underlying logical protocols. One key observation made by Girard
is that no such loop is ever produced in linear logic during the
cut-elimination of a proof π : A against a proof π ′ : A ⊸B. This
observation underlies the fundamental distinction between the two
notions of proof structure and of proof net in linear logic. Recall
from [4] that a proof structure of multiplicative linear logic is a
“proof-like” structure constructed using the connectives ⊗ and M
of linear logic as well as the axiom and cut links. A proof net is
then defined as a proof structure generated by a derivation tree π
of linear logic. A typical instance of proof structure which is not a
proof net (and thus does not represent any proof of linear logic) is
the following one:

A A*

axiom

(2)
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The starting point of the present paper is to recast in the language
of categorical semantics the relationship between proof nets and
proof structures in multiplicative linear logic. This categorical re-
formulation is very instructive and useful, in particular because it
leads us to a very natural definition of “proof net” and of “proof
structure” for commutative or ribbon tensorial logic.

Following Girard, we have just defined “proof nets” as specific
“proof structures” generated by derivation trees π of multiplicative
linear logic. However, it is customary today to replace the original
definition of proof net by the following one, of a more concep-
tual flavour: a multiplicative proof net is a morphism of the free
symmetric ∗-autonomous category

∗-autonomous(X )

generated by a given small category X . A typical choice for the
category X is a discrete category (which may be seen as a set for
that reason) whose objects define the atomic formulas of the logic.
In order to understand the relationship between proof nets and
proof structures, we suggest here to reformulate the notion of proof
structure in a similar way. To that purpose, we consider the free
compact closed category

compact-closed(X )

generated by a given small category X . Recall that a compact
closed category is a symmetric monoidal category, with unit noted I ,
where each object A comes equipped with an object A∗ and a pair
of morphisms

cut : A∗ ⊗ A −→ I
axiom : I −→ A ⊗ A∗

making the diagrams below commute:

A ⊗ A∗ ⊗ A

A A

A⊗cutaxiom⊗A

id

A∗ A∗

A∗ ⊗ A ⊗ A∗
A∗⊗axiom

id

cut⊗A∗

These two triangular diagrams are depicted in the language of
string diagrams (see [17] for a nice introduction to string diagrams)
as:

cut

axiom

=A

A*

A*

A*

A*

cut

axiom

A

A

*

A

=

A

A

These datamake the objectA∗ a right dual of the objectA, a situation
written as A ⊣ A∗. In a compact closed category C , the operation
A 7→ A∗ defines an equivalence of categories

(−)∗ : C op −→ C

between the original category C and its opposite category. As a
matter of fact, a compact-closed category is the same thing as a
∗-autonomous category where the tensor product ⊗ and its op-
posite M coincide up to symmetric monoidal equivalence. The
construction of the free compact-closed category generated by X
comes with a functor

X −→ compact-closed(X ).

By definition of the free ∗-autonomous category, and since the
category compact-closed(X ) is ∗-autonomous, this functor can be
lifted to a structure-preserving functor of ∗-autonomous categories

[−] : ∗-autonomous(X ) −→ compact-closed(X )

unique up to isomorphism, which makes the diagram below com-
mute:

∗-autonomous(X ) compact-closed(X )

X

[−]

atomsatoms

This leads us to the following categorical definition of proof struc-
ture:

Definition 1 (proof structure). Given two formulas A,B of multi-
plicative linear logic with objects of X as atoms, a proof structure
from A to B is defined as a morphism

Θ : [A] −→ [B]

in the free compact-closed category generated by the category X .
Note that the formulas A and B are seen here as objects of the cate-
gory ∗-autonomous(X ). By extension, a proof structure of a for-
mula A of multiplicative linear logic is defined as a proof structure
from the multiplicative unit 1 of linear logic to the formula A.

Consider for instance the case where the discrete category X
contains exactly one object noted α , and where the formula A
is defined as A = α . The functor [−] applied to a formula A of
multiplicative linear logic replaces each linear conjunction ⊗ and
linear disjunction M of the formula A by a tensor product. The two
formulasA⊗A∗ = α ⊗α∗ andAMA∗ = α Mα∗ are thus interpreted
as the same object

[α ⊗ α∗ ] = [α M α∗ ] = α ⊗ α∗

According to our definition, the morphism

axiom : I → α ⊗ α∗

of the category compact-closed(X ) depicted as
α *

axiom

α

defines a proof structure Θ of the formula α ⊗ α∗. Quite obviously,
this proof structure Θ should be identified with the proof structure
depicted in the more traditional notation (2) used by Girard [4].
Note that the morphism axiom also defines a proof structure Θ′
of the formula α M α∗. The key difference between the two proof
structures Θ and Θ′ is that the proof structure Θ′ is the image

Θ′ = [π ] : I −→ [α M α∗]

of a proof net π : 1 → α M α∗ living in the free ∗-autonomous
category. This is not the case for the proof structure Θ.

A well-known limitation One well-known limitation of the the-
ory of proof nets and of proof structures in multiplicative linear
logic is that the proof structure Θ = [π ] associated to a proof net π
does not characterize uniquely the proof net. Now that we have
reformulated the notions of proof net and of proof structure in
a categorical way, a simple and concise way to understand this
limitation is to observe that the identity and symmetry morphisms

id,symm : ⊥ ⊗ ⊥ −→ ⊥ ⊗ ⊥

do not coincide in general in a ∗-autonomous category. From this
follows that the two derivation trees π1 and π2 below
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π1 =
⊢ 1,⊥ axiom

⊢ 1,⊥
⊗-intro

⊢ 1, 1,⊥ ⊗ ⊥
M-intro

⊢ 1 M 1,⊥ ⊗ ⊥

π2 =

⊢ 1,⊥ axiom
⊢ 1,⊥

⊗-intro
⊢ 1, 1,⊥ ⊗ ⊥ exchange
⊢ 1, 1,⊥ ⊗ ⊥

M-intro
⊢ 1 M 1,⊥ ⊗ ⊥

which only differ by the exchange rule which permutes the formu-
las 1 and 1 in the derivation tree π2, define different morphisms of
the free ∗-autonomous category, and thus different proof nets π1
and π2 of multiplicative linear logic. However, their image [π1] and
[π2] in the free compact closed category coincide. The reason is
that the two objects 1 and ⊥ are transported by the functor [−] to
the tensor unit I , and that the identity and symmetry morphisms

id,symm : I ⊗ I −→ I ⊗ I

coincide in any symmetric monoidal category, because the tensor
unit I is a commutative monoid whose multiplication I ⊗ I → I
is moreover invertible. This means that some fundamental infor-
mation about the proof nets π1 and π2 has been lost when one
translates them into the same proof structure Θ = [π1] = [π2]. Let
us stress that this problem has nothing to do with our categorical
formulation of proof nets and of proof structures: it is a problem
inherent in linear logic, see [8–11, 19, 20] for discussion. As a matter
of fact, this problem has haunted the theory of multiplicative proof
nets since the notion was introduced by Girard. A slightly ad hoc
solution has been formulated in the literature: the idea is to extend
the original notion of proof structure with “jumps” connecting the
disjunctive units ⊥ to other parts of the proof structure. Unfortu-
nately, this solution requires to consider proof structures modulo
an equational theory on “rewirings” originally formulated by Trim-
ble. More recently, Heijtljes and Houston [8] have established that
the problem of proof net equivalence is PSPACE-complete, which
means that unless P=PSPACE, it is unlikely that there exists an easy
graph-theoretic solution to this problem.

The ongoing discussion on the imperfect correspondence be-
tween proof nets and proof structures may be summarized into the
following purely categorical fact:

Annoying fact. The canonical functor

[−] : ∗-autonomous(X ) → compact-closed(X )

which transports a proof net of multiplicative linear logic to its
underlying proof structure, is not faithful.

Ribbon categories The canonical functor [−] from proof nets
to proof structures transports every derivation tree π to a set of
links [π ] describing the flow of particles through the axiom and
cut links of the proof. Unfortunately, we have just seen that the
translation [−] is not faithful: two proofs π1 and π2 of the same
formula A with the same proof structure Θ may very well be dif-
ferent. We will explain in a few paragraphs how to correct this
uncomfortable situation by shifting from linear logic to tensorial
logic, a more primitive logical framework where tensorial negation
is not necessarily involutive. Before that, we would like to take
advantage of a number of recent ideas coming from knot theory
and representation theory in order to upgrade our current account

of proof structures. What we are aiming at eventually is to “materi-
alise” the set of links [π ] into a topological ribbon tangle reflecting
the interactive behavior of the proof π .

To that purpose, we start from the notion of ribbon category
which emerged at the interface of knot theory and of representation
theory for quantum groups, see [14, 18] for a detailed description.
A ribbon category is defined as a monoidal category equipped with
combinators for braiding and U-turns, satisfying a series of expected
equations, see (Def. 7, §2.3) for a definition. The notion of ribbon
category is supported by an elegant coherence theorem, which
states that the free ribbon category on a category X has
• as objects: sequences (Aϵ11 , . . . ,A

ϵn
n ) of signed objects of X

where each Ai is an object of the category X , and each ϵi
is either + or −,
• as morphisms: oriented ribbon tangles considered modulo
topological deformation, where every open strand is colored
by a morphism of X , and every closed strand is colored
by an equivalence class of morphisms of X , modulo the
equality д ◦ f ∼ f ◦ д for every pair of morphisms of the
form f : A→ B and д : B → A.

So, a typical morphism from (A+) to (B+,C−,D+) in the category
ribbon(X ) looks like this

g

f

D+C−B+

A+

where f : A −→ B and д : C −→ D are morphisms in the cate-
gory X . Now, consider the full and faithful functor

X −→ ribbon(X )

which transports every object A of X to the corresponding signed
sequence (A+). By construction, every functor from the categoryX
to a ribbon category D lifts as a structure-preserving functor ⟨−⟩
which makes the diagram below commute:

ribbon(X ) D

X

⟨−⟩

interpretation of l inkslinks

Once properly oriented and colored, every topological ribbon knot P
defines a morphism P : I −→ I from the tensorial unit I = () to
itself in the category ribbon(X ). Hence, its image ⟨P⟩ defines an
invariant of the ribbon knot P modulo topological deformation. This
functorial method enables for instance to establish that the Jones
polynomial ⟨P⟩ associated to a ribbon knot P defines a topological
invariant, see [14] for details. This kind of topological invariant is
quite useful. By way of illustration, the non trivial fact that the left
trefoil KL and the right trefoil KR depicted below

KL = KR =



LICS ’18, July 9–12, 2018, Oxford, United Kingdom Paul-André Melliès

are not the same knot modulo deformation, is easily proved by
computing their Jones polynomials, and by observing that they are
different:

⟨KL⟩ =
2
x2
+

1
x4
+
y2

x2
⟨KR ⟩ = 2x2 − x4 + x2y2

An important point is that these topological diagrams can be drawn
in ribbon categories precisely because the conjunctive tensor prod-
uct ⊗ and the disjunctive tensor product M coincide there. Seen
from that operational point of view, the topological ribbon tangles
like KL and KR are nothing but a sophisticated instance of logical
inconsistency, producing a deadlock or a livelock loop (1) in the
protocol.

Balanced dialogue categories In order to connect proof theory
and knot theory, we find convenient to start from a braided notion
of dialogue category. The notion of dialogue category has been
already used by the author [15] in order to reflect the dialogical in-
terpretations of proofs as interactive strategies. A dialogue category
is defined as a monoidal category equipped with a primitive notion
of duality.

Definition 2 (Dialogue categories). A dialogue category is a mo-
noidal category C equipped with an object ⊥ together with two func-
tors

x 7→ (x ⊸⊥) : C op −→ C
x 7→ (⊥� x ) : C op −→ C

and two families of isomorphisms

φx,y : C (x ⊗ y,⊥) � C (y,x ⊸⊥)
ψx,y : C (x ⊗ y,⊥) � C (x ,⊥� y)

natural in x and y.

A balanced dialogue category is then defined (Def. 8) as a dia-
logue category whose underlying monoidal category C is balanced
in the sense of Joyal and Street [12, 13]. This means that the cate-
gory C is equipped with a braiding and a twist, and that it satisfies
a series of coherence diagrams reflecting topological equalities of
ribbon tangles. Interestingly, no additional coherence property is
required between the dialogue structure and the balanced structure.

The proof-theoretic nature of balanced dialogue categories is
witnessed by the fact that they come together with an internal logic:
a braided and twisted variant of tensorial logic which we call ribbon
tensorial logic. The logic is formulated in §3 in the traditional style
of proof theory, that is, as a sequent calculus whose derivation trees
are identified modulo a notion of proof equality. Just as for linear
logic and ∗-autonomous categories, one establishes that the free
balanced dialogue category generated by a category X has

• objects: the formulas of ribbon tensorial logic (constructed
with the binary tensor product ⊗ and its unit I = 1 together
with the left negation A 7→ A ⊸⊥ and the right negation
A 7→ ⊥ � A) with atoms provided by the objects of the
category X ,
• morphisms fromA to B: the derivation trees π of the sequent
A ⊢ B in ribbon tensorial logic, modulo the equational theory
of the logic.

The proof-as-tangle theorem Once the proof-theoretic nature
of balanced dialogue categories is firmly established, all is left to
do is to relate them to topology. This is achieved by a simple but
fundamental observation. A pointed category (C ,⊥) is defined as a
category C equipped with an object ⊥ singled out in the category.
A pointed category may be alternatively defined as an S-algebra
for the monad S : Cat → Cat which transports every category X
to the category X + 1 defined as the disjoint sum of X with
the terminal category 1. The unique object of 1 is noted ⊥ and
provides the singled-out object of the pointed category (X + 1,⊥).
Every category X induces a free ribbon category ribbon(X + 1)
generated by the category X + 1. The category ribbon(X + 1)
is monoidal and balanced by construction. The key observation is
that it is also a dialogue category where the left and right negation
functors are defined as

x ⊸⊥
def
= x∗ ⊗ ⊥ ⊥� x

def
= ⊥ ⊗ x∗.

Note that the resulting balanced dialogue category is somewhat
degenerate, since the canonical morphism

(⊥� (x ⊸⊥)) ⊗ y −→ ⊥� ((x ⊗ y) ⊸⊥)

which defines the strength of the double negation monad, is an
isomorphism. Now, the unit of the monad S instantiated at the
category X

inc : X −→ X + 1
induces a functor

X −→ X + 1 −→ ribbon(X + 1)

from X to the balanced dialogue category ribbon(X + 1). From
this, it follows that there exists a structure-preserving functor of
balanced dialogue categories

[−] : balanced-dialogue(X ) −→ ribbon(X + 1)

which makes the diagram below commute:

balanced-dialogue(X ) ribbon(X + 1)

X X + 1

[−]

inc

The functor [−] transports:
• the formulas of ribbon tensorial logic into signed sequences
of ⊥ ’ s and of logical atoms provided by the objects of the
underlying category X ,
• the proofs of ribbon tensorial logic modulo proof equality
into ribbon tangles modulo topological deformation.

Definition 3 (Proof nets). A tensorial proof net π of ribbon ten-
sorial logic is defined as a morphism of the free balanced dialogue
category.

Definition 4 (Proof structures). A tensorial proof structure of rib-
bon tensorial logic from a formula A to a formula B is a morphism
Θ : [A]→ [B] of the free ribbon category.

We establish in §4 the following “proof-as-tangle” theorem:

Theorem. The functor [−] which transports tensorial proof nets
to tensorial proof structures, is faithful.

This theorem is important because it enables one to identify ev-
ery derivation tree π of ribbon tensorial logic modulo commuting
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conversions, with the underlying ribbon tangle [π ] modulo topo-
logical deformation. The ribbon tangle [π ] : [A]→ [B] should be
understood as a topological “materialisation” of the dialogical inter-
pretation of the proof π : A→ B as an innocent strategy between
the dialogue gamesA and B: each strand of the tangle [π ] describes
a specific pair of Opponent and Player moves played by the inno-
cent strategy associated to the tensorial proof π . In this way, the
proof-as-tangle theorem provides a topological and type-theoretic
foundation to game semantics. In particular, it should be mentioned
that the theorem still holds when one removes the topology of
ribbon tangles, and replaces ribbon tensorial logic by commutative
tensorial logic, balanced dialogue categories by symmetric dialogue
categories, and ribbon categories by compact-closed categories.

Theorem. The canonical functor

[−] : symmetric-dialogue(X ) −→ compact-closed(X + 1)

which transports tensorial proof nets to tensorial proof structures in
commutative tensorial logic, is faithful. Here, we use the notation
symmetric-dialogue(X ) to denote the free symmetric dialogue
category generated by X .

This means that in ribbon tensorial logic as well as in commutative
tensorial logic, a derivation tree π is entirely characterized by its
proof structure [π ]. The proof-as-tangle theorem resolves in this
way the old and annoying problem of the theory of proof nets of
linear logic discussed earlier in the introduction. It also connects
proof theory and knot theory by providing a topological coherence
theorem for balanced (or symmetric) dialogue categories.

Plan of the paper We start by introducing in §2 the notion of
balanced dialogue category. We formulate in §3 the corresponding
ribbon tensorial logic, whose proofs are designed to be interpreted
in balanced dialogue categories. The proof-as-tangle theorem for
ribbon tensorial logic is stated and established in §4. We finally illus-
trate in §5 how to use the proof-as-tangle theorem as a coherence
theorem.

Related works We would like to mention the early work by Ar-
naud Fleury [3] who considered a sequent calculus for a braided ver-
sion of linear logic which is very similar to our sequent calculus for
ribbon tensorial logic. Besides the connection already mentioned to
the theory of multiplicative proof nets in linear logic [8–11, 19, 20],
our interpretation of ribbon tensorial proofs as ribbon tangles in-
duces an interpretation of these proofs as sums of planar diagrams
in Temperley-Lieb algebras, whose relationship to [1] deserves to
be clarified.

2 Balanced dialogue categories
We introduce the notion of balanced dialogue category. To that
purpose, we start by recalling the definition of braided monoidal
category in § 2.1, of balanced monoidal category in § 2.2 and of
ribbon category in § 2.3.We finally formulate our notion of balanced
dialogue category in § 2.4.

2.1 Braided monoidal categories
In order to fix notations, we recall that a monoidal category C is a
category equipped with a functor ⊗ : C × C → C and an object I
and three natural isomorphisms

αA,B,C : (A ⊗ B) ⊗ C −→ A ⊗ (B ⊗ C )
λA : I ⊗ A −→ A
ρA : A ⊗ I −→ A

making the two coherence diagrams below commute.

(A ⊗ B ) ⊗ (C ⊗ D )

((A ⊗ B ) ⊗ C ) ⊗ D A ⊗ (B ⊗ (C ⊗ D ))

(A ⊗ (B ⊗ C )) ⊗ D A ⊗ ((B ⊗ C ) ⊗ D )

αα

α⊗D
α

A⊗α

(A ⊗ I ) ⊗ B A ⊗ (I ⊗ B )

A ⊗ B

α

ρ⊗B A⊗λ

Definition 5 (braiding). A braiding in a monoidal category C is a
family of isomorphisms

σA,B : A ⊗ B −→ B ⊗ A

natural in x and y such that the two diagrams

A ⊗ (B ⊗ C ) (B ⊗ C ) ⊗ A

(A ⊗ B ) ⊗ C (a) B ⊗ (C ⊗ A)

(B ⊗ A) ⊗ C B ⊗ (A ⊗ C )

σ
αα

σ ⊗C α B⊗σ

(A ⊗ B ) ⊗ C C ⊗ (A ⊗ B )

A ⊗ (B ⊗ C ) (b ) (C ⊗ A) ⊗ B

A ⊗ (C ⊗ B ) (A ⊗ C ) ⊗ B

σ
α−1α−1

A⊗σ
α−1

σ ⊗B

commute. The braiding map σA,B is depicted in string diagrams as a
positive braiding of the ribbon strands A and B where its inverse is
depicted as the negative braiding:

σA,B =

A B

AB

σ−1A,B =

A B

AB

The two coherence diagrams (a) and (b) are then depicted as topolog-
ical equalities between string diagrams:

A B C

AB C

(a)
=

A B C

AB C

A B C

A BC

(b )
=

A B C

A BC

2.2 Balanced categories
Definition 6 (balanced category). A balanced category C is a
braided monoidal category equipped with a family of morphisms

θA : A −→ A

natural in A, satisfying the equality

θI = idI
where I is the monoidal unit, and making the diagram

A ⊗ B B ⊗ A

A ⊗ B B ⊗ A

σA,B

θA⊗B θB ⊗θA

σB,A

(3)
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commute for all objects A and B of the category C .

The twist θA is depicted as the ribbonA twisted positively in the
trigonometric direction with an angle 2π whereas its inverse θ−1A
is depicted as the same ribbon A twisted negatively this time, with
an angle −2π :

θA =

A

A

θ−1A =

A

A

This notation enables us to give a topological motivation to the
axioms of a balanced category. The first requirement that θI is
the identity means that the ribbon strand I should be intuitively
thought as “ultra thin”. The second requirement that the coherence
diagram (3) commutes reflects the following topological equality
between string diagrams:

θA⊗B =

A B

A B

2.3 Ribbon categories
This leads us to the definition of ribbon category, a well-established
concept [14, 18] in the representation theory of quantum groups,
and in low-dimensional topology:

Definition 7 (ribbon category). A ribbon category C is a balanced
category where every object A has a right dual A∗, a situation written
as A ⊣ A∗. See the introduction for a definition of right dual.

2.4 Balanced dialogue categories
At this stage, we are ready to introduce the notion of balanced
dialogue category which provides a functorial bridge between proof
theory and the topology of knots.

Definition 8 (balanced dialogue categories). A balanced dialogue
category is a dialogue category C in the sense of Def. 2, moreover
equipped with a braiding and a twist defining a balanced category.

An interesting aspect of the definition is that it does not require
any coherence relation between the dialogue structure and balanced
structure of the category C .

Illustration.An instructive example of balanced dialogue categoryD
coming from algebra, and more specifically from the representa-
tion theory of quantum groups, is the following one: the category
Mod(H ) of (finite and infinite dimensional) H -modules associated
to a ribbon Hopf algebraH . Note that the full subcategoryC of rigid
objects A in a balanced dialogue category D (that is, objects with a
right dual) is a ribbon category. Typically, the categoryModf (H ) of
finite dimensionalH -modules associated to a ribbonHopf algebraH
defines a ribbon category, see [14] for details.

3 Ribbon tensorial logic
We introduce below the sequent calculus of ribbon tensorial logic,
and mention a number of commuting conversions involved in the
cut-elimination procedure.

3.1 The ribbon groups
Recall that the braid group Bn on n strands is presented by the
generators σi for 1 ≤ i ≤ n − 1 and the equations

σi ◦ σi+1 ◦ σi = σi+1 ◦ σi ◦ σi+1
σi ◦ σj = σj ◦ σi when |j − i | ≥ 2. (4)

There is an obvious left action

▷ : Bn × [n] −→ [n] (5)

of the group Bn on the set [n] = {1, · · · ,n} of strands, induced by
the group homorphism Bn → Sn to the symmetry group Sn on
n elements. This action enables one to define a wreath product
of Bn on the additive group (Z,+,0). The resulting group Gn is
called the ribbon group on n strands. The group is presented by the
generators σi for 1 ≤ i ≤ n − 1 and θi for 1 ≤ i ≤ n, together with
the equations (4) of the braid group Bn and the equations below:

σi ◦ θi = θi+1 ◦ σi
σi ◦ θi+1 = θi ◦ σi
σi ◦ θ j = θ j ◦ σi when j < i or when j ≥ i + 2.

Each group Gn may be alternatively seen as a groupoid noted
S Gn , with a unique object ∗ and S Gn (∗,∗) = Gn . A nice and
conceptual definition of the ribbon groupsGn is possible, as follows.
The groupoid G defined as the disjoint sum of the groupoids S Gn
coincides with the free balanced category generated by the terminal
category 1. Recall that the category 1 has a unique object ∗ and
a unique map. Hence, the group Gn may be alternatively defined
as G (n,n) where n = 1 ⊗ · · · ⊗ 1 is the n-fold tensor product of
the generator 1 of the category G . The fact that the free balanced
category G generated by the category 1 coincides with the disjoint
sum of the groupoids S Gn is just the ribbon-theoretic counterpart
to the well-known fact that the free braided monoidal category B
generated by the category 1 coincides with the disjoint sum of the
groupoids S Bn . From this observation follows that there exists a
family of group homomorphisms

⊗ : Gp × Gq −→ Gp+q

which reflects the monoidal structure of the balanced category G .
Moreover, the action (5) extends to a left action

▷ : Gn × [n] −→ [n]

where each generator θi acts trivially on [n] = {1, . . . ,n}, in the
sense that θi ▷ k = k for all k ∈ [n].

3.2 The sequent calculus
The formulas of ribbon tensorial logic are finite trees generated by
the grammar

A,B ::= A ⊗ B | 1 | A ⊸⊥ | ⊥� A | ⊥ | α

where α is an object of a fixed small category X of atoms. The
sequents are two-sided

A1, . . . ,Am ⊢ B

with a sequence of formulas A1, ...,Am on the left-hand side, and
a unique formula B on the right-hand side. The proofs of ribbon
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Axiom f : α→ β in the category X

α ` β

Cut Γ ` A Υ1, A,Υ2 ` B
Υ1,Γ,Υ2 ` B

Right ⊗-introduction Γ ` A ∆ ` B
Γ,∆ ` A⊗B

Left ⊗-introduction Υ1, A,B,Υ2 ` C
Υ1, A⊗B,Υ2 ` C

Right 1-introduction ` 1

Left 1-introduction Υ1,Υ2 ` A
Υ1, 1,Υ2 ` A

Right (⊥�)-introduction Γ, A ` ⊥
Γ ` ⊥� A

Left (⊥�)-introduction Γ ` A
⊥� A,Γ ` ⊥

Right ((⊥)-introduction A,Γ ` ⊥
Γ ` A(⊥

Left ((⊥)-introduction Γ ` A
Γ, A(⊥ ` ⊥

Figure 1. Sequent calculus of tensorial logic.

tensorial logic are defined as derivation trees in a carefully designed
sequent calculus, which we formulate now. The sequent calculus is
defined as the sequent calculus of tensorial logic in its most basic
(and non-commutative) form [16], recalled in Figure 1, together
with a family of exchange rules

A1, . . . ,An ⊢ B[д]
Aд▷1, . . . ,Aд▷n ⊢ B

parametrized by the elements д of the ribbon group Gn .

3.3 The commutative conversions
Ribbon tensorial logic is inspired by the topology of knots, and one
thus needs to take extra care in order to design the equational theory
on its derivation trees. Nonetheless, the basic recipe to identify two
derivation trees π1 and π2 is the same in ribbon tensorial logic as
in any other sequent calculus: the equality is defined by a series
of local commuting conversions π1 ↭ π2 on derivation trees.
Moreover, these commuting conversions rules are essentially the
same for ribbon tensorial logic as for traditional (commutative)
tensorial logic. The only difference is that every exchange rule of
ribbon tensorial logic is labelled by an element д ∈ Gn of the ribbon
group. For that reason, one needs to treat with an extreme attention
every commuting conversion π1 ↭ π2 involving an exchange
rule. For each such commuting conversion, the challenge is to label
properly the exchange rules appearing on each side π1 and π2 of
the conversion in commutative tensorial logic, in order for the
conversion π1↭ π2 to make sense in ribbon tensorial logic. The
archetypal illustration of commuting conversion in ribbon tensorial
logic is provided by the conversion which transforms the derivation
tree

π1
.
.
.

A1, . . . ,An ⊢ A

π2
.
.
.

ϒ1, B,A, ϒ2 ⊢ C [p ⊗ σ ⊗ q ]
ϒ1,A, B, ϒ2 ⊢ C

Cut
ϒ1,A1, . . . ,An , B, ϒ2 ⊢ C

into the derivation tree
π1
.
.
.

A1, . . . ,An ⊢ A

π2
.
.
.

ϒ1, B,A, ϒ2 ⊢ C
Cut

ϒ1, B,A1, . . . ,An , ϒ2 ⊢ C [p ⊗ σn,1 ⊗ q ]
ϒ1,A1, . . . ,An , B, ϒ2 ⊢ C

where p and q are the respective lengths of ϒ1 and of ϒ2 and where
σm,n is defined as the positive braid permutingm strands above
n strands. Another important illustration is the conversion which
transforms the derivation tree

π1
.
.
.

A1, . . . ,An ⊢ A

π2
.
.
.

ϒ1,A, ϒ2 ⊢ C [p ⊗ θ ⊗ q ]
ϒ1,A, ϒ2 ⊢ C

Cut
ϒ1,A1, . . . ,An , ϒ2 ⊢ C

into the derivation tree
π1
.
.
.

A1, . . . ,An ⊢ A

π2
.
.
.

ϒ1,A, ϒ2 ⊢ C
Cut

ϒ1,A1, . . . ,An , ϒ2 ⊢ C [p ⊗ θ ⟨n⟩ ⊗ q ]
ϒ1,A1, . . . ,An , ϒ2 ⊢ C

where θ⟨n⟩ is the positive twist on n strands. These two commuta-
tive conversions should be understood as naturality conditions on
the braiding σ and on the twist θ . Yet another important commuting
conversion identifies for every pair д,h ∈ Gn the derivation tree

π
.
.
.

A1, . . . ,An ⊢ B[h ]
Ah▷1, . . . ,Ah▷n ⊢ B[д ]

Aд▷(h▷1), . . . ,Aд▷(h▷n ) ⊢ B

with the derivation tree
π
.
.
.

A1, . . . ,An ⊢ B[д ◦ h ]
Aд◦h▷1, . . . ,Aд◦h▷n ⊢ B

This commuting conversion comes with a similar conversion for the
unit element e ∈ Gn . Together, the two commuting conversions en-
sure that the action of the ribbon groupGn on a sequentA1, . . . ,An ⊢
B with n hypothesis is algebraic in the traditional sense, modulo
conversion.

One main technical observation of the paper is that the tradi-
tional coherence diagrams which define a braiding (in §2.1) and
a twist (in §2.2) can be “internalized” as commuting conversions
of ribbon tensorial logic. Typically, the coherence diagram (a) for
braiding (Def. 5, §2.1) is reflected in ribbon tensorial logic by the
commuting conversion which identifies the derivation tree

π
.
.
.

ϒ1,A, B,C, ϒ2 ⊢ D
Left ⊗

ϒ1,A ⊗ B,C, ϒ2 ⊢ D[p ⊗ σ ⊗ q ]
ϒ1,C,A ⊗ B, ϒ2 ⊢ D

with the derivation tree
π
.
.
.

ϒ1,A, B,C, ϒ2 ⊢ D[p ⊗ 1 ⊗ σ ⊗ q ]
ϒ1,A,C, B, ϒ2 ⊢ D[p ⊗ σ ⊗ 1 ⊗ q ]
ϒ1,C,A, B, ϒ2 ⊢ D

Left ⊗
ϒ1,C,A ⊗ B, ϒ2 ⊢ D

Similarly, the coherence diagram (3) for the twist in the definition
of a balanced category (Def. 6,§2.2) is reflected by the commuting
conversion which identifies the derivation tree
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π
.
.
.

ϒ1,A, B, ϒ2 ⊢ C
Left ⊗

ϒ1,A ⊗ B, ϒ2 ⊢ C[p ⊗ θ ⊗ q ]
ϒ1,A ⊗ B, ϒ2 ⊢ C

with the derivation tree
π
.
.
.

ϒ1,A, B, ϒ2 ⊢ C[p ⊗ σ ⊗ q ]
ϒ1, B,A, ϒ2 ⊢ C[p ⊗ θ ⊗ θ ⊗ q ]
ϒ1, B,A, ϒ2 ⊢ C[p ⊗ σ ⊗ q ]
ϒ1,A, B, ϒ2 ⊢ C

Left ⊗
ϒ1,A ⊗ B, ϒ2 ⊢ C

The fact that the coherence diagrams required of a balanced cate-
gory can be “lifted” in this way to ribbon tensorial logic is somewhat
surprising, because it means that the topological notions of braid-
ing σ and of twist θ are compatible with the logical and multicate-
gorical (rather than categorical) nature of sequents A1, · · · ,An ⊢ B
of tensorial logic.

3.4 The cut elimination theorem
The equational theory of ribbon tensorial logic is thus obtained
from the equational theory of traditional (commutative) tensorial
logic by selecting very carefully the labelд ∈ Gn associated for each
conversion rule π1↭ π2 and for each exchange rule appearing in
the derivation trees π1 and of π2. Once these choices of labelling
have been done properly, it is not difficult to establish the following
cut-elimination theorem, in just the same way as for commutative
tensorial logic:

Theorem 1 (Cut-elimination). Every derivation tree of ribbon tenso-
rial logic is equivalent to a cut-free derivation tree modulo commuting
conversions.

3.5 A focusing theorem
The commuting conversions of ribbon tensorial logic are not only
useful to prove the cut-elimination theorem. They also enable us
to establish a focusing theorem for the derivation trees of the logic.
The theorem is important because it ensures that every cut-free
derivation tree π can be transformed by a series of commuting
conversions to a normal form πnf where the construction of the
derivation is performed in phases. A cycle of construction starts
with a number of derivation trees

π1
.
.
.

Γ1 ⊢ A1
· · ·

πi
.
.
.

Γi ⊢ Ai
· · ·

πn
.
.
.

Γn ⊢ An
where all the formulas of the context Γi are either atomic: that is,
equal to an object α of the category X , or negated: that is, of the
form A ⊸ ⊥ or ⊥� A. One then applies the phases below one
after the other in order to get a derivation tree π of the same form,
whose sequent Γ ⊢ A has all the formulas of its context Γ either
atomic or negated.

1. A left introduction rule of the left negation or of the right
negation which produces a sequent whose conclusion for-
mula is ⊥,

2. A series of exchange rules which permute the formulas of
the context,

3. A series of left ⊗-introduction and of left 1-introduction
rules, which produces a sequent where at most one formula
in the context is not negated or atomic,

4. A right introduction of the left negation or of the right nega-
tion, or an axiom rule, which produces a sequent where all
the formulas (context and conclusion) are either negated or
atomic,

5. A series of right ⊗-introduction rules, and of right 1-introduction
rules,

6. A series of exchange rules which permute the atomic or
negated formulas of the context,

As just claimed, one obtains at the end of each cycle a sequent Γ ⊢ A
where all the formulas of the context Γ are either negated or atomic.
A derivation tree π is called focused when it has been produced by
a number of such construction cycles.

Theorem 2 (Focusing). Every derivation tree π is equivalent to a
focused derivation tree πnf modulo the commuting conversions of
ribbon tensorial logic.

The theorem is based on the ability of permuting the order of
introduction rules using commuting conversions. The proof is essen-
tially standard, except for the special care required by the exchange
rules.

3.6 Soundness theorem
Suppose given a functor X −→ D from the category of atoms of
our ribbon tensorial logic, to a given balanced dialogue category D .
Then, one establishes that

Theorem 3 (Soundness). Every derivation tree π of a sequent

A1 ⊗ · · · ⊗ An ⊢ B

in ribbon tensorial logic may be interpreted as a morphism

[π ] : A1 ⊗ · · · ⊗ An −→ B

of the balanced dialogue category D . Moreover, the interpretation [π ]
provides an invariant of the derivation tree π modulo commuting
conversions.

The interpretation [π ] of the derivation tree π is defined by
structural induction on the height of the derivation tree. The only
interesting point of the construction is that the exchange rule

A1, . . . ,An ⊢ B[д]
Aд▷1, . . . ,Aд▷n ⊢ B

is interpreted by precomposing the interpretation

[π ] : A1 ⊗ . . . ⊗ An −→ B

of the proof π with the morphism

Aд▷1 ⊗ . . . ⊗ Aд▷n −→ A1 ⊗ . . . ⊗ An

associated to the element д ∈ Gn of the ribbon group acting on the
object A1 ⊗ . . . ⊗ An in the balanced dialogue category D .

4 The proof-as-tangle theorem
A more conceptual and sophisticated way to formulate the sound-
ness theorem (Thm. 3, §3.6) is to state that the free balanced dialogue
category

dialogue(X )

generated by the category X of atoms, coincides with a category
of tensorial formulas and of derivation trees modulo the equational
theory of ribbon tensorial logic. We have seen in the introduction
how to deduce from this property a functor

[−] : dialogue(X ) −→ ribbon(X + 1)
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which transports every tensorial proof net π into a topological
tangle [π ]. We establish now the main result of the paper.

Theorem 4 (Proof-as-tangle). The functor [−] is faithful.

Proof. The proof is to a large extent based on the focusing theo-
rem (Thm. 2). Suppose that two cut-free derivation trees

π1
.
.
.

A ⊢ B

π2
.
.
.

A ⊢ B

(6)

of ribbon logic induce the same tangle [π1] = [π2] modulo topolog-
ical deformation in the free ribbon category ribbon(X + 1).We
show that π1↭ π2 and conclude. We proceed by induction on the
number of strands in the tangle. By the focusing theorem, we know
that the proofs π1 and π2 are equal modulo logical equality to:

π ′1
.
.
.

A1, . . . ,An ⊢ B

π ′2
.
.
.

A1, . . . ,An ⊢ B

where each Ai is either a negation or an atom, followed by the
same sequence of left introduction of tensor and left introduction
of unit. Suppose that B = ⊥. In that case, the formula ⊥ was either
introduced by:
• the left introduction of a left negation X ⊸⊥,
• or the left introduction of a right negation ⊥� X .

By symmetry, we may suppose without loss of generality that this
last rule introduces a left negation X ⊸⊥ in the context. In that
case, the proof π ′1 is equal to

π ′′1
.
.
.

X1, . . . , Xn−1 ⊢ X
Left⊸

X1, . . . , Xn−1, X ⊸⊥ ⊢ ⊥[д ]
A1, . . . ,An ⊢ ⊥

The equality of [π1] and [π2] modulo deformation implies that ⊥
is connected in [π ′2] to the same formula X ⊸⊥. From that follows
that X ⊸⊥ is also introduced in π2 by the left introduction of a
left negation. In other words, the proof π ′2 factors as

π ′′2
.
.
.

Y1, . . . , Yn−1 ⊢ Y
Left⊸

Y1, . . . , Yn−1, X ⊸⊥ ⊢ ⊥[h ]
A1, . . . ,An ⊢ ⊥

From this, we conclude that the derivation tree
π ′′1
.
.
.

X1, . . . , Xn−1 ⊢ X
Left⊸

X1, . . . , Xn−1, X ⊸⊥ ⊢ ⊥

induces the same topological tangle as the derivation tree
π ′′2
.
.
.

Y1, . . . , Yn−1 ⊢ Y
Left⊸

Y1, . . . , Yn−1, X ⊸⊥ ⊢ ⊥[h ]
A1, . . . ,An ⊢ ⊥

[д−1 ]
X1, . . . , Xn−1, X ⊸⊥ ⊢ ⊥

Since all the formulas Ai are either negated formulas or atoms, we
deduce from the topology of tangles that

д−1 ◦ h ∈ Gn

is of the form f ⊗ 1. From this follows that the proof

π ′′1
.
.
.

X1, . . . , Xn−1 ⊢ X

has the same topological tangle as the proof
π ′′2
.
.
.

Y1, . . . , Yn−1 ⊢ X[f ]
X1, . . . , Xn−1 ⊢ X

From this, we deduce by induction hypothesis that they are equal
proofs, in the sense that their proof nets coincide. The proof π ′1 is
thus equal to the proof

π ′′2
.
.
.

Y1, . . . , Yn−1 ⊢ X[f ]
X1, . . . , Xn−1 ⊢ X

Left⊸
X1, . . . , Xn−1, X ⊸⊥ ⊢ ⊥[д ]

A1, . . . ,An ⊢ ⊥

which may be rewritten into
π ′′2
.
.
.

Y1, . . . , Yn−1 ⊢ X
Left⊸

Y1, . . . , Yn−1, X ⊸⊥ ⊢ ⊥[f ⊗ 1]
X1, . . . , Xn−1, X ⊸⊥ ⊢ ⊥[д ]

A1, . . . ,An ⊢ ⊥

which may be then rewritten into the proof π2:
π ′′2
.
.
.

Y1, . . . , Yn−1 ⊢ X
Left⊸

Y1, . . . , Yn−1, X ⊸⊥ ⊢ ⊥[h ]
A1, . . . ,An ⊢ ⊥

This concludes the proof by induction when the conclusion B
of the two sequents π1 and π2 is equal to the formula B = ⊥.
□

We have seen the most difficult part of the topological argument
establishing the “proof-as-tangle” theorem. The remaining part
of the argument works in essentially the same way. For instance,
suppose that the conclusion of the sequent

A1, · · · ,An ⊢ B

produced by the two derivations trees π1 and π2 in (6) is the tensor
formula B = B1 ⊗ B2, and that all the hypothesis A1, . . . ,An are
either negated or atomic. In that case, one may suppose without
loss of generality that the last rule of π1 introduces a tensor on the
right. The derivation tree π1 thus factors as

π11
.
.
.

A1, . . . ,Ak ⊢ B1

π12
.
.
.

Ak+1, . . . ,An ⊢ B2Right ⊗
A1, . . . ,Ak ,Ak+1, . . . ,An ⊢ B1 ⊗ B2

The fact that the tangles [π1] and[π2] are equal modulo deforma-
tion implies that π2 splits in the same way as two proofs π21 and
π22 ; moreover, the tangles [π11] and [π21] are equal modulo de-
formation, and similarly for [π12] and [π22]. This enables one to
conclude by induction that π11 and π21 are equal modulo commut-
ing conversions, and similarly for π12 and π22. This concludes our
argument that π1 and π2 are equal modulo commuting conversions.
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5 Illustration
The proof-as-tangle theorem (Thm. 4, §4) is not just meaningful
for proof-theory: it also provides a useful coherence theorem for
balanced dialogue categories, such as the categoryMod(H ) of finite
and infinite dimensional H -modules associated to a ribbon Hopf
algebra H , mentioned in §2.4. By way of illustration, imagine that
one wants to establish that the diagram

⊥� (⊥� A) ⊥� (A ⊸⊥)

(⊥� A) ⊸⊥ A ⊥� (A ⊸⊥)

⊥�turnA

turn⊥�A

η′A ηA

θ⊥�(A⊸⊥) (7)

commutes in every balanced dialogue category D , where

ηA : A → ⊥� (A ⊸⊥) η′A : A → (⊥� A) ⊸⊥
turnA : ⊥� A → A ⊸⊥

denote the units η,η′ of the two double negation monads, and the
canonical isomorphism turnA between the left and right negation
of A. Commutativity of (7) in any balanced dialogue category is
equivalent to the fact that the following derivation trees π1 and π2
of ribbon tensorial logic are equal modulo commuting conversions:

Axiom
A ⊢ A

Left⊸
A , A ⊸⊥ ⊢ ⊥

[torsion]
A , A ⊸⊥ ⊢ ⊥

Right�
A ⊢ ⊥� (A ⊸⊥)

Axiom
A ⊢ A

Left�
⊥� A , A ⊢ ⊥

Right⊸
A ⊢ (⊥� A) ⊸⊥

Axiom
A ⊢ A

Left⊸
A , A ⊸⊥ ⊢ ⊥

[σ ◦ θ1 ]A ⊸⊥ , A ⊢ ⊥
Right�

A ⊸⊥ ⊢ ⊥� A
Left⊸

A ⊸⊥ , (⊥� A) ⊸⊥ ⊢ ⊥
[σ ◦ θ1 ]

(⊥� A) ⊸⊥ , A ⊸⊥ ⊢ ⊥
Right�

(⊥� A) ⊸⊥ ⊢ ⊥� (A ⊸⊥)
Cut

A ⊢ ⊥� (A ⊸⊥)

where the element torsion = θ⟨2⟩ of G2 twists the two hypothesis
of the proof, or (equivalently) twists the conclusion⊥with an angle
2π , see §3.3 for a definition ofθ⟨n⟩. One convenient way to construct
the ribbon tangles [π1] and [π2] associated to the derivation trees π1
and π2 is to proceed by structural induction, and to interpret every
derivation tree π of a sequent A1, . . . ,An ⊢ B as a form [π ] on the
object [A1]⊗ . . .⊗[An]⊗[B]∗ in the category ribbon(X +1). Recall
that a form on an object A in a ribbon category C , is defined as a
morphism fromA to the tensorial unit I . If we use the notation ℏ = ⊥
for the tensorial pole object of ribbon(X + 1) and h = ⊥∗ for its
right dual, we can then describe [π1] and [π2] as a sequence of local
transformations performed on forms. When we apply this recipe
to [π1], we obtain the following sequence of local transformations

Axiom
A , A∗

Left⊸
A , A∗ ⊗ ℏ , h

[torsion]
A , A∗ ⊗ ℏ , hRight�

A , A∗ ⊗ ℏ ⊗ h

defining the topological tangle depicted below:

torsion

This intermediate representation enables us to compute the asso-
ciated ribbon tangle [π1] by a step-by-step procedure, as done in
the right-hand side figure above, see Chap. 7 of [16] for details. In

the ribbon tangle [π1], the dark black strand tracks the circulation
of ℏ = ⊥ inside the proof while the light blue strands tracks the cir-
culation of the formula A. The ribbon tangle [π2] associated to the
derivation tree π2 is computed by the same procedure and depicted
on top of the derivation tree π2, in the following way:

1

1

It is not difficult to see by “pulling the strings” that the two ribbon
tangles [π1] and [π2] are equal modulo topological deformation.
This implies (by Thm. 4) that the two derivation trees π1 and π2 are
equal modulo commuting conversions. This establishes the non-
trivial fact that the diagram (7) is commutative in every balanced
dialogue category. The example illustrates in what sense the proofs
of ribbon tensorial logic are of a topological nature. The transla-
tion into ribbon tangles may be also seen as a topologically-aware
refinement of game semantics where the interactive strategies in-
terpreting tensorial proofs are refined into ribbon tangles.
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