
Fixed points of functors

François Métayer∗

Abstract

We summarize general categorical results underlying the existence of
inductively defined datatypes in denotational semantics.

1 From datatypes to initial algebras

1.1 Categories of diagrams

Familiar datatypes first appear as sets of expressions inductively defined by
grammars, as for example :

• Integers, by N = 0 | sN;

• Lists of elements of type A, by L = nil | cAL;

• Planar (binary, unlabeled) rooted trees, by T = * | wTT.

In any categorical interpretation, types become objects and various constructors
become arrows. Suppose in addition that our category has finite products and
coproducts—hence also a terminal object 1 and an initial object 0— then the
term constructors in the above examples lead to diagrams:

1
0 // N

s // N

1
nil // L A× L

coo

1
∗ // T T × T

woo

But we still need to express that in each case we define the smallest set containing
some given terms and closed by the constructors: in categorical terms, this
means that the above diagrams are initial among diagrams of the same shape.
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Let us look in detail at the case of integers: given a category C, we may
build a new category CD having as objects diagrams in C of the shape:

1
u // X

v // X (1)

and as morphisms between to such diagrams arrows g of C making the following
diagram commutative:

1
u //

id

��

X
v //

g

��

X

g

��
1

u′
// X ′

v′
// X ′

Now an object of integers is simply a diagram

1
0 // N

s // N

which is initial in CD, in other words, for each diagram of the shape (1), there
is a unique arrow f : N → X such that the following diagram commutes

1
0 //

id

��

N
s //

f

��

N

f

��
1 u

// X v
// X

1.2 Initial algebras

The previous example may be seen from a slightly different point of view: an
object of CD amounts to a pair of arrows u : 1 → X, v : X → X or equivalently
to a single arrow [u, v] : 1 + X → X. Let F be the functor X 7→ 1 + X, we
may define yet another category CF having as objects all arrows of the form
x : FX → X and as morphisms from x to x′ : FX ′ → X ′ arrows g : x → x′

such that the following diagram commutes:

FX
Fg //

x

��

FX ′

x′

��
X g

// X ′

We easily remark that CF and CD are equivalent categories, thus an initial
object in CD amounts to an initial object in CF .

Definition 1 An initial algebra of F is an initial object in CF .

In the case of lists of elements of type A, the functor would be

X 7→ 1 + A×X
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and in the case of trees
X 7→ 1 + X ×X

The general case leads to polynomial functors:

F : X 7→ A0 + A1 ×X + · · ·+ An ×Xn

Before investigating existence conditions for initial algebras, we recall a simple
but important fact:

Lemma 1 If a : FA → A is an initial algebra for F , then a is an isomorphism.

Proof. Because a is initial, there is a unique b : A → FA such that the following
diagram commutes:

FA

a

��

Fb // FFA

Fa

��
A

b
// FA

If we define v = a ◦ b, then Fv = F (a ◦ b) = Fa ◦ Fb = b ◦ a, and the above
diagram may be completed as follows:

FA

a

��

Fb //

Fv

##G
GG

GG
GG

GG
FFA

Fa

��
A

b
//

v
##G

GGGGGGGG FA

a

��
A

which is still commutative. Now v : A → A satisfies v ◦ a = a ◦ Fv hence it is
the identity on A, because a is initial. Thus a, b are mutual inverses and a is
an isomorphism. 2

Because of lemma 1, we may consider A as a fixed point of F .

2 Basic lemmas

2.1 Diagrams, cones and (co)limits

Let us first give a very brief review of limits and colimits in categories, together
with a few notational conventions we shall adopt.

Let I be a category, a diagram of type I in C will be simply a functor

∆ : I → C
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Often, the so-called index-category I will not be given as a category, but rather
as a graph, in which case it is the free category generated by this graph that we
have in mind. For example, a diagram of type

• • (2)

is nothing but a pair 〈X, Y 〉 of objects of C. Diagrams of fixed type I are objects
of a category CI whose morphisms are the natural transformations between
functors. Now each object X of C gives rise to a constant diagram I → C, which
sends all objects of I to X and all arrows to idX . Whenever there is no ambiguity
on I, we still denote this diagram by X. Moreover any morphism f : X →
X ′ in C induces an obvious natural transformation between the corresponding
constant diagrams. Notice that, conversely, a natural transformation from X
to X ′ seen as constant diagrams necessarily comes from an arrow f : X → X ′

of C.

Definition 2 Let ∆ be a diagram of type I, a projective cone to the base ∆
is a natural transformation X → ∆, where X is an object of C. Likewise, an
inductive cone on the base ∆ is a natural transformation ∆ → X.

Let us emphasize the point that cones are special cases of morphisms in CI .
Now projective (resp. inductive) cones to (resp. from) a given base ∆ are also
objects of a new category Cone∆ (resp. Cone∆). In the projective case a
morphism from ξ : X → ∆ to ξ′ : X ′ → ∆ is an arrow f : X → X ′ such that
the following diagram commutes:

X
f //

ξ   B
BB

BB
BB

B X ′

ξ′

��
∆

As for inductive cones, just reverse the arrows.

Definition 3 A limiting cone to the base ∆ is a terminal object in Cone∆.
Likewise, a colimiting cone from the base ∆ is an initial object in Cone∆.

If γ : L → ∆ is a limiting cone, we refer to L as “the” limit of the diagram ∆:
it is in fact unique, up to isomorphism. Likewise, we will speak of the colimit
of a diagram. Let us insist on the fact that sentences like

“ Let L be the limit of a diagram ∆”

always suppose, implicitely, that a certain cone is given from L to ∆.
Let us take for example a diagram ∆ of type (2), that is a pair 〈A,B〉 of

objects of C. A projective cone to the base ∆ amounts to an object X of C
together with a pair 〈f, g〉 of arrows f : X → A, g : X → B. A cone (P, p, q)
is now limiting if, for each (X, f, g), there is a unique u : X → P such that the
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following diagram commutes:

X
f

~~~~
~~

~~
~

u

��

g

  @
@@

@@
@@

@

A Pp
oo

q
// B

Of course this is the definition of a cartesian product A × B in C. Likewise,
a colimiting cone from the same diagrams amounts to a coproduct (or sum),
A + B in C.

2.2 Countable chains

Another important example is given by taking the ordered set of integers 〈ω,≤〉
as the index category. Precisely, the objects of ω are the integers {0, 1, . . .} and
there is exactly one morphism from m to n whenever m ≤ n, and no morphism
at all otherwise. Equivalently, ω is the free category on the following graph:

• // • // • // · · ·

Hence a diagram of type ω in C amounts to a sequence of objects and arrows
in C of the shape:

X0
x0 // X1

x1 // · · ·
We call such a diagram a countable chain in C.

Definition 4 An ω-category is a category where all countable chains have col-
imits.

Let us finally define a useful class of functors:

Definition 5 A functor A → B is ω-continuous if it transforms any colimiting
cone of a countable chain in A into a colimiting cone in B.

Here should be noticed that such functors are not required to preserve arbi-
trary finite colimits, not even sums.

2.3 Variable indices

If we allow variable index categories, we get yet another category having as
objects diagrams ∆ : I → C, and as arrows from ∆ : I → C to ∆′ : I ′ → C all
functors f : I → I ′ such that the following diagram commutes:

I
f //

∆ ��?
??

??
??

? I ′

∆′

��
C

(3)

This situation will be denoted by f∗ : ∆ → ∆′. We may refer to such an arrow
as a change of base.
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2.4 Remark on diagrams

In many situations, three different kinds of arrows occur simultaneously: arrows
in C—viewed as natural transformations between constant functors—, cones
and arrows between diagrams as defined in section 2.3.

It will be convenient to see these arrows as particular cases of arrows in a
bigger, single category Ĉ, depending on C and on a fixed class of index cate-
gories.

• objects are all diagrams ∆ : I → C (with variable I);

• morphisms from ∆ : I → C to ∆′ : I ′ → C are pairs 〈f, τ〉 where f is a
functor I → I ′ and τ is a natural transformation from ∆ to ∆′ ◦ f ;

• arrows 〈f, τ〉 : ∆ → ∆′ and 〈f ′, τ ′〉 : ∆′ → ∆′′ compose according to

〈f ′, τ ′〉 ◦ 〈f, τ〉 = 〈f ′ ◦ f, (τ ′f) ◦ τ〉

The case of natural transformations on a fixed I is obtained by taking f = id.
Changes of base are obtained by taking τ = id.

2.5 Main construction

If F is an endofunctor of C, and 0 is initial in C, there is a unique arrow
i : 0 → F0, and we may define a countable chain (see section 2.2) by

0
i // F0

Fi // FF0
FFi // · · · (4)

The main idea is to build an initial algebra for F by taking the colimit of (4),
if it exists.

Theorem 1 Let C be an ω-category with an initial object, and F an ω-continuous
endofunctor of C. Then F has an initial algebra.

Proof. Because C has an initial object 0, (4) defines a diagram ∆ : ω → C. It
has a colimiting cone δ : ∆ → A by hypothesis on C. Now F is ω-continuous,
hence Fδ : F∆ → FA is also colimiting.

But F∆ is also ∆◦m where m is the endofunctor on ω induced by n 7→ n+1.
Hence we get a change of base

m∗ : F∆ → ∆

But κ = δm is then a natural transformation from ∆ ◦ m to A ◦ m; because A
is constant, A ◦m = A, hence an inductive cone:

κ : F∆ → A

Now Fδ is colimiting, and there is a unique arrow a : FA → A such that

a ◦ Fδ = κ (5)
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It remains to check that a is an initial algebra for F . Let X be an object of
C and x : FX → X an arrow. There is a unique arrow j : 0 → X, whence a
commutative diagram:

0
i //

j

��

F0

Fj

��
X FXx
oo

By successively applying the functor F we get a sequence of commutative dia-
grams

F k0
F ki //

F kj

��

F k+10

F k+1j

��
F kX F k+1X

F kx

oo

If we put all the previous diagrams side by side, like this:

0
i //

j

��

F0
Fi //

Fj

��

FF0
FFi //

FFj

��

· · ·

X FXx
oo FFX

Fx
oo · · ·

FFx
oo

(6)

we get, for each k ≥ 1, an arrow ξk = x ◦ · · · ◦ F k−1x ◦ F kj from F k0 to X,
plus ξk = j for k = 0. The commutativity of (6) ensures that the ξk’s define
an inductive cone ξ : ∆ → X. δ being colimiting, there is a unique f : A → X
such that

f ◦ δ = ξ (7)

The whole construction may be summarized in the following diagram which we
draw in Ĉ

F∆

〈m,id〉

��

〈id,Fδ〉
EE

E

""E
EE

〈id,Fξ〉

**UUUUUUUUUUUUUUUUUUUUU

FA 〈id,Ff〉 //

〈m,a〉

��

FX

〈m,x〉

��

∆
〈id,ξ〉UUUUUUUU

**UUUUUUUUUUUUUU
〈id,δ〉
EE

E

""EE
EE

A 〈id,f〉 // X

(8)

First of all, the lower and upper horizontal triangles in (8) commute: because
the first components are identities, this boils down to (7) and its immediate
consequence

Ff ◦ Fδ = Fξ
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Also, by (5), the left vertical square (F∆, FA, A,∆) commutes, and, by defini-
tion of ξ, the back vertical square (F∆, FX,X, ∆) commutes. This implies

〈id, f〉 ◦ 〈m,a〉 ◦ 〈id, F δ〉 = 〈m,x〉 ◦ 〈id, Ff〉 ◦ 〈id, F δ〉 (9)

By computing the second component on each side of (9) we get

(fm ◦ a) ◦ Fδ = (x ◦ Ff) ◦ Fδ

But Fδ is colimiting, hence

fm ◦ a = x ◦ Ff

Because A and X are constant functors, A ◦ m = A, X ◦ m = X and fm = f .
Back to the category C, we get a commutative diagram

FA
Ff //

a

��

FX

x

��
A

f
// X

(10)

Finally, there is only one f making (10) commutative: given such an f , we
may consider again the diagram (8). This time, the three vertical squares are
supposed to be commutative. As a consequence

〈id, f〉 ◦ 〈id, δ〉 ◦ 〈m, id〉 = 〈id, ξ〉 ◦ 〈m, id〉

so by keeping only the second components on each side:

(f ◦ δ)m = ξm (11)

But (11) means that f ◦ δ and ξ take the same value on all indices n > 0, and
because 0 is initial, they also coincide on 0, hence

f ◦ δ = ξ (12)

and there is only one f such that (12) holds. 2

3 Polynomial functors

3.1 Functor categories

We first remark that if C is an ω-category, and has an initial object, then the
same holds for Cn, n > 1 (that is the category with ojects n-tuples of objects
in C and morphisms n-tuples of morphisms of C).

This is an easy consequence of the fact that for all categories I, C, D, if C
has all (co)limits of type I, then the functor category CD also has all (co)limits
of type I. Moreover these (co)limits may be computed “point by point”. Now
Cn is equivalent to the functor category CD where D is the discrete category
with n objects.
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3.2 Constants, projections and coproducts

Let us prove a few easy lemmas.

Lemma 2 The composition of two ω-continuous functors is ω-continuous.

Immediate consequence of the definitions.

Lemma 3 Let C be any category. Constant endofunctors of C are ω-continuous.

This is immediate. Observe however that constant functors do not preserve
general limits and colimits.

Lemma 4 Let C be any category. Projections πi : 〈X1, . . . , Xn〉 7→ Xi from
Cn to C are ω-continuous.

Proof. Without any special hypotheses on C, it can be proved directly from the
definitions that projections preserve all limits and colimits, essentially because
a diagram in Cn is nothing but n independent diagrams in C. Another proof
holds in the case where C has a terminal object 1: then the i-th projection

πi : 〈X1, . . . , Xn〉 7→ Xi

has a right adjoint, wich is the insertion of Y as the i-th component in an
n-tuple:

ρi : Y 7→ 〈1, . . . , Y, . . . , 1〉

Hence πi preserves all colimits, in particular ω-colimits. 2

Lemma 5 If F : C → A and G : C → B are ω-continuous functors, then
〈F,G〉 : C → A×B is ω-continuous.

Proof. The result holds in fact for any type of limits or colimits. Tedious
but essentially obvious verification. A more conceptual argument is to look at
A×B as a subcategory of functors from 2 (two objects 0 and 1, trivial arrows)
to A + B: an object 〈a, b〉 becomes a functor 0 7→ a, 1 7→ b. Now the (co)limits
are computed point by point, which gives the result. 2

Lemma 6 A binary coproduct + : C2 → C is ω-continuous.

Proof. Under the hypotheses of the lemma, the functor + has a right adjoint,
which is X 7→ 〈X, X〉, therefore it preserves all colimits. 2
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3.3 Products

We now look for conditions ensuring that

〈X, Y 〉 7→ X × Y

is an ω-continuous functor from C2 to C. The first remark is that it suffices to
check ω-continuity on each variable separately. Precisely,

Lemma 7 Suppose that X 7→ X × B and Y 7→ A × Y are ω-continuous for
each choice of objects A, B in C, then the product functor × : C2 → C is
ω-continuous.

Proof. We only sketch the proof, and leave details to the reader. Suppose
the hypotheses of the lemma are satisfied, and consider an ω-diagram 〈Xi, Yi〉
in C2, with colimit 〈L,M〉. The projections give arrows xij : Xi → Xj and
ykl : Yk → Yl whenever i ≤ j and k ≤ l. Hence a commutative diagram of type
ω × ω in C2:

〈X0, Y0〉 //

��

〈X0, Y1〉 //

��

· · ·

〈X1, Y0〉 //

��

〈X1, Y1〉 //

��

· · ·

...
...

By applying the functor × to the above diagrams, we get a commutative diagram
∆ of type ω2 in C. Now for each k, the k-th column is an ω-diagram with colimit
L × Yk, by ω-continuity of X 7→ X × Yk. From the L × Yk’s, we get another
ω-diagram:

L× Y0
// L× Y1

// · · ·

with colimit L × M , by ω-continuity of Y 7→ L × Y . Finally, we easily verify
that L×M is also colimit of the diagonal of ∆, which is the image of our initial
diagram under ×. Hence the result. 2

The following proposition is an immediate consequence of lemma 7.

Lemma 8 If C is cartesian closed, the functor × : C2 → C is ω-continuous.

Proof. If C is cartesian closed, the partial product functors X 7→ X × B and
Y 7→ A × Y have a right adjoint, hence commute to all colimits, in particular
those of type ω. By lemma 7, the product is ω-continuous. 2

Let us point out, however, that the (total) product does not have a right
adjoint in general: for example, in Sets, it does not commute to the coproduct,
while partial products do.
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3.4 Theorem

Let us summarize our discussion by the following statement.

Theorem 2 Suppose C is an ω-category with binary products and coproducts,
an initial element, and cartesian closed. Then polynomial endofunctors of C
have initial algebras.

Proof. In the hypotheses of the theorem, all constructions used to build poly-
nomial functors preserve ω-colimits, as shown by lemmas 2 to 8. 2

4 Comments and further reading

Theorem 2 is merely a starting point in the study of least fixpoints of functors:
many interesting categories do not satisfy all its hypotheses. Fortunately, there
are many ways to relax the existence conditions, by a simple inspection of the
proofs we have given. There are essentially two distinct issues:

• As far as the existence of a fixpoint for a given polynomial functor F is
concerned, remark that we never used the fact that “+” and “×” are the
actual coproduct and product in C, only that they are bifunctors ⊕ and
⊗, with certain commutation properties with colimits. Familiar example
are categories Cpo of complete, pointed, partial ordered sets with a least
element and continuous maps, and Cpo⊥, where we require in addition
that maps preserve the least element: the first one is cartesian closed,
but has no coproduct, and the second one has a coproduct, but is not
cartesian closed anymore. Nevertheless, Cpo has a bifunctor ⊕ making
the interpretation of polynomial functors possible. As for Cpo⊥, even
though it is not cartesian closed, the product is still ω-continuous;

• much more delicate is the issue related to the semantical interpretation of
grammar-like definitions in a categorical setting. The previous point im-
mediately leads to the following question: what does it mean to interpret
the solution of L = nil | cAL for example, as a fixpoint of X 7→ 1⊕(A⊗X)
if ⊕ and ⊗ are not the categorical sum and product anymore?

The classic source for general category theory is still [3]. A main source for
the particular issues discussed here is [4]. Much of recent work on the subject
concentrates on the relationship between initial algebras and the dual notion of
terminal coalgebras, see for example [1] and [2].
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