
Stone Duality
An application in the theory of formal languages

A Master thesis by
Mirte Dekkers

Under supervision of
Prof. dr. Mai Gehrke

Stone duality
An application in the theory of formal languages

Mirte Dekkers
December 2008

Supervisor: Prof. Dr. Mai Gehrke
Second reader: Dr. Wieb Bosma

Faculty of Science
Radboud University Nijmegen
Student number: 0229032

To my parents

Preface

This thesis is the final work of my study of Mathematics at the Radboud
University Nijmegen. After 6 years and three months of hard work I am just
a few days away from finishing. The people around me know that I have
often doubted the fact whether or not I would ever become a real mathe-
matician. And still, while writing this preface, I can hardly believe that I
did it! There has been a lot of struggle and doubt along the way and I would
like to use these first pages of my thesis to express my gratitude towards
those who have helped me to find my path during the last couple of years.

To start at the beginning, I would like to thank Meron and Daan who made
me come to Nijmegen in the first place. Your craziness and warm welcome
during my first visit and the first years of studying are something I will not
easily forget. You taught me all the things I needed to know to become a
real mathematician: LATEX, fingerslapping, exploring the basements, surviv-
ing ‘gorefests’, gunning, and many more crazy things. Meron, you became
a true friend during these last years. Thanks for your loyal friendship and
support.

Secondly I want to thank all the staff members of the department of Math-
ematics. I have always appreciated the open atmosphere in the department
and the informal contact between students and staff. A special thanks of
course goes to Mai, my thesis supervisor. Thank you so much for your help
and support, both mathematically and personally. As you know, until very
recently, I did not fully believe that I could do this, and I could certainly not
have done it without your help. It was great to work with you and I could
not have wished for a better supervisor than you! I also want to thank Wieb
for being my second advisor and a special thanks to Klaas who’s enthusiasm
and encouragement during the last years have been of great support and
have contributed to my self-confidence.

i

And then to my fellow students and friends. Dion, it was an honour to be
in the organizing team of the Mathematics Tournament with you. Thanks
for always being interested in me, encouraging me to keep on studying and
for going through my thesis carefully. I am happy that we will continue to
stay colleagues for some more years. Lorijn, thanks for your support. I just
got to know you quite recently, but I am really happy I did. I like your
down-to-earth opinion, your relaxed way of living and your sense of humor.
I think that, at least as far as mathematics concerns, we have a lot in com-
mon. So please believe in yourself for, as this thesis shows, you can do more
than you think! Tanneke, thanks for being such a warm and loving person.
Your positive attitude towards life is amazing and inspiring. I have seen you
grow during the last years and from a ‘little sister’ you became a true and
loving friend. A big hug for you. And last, but certainly not least, Renée.
What can I say? I don’t know how many hours we spend together last years.
Singing, laughing, talking, eating, studying (not too often lately), drinking
(too often lately), watching TV-series, playing games, making plans, phi-
losophizing about where our lives are going. . . or just doing nothing at all.
Your friendship is invaluable to me and the past years would not have been
the same without you. Thanks for everything!

Finally, I would like to thank my sister Merel and my parents, Daan and
Maria, to whom this thesis is dedicated. This thesis could not have been
written if it weren’t for you. No words can express my gratitude for your
unconditional love and support.

Mirte Dekkers

Nijmegen, December 2008.

ii

Contents

Preface i

Introduction 1

I Languages 5

1 Formal languages 6
1.1 Introduction . 6
1.2 The algebra of languages . 7
1.3 Languages and computation 9

2 Regular languages and finite automata 11
2.1 The regular languages . 11
2.2 Finite automata . 13
2.3 Regular languages and finite semigroups 16

II Boolean Algebras 19

3 Boolean algebras 20
3.1 Boolean algebras . 20
3.2 The principle of duality . 22
3.3 Subalgebras and homomorphisms 23

4 Boolean algebras as ordered sets 25
4.1 Ordered sets . 25
4.2 Boolean algebras as ordered sets 27
4.3 Supremum and infimum . 29

iii

5 Representation of Boolean algebras 33
5.1 Representations of Boolean algebras: the finite case 33
5.2 Prime filters . 36
5.3 Representation of Boolean algebras: the infinite case 38

III Duality 45

6 A topological representation for Boolean algebras 46
6.1 The dual space of a Boolean algebra 46
6.2 Stone spaces . 49

7 Stone duality 52
7.1 Category theory: an introduction 52
7.2 Duality between Boolean algebras and Stone spaces 54
7.3 Subalgebras and quotient spaces 58
7.4 Extended Stone duality . 65

IV Languages, Boolean Algebras and Duality 71

8 Quotienting subalgebras 72
8.1 Quotienting subalgebras and computation 72
8.2 Residuated Boolean algebras 76
8.3 Quotienting subalgebras and R-congruences 79

9 The dual space of the regular languages 84
9.1 The residuated Boolean algebra of regular languages 84
9.2 The dual space of the regular languages 85
9.3 Dual space versus syntactic semigroup 87
9.4 An example outside the regular languages 91

10 Syntactic Stone congruences and frames 94
10.1 Syntactic congruences and semigroups for non-regular languages 94
10.2 Syntactic Stone congruences and frames 95
10.3 An example: the class of commutative languages 97
10.4 Further research . 101

iv

Introduction

The central question in this thesis is what the duality between Boolean alge-
bras and certain topological spaces, known as Stone duality, has to do with
the theory of formal languages. In addition, we want to see whether the
connection with Stone Duality can be used to generalize the tools available
for the so-called regular languages to a wider setting. We will see that cer-
tain classes of languages can be characterized by sets of equations and that
determining whether or not a given language belongs to such a class, can
be done by verifying that its so-called syntactic Stone frame satisfies these
equations. The syntactic Stone frame is a generalization of the notion of
syntactic semigroup in the case of the regular languages. This result is the
core of this thesis and will be presented in part IV. We illustrate the gen-
eral theory with an example of a class of languages called the commutative
languages.

However, before we get to the main result there is a long way to go. We
will introduce concepts and results from the theory of formal languages, the
theory of Boolean algebras and the theory of Stone duality.

Part I is about formal languages. In Chapter 1 we introduce the main termi-
nology and present the mathematical framework, that is, the algebraic struc-
ture for working with (classes of) formal languages. Furthermore, we give a
motivation why one studies classes of languages by showing the relationship
between formal languages and the theory of computability. In Chapter 2 we
introduce the class of regular languages and the concept of a finite automa-
ton. Also we point out the relationship between regular languages and finite
semigroups. The class of regular languages will play a special role in the
theory developed in this thesis. The results obtained through duality will
turn out to be a generalization of the theory of finite semigroups available
for regular languages. Also, the class of regular languages provides a nice il-
lustration of the relationship between languages and models of computation.

1

Part II is about Boolean algebras. It is an easy observation that the class
of all languages over a certain alphabet is a Boolean algebra. Moreover,
subclasses of languages correspond to subalgebras. After we have intro-
duced the concept of a Boolean algebra in Chapter 3, we study the special
properties of the ordered set underlying a Boolean algebra in Chapter 4.
This point of view will be advantageous when we study representations of
Boolean algebras in terms of fields of sets in Chapter 5. The representation
theorem for Boolean algebras is presented at the end of part II.

Part III shows how the results in part II can be extended to obtain a full
duality between the category of Boolean algebras with Boolean homomor-
phisms and the category of Stone spaces which continuous maps. In Chapter
6 we work out the details for the objects, that is, Boolean algebras and Stone
spaces. In Chapter 7 we extend this to a full duality between categories that
also captures maps. In addition, we show how to translate algebraic concepts
and additional structure to their topological counterparts. In particular we
will see that subalgebras correspond to equivalence relations on the dual
space and that an additional binary operation on the algebra gives rise to
a ternary relation on the dual space. It is this extended duality that lies at
the heart of the results presented in part IV.

In part IV we apply the duality theory developed in the previous chapters
to the Boolean algebra of formal languages. In Chapter 8 we introduce the
concept of quotienting subalgebra of a Boolean algebra and we motivate why
classes of languages representing a certain level of complexity are often of
this kind. The main content of Chapter 8 is the proof of a general duality
result for quotienting subalgebras. More specifically, we show that quotient-
ing subalgebras correspond to so-called R-congruences on the dual space (R
being the relation dual to the additional operations). In Chapter 9 we apply
the general theory to the class of regular languages. In particular, we relate
the duality approach to the finite semigroup theory for regular languages
by proving that the dual space of the quotienting subalgebra generated by
a regular language L is (isomorphic to) the syntactic semigroup of L. For
non-regular languages this no longer holds and this motivates us to gen-
eralize the notions of syntactic congruence and syntactic semigroup to the
syntactic Stone congruence and syntactic Stone frame. These concepts are
introduced in Chapter 10 and we will illustrate the theory with the example
of the class of commutative languages.

2

Because of the many different areas of study the theory developed in this
thesis involves, the introduction to each of these subjects is minimal and
by no means complete. The interested reader should consult the specialized
literature for a more extensive introduction. The books consulted for this
thesis are [14] and [20] on the theory of formal languages, [7] and [12] on
Boolean algebras and [3], [6] and [7] on Stone duality.

What is new with this thesis?

Most of the theory in Part I to III is available in the books mentioned above.
However, the duality for subalgebras and Stone equivalences worked out in
Section 7.3 is not generally available and can only be found in more special-
ized research papers. Also, the extended duality for Boolean algebras with
additional operations presented in Section 7.4 is only in advanced research
papers and mainly in terms of canonical extensions. We tried to present
these two results using Stone duality in its traditional form, without having
to go through the theory of canonical extensions.

The main results that are new with this thesis are in Part IV. Central is
the theorem that says that quotienting subalgebras are dually related to R-
congruences of the dual space. While this duality result is typical of duality
results, it is also quite novel among duality results because the quotienting
subalgebras we consider are closed under taking quotients with denomina-
tors from outside the subalgebras. This situation has not been considered
in duality theory before, and the shape of the result is surprisingly nice. It
is a specialization of the relationship between subalgebras and Stone equiv-
alences developed in Section 7.3.

The fact that Stone duality plays a pertinent role in the theory of regular
languages was first observed by Pippenger in [16]. A general framework,
however, was not worked out until very recently. This was done by Gehrke,
Grigorieff and Pin and they presented their results in a prizewinning paper
[9] and a more comprehensive paper [10] that has not been published yet.
They did not only observe that classes of languages could be characterized
by equations on the dual space, but their theory also involves additional op-
erations on the Boolean algebra and the relation dual to them. In this thesis
we use the methods and ideas of these two papers in order to generalize the
theory available for regular languages.

3

Historical background

Soon after the introduction of regular languages and finite automata it was
discovered that these concepts are closely related to the theory of finite
semigroups and an algebraic counterpart of the definition of recognizability
by a finite automata in terms of finite semigroups was established. In par-
ticular, every language was associated to its so-called syntactic semigroup
[17]. This opened the door to study classes of languages through their syn-
tactic semigroups. The first important result using this connection was
Schützenberger’s classification of the star-free languages, a subclass of regu-
lar languages that can be obtained by a restricted use of the star-operation
[19]. Schützenberger’s theorem says that a regular language is star-free if
and only if its syntactic semigroup is aperiodic. A more general result that
subsumes this result was obtained by Eilenberg [8]. Eilenberg’s theorem
characterized those classes of languages that are given by pseudo-varieties
of finite semigroups. A pseudo-variety is an analogue for finite algebras of
the notion of variety introduced by Birkhoff [4]. It is a class of finite al-
gebras of a given type closed under homomorphic images, subalgebras and
finite products. Reiterman gave an equivalent of Birkhoff’s Theorem for
finite algebras saying that pseudo-varieties correspond to equational classes
[18]. Reiterman’s theorem already introduced a topology but the connection
with duality theory was not clear. Combining the results of Eilenberg and
Reiterman yields an equational theory for classes of regular languages.

The application of duality theory in the theory of formal languages places
these former results in a more general setting. It turns out that duality
theory provides a natural framework to describe the results established by
Eilenberg and Reiterman. In particular, a lot of results established through
the years now appear to be special instances of a very general theory. The
equational characterization of classes of regular languages is just a special
case of duality theory. Furthermore, this new framework enables us to ex-
tend the results to classes of languages outside the regular languages. In
particular this leads to a generalization of the concepts of syntactic congru-
ence and syntactic semigroup for non-regular languages.

4

Part I

Languages

5

Chapter 1

Formal languages

In this chapter we introduce the concept of a formal language. We cover the
main terminology and notation and describe the mathematical framework
for studying classes of formal languages. Finally, we show the connection
between formal languages and the theory of computability.

1.1 Introduction

Although the theory of formal languages has been strongly influenced by de-
velopments in areas like linguistics and computer science, it has its origins
strictly within mathematics. The quest for the foundations of mathematics
at the beginning of the 20th century led to a reinvestigation of the notion
of mathematical proof. A formalized interpretation of the concept of proof
arose, in which the validity of a mathematical argument was established by
its structure rather than by the nature of the argument itself. From this
point of view, mathematical proofs were studied as sequences of statements
for which the ordering of these statements decided whether or not the argu-
ment was valid. This led to a structural study of sequences of symbols.

It is the description of properties of sequences of symbols that forms the
basis of the theory of formal languages. Since many circumstances, both
within and outside mathematics, give rise to such sequences, the applica-
tions of formal language theory are widely spread. Besides mathematical
proofs one can think of computer programs, sentences in natural languages,
sequences of molecules and neural processes in the brain as just a few of the
numerous examples. All are instances of a set of sequences of symbols from
some fixed set A. This observation has lead to the following definition of a

6

formal language.

Definition 1.1 Let A be a finite set of symbols. A formal language L
over A is a set of finite sequences of symbols in A.

Most of the time the word ‘formal’ is not included and we will just speak
about ‘a language’. The set A is called the alphabet of the language L.
The alphabet is always finite and its elements are usually denoted by the
first letters from the Roman alphabet (a, b, c, . . .). Note that these letters
can represent anything from mathematical statements to molecules. As long
as it is clear over which alphabet we are working, we will just state ‘L is a
language’ without specifying the alphabet.

A finite sequence of elements of A is called a word. The set of all words
over some alphabet A is denoted by A∗. To distinguish in notation between
elements of the alphabet and sequences of these elements (words), we use
the letters u, v,w . . . to denote words. The empty sequence, denoted by λ,
is also an element of A∗. In this notation L is a language (over A) if and
only if L ⊆ A∗, or equivalently L ∈ P(A∗).

Example 1.2 Let A = {a, b} be a set of two symbols. Then A∗ =
{λ, a, b, aa, ab, ba, bb, aaa, aab, aba, baa, . . .}. Every subset of this set, finite
or infinite, determines a language. For example: L1 = {a, ab, ba, aab} and
L2 = {u ∈ A∗ | u has an even number of symbols} are both languages over
A.

We conclude this section by defining an operation, called product or con-
catenation, on the set A∗ of words. Given two words u = a1 . . . an and
v = b1 . . . bm the product of these words is the word uv = a1 . . . anb1 . . . bm.
This operation is associative as you can easily prove by induction on the
length of the words.

1.2 The algebra of languages

Mathematically spoken we can make two observations about the concepts
introduced so far:

1. A language is a set of words.

2. The set A∗ with the concatenation operation is a semigroup.

7

These observations may not seem that exciting at first sight, but it turns
out that it are these two facts that give rise to the algebraic structure of the
class of formal languages.

Let A be a finite alphabet and L1 and L2 languages over this alphabet. The
first observation tells us that we can apply the usual set theoretic operations,
like union, intersection and complement on languages. More specifically, we
have:

L1 ∪ L2 = {u ∈ A∗ | u ∈ L1 or u ∈ L2}

L1 ∩ L2 = {u ∈ A∗ | u ∈ L1 and u ∈ L2}.

To define the complement of a language we need to take into account over
which alphabet we are working. That is, let L be a language over A, then

Lc = {u ∈ A∗ | u /∈ L}.

Note that L1 ∪ L2, L1 ∩ L2 and Lc are again languages over the alphabet
A. In other words, the set-theoretic operations ∩,∪ and ()c give rise to two
binary and one unary operation on the set P(A∗) of all languages over A.
Adding the two nullary operations (constants) ∅ and A∗, we obtain the al-
gebraic structure 〈P(A∗),∪,∩, ()c, ∅, A∗〉. It is an easy observation that this
algebraic structure is a Boolean algebra. Boolean algebras are central in this
work and we will study them in chapter II.

So far we have just used the first observation. But what about the semigroup
structure of A∗? In addition to the operations introduced above, we can
endow the set P(A∗) with an additional operation arising from the semigroup
structure of A∗. That is, we can ‘lift’ the product on words to a product on
languages. For K,L ∈ P(A∗) we define

K · L = {uv ∈ A∗ | u ∈ K and v ∈ L}.

It is easy to show that this operation is associative. To shorten notation we
often write KL instead of K · L.

Furthermore we define two quotient operations, / and \, on the set P(A∗).
Let K,L ∈ P(A∗). We define

L/K = {u ∈ A∗ | uv ∈ L for all v ∈ K}

K\L = {u ∈ A∗ | vu ∈ L for all v ∈ K}.

8

The relationship between the operations on P(A∗) defined above, is ex-
pressed in the following theorem.

Theorem 1.3 For all K,L,M ∈ P(A∗) we have

K · L ⊆M ⇐⇒ K ⊆M/L⇐⇒ L ⊆ K\M.

Proof. This is easily deduced by using the definitions of the operations ·, /
and \. We leave the details to the reader.

2

Those familiar with the concept of residuation will recognize that the triple
(·, /, \) forms a so-called residuated family on P(A∗). We come back to this
observation in Chapter 8.

1.3 Languages and computation

We will use this last section to motivate the kind of problems we consider in
this thesis. First of all we need to point out that it is classes of languages
that we study, rather than individual languages. It is the tight relationship
between the theory of formal languages and the theory of computability that
motivates the study of classes of languages. Questions about complexity of
models can be translated into questions about classes of languages and vice
versa, so answering these questions gives insight in the theory of computabil-
ity.

The specification of a formal language requires an unambiguous description
of which words belong to the language. One way to specify a formal language
is through a machine that recognizes the language. A machine recognizes
L if it can decide for every element u ∈ A∗ whether or not u ∈ L. Such a
machine can be of any kind and several computational models to describe
machines that recognize formal languages have been developed since the the
beginning of the 20th century. Every one of these models gives rise to a
class of machines and therefore to a class of languages recognized by these
machines. Two models of computation can thus be compared by comparing
the classes of languages recognized by instances of these models. For exam-
ple, given two computational models M1 and M2, we can determine whether
or not one model is more complex than the other by comparing the classes
of languages that are recognized by the models. That is, for C1 and C2 being
the classes of languages recognized by these models, the observation C1 ⊆ C2

9

would tell us that the first model is less complex than the second one. Also,
given some mathematical decision problem, we can determine whether this
problem can be solved using a particular computational model M , by de-
termining whether or not the language L (corresponding to the problem)
belongs to the class C ⊆ P(A∗) of languages that can be recognized by an
instance of the computational model M . Finally, given a formal language
L we would like to determine which languages are related to L in terms of
complexity.

Using this relationship between languages and models of computation, an
important classification of formal languages in terms of complexity was given
by the linguist Noam Chomsky in 1956. He used the observation that com-
puting machines of different types can recognize languages of different com-
plexity to construct a hierarchy of computational models and corresponding
language types. The simplest model of computation in this hierarchy is a
finite state automaton. For higher levels more powerful machines, ranging
from pushdown automata to Turing machines, are required. The languages
that can be recognized by finite automata are called the regular languages.
As this class of languages plays a special role in our theory, it is the subject
of the next chapter.

10

Chapter 2

Regular languages and finite

automata

In this chapter we give a short introduction in the theory of regular languages
and finite automata. In the first section we give a recursive definition of the
class of regular languages. From this definition it is easily seen that every
regular languages can be specified by a regular expression. The second section
introduces finite automata and shows their relationship to regular languages.
Finally we make an important observation about the syntactic semigroup of
a regular language.

2.1 The regular languages

The regular languages are those languages that can be generated from the
one-element languages by applying certain operations a finite number of
times. Before we can make this idea more precise we need to define an
additional operation on the algebra of languages, known as the star operator.
For L ∈ P(A∗) we introduce

L∗ =
⋃

n∈N

Ln,

where Ln = Ln−1L is defined inductively.

We can now give a formal definition of the class of regular languages.

11

Definition 2.1 Let A be an alphabet. The class of regular languages
over A is defined recursively by the following three steps

i) ∅, {λ} and {a}, for all a ∈ A, are regular languages.

ii) Let L1 and L2 be regular languages. Then L1 ∪ L2, L1L2 and L∗
1 are

regular languages.

iii) Only the languages that can be obtained in this way are regular lan-
guages.

In other words, the class of regular language is the smallest class of languages
that contains the finite languages and is closed under the operations ∪, · and
()∗. It can be shown that the class of regular languages is closed under the
operations ∩ and ()c as well. Furthermore it contains the languages ∅ and
A∗. Hence it is a subalgebra of the algebra 〈P(A∗),∪,∩, ()c, ∅, A∗〉. The set
of all regular languages over the alphabet A is denoted by Reg(A∗).

Example 2.2 Let A := {a, b}. Let L ⊆ A∗ be the language that contains
all words that start with an a and end with a b. By definition {a} and
{b} are regular languages. Applying the operations ∪ and ()∗ gives rise to
{a, b}∗, the set of all strings over A. Using concatenation twice, we get
{a}{a, b}∗{b}, which represents the language L. So L is regular.

The string {a}{a, b}∗{b} is an example of a regular expression. From the
definition of a regular language it follows directly that every regular language
can be described by such an expression. To obtain a reduction of parenthesis
a priority is assigned to the operations, which appoints the star operation
as the most binding one, followed by concatenation and finally union. Fur-
thermore the set brackets are left out. The expression {a}{a, b}∗{b} is then
abbreviated by a(a ∪ b)∗b. Note that the regular expression for a certain
language is not unique. That is, a regular language can be described by two
different regular expressions.

Example 2.3 Define A := {a, b}. The regular expressions (a ∪ b)∗a(a ∪
b)∗a(a∪b)∗ and b∗ab∗a(a∪b)∗ both define regular languages over A consisting
of all the words that contain at least two a’s.

It can be proved that not all languages are regular. In the next section we
see an example of a language that is not regular.

12

2.2 Finite automata

At the end of the previous chapter we briefly discussed the relationship be-
tween formal languages and computation. In particular we pointed out that
computational models can be associated with the classes of languages they
recognize. In this section we will introduce the notion of a finite automaton.
A finite automaton is a simple computing machine with a very restricted
memory. By machine we do not mean a physical piece of hardware but an
abstract machine defined mathematically. An important result in the theory
of formal languages is the fact that the class of languages recognized by a
finite automaton is equal to the class of regular languages.

The formal definition of a finite automaton is the following.

Definition 2.4 A finite automaton is a quintuple A = (Q,A, q, F, δ)
where

• Q is a finite set of states

• A is a finite alphabet

• q ∈ Q is the initial state

• F ⊆ Q is the set of final states

• δ is a function from Q×A to Q, called the transition function.

The formal definition of a finite automaton is not a very intuitive one and
the best way to get an idea of a finite automaton is by studying a graph-
ical representation of it. We can represent every finite automaton by a
directed labeled graph. The vertices of the graph indicate the states of the
automaton and the (labeled) edges represent the transitions between states.
Furthermore we indicate the initial state with an incoming arrow and the
final states with outgoing arrows. Let us start with an easy example.

Example 2.5 Let A1 = ({1, 2}, {a, b}, 1, {2}, δ) be an automaton with
δ = {(1, a, 1), (1, b, 2), (2, a, 2), (2, b, 2)}. This automaton is given by the
following graph.

13

1 2

a

b

a, b

A path in an automaton is a finite walk along the the edges of the graph
that represents the automaton. In terms of transitions a path is a finite
sequence of transitions

δ1 = (q0, a0, q
′
0), δ2 = (q1, a2, q

′
1), . . . , δn = (qn, an, q

′
n)

such that
q′0 = q1, q

′
1 = q2, . . . , q

′
n−1 = qn.

We denote a path also by

q0
a0→ q1

a1→ q2 . . .
an−1

→ qn

We can now define what it means for a word u in A∗ to be accepted by a
finite automaton.

Definition 2.6 Let A be a finite automata and u ∈ A∗. We say that u is
accepted by A if and only if there is a path

q0
a0→ q1

a1→ q2 . . .
an−1

→ qn

in A such that q0 is the initial state, qn is one of the final states and u =
a0a1 . . . an−1.

Example 2.7 Observe that

1
a
→ 1

b
→ 2

a
→ 2

b
→ 2

is a path in A1. Hence the word abab is accepted by A1. Also

1
a
→ 1

a
→ 1

is a path in A1 but 1 is not a final state, hence aa is not accepted by A1. It
is not hard to see that a word is accepted by A1 if and only if it contains at
least one b.

14

Definition 2.8 Let A be a finite automaton. The language recognized
by A is the set of words accepted by A. We denote this language by L(A).

Example 2.9 The language recognized by A1 consists of all the words in
A∗ that contain at least one b. That is,

L(A1) = a∗b(a ∪ b)∗.

To get familiar with finite automata we consider another example.

Example 2.10 Let A2 be the following automaton.

1 2

3

a

a

b

a

b

b

The paths

1
a
→ 1

b
→ 2

a
→ 3

and
1

b
→ 2

a
→ 3

b
→ 2

a
→ 3

indicate that the words aba and baba are in the language. The path

1
a
→ 1

b
→ 2

a
→ 3

b
→ 2

indicates that the word abab is not in the language. Determining for some
more words whether or not they are accepted by A2 should convince you

15

that the language recognized by A2 consists of all the words that end with
ba. That is,

L(A2) = (a ∪ b)∗ba.

In our examples we only considered automata with one final state. However,
note that the definition of a finite automata allows there to be more final
states.

The languages recognized by the automata in the examples 2.5 and 2.10
could both be specified by a regular expression and hence were both regular.
A surprising result in the theory of formal languages is that this is the case for
every finite automaton. On the other hand, given a regular language we can
construct an automaton that recognizes this languages. This correspondence
between finite automata and regular languages is a central result in the
theory of formal languages and is known as Kleene’s theorem.

Theorem 2.11 (Kleene) A language is regular if and only if it is recognized
by a finite automata.

This theorem says that if a language can be generated in a simple way, it can
also be decided in a simple way, and vice versa. The proof of this theorem
can be found in any standard work on formal languages and automata. See
for example [14] or [20]. Among other things Kleene’s theorem gives a tool
for proving that not every language is regular.

Example 2.12 The language L = {aibi | i ∈ N} is not regular.

This can be proved by showing that there is no finite automaton that rec-
ognizes L. The proof can be found in [20].

2.3 Regular languages and finite semigroups

The theory of regular languages is closely related to the theory of finite
semigroups. In this section we will see that every formal language L gives
rise to a congruence ∼L on A∗ and hence to a semigroup A∗/∼L.

Let L ⊆ A∗ be a language. We define a relation ∼L on A∗ by

u ∼L v if and only if, for all s, t ∈ A∗ : sut ∈ L⇔ svt ∈ L.

16

It is easily checked that ∼L is an equivalence relation on L. In addition we
can prove that ∼L ‘respects’ the product on A∗. That is, ∼L is a congruence
on the semigroup 〈A∗, ·〉.

Definition 2.13 Let 〈S, ·〉 be a semigroup and let ∼ be an equivalence rela-
tion on S. Then ∼ is a congruence on S if and only if for all s1, s2, t1, t2 ∈ S

s1 ∼ t1 and s2 ∼ t2 implies s1 · s2 ∼ t1 · t2.

The following lemma shows that ∼L is a congruence on A∗.

Lemma 2.14 Let L ⊆ A∗ be a language and ∼L as defined above. Then
∼L is a congruence on A∗.

Proof. Let u1, u2, v1, v2 such that u1 ∼L v1 and u2 ∼L v2. We have for all
s, t ∈ A∗

su1u2t ∈ L ⇔ sv1u2t ∈ L

⇔ sv1v2t ∈ L.

Hence u1u2 ∼L v1v2.

2

The congruence ∼L is called the syntactic congruence of L.

It is a well-known fact in algebra that any congruence on an algebraic struc-
ture defines an algebraic structure on the set of equivalence classes. In
particular, if 〈S, ·〉 is a semigroup and ∼ a congruence relation, then the
operation on S/∼ defined by for all s, t ∈ S

s/∼ · t/∼ = (s · t)/∼

makes S/∼ into a semigroup. The fact that this operation is well-defined
on S/∼ relies exactly on the requirement that ∼ is a congruence relation.
When it is clear which congruence relation is involved, the equivalence class
s/∼ is often denoted by s.

As the equivalence relation ∼L is a congruence on the semigroup A∗, it
gives rise to a semigroup structure on A∗/∼L. This semigroup is called the
syntactic semigroup of L. For regular languages we have the following
theorem.

17

Theorem 2.15 A language L ⊆ A∗ is regular if and only if its syntactic
congruence is of finite index. Or equivalently, its syntactic semigroup is
finite.

The proof of this theorem can be found in [14]. It can be derived from the
fact that every regular languages can be recognized by finite automaton as
is the case by Kleene’s theorem.

The observation that regular languages correspond to finite semigroups has
given rise a number of characterizations of classes of regular languages by
their syntactic semigroups. For example, Schützenberger proved that a reg-
ular language is star-free if and only if its syntactic semigroup is aperiodic
[19]. More generally, Eilenberg gave a characterization of those classes of
languages that are given by pseudo-varieties of finite semigroups [8]. In
part IV we will see that the finite semigroup theory for regular languages is
a specialization of the general duality theory for formal languages.

18

Part II

Boolean Algebras

19

Chapter 3

Boolean algebras

In this chapter we will introduce the concept of a Boolean algebra. This al-
gebraic structure arises naturally in the study of classes of formal languages
and hence plays a central role in this work. We will discuss some elemen-
tary results and introduce the concepts of Boolean subalgebra and Boolean
homomorphism.

3.1 Boolean algebras

Boolean algebras were introduced by George Boole in the 1850’s to study
the laws of logic. Since then they have arisen in many different situations
and have been studied extensively. Let us first give a formal definition of
the concept of a Boolean algebra.

Definition 3.1 A Boolean algebra 〈B,∨,∧,¬, 0, 1〉 is a set with two
binary operations, one unary operation, and two nullary operations such
that for all a, b, c ∈ B:

i) (commutativity)

(a) a ∨ b = b ∨ a
(b) a ∧ b = b ∧ a

ii) (associativity)

(a) a ∨ (b ∨ c) = (a ∨ b) ∨ c
(b) a ∧ (b ∧ c) = (a ∧ b) ∧ c

iii) (idempotency)

20

(a) a ∨ a = a
(b) a ∧ a = a

iv) (absorption)

(a) a = a ∨ (a ∧ b)
(b) a = a ∧ (a ∨ b)

v) (distributivity)

(a) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
(b) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

vi) (top and bottom)

(a) a ∧ 0 = 0
(b) a ∨ 1 = 1

vii) (complementation)

(a) a ∧ ¬a = 0
(b) a ∨ ¬a = 1

Example 3.2 Let X be a set. Then 〈P(X),∪,∩, ()c, ∅,X〉 is a Boolean
algebra. In particular, 〈P(A∗),∪,∩, ()c, ∅, A∗〉, the class of all languages
over some alphabet A, together with the operations union, intersection and
complement, is a Boolean algebra.

Definition 3.3 Let X be a set. A field of sets over X is a non-empty
subset of P(X) closed under union, intersection and complementation.

Let V be a subset of P(X) that forms a field of sets. Then note that the
non-emptyness of V implies that ∅ and X are in V .

Example 3.4 We have seen that the set of regular languages is closed
under union, intersection and complement. Hence Reg(A∗) is a field of sets
over A∗.

Lemma 3.5 Let X be a set and V ⊆ P(X) a field of sets over X. Then
〈V,∪,∩, ()c, ∅,X〉 is a Boolean algebra.

Proof. It is an easy exercise to check that the algebra 〈V,∪,∩, ()c, ∅,X〉
satisfies conditions i)-vii) from definition 3.1.

21

2

Corollary 3.6 〈Reg(A∗),∪,∩, ()c, ∅, A∗〉 is a Boolean algebra.

When, for a certain set B, there is no confusion about which operations are
taken to make it a Boolean algebra, we will not specify them every time.
For example, if V is a field of sets we will say ‘V is a Boolean algebra’
instead of ‘〈V,∪,∩, ()c, ∅, A∗〉’ is a Boolean algebra. Later on in Chapter 5
we will prove that, up to isomorphism, every Boolean algebra is isomorphic
to a field of sets. And therefore, up to isomorphism, the only operations
involved are the set-theoretic operations.

3.2 The principle of duality

An observation one can make on the definition of a Boolean algebra is that
interchanging the roles of ∨ and ∧ and of 0 and 1 does not change the set
of identities. Consequently, the same is true for all results deduced from
these identities. That is, facts about Boolean algebras come in dual pairs.
It is always sufficient to prove only one half of each pair, the other half is
obtained by interchanging ∨ and ∧ and 0 and 1. This observation is known
as the principle of duality.

One word of warning on the terminology: although the word ‘duality’ in
mathematics always refers to something being turned ‘upside down’, it may
refer to different instances of this concept. The duality we are talking about
here considers the algebraic operations of a Boolean algebra. Much more
important in this work is another meaning of the term duality, which will
be the subject of part III. In this duality, not the structures themselves
are turned upside down but the structure preserving maps between these
structures are turned around. We will see that this gives rise to a duality
of categories between the category of Boolean algebras with Boolean homo-
morphisms and the category of so-called Stone spaces with continuous maps.
Another usage of the word duality we encounter in the theory of ordered
sets, where the dual order is obtained by ‘flipping the order upside down’.
Order duality is actually closely related to the algebraic duality, because of
the tight connection between Boolean algebras and ordered sets. We will go
into detail about this later.

Often the context makes clear what meaning of the word ‘duality’ we are
referring to. If not, we will explicitly use the terms algebraic, topological or

22

order duality.

3.3 Subalgebras and homomorphisms

The concepts of subalgebra and homomorphism are central in the study of
algebras. In particular in this work these concepts will turn out to play an
important role.

Definition 3.7 A non-empty subset A ⊆ B is a Boolean subalgebra of
a Boolean algebra 〈B,∨,∧,¬, 0, 1〉 if A is closed under ∨,∧ and ¬.

Example 3.8 Any field of subsets over X is a Boolean subalgebra of P(X).
In particular, Reg(A∗) is a Boolean subalgebra of P(A∗).

Definition 3.9 Let B and C be Boolean algebras. A map f : B → C
is a Boolean homomorphism if f preserves ∨,∧ and ¬. That is, for all
a, b ∈ B,

i) f(a ∨ b) = f(a) ∨ f(b)

ii) f(a ∧ b) = f(a) ∧ f(b)

iii) f(¬a) = ¬f(a).

Furthermore, if f is one-to-one it is called a (Boolean) embedding. If f
is a bijection it is called a (Boolean) isomorphism.

Since Boolean algebras are the pertinent algebraic structures in this work
we will just talk about subalgebras and homomorphism instead of Boolean
subalgebras and Boolean homomorphisms.

The next lemma gives an equivalent characterization of the last condition
in the definition above.

Lemma 3.10 Let f : B → C be a ∨- and ∧-preserving map. Then the
following are equivalent:

i) f(0) = 0 and f(1) = 1

ii) f(¬a) = ¬f(a) for all a ∈ B.

23

Proof. Suppose (i) holds. Then

f(a) ∧ f(¬a) = f(a ∧ ¬a) = f(0) = 0,

f(a) ∨ f(¬a) = f(a ∨ ¬a) = f(1) = 1.

Thus, f(¬a) = ¬f(a).
Suppose (ii) holds. Then

f(0) = f(a ∧ ¬a) = f(a) ∧ f(¬a) = f(a) ∧ ¬f(a) = 0,

f(1) = f(a ∨ ¬a) = f(a) ∨ f(¬a) = f(a) ∨ ¬f(a) = 1.

2

The next lemma states that a homomorphism between Boolean algebras B
and C gives rise to a subalgebra of C.

Lemma 3.11 Let B and C be Boolean algebras and f : B → C a homo-
morphism. Then f(B) is a subalgebra of C.

Proof. Suppose c1, c2 ∈ f(B). Then there exist b1, b2 ∈ B such that
c1 = f(b1) and c2 = f(b2). We have

c1 ∨ c2 = f(b1) ∨ f(b2) = f(b1 ∨ b2) ∈ f(B).

By a similar argument c1∧c2 ∈ f(B). Furthermore ¬c1 = ¬f(b1) = f(¬b1) ∈
f(B). So f(B) is a subalgebra of C.

2

Also, if A a subalgebra of B, then the inclusion of A into B is an (injective)
homomorphism of A into B.

24

Chapter 4

Boolean algebras as ordered

sets

We introduced Boolean algebras from a purely algebraic point of view. Boolean
algebras can however also be thought of as special kinds of ordered sets. In
this chapter we will explore the connection between Boolean algebras and or-
dered sets. We show how to obtain an ordered set from a Boolean algebra
and deduce special properties of the ordered sets arising in this way.

4.1 Ordered sets

Let us first give a formal definition of an ordered set.

Definition 4.1 Let P be a set and ≤ a binary relation on P . Then (P,≤)
is called a (partially) ordered set or poset if for all x, y, z ∈ P :

1. x ≤ x (≤ is reflexive)

2. x ≤ y and y ≤ x implies x = y (≤ is anti-symmetric)

3. x ≤ y and y ≤ z implies x ≤ z (≤ is transitive).

If in addition for all x, y ∈ P , either x ≤ y or y ≤ x, then P is called a
totally ordered set or chain. The relation ≤ is called a partial order.

Usually we shall say ‘P is an ordered set’ without specifying the order, when
it is clear which order is to be considered.

25

Example 4.2 〈N,≤〉 and 〈N, |〉 are familiar examples of posets, of which
the first one is also a totally ordered set but the second one is not.

Example 4.3 Given a set X, 〈P(X),⊆〉 is a poset. Also 〈V,⊆〉 is a poset
for every V ⊆ P(X). More generally, any subset of a poset is again a poset.

For x, y ∈ P we write x < y to denote x ≤ y and x 6= y.

Definition 4.4 Let P be a poset and x, y ∈ P . We say that y covers x, if
x < y and x ≤ z ≤ y implies x = z or y = z. We denote this by x ≺ y.

Using this covering relation we can represent a finite ordered set P by a
diagram. Every element of P is represented by a dot and there is a line
between two elements x and y if an only if x ≺ y. Furthermore, if this is
the case, the element x is drawn below y.

Example 4.5 The ordered set 〈{0, 1, 2, 3},≤〉 is represented by

r0

r1

r2

r3

Example 4.6 The ordered set 〈{∅, {1}, {2}, {1, 2}},⊆〉 is represented by

r

∅

@
@

@

r

{1, 2}

@
@

@r{1} �
�

�

r {2}
�

�
�

26

Definition 4.7 Let P be an ordered set. The dual, P δ, of P is obtained
by ‘flipping around’ the order. That is,

x ≤ y in P δ ⇔ y ≤ x in P.

The diagram of P δ is obtained by turning the diagram of P upside down.

A special class of ordered sets are the ones that are bounded.

Definition 4.8 The smallest element of a poset P , if it exists, is denoted
by 0. That is, 0 ≤ x for all x ∈ P . The greatest element of a poset, if it
exists, is denoted it by 1. That is, x ≤ 1 for all x ∈ P . A poset that has
both a 0 and a 1 we call bounded.

There are several notions of structure preserving maps between ordered sets.

Definition 4.9 Let P and Q be ordered sets. A map φ : P → Q is called

i) order-preserving if x ≤ y in P implies φ(x) ≤ φ(y) in Q;

ii) order-reversing if x ≤ y in P implies φ(y) ≤ φ(x) in Q.

Definition 4.10 Let P and Q be ordered sets. A map φ : P → Q is called
an order-embedding if x ≤ y in P if and only if φ(x) ≤ φ(y) in Q.

Note that from this definition it follows that an order-embedding is injective.
If it is, in addition, onto, it is called an order-isomorphism.

4.2 Boolean algebras as ordered sets

The next theorem states that there is an easy way to turn a Boolean algebra
into a partially ordered set.

Theorem 4.11 Let 〈B,∨,∧,¬, 0, 1〉 be a Boolean algebra and let ≤ denote
the binary relation on B defined as follows. For all a, b ∈ B

a ≤ b if and only if a ∨ b = b. (ord)

Then ≤ is a partial order on B.

27

Proof. By idempotency of ∨, we have a ∨ a = a for all a ∈ B, so ≤ is
reflexive. Furthermore, suppose a ≤ b and b ≤ a. This, together with
commutativity of ∨, implies b = a ∨ b = b ∨ a = a. Hence, ≤ is anti-
symmetric. Finally, let a ≤ b and b ≤ c. Then a ∨ b = b and b ∨ c = c.
Together with associativity of ∨ this implies a∨c = a∨ (b∨c) = (a∨b)∨c =
b ∨ c = c. Thus a ≤ c. That is, ≤ is transitive.

2

Proposition 4.12 The ordered set coming from a Boolean algebra is bounded.

Proof. We have 0 ∨ b = b for all b ∈ B. Hence, 0 ≤ b for all b ∈ B. Also
a ∨ 1 = 1 for all a ∈ B. That is, a ≤ 1 for all a ∈ B.

2

The following lemma gives two alternative characterization of the order on
B.

Lemma 4.13 Let B be a Boolean algebra. Then the following are equiva-
lent:

i) a ∨ b = b

ii) a ∧ b = a

iii) a ∧ ¬b = 0.

Proof. Suppose a ∨ b = b. Then

a ∧ b = a ∧ (a ∨ b)

= a (by absorption).

Now suppose a ∧ b = a. Then

a ∨ b = (a ∧ b) ∨ b

= b (by absorption).

This proves i)⇔ ii).

28

Now suppose a ∨ b = b. Then

a ∧ ¬b = (a ∧ ¬b) ∨ 0

= (a ∧ ¬b) ∨ (b ∧ ¬b)

= (a ∨ b) ∧ ¬b

= b ∧ ¬b

= 0.

Finally, suppose a ∧ ¬b = 0. Then

a ∨ b = (a ∨ b) ∧ 1

= (a ∨ b) ∧ (¬b ∨ b)

= (a ∧ ¬b) ∨ b

= 0 ∨ b

= b.

This establishes i)⇔ iii).

2

From the equivalence of (i) and (ii) in the above lemma, we obtain the
following corollary relating the notions of algebraic duality and order duality
discussed in Section 3.2.

Corollary 4.14 Let B be a Boolean algebra. The order induced by the dual
Boolean algebra is the order dual to the order induced by B.

4.3 Supremum and infimum

The posets arising from Boolean algebras in the way described above have
some special properties, considering the existence of certain upper and lower
bounds of subsets of B. First we need some more definitions.

Definition 4.15 Let 〈P,≤〉 be a poset and S ⊆ P . An element x ∈ P is an
upper bound for S if s ≤ x for all s ∈ S. Dually x ∈ P is a lower bound
for S if x ≤ s for all s ∈ S.

Definition 4.16 Let 〈P,≤〉 be a poset and S ⊆ P . An element s ∈ P is
a supremum of S if s is the smallest among the upper bounds of S. That

29

is, s is an upper bound of S and s ≤ x for all upper bounds x of S. Dually
the infimum of S is defined to be the greatest lower bound of S.

Note that from this definition it follows that if the supremum of a set exists
it is unique. If it exists we denote the supremum of a set S by supS and
the infimum by inf S.

Now let S be a subset of an ordered set P . If the set S is empty, then every
element of P is an upper bound of S and consequently the supremum of S
is 0, which is the smallest of all upper bounds. Equivalently the infimum
of the empty-set is 1. If S just contains one element p, it obviously has a
supremum and an infimum, which are both equal to p.

The following example shows that the situation becomes more interesting if
S has two elements.

Example 4.17 Consider the poset P :

r

∅

r{2}
@

@
@

r{3}
�

�
�

r{1, 2, 3}
@

@
@

@
@

@

r{2, 3, 4}
�

�
�

�
�

�

r

{1, 2, 3, 4}

@
@

@

�
�

�

and subsets S := {{1, 2, 3}, {2, 3, 4}} and S′ := {{2}, {3}}. The only upper
bound of S is {1, 2, 3, 4} and hence this is the supremum of S. The upper
bounds of S′ are {1, 2, 3}, {2, 3, 4} and {1, 2, 3, 4}. However, there is no
smallest upper bound, so the supremum of S′ does not exist in P .

This example shows that the supremum (or infimum) of a subset of an
arbitrary poset may not exist. However, for the posets arising from Boolean

30

algebras we have the following theorem stating that the supremum and
infimum of all finite subsets exist.

Theorem 4.18 Let 〈B,∨,∧,¬, 0, 1〉 be a Boolean algebra and ≤ the order
on B as defined in Theorem 4.11. Then every finite subset A of B has both
a supremum and an infimum. Moreover for all a, b ∈ B,

sup{a, b} = a ∨ b and inf{a, b} = a ∧ b.

Proof. We first prove the second claim. We have

i) a ∨ (a ∨ b) = (a ∨ a) ∨ b = a ∨ b implies a ≤ a ∨ b

ii) b ∨ (a ∨ b) = b ∨ (b ∨ a) = (b ∨ b) ∨ a = b ∨ a = a ∨ b implies b ≤ a ∨ b.

So a ∨ b is an upper bound of {a, b}. Suppose x ∈ B is also an upper
bound of {a, b}. In other words, a ∨ x = x and b ∨ x = x. This implies
(a ∨ b) ∨ x = a ∨ (b ∨ x) = a ∨ x = x, hence a ∨ b ≤ x. So a ∨ b is the least
upper bound of {x, y}.
For the first claim note, that sup{a} = a for all a ∈ B and sup ∅ = 0 (since
every element of B is an upper bound of the empty set). Hence by induction
on the number of elements, we obtain that every finite subset of A has a
supremum.
The result for the infimum is obtained by duality on the order and the
algebra.

2

In the rest of this work we will simply use x ∨ y and x ∧ y to denote the
supremum, respectively infimum, of the set {x, y}. For an arbitrary subset
A of a poset we use

∨

A to denote the supremum of A, if it exists. Similarly
we use

∧

A to denote the infimum of A, if it exists. When A is a subset of a
Boolean algebra the supremum is often referred to as the join of A and the
infimum of A is often called the meet of A. We use this terminology from
now on.

Ordered sets that have the property that all finite subsets have a supremum
and infimum are better known as lattices (or bounded lattices). Hence ev-
ery Boolean algebra gives rise to a lattice. Moreover, the lattices arising from
Boolean algebras have some additional structure. They are distributive and
admit a complement. We will not give formal definitions of these properties,
but just note the fact that any lattice having these properties gives rise to

31

a Boolean algebra. That is, there is a one-to-one correspondence between
Boolean algebras and distributive lattices admitting a complement.

In this chapter we have discovered that there are two different ways of think-
ing about Boolean algebras. That is, as an algebra satisfying certain iden-
tities or as an ordered set having some special properties. In the following
chapters we will use both points of view, depending on which serves our pur-
poses best and gives the most insight. When we say B is a Boolean algebra,
we will use that it satisfies the identities we have given for the operations
∨,∧ and ¬ as well as the fact that it is an ordered set satisfying certain
properties.

32

Chapter 5

Representation of Boolean

algebras

An important result in the theory of Boolean algebras is the fact that every
Boolean algebra can be represented as a field of sets. It is this result that lies
at the heart of the topological duality theory developed in part III. In this
chapter we will first consider the representation of finite Boolean algebras,
which is somewhat simpler than the infinite case. In order to obtain a similar
theorem for infinite Boolean algebras we introduce the notion of a prime
filter. It is this concept that is the basis of the general representation theorem
for Boolean algebras, which is the subject of the last section of this chapter.

5.1 Representations of Boolean algebras: the fi-

nite case

In this section we will prove that every finite Boolean algebra is isomorphic
to the powerset algebra of some set X. Moreover, we will show that this set
X can be obtained as a special subset of our original algebra, namely the
set of atoms of B.

Definition 5.1 Let B be a Boolean algebra. A non-zero element x ∈ B is
called an atom if 0 ≤ a ≤ x implies a = 0 or a = x, for all a ∈ B. In other
words, atoms are the elements that cover 0.

We denote the set of atoms of a Boolean algebra B by A(B).

33

Example 5.2 In a field of sets every singleton set is an atom. More
precisely, the atoms of a powerset algebra are exactly the singletons.

The following lemma states that the set of atoms of a finite Boolean algebra
B is a join-dense subset of B. That is, that every element of B can be
obtained as the join of some subset of A(B). More explicitly, every element
a of B is the join of the set of the atoms below a.

Lemma 5.3 Let B be a finite Boolean algebra. Then for each a ∈ B,

a =
∨

{x ∈ A(B) | x ≤ a}.

Proof. Let a ∈ B and S = {x ∈ A(B) | x ≤ a}. Obviously a is an upper
bound for S, so

∨

S ≤ a. Let b be an upper bound for S. We have to show
a ≤ b. Suppose a 6≤ b. Then, by lemma 4.13 a ∧ ¬b > 0. Now since B is
finite, we can show (by induction), that every element c ∈ B with c > 0 has
an atom below it (just go down until you reach an atom). In particular, we
can find an x ∈ A(B) such that x ≤ a ∧ ¬b. Then x ≤ a, so x ∈ S and
hence x ≤ b. But x ≤ ¬b as well, so we have x ≤ b∧¬b = 0, a contradiction.
Hence a ≤ b. That is, a is the smallest upper bound for S and thus the join
of S.

2

Before moving on to the main theorem of this section we state two lemmas
that will be used in the proof of this theorem.

Lemma 5.4 Let B be a Boolean algebra, x ∈ A(B) and a, b ∈ B. Then
x ≤ a ∨ b implies x ≤ a or x ≤ b.

Proof. Suppose a = 0. Then x ≤ a ∨ b = b. Similarly b = 0 implies
x ≤ a. Now suppose a, b > 0 and x 6≤ a, x 6≤ b. Since x ∈ A(B) the
only lower bounds of x are x itself and 0. Hence x ∧ a = x ∧ b = 0. So
x = x ∧ (a ∨ b) = (x ∧ a) ∨ (x ∧ b) = 0, a contradiction. So x ≤ a or x ≤ b.

2

An easy inductive argument gives rise to the following generalization of
lemma 5.4.

Lemma 5.5 Let B be a Boolean algebra, x ∈ A(B) and S ⊆ B finite. Then
x ≤

∨

S implies x ≤ s for some s ∈ S.

34

We are now ready to prove the main theorem of this section known as the
representation theorem for finite Boolean algebras.

Theorem 5.6 Let B be a finite Boolean algebra. Then B is isomorphic to
P(A(B)). Moreover, the map ϕ : B → P(A(B)) defined by

ϕ : a 7→ {x ∈ A(B) | x ≤ a}

is a Boolean isomorphism.

Proof. We will first show that ϕ is a homomorphism. By lemma 3.10, this
is established by the following observations:

ϕ(a ∧ b) = {x ∈ A(B) | x ≤ a ∧ b}

= {x ∈ A(B) | x ≤ a and x ≤ b}

= {x ∈ A(B) | x ≤ a} ∩ {x ∈ A(B) | x ≤ a}

= ϕ(a) ∩ ϕ(b)

ϕ(a ∨ b) = {x ∈ A(B) | x ≤ a ∨ b}

= {x ∈ A(B) | x ≤ a or x ≤ b} (by lemma 5.4)

= {x ∈ A(B) | x ≤ a} ∪ {x ∈ A(B) | x ≤ a}

= ϕ(a) ∪ ϕ(b)

ϕ(0) = ∅

ϕ(1) = A(B).

Furthermore, by lemma 5.3, we have

a =
∨

{x ∈ A(B) | x ≤ a} =
∨

ϕ(a).

Hence ϕ(a) = ϕ(b) implies a =
∨

ϕ(a) =
∨

ϕ(b) = b. That is, ϕ is one-to-
one.
It remains to show that ϕ is onto. Note that ϕ(0) = ∅. Now let S ⊆ A(B)
non-empty. We will prove ϕ(

∨

S) = S. Obviously S ⊆ ϕ(
∨

S). Now let
x ∈ ϕ(

∨

S), that is x ∈ A(B) and x ≤
∨

S. By lemma 5.5 we obtain x ≤ s
for some s ∈ S. As s and x are both atoms we have x = s. Hence x ∈ S,
that is ϕ(

∨

S) ⊆ S.

2

35

Before moving on to the infinite case we draw some attention to a special
property of powerset algebras.

Definition 5.7 Let B be a Boolean algebra. If every subset of B has both
a join and a meet, then B is called a complete Boolean algebra.

Example 5.8 Every powerset algebra is complete, since
∨

S =
⋃

S for all
subsets S.

Now consider the finite-cofinite algebra of the natural numbers defined by

B := {A ⊆ N | A is finite or N \ A is finite }.

It is easily checked that this is a field of sets and hence a Boolean algebra.
Since the subset of B consisting of the singletons over the even numbers does
not have a join, B is not a complete Boolean algebra. Note that complete-
ness is preserved by isomorphisms, and therefore B can not be isomorphic
to a powerset algebra.

5.2 Prime filters

The above observation shows that in general a Boolean algebra does not
have to be isomorphic to a powerset algebra. So we can not extend the
result from the finite case to the infinite case unchanged. However, in the
next section we will prove that every Boolean algebra can be embedded in a
powerset algebra.

Let B be an infinite Boolean algebra. One of the problems one encounters
when extending the argument from the finite case, is that B might not have
any atoms. We therefore have to come up with an alternative set X under-
lying the powerset algebra in which we are going to embed B. First we need
some more definitions.

Definition 5.9 Let B be a Boolean algebra. A non-empty subset F of B
is called a filter if

i) F is an up-set. That is, a ∈ F and a ≤ b implies b ∈ F for all b ∈ B,

ii) F is closed under ∧. That is, a, b ∈ F implies a ∧ b ∈ F .

36

The set of filters of a Boolean algebra B is denoted by F(B).

Example 5.10 For each a ∈ B, the set of elements greater or equal than
a is denoted by ↑a. You can easily check that ↑a is a filter of B. The set ↑a
is called the principal filter generated by a.

Definition 5.11 Let B be a Boolean algebra. A filter F of B is called
proper if F 6= B. This is equivalent to the condition that 0 6∈ F .

Definition 5.12 Let B be a Boolean algebra. A proper filter F of B is
called prime if a ∨ b ∈ F implies a ∈ F or b ∈ F for all a, b ∈ B.

Example 5.13 Let P(X) be a powerset algebra and x ∈ X. Then the
subset ↑{x} = {A ∈ P(X) | x ∈ A} is a prime filter in P(X).

The following lemma gives a different characterization of prime filters.

Lemma 5.14 Let B be a Boolean algebra and F a proper filter in B. Then
the following are equivalent:

i) F is prime,

ii) for all a ∈ B : a ∈ F if and only if ¬a 6∈ F ,

iii) F is maximal with respect to the inclusion order. That is, the only filter
properly containing F is B.

Proof. i) ⇒ ii). Suppose F is prime. Since F is non-empty we have
a ∨ ¬a = 1 ∈ F . Hence a ∈ F or ¬a ∈ F . If both a and ¬a belong to F
then a ∧ ¬a = 0 ∈ F , a contradiction.
ii)⇒ iii). Suppose F satisfies condition ii) and F ′ is a filter properly contain-
ing F . That is, there is an a ∈ F ′ such that a 6∈ F . But then ¬a ∈ F ⊂ F ′.
Hence a ∧ ¬a = 0 ∈ F ′. So F ′ = B.
iii) ⇒ i) Suppose F is maximal, a ∨ b ∈ F and a 6∈ F . We want to show
b ∈ F . Define Fa = ↑{a ∧ c | c ∈ F}. Then Fa is a filter containing F and
a. Hence, since F is maximal Fa = B. In particular 0 ∈ Fa, so 0 = a∧ c for
some c ∈ F . Then

b ∧ c = (a ∧ c) ∨ (b ∧ c) = (a ∨ b) ∧ c ∈ F.

Since b ∧ c ≤ b, we have b ∈ F.

37

2

A remark about terminology: filters that contain either a or ¬a for all a ∈ B
are called ultrafilters. Hence, lemma 5.14 shows that the set of ultrafilters
of a Boolean algebra coincides with the set of prime filters.

The set of all prime filters of a Boolean algebra B is denoted by Fp(B). The
concepts of an ideal and prime ideal are defined dually.

Definition 5.15 Let B be a Boolean algebra. A non-empty subset I of B
is called an ideal if

i) I is an down-set. That is, a ∈ I and b ≤ a implies b ∈ I for all b ∈ B,
ii) I is closed under ∨. That is, a, b ∈ I implies a ∨ b ∈ I.

Definition 5.16 Let B be a Boolean algebra. A proper ideal I of B is
called prime if a ∧ b ∈ I implies a ∈ I or b ∈ I for all a, b ∈ B.

The set of all prime ideals is denoted by Ip(B). It is easily proven that a
subset F of B is a prime filter if and only if B \ F is a prime ideal. So the
prime filters of a Boolean algebra are in one-to-one correspondence to its
prime ideals.

5.3 Representation of Boolean algebras: the infi-

nite case

As mentioned before, the set of atoms no longer suffices as the underlying
set when representing an infinite Boolean algebra B as a field of sets. In this
section we will prove that in the infinite case the role of the atoms can be
replaced by the prime filters of B. That is, we show that B can be embedded
in P(Fp(B)), the powerset of the set of all prime filters of B. This implies
that B is isomorphic to a field of subsets over Fp(B).

Before we can give the proof of this result, we have to draw some attention
to the existence of prime filters. Theorem 5.14 shows that a prime filter of B
is just a maximal element of the set of all proper filters of B. The existence
of maximal elements is closely related to set theory and its axioms. In our
case, to prove that there are enough prime filters to ‘distinguish’ between
the elements of B we have to use a form of the Axiom of Choice, known as

38

Zorn’s lemma. The form of Zorn’s lemma we will use in our proof is the
following:

Zorn’s Lemma
Let P be a non-empty ordered set in which every non-empty chain has an
upper bound. Then P has a maximal element.

The following theorem, which is known as the Prime Filter Theorem for
Boolean algebras, shows the existence of prime filters, using this lemma.

Theorem 5.17 Let B be a Boolean algebra. Given a proper filter F of B,
then there exist a prime filter F ′ such that F ⊆ F ′.

Proof. Let F be a proper filter of B. We apply Zorn’s lemma to the set

P := {G ∈ F(B) | F ⊆ G 6= B}

ordered by inclusion. Since P contains F , it is non-empty. Let C be a non-
empty chain in P . We show that

⋃

C, which is an upper bound for C, is an
element of P . Clearly

⋃

C is an up-set containing F . Furthermore,
⋃

C 6= B,
because 0 6∈

⋃

C. It remains to show that a, b ∈
⋃

C implies a ∧ b ∈
⋃

C. If
a, b ∈

⋃

C, then we can find filters F1, F2 ∈ C such that a ∈ F1 and b ∈ F2.
Since C is a chain we may assume without loss of generality that F1 ⊆ F2.
Then a, b ∈ F2, which implies a∧ b ∈ F2 ⊆

⋃

C. Hence Zorn’s lemma can be
applied and yields the existence of a maximal element of P . It is easy to see
that this element is a maximal filter and hence, by lemma 5.14, is a prime
filter. Furthermore, it obviously contains F and therefore is the prime filter
we require.

2

We can also formulate this theorem slightly differently, using both prime
filters and prime ideals. This formulation of the Prime Filter Theorem will
turn out to be useful in some proofs later on.

Theorem 5.18 Let B be a Boolean algebra, F a filter of B and I and ideal
of B such that F ∩ I = ∅. Then there exist a prime filter F ′ and a prime
ideal I ′ such that F ⊆ F ′, I ⊆ I ′ and F ′ ∩ I ′ = ∅.

Proof. Define

G := {c ∈ B | ∃a ∈ F, b ∈ I : a ∧ ¬b ≤ c}.

39

We prove that G is a proper filter of B. Clearly G is an up-set. Given c1, c2
determine a1, a2 ∈ F and b1, b2 ∈ I such that a1∧¬b1 ≤ c1 and a2∧¬b2 ≤ c2.
Then (a1 ∧ ¬b1) ∧ (a2 ∧ ¬b2) ≤ c1 ∧ c2. Furthermore

(a1 ∧ ¬b1) ∧ (a2 ∧ ¬b2) = (a1 ∧ a2) ∧ (¬b1 ∧ ¬b2)

= (a1 ∧ a2) ∧ ¬(b1 ∨ b2).

Since a1 ∧ a2 ∈ F and b1 ∨ b2 ∈ I this implies c1 ∧ c2 ∈ G. Hence G is a
filter of B. Now suppose 0 ∈ G. That is, there exist a ∈ F and b ∈ I such
that a∧¬b = 0. By Lemma 4.13 this implies a ≤ b. Hence a ∈ I and b ∈ F ,
but this is in contradiction with F ∩ I = ∅. Hence G is a proper filter of B.
By the previous theorem there exists a prime filter F ′ such that F ⊆ F ′.
Furthermore, observe that B \ F ′ is a prime ideal and, since ¬b ∈ F ′ for all
b ∈ I, we have I ⊆ B \ F ′.

2

Now we are ready to prove the main theorem of this section. This theorem
can be seen as a generalization of Theorem 5.6, which said that every finite
Boolean algebra is isomorphic to a powerset algebra. We have observed that,
in general, this no longer holds. We can however show that an arbitrary
Boolean algebra can be embedded in a powerset algebra.

Theorem 5.19 Let B be a Boolean algebra. Then B is isomorphic to a
subalgebra of P(Fp(B)). Moreover, the map ϕ : B → P(Fp(B)) defined by

ϕ : a 7→ {F ∈ Fp(B) | a ∈ F}

is a Boolean algebra embedding.

Proof. We first show that ϕ is a homomorphism. Clearly ϕ(0) = ∅, since no
prime filter contains 0 and ϕ(1) = Fp(B), because each prime filter contains
1. We have to show ϕ(a ∧ b) = ϕ(a) ∩ ϕ(b) and ϕ(a ∨ b) = ϕ(a) ∪ ϕ(b), for
all a, b ∈ B. Take F ∈ Fp(B). Since F is a filter,

a ∧ b ∈ F if and only if a ∈ F and b ∈ F

and since F is prime,

a ∨ b ∈ F if and only if a ∈ F or b ∈ F.

40

Thus we have

ϕ(a ∧ b) = {F ∈ Fp(B) | a ∧ b ∈ F}

= {F ∈ Fp(B) | a ∈ F and b ∈ F}

= {F ∈ Fb(B) | a ∈ F} ∩ {F ∈ Fb(B) | b ∈ F}

= ϕ(a) ∩ ϕ(b).

and

ϕ(a ∨ b) = {F ∈ Fp(B) | a ∨ b ∈ F}

= {F ∈ Fp(B) | a ∈ F or b ∈ F}

= {F ∈ Fb(B) | a ∈ F} ∪ {F ∈ Fb(B) | b ∈ F}

= ϕ(a) ∪ ϕ(b).

So ϕ is a homomorphism.
It remains to be shown that ϕ is one-to-one. Let a, b be distinct elements of
B. Without loss of generality we may assume a 6≤ b. By Lemma 4.13, this
implies a ∧ ¬b 6= 0. Hence F = ↑(a ∧ ¬b) is a proper filter that contains a
and ¬b. By Theorem 5.17, there is a prime filter F ′ containing F . Obviously
a,¬b ∈ F ′, but b 6∈ F , because F ′ is prime. So F ∈ ϕ(a) and F 6∈ ϕ(b), that
is ϕ(a) 6= ϕ(b).

2

Corollary 5.20 Every Boolean algebra is isomorphic to a field of sets.

It turns out that the embedding ϕ as defined in Theorem 5.19 has some
interesting properties. First of all we show that ϕ is dense.

Definition 5.21 Let A and B be Boolean algebras and h : A → B a
Boolean embedding. If every element of B can be expressed both as a join
of meets and as a meet of joins of elements in h(A), then the embedding h
is called dense.

Theorem 5.22 Let B be a Boolean algebra. Then the embedding ϕ : B →֒
P(Fp(B)), as defined in Theorem 5.19 is dense.

Proof. Let V ∈ P(Fp(B)). Obviously V is the join of singletons in
P(Fp(B)). So to prove the first claim it suffices to show that every sin-
gleton of P(Fp(B)) can be expressed as a meet of elements in ϕ(B). This

41

is obtained by the claim that

{F} =
∧

{ϕ(a) | a ∈ F} for all F ∈ Fp(B).

Obviously F ∈
∧

{ϕ(a) | a ∈ F}. Furthermore, suppose F ′ ∈
∧

{ϕ(a) | a ∈
F}. Then F ⊆ F ′, which implies F = F ′ (since F and F ′ are both prime
and hence, by lemma 5.14, maximal).
The second claim, that V can be expressed as the meet of joins, is obtained
by order duality.

2

A second observation about the embedding ϕ is that it is a compact embed-
ding.

Definition 5.23 Let A and B be Boolean algebras and h : A → B a
Boolean embedding. Assume also that B is complete. If for all S, T ⊆ A
with

∧

h(S) ≤
∨

h(T), there exist finite S′ ⊆ S and T ′ ⊆ T such that
∧

S′ ≤
∨

T ′, then the embedding h is called compact.

Observe that P(Fp(B)) is a complete Boolean algebra as it is a powerset.

Theorem 5.24 Let B be a Boolean algebra. The embedding ϕ : B →֒
P(Fp(B)), as defined in Theorem 5.19, is compact.

Proof. Let S, T ⊆ B such that
∧

ϕ(S) ≤
∨

ϕ(T). Define ¬T := {¬t | t ∈
T} and define A ⊆ B as follows

A := S ∪ (¬T).

Let F be the smallest filter containing A. That is,

F = {b ∈ B | a1 ∧ . . . ∧ an ≤ b for some a1, . . . , an ∈ A}.

If F is not proper, then 0 ∈ F and a1 ∧ . . . ∧ an = 0 for some finite subset
{a1, . . . an} of A. That is, there exist s1, . . . sk ∈ S and t1, . . . , tl ∈ T such
that

s1 ∧ . . . ∧ sk ∧ (¬t1) ∧ . . . ∧ (¬tl) = 0.

Hence, by de Morgan’s law, we obtain

s1 ∧ . . . ∧ sk ∧ ¬(t1 ∨ . . . ∨ tl) = 0.

42

By Lemma 4.13, this implies

s1 ∧ . . . ∧ sk ≤ t1 ∨ . . . ∨ tl

which proves our assertion.
Now suppose F is proper. Then, by Lemma 5.17, there is a prime filter F ′

containing F . Since S ⊆ F ′ we have,

F ′ ∈ {F ∈ Fp(B) | S ⊆ F} =
⋂

ϕ(S) =
∧

ϕ(S).

On the other hand ¬T ⊆ F ′, implies t /∈ F ′ for all t ∈ T (since F ′ is proper).
Hence

F ′ /∈ {F ∈ Fp(B) | t ∈ F for some t ∈ T} =
⋃

ϕ(S) =
∨

ϕ(T).

This is a contradiction of
∧

ϕ(S) ≤
∨

ϕ(T).

2

In the next chapter we introduce a topology on the Fp(B), which captures
exactly the subsets of Fp(B) that are in the image of ϕ. We will see that
the compactness of ϕ corresponds to the compactness of the topology.

43

44

Part III

Duality

45

Chapter 6

A topological representation

for Boolean algebras

In this chapter we use the representation results from the previous chapter to
get a correspondence between Boolean algebras and certain topological spaces.
We define a topology on the set of prime filters of a Boolean algebra and we
show that the topological spaces arising in this way are of a special kind,
called Stone spaces. These are the first steps into the theory of categorical
duality which is pursued in the next chapter.

6.1 The dual space of a Boolean algebra

In the previous chapter we have shown that the map ϕ : B → P(Fp(B))
defined by

ϕ : a 7→ {F ∈ Fp(B) | a ∈ F}

is a Boolean algebra embedding of B into the powerset of its prime filters,
P(Fp(B)). The image ϕ(B) is a representation of B as a field of sets and
is a subalgebra of the powerset algebra P(Fp(B)). In general, the powerset
algebra P(Fp(B)) alone does not give enough information to recover the
structure of the original algebra B. One can find non-isomorphic Boolean
algebras A and B such that P(Fp(A)) ∼= P(Fp(B)). We will therefore put
additional structure on the set Fp(B) that enables us to determine exactly
which elements of P(Fp(B)) belong to the image of ϕ. More specifically, we
will equip Fp(B) with a topology TB and we will prove that the clopen sets
of this topology are exactly the elements in the image of ϕ, and hence form

46

a Boolean algebra isomorphic to B.

Let B be a Boolean algebra. The family of subsets of Fp(B) in the image of
ϕ does in general not form a topology on Fp(B) since it is not closed under
arbitrary union. Note that the image of ϕ is closed under finite intersec-
tion since ϕ(a) ∩ ϕ(b) = ϕ(a ∧ b) and furthermore contains ϕ(0) = ∅ and
ϕ(1) = Fp(B). Hence the set ϕ(B) is the basis for some topology. We will
define TB to be the topology generated by this basis.

Definition 6.1 Let B be a Boolean algebra and Fp(B) the set of all prime
filters in B. We define the set of open subset of Fp(B) by

TB := {U ⊆ Fp(B) | U is a union of members of ϕ(B)}

The topological space 〈Fp(B),TB〉 is called the dual space of B.

Earlier we made the comment that words like ‘dual’ and ‘duality’ are often
used in mathematics to denote that things are turned upside down. Al-
though it might not be clear from this definition that this is the case here,
we will see in the next chapter (when introducing categories and dual maps)
that there is actually a notion of ‘turning things around’ involved at the
categorical level.

Usually write XB := Fp(B). This makes it easier to think of elements in XB

as points in a space rather than subsets of B. The dual space of a Boolean
algebra B is denoted by 〈XB ,TB〉. As long as TB is the only topology under
consideration we will often write ‘XB is the dual space of B’ without speci-
fying the topology.

The next proposition shows the relationship between the topology and the
image of ϕ.

Proposition 6.2 Let B be a Boolean, XB its dual space, and ϕ : B →֒
P(XB) defined by

ϕ : a 7→ {F ∈ Fp(B) | a ∈ F}.

Then the sets in the image of ϕ are exactly the clopen sets of XB.

Proof. Let U ∈ ϕ(B). That is, there is an a ∈ B such that U = ϕ(a). By
definition, ϕ(a) is open. Furthermore XB \ ϕ(a) = ϕ(¬a) is open. So ϕ(a)
is a clopen subset of XB .

47

Now suppose U is a clopen subset of XB . Because U is open, U =
⋃

ϕ(T)
for some T ⊆ B. But U is also closed and so XB \ U =

⋃

ϕ(S) for some
S ⊆ B. Define ¬S := {¬s | s ∈ S} and observe that

XB \ U =
⋃

ϕ(S)

⇔ U = XB \
⋃

ϕ(S)

⇔ U =
⋂

ϕ(¬S)

So we have
⋂

ϕ(¬S) =
⋃

ϕ(T).

Hence, by Theorem 5.24, which shows that ϕ is a compact embedding, there
are finite S′ ⊆ ¬S and T ′ ⊆ T such that

∧

S′ ≤
∨

T ′.

As ϕ is a homomorphism it preserves order and finite joins. This implies

U =
⋂

ϕ(¬S) ⊆
⋂

ϕ(S′) = ϕ(
∧

S′) ⊆ ϕ(
∨

T ′) =
⋃

ϕ(T ′) ⊆
⋃

ϕ(T) = U.

Hence
∨

ϕ(T ′) = U . Because T ′ is finite this implies U = ϕ(a) with a =
∨

T ′ ∈ B. That is, U ∈ ϕ(B).

2

Clearly, the clopen subsets of any topological space form a Boolean algebra.
In particular, the clopen subsets of the dual space of some Boolean algebra
B form again a Boolean algebra B′. The following theorem, which is a direct
consequence of the previous proposition and theorem 5.19, proves that B
and B′ are isomorphic.

Theorem 6.3 Let B be a Boolean algebra and XB its dual space. Then

B ∼= Cl(XB),

where Cl(XB) denotes the set of clopen subsets of XB.

Proof. Let ϕ : B →֒ P(XB) be the embedding as defined in Proposition
6.2. This proposition shows that the image of ϕ are exactly the clopen sets
of 〈XB ,TB〉. Since ϕ is a Boolean algebra embedding we have B ∼= ϕ(B) =
Cl(XB).

2

48

6.2 Stone spaces

We will now take a closer look at the topological spaces arising as the dual
space of a Boolean algebra. First of all, the compactness of the embedding
ϕ established in theorem 5.24 in the previous chapter, can be translated into
topological compactness of the dual space.

Proposition 6.4 Let B be a Boolean algebra and XB its dual space. Then
XB is compact.

Proof. Let U be an open cover of XB . We have to show that U contains a
finite subcover of XB . Since every open set is a union of elements of ϕ(B)
we may assume without loss of generality that U ⊆ ϕ(B). That is, there is
a subset A ⊆ B such that U = {ϕ(a) | a ∈ A}. In other words

XB =
⋃

ϕ(A).

Observe that XB = ϕ(1) =
⋂

ϕ(1). Hence

⋂

ϕ(1) =
⋃

ϕ(A).

Now we can use the fact that ϕ is a compact embedding (Theorem 5.24) to
obtain a finite subset A′ ⊆ A such that

XB =
⋂

ϕ(1) =
⋃

ϕ(A′).

Hence U ′ = {ϕ(a) | a ∈ A′} is a finite subcover of XB .

2

Another common property of the topological spaces arising as dual spaces
of Boolean algebras, is that they satisfy some separation property.

Definition 6.5 A topological space 〈X;T 〉 is said to be totally discon-
nected if, given distinct points x, y ∈ X, there exists a clopen subset V of
X such that x ∈ V and y /∈ V .

Note that this definition implies that a totally disconnected space is Haus-
dorff: if x, y ∈ X and V clopen such that x ∈ V and y /∈ V then y ∈ X \ V ,
which is open, while V and X \ V are disjoint.

Proposition 6.6 Let 〈XB ,TB〉 be the dual space of a Boolean algebra B.
Then 〈XB ,TB〉 is totally disconnected.

49

Proof. Let F1 and F2 be distinct elements of XB . We have to find a clopen
subset of XB that contains F1 but not F2. Since F1 and F2 are distinct,
there is an a ∈ B with a ∈ F1 and a /∈ F2. Hence F1 ∈ ϕ(a) and F2 6∈ ϕ(a)
and, by theorem 6.2, ϕ(a) is clopen.

2

Definition 6.7 A topological space that is compact and totally discon-
nected is called a Stone space (or Boolean space).

Corollary 6.8 The dual space of a Boolean algebra is a Stone space.

Let us summarize what we have established so far. Starting from a Boolean
algebra B we have constructed its dual space 〈XB ,TB〉. Then we made the
following two observations:

1. 〈XB ,TB〉 is a Stone space.

2. The clopen subsets of 〈XB ,TB〉 give rise to a Boolean algebra isomor-
phic to B.

Now, if we start from a Stone space, obviously the clopen subsets give rise
to a Boolean algebra. The next theorem shows that the dual space of this
Boolean algebra is homeomorphic to the original space.

Theorem 6.9 Let Y be a Stone space. Define B to be the Boolean algebra
of clopen subsets of Y and let XB be the dual of B. Then Y and XB are
homeomorphic.

Proof. We show that

ψ : x 7→ {a ∈ B | x ∈ a}

is a homeomorphism between Y and XB .
It is easy to check that ψ(x) is a prime filter in B. So ψ is well-defined. Since
Y is a compact and Hausdorff it is sufficient to prove that ψ is continuous
and bijective.
Let x, y ∈ Y be distinct. Since Y is totally disconnected there is a clopen
set a ∈ B containing x but not y. Hence a ∈ ψ(x) and a /∈ ψ(y). That is,
ψ(x) 6= ψ(y). Hence ψ is injective.
To establish continuity is suffices to show that ψ−1(U) is open for every U
in the basis of XB . That is, we have to show that ψ−1(ϕ(a)) is open for

50

all a ∈ B, with ϕ as defined in Proposition 6.2. This is established by the
observation that

ψ−1(ϕ(a)) = {x ∈ Y | ψ(x) ∈ ϕ(a)} = {x ∈ Y | a ∈ ψ(x)} = a

for every a ∈ B and that, by definition, B is the set of clopen subsets of Y .
Finally we have to prove that ψ is surjective. Suppose that there is an
x ∈ XB such that x /∈ ψ(Y). As XB is totally disconnected, there exists for
every y ∈ ψ(Y) a clopen subset Vy of XB such that y ∈ Vy and x /∈ Vy. As
ψ(Y) is closed and hence compact there is an open subcover of ψ(Y). That
is, there exist y1, y2, . . . , yn such that ψ(Y) ⊆ V = Vy1

∪ . . . Vyn
. As V is a

finite union of clopen sets it is again clopen. So there exists an a ∈ B such
that V = ϕ(a). By definition of V this implies ψ(Y) ⊆ ϕ(a) and x /∈ ϕ(a).
Hence Y = ψ−1(ϕ(a)) = a. But this is in contradiction with the fact that
x /∈ ϕ(a).

2

Theorems 6.3 and 6.9 establish a tight connection between Boolean algebras
and Stone spaces. Essentially they argue that, up to isomorphisms and
homeomorphisms, there is a one-to-one correspondence between Boolean
algebras and Stone spaces. This correspondence is part of what is called a
duality between the category of Boolean algebras and the category of Stone
spaces. In the next chapter we will introduce the notion of a category and
see that the relationship between Boolean algebras and Stone spaces can be
extended to a much broader (categorical) setting that captures maps and
substructures as well.

51

Chapter 7

Stone duality

In the previous chapter we have seen that, up to isomorphism, there is a
one-to-one correspondence between Boolean algebras and Stone spaces. In
this chapter we will reformulate these results in a categorical setting. This
enables us to extend the correspondence between the structures to a corre-
spondence between their structure preserving maps. That is, we translate
Boolean homomorphisms into continuous maps and vice versa.

7.1 Category theory: an introduction

The mathematical discipline that studies classes of structures rather than
structures on their own, is known as category theory. In addition to classes of
structures, category theorists are also interested in the relationship between
the structures in a particular class, that is in structure preserving maps or
morphisms. The central object of study in this discipline is a category.

Definition 7.1 A category C consists of:

1. a collection of objects, denoted by Obj(C)

2. a collection of morphisms, denoted by Mor(C).

Each morphism f has two objects A and B, are associated with it: the
domain and codomain. This is denoted by f : A → B. Furthermore,
a notion of composition of morphisms is defined that is associative. The
composition of two morphisms f and g is denoted by g ◦ f and is defined if
and only if the codomain of f equals the domain of g. Finally, there is an
identity morphism idA : A→ A associated with each object A, such that

52

f ◦ idA = f for every f : A→ B and idA ◦ g = g for every g : B → A.

This somewhat technical definition is best illustrated with some familiar ex-
amples.

Example 7.2 The class of ordered sets together with order preserving
maps forms a category. The class of Boolean algebras with Boolean homo-
morphisms is a subcategory of this category. Also the class of topologies
with continuous maps is an example of a category and the class of Stone
spaces with continuous maps forms a subcategory of this category.

Like other mathematical structures, also for categories there exists a notion
of structure preserving map. These are called functors. Functors map ob-
jects to objects and morphisms to morphisms. Furthermore they preserve
the identity morphisms and respect the composition operation. This is ex-
pressed in the following definition.

Definition 7.3 Let C1 and C2 be categories. A (covariant) functor
F : C1 → C2 is a map which assigns to each A ∈ Obj(C1) an element
F (A) ∈ Obj(C2) and to each morphism f : A → B ∈ Mor(C1) a morphism
F (f) : F (A)→ F (B) ∈ Mor(C2) such that

i) for every object A ∈ C1, F (idA) = idF (A);

ii) if f ◦ g is defined in C1 then F (f ◦ g) = F (f) ◦ F (g).

In addition to the notion of a covariant functor there is the notion of con-
travariant functor, which reverses the direction of the morphisms.

Definition 7.4 Let C1 and C2 be categories. A contravariant functor
F : C1 → C2 is a map which assigns to each A ∈ Obj(C1) an object F (A) ∈
Obj(C2) and to each morphism f : A → B ∈ Mor(C1) a morphism F (f) :
F (B)→ F (A) ∈ Mor(C2) such that

i) for every object A ∈ C1, F (idA) = idF (A);

ii) if f ◦ g is defined in C1 then F (f ◦ g) = F (g) ◦ F (f).

53

7.2 Duality between Boolean algebras and Stone

spaces

We will now place the results of the previous chapter in a categorical setting.
Let B be the category of Boolean algebras with Boolean homomorphisms
and S the category of Stone spaces with continuous maps. In the previous
chapter we have established a correspondence between the objects of B and
the objects of S. In this section we will extend this correspondence to the
morphisms of the categories B and S. More specifically, we define two con-
travariant functors F : B → S and G : S → B and prove that they establish
a close relationship between the categories B and S. That is, that they give
rise to a categorical duality between the category of Boolean algebras and
the category of Stone spaces. The term ‘duality’ refers here to the direction
of the maps that is ‘turned upside down’ in the dual category. We will give
an overview of the theory here. A complete treatment of this material is
available in [3], [6] and [7].

We define F : Obj(B)→ Obj(S) and G : Obj(S)→ Obj(B) as follows:

F (B) := XB for all B ∈ Obj(B)

G(X) := Cl(X) for all X ∈ Obj(S).

The results from the previous chapter are formulated in the following theo-
rem.

Theorem 7.5 Let B be the category of Boolean algebras and Boolean ho-
momorphisms and S be the category of Stone spaces and continuous maps.

i) For every B ∈ Obj(B) there is an isomorphism ϕB : B → GF (B).

ii) For every X ∈ Obj(S) there is a homeomorphism ψX : X → FG(X).

Proof. The isomorphisms ϕB and ψX are the maps defined in the proofs
of theorem 6.3 and 6.9 respectively.

2

Note that the isomorphisms ϕB and the homeomorphisms ψX are defined
in a uniform way for all the objects in the categories involved. We will not
make this precise here but just remark that this is a necessary condition
for a duality between categories. The technical notation needed is that of a

54

natural transformation between functors, see for example [6, page 4]

The following two propositions show how we can translate Boolean homo-
morphisms to continuous maps and vice versa.

Proposition 7.6 Let h : A → B be a Boolean homomorphism. For each
y ∈ XB, let

(F (h))(y) := h−1(y).

Then F (h) : XB → XA is continuous.

Proof. It is easy to check that the set h−1(y) is a prime filter in A whenever
y is a prime filter in B. Hence, F (h) : XB → XA is well-defined. To prove
that F (h) is continuous it is enough to prove that F (h)−1(ϕA(a)) is open in
XB for every a ∈ A, since the set {ϕA(a) | a ∈ A} is a basis for the topology
XA. We have

y ∈ F (h)−1(ϕA(a)) ⇔ (F (h))(y) ∈ ϕA(a)

⇔ h−1(y) ∈ ϕA(a)

⇔ a ∈ h−1(y)

⇔ h(a) ∈ y

⇔ y ∈ ϕB(h(a))

and by definition of the topology of XB , ϕB(h(a)) is open in XB .

2

Proposition 7.7 Let f : Y → X be a continuous map. Let

(G(f))(U) := f−1(U) for all U ∈ Cl(X).

Then G(f) : Cl(X)→ Cl(Y) is a Boolean homomorphism.

Proof. Let U ∈ Cl(X) then certainly f−1(U) ∈ Cl(Y), as f is continuous.
So G(f) : Cl(X) → Cl(Y) is well-defined. Clearly (G(f))(∅) = ∅ and
(G(f))(X) = Y . Furthermore, taking the inverse image of subsets respects
union and intersection. That is,

(G(f))(U ∪ V) = (G(f))(U) ∪ (G(f))(V)

(G(f))(U ∩ V) = (G(f))(U) ∩ (G(f))(V).

So, by Lemma 3.10, G(f) is a Boolean homomorphism.

55

2

Theorem 7.8 The maps F : B → S and G : S → B as defined above are
contravariant functors.

Proof: The results from the previous chapter show that F (B) ∈ Obj(S)
for all B ∈ Obj(B) and G(X) ∈ Obj(B) for all X ∈ Obj(S). Furthermore
propositions 7.6 end 7.7 show that F (f) ∈ Mor(S) for all f ∈ Mor(B) and
G(h) ∈ Mor(B) for all h ∈ Mor(S). We will show that F preserves the
identity morphisms and composition and leave the corresponding proof for
G to the reader.
Let B be a Boolean algebra and y ∈ XB . Then (F (idB))(y) := id−1

B (y) =
y = idF (B)(y). So F (idB) = idF (B).
Now let g : A→ B and h : B → C be Boolean homomorphisms and y ∈ XC .
Then:

F (h ◦ g)(y) = (h ◦ g)−1(y)

= (g−1(h−1(y))

= (F (g) ◦ F (h))(y)

2

We have already observed that the composition of F and G maps objects to
isomorphic copies of these objects. We will now show that in a similar way
morphisms are mapped to ‘isomorphic’ morphisms.

Theorem 7.9 Let A,B be Boolean algebras and X,Y Stone spaces. Let
h : A→ B be a Boolean homomorphism and f : Y → X a continuous map.
The functors F : B → S and G : S → B as defined above make the following
diagrams commute.

GF (A)

A B

GF (B)

-h

-
GF (h)

6
ϕ−1

A

6
ϕ−1

B
?

ϕA

?
ϕB

FG(Y)

Y X

FG(X)

-f

-
FG(f)

6
ψ−1

Y

6
ψ−1

X
?

ψY
?

ψX

56

Proof. We just show GF (h) ◦ ϕA = ϕB ◦ h as an instructive example and
leave the rest of the equalities to the reader. Let a ∈ A and y ∈ XB . Then

y ∈ (GF (h) ◦ ϕA)(a) ⇔ y ∈ GF (h)(ϕA(a))

⇔ y ∈ (F (h))−1(ϕA(a))

⇔ (F (h))(y) ∈ ϕA(a)

⇔ h−1(y) ∈ ϕA(a)

⇔ a ∈ h−1(y)

⇔ h(a) ∈ y

⇔ y ∈ ϕB(h(a))

⇔ y ∈ (ϕB ◦ h)(a)

2

Theorems 7.5 and 7.9 establish a tight correspondence between Boolean al-
gebras and Stone spaces and their structure preserving maps. The functors
F and G give rise to what is known as a categorical duality. Since the
notion of duality is central in our theory we will spend some words on the
meaning of this concept.

In general, duality has to do with translating mathematical concepts and
theorems to other mathematical concepts and theorems, back and forth.
Roughly speaking, there are two versions of duality: dualities that relate
concepts and theorems of one and the same mathematical discipline (like
order duality) and dualities that relate concepts and theorems of two dif-
ferent branches of mathematics. The duality between Boolean algebras and
Stone spaces is of the latter kind, it relates the theory of algebra and the
theory of topology.

The duality between Boolean algebras and Stone spaces is a very powerful
tool. It translates algebraic objects to topological objects, without losing any
structural information about the original object. As Theorem 7.9 shows, the
same holds for the translation of maps. But there is more. In principle, it is
possible to dualize every fact on Boolean algebras to its topological counter-
part and vice versa. This often gives surprising and illuminating results in
both the theory of algebra as well as the theory of topology. Because of the
twist in the domain and codomain when we translate maps, some problems
become easier to solve after translating them to their dual counterpart. The
change of the direction of the maps is also the reason why the term ‘duality’

57

applies here. As we have seen before duality in mathematics usually refers
to certain things being turned upside down.

In the last two sections of this chapter we give examples of the translation of
algebraic concepts into their topological dual concepts. In the next section
we show how subalgebras relate to quotients of the dual spaces. In the last
section of this chapter we will see how an additional operation on a Boolean
algebra gives rise to a relational structure on the dual space.

7.3 Subalgebras and quotient spaces

It is part of the standard material on Stone duality that injective Boolean al-
gebra homomorphisms correspond exactly to the surjective continuous maps
between Stone spaces. In this section we translate this to a correspondence
between subalgebras and certain equivalence relations on Stone spaces. A
form of this material can also be found in [1] and [9].

Let X be a topological space and E ⊆ X2 an equivalence relation on X.
Furthermore let π : X → X/E be the canonical embedding that maps every
element of X to its equivalence class. It is a well-known result in topology
that

TX/E := {V ⊆ X/E | π−1(V) open in X}

defines a topology on the set X/E of equivalence classes that makes π con-
tinuous.

Definition 7.10 We call X/E with this topology the quotient space of
X with respect to E.

If X is a Stone space and E an arbitrary equivalence relation on X, the
quotient space X/E is in general not again a Stone space.

Definition 7.11 Let X be a Stone space and E ⊆ X2 an equivalence
relation on X. We call E a Stone equivalence if and only if X/E is again
a Stone space.

In this section we will discover that subalgebras of a Boolean algebra B
correspond one-to-one to Stone equivalence relations on XB .

58

Observe that every map f : X → Y between topological spaces X and Y
defines a binary relation Ker(f) on X in the following way

Ker(f) = {(x, y) ∈ X2 | f(x) = f(y)}.

It is easy to see that Ker(f) is an equivalence relation. Hence every map
f : X → Y gives rise to a quotient space X/Ker(f). In addition, the map f
factors through the quotient space. That is,

X -f
Y

@
@R

π

X/Ker(f)

f̃�
��

commutes, where π(x) = x/Ker(f) and f̃(x/Ker(f)) = f(x) for all x ∈ X.
Notice that by the definition of a quotient space, the map f̃ is always con-
tinuous. It is clearly also injective.

Definition 7.12 Let (X,TX) and (Y,TY) be topological spaces. A map f :
X → Y is called a topological quotient map if the map f̃ : X/Ker(f)→
Y defined by

f̃(x/Ker(f)) = f(x)

is a homeomorphism. That is, if and only if f̃ satisfies the following condi-
tions:

i) f̃ is surjective

ii) f̃−1(U) is open in X ⇐⇒ U is open in Y .

Lemma 7.13 Let A,B be Boolean algebras and f : A → B a Boolean
algebra embedding. Then the dual map, F (f) : XB → XA, is surjective.

Proof. Suppose x ∈ XA. We have to show that there is an y ∈ XB such that
(F (f))(y) = f−1(y) = x. Because x is a prime filter of A, ↑f(x) is a proper
filter in B. Hence, by Theorem 5.17, there is a prime filter that contains
↑f(x). Define y to be such a prime filter. Then f−1(y) is a prime filter in
XA and x = f−1(f(x)) ⊆ f−1(y). But x is maximal, hence f−1(y) = x.

2

59

Theorem 7.14 Let A,B be Boolean algebras and f : A → B a Boolean
algebra embedding. Then the dual map, F (f) : XB → XA, is a topological
quotient map.

Proof. By Lemma 7.13 F (f) is surjective. Furthermore, by Theorem 7.6,
F (f) is continuous. So if U ⊆ XA is open, then F (f)−1(U) is open.
Now assuming V := F (f)−1(U) is open, we have to prove that U is open.
That is, U =

⋃

a∈A′ ϕA(a) for some A′ ⊆ A.
Let y ∈ V . We will show that there exists an a ∈ A such that y ∈ ϕB(f(a)) ⊆
V . Define

[y] := {y′ ∈ XB | F (f)(y) = F (f)(y′)}.

Observe that

y′ ∈ [y] ⇔ f−1(y′) = f−1(y)

⇔ f(a) ∈ y′ for all a ∈ f−1(y)

⇔ y′ ∈ ϕB(f(a)) for all a ∈ f−1(y)

⇔ y′ ∈
⋂

a∈f−1(y)

ϕB(f(a)).

Hence [y] =
⋂

a∈f−1(y) ϕB(f(a)). Furthermore [y] ⊆ V because V is satu-
rated. This implies

XB = V ∪ (
⋂

a∈f−1(y)

ϕB(f(a)))c

= V ∪ (
⋃

a∈f−1(y)

ϕB(f(a))c).

Note that V is open and ϕB(f(a))c is open for every a ∈ A. Hence, by
compactness of XB , there are a1, . . . , an ∈ f

−1(y) such that

XB = V ∪ (
i=n
⋃

i=1

ϕB(f(ai))
c).

So
i=n
⋂

i=1

(ϕB(f(ai))
c)c =

i=n
⋂

i=1

ϕB(f(ai)) ⊆ V.

Define a := a1∧. . .∧an. Then a ∈ f−1(y) so f(a) ∈ y. That is, y ∈ ϕB(f(a)).
Moreover

i=n
⋂

i=1

ϕB(f(ai)) = ϕB(f(a1) ∧ . . . ∧ f(an)) = ϕB(f(a)) ⊆ V.

60

So for every y ∈ V there is an a ∈ A such that y ∈ ϕB(f(a)) ⊆ V . This
means that V =

⋃

a∈A′ ϕB(f(a)) for some A′ ⊆ A. Finally, we observe that

x ∈ (F (f))(
⋃

a∈A′

ϕB(f(a)))

⇔ ∃a ∈ A′, x ∈ (F (f))(ϕB(f(a)))

⇔ ∃a ∈ A′,∃y ∈ ϕB(f(a)), x = f−1(y)

⇔ ∃a ∈ A′,∃y ∈ XB such that f(a) ∈ y, x = f−1(y)

⇔ ∃a ∈ A′ with a ∈ x (as f is onto)

⇔ x ∈
⋃

a∈A′

ϕA(a).

Which implies U = (F (f))(V) =
⋃

a∈A′ ϕA(a) for some A′ ⊆ A.

2

We will now see how a subalgebra of a Boolean algebra gives rise to a Stone
equivalence relation on its dual space.

Definition 7.15 Let B be a Boolean algebra and A a Boolean subalgebra
of B. We define a relation θA on the dual space of B in the following way

θA = {(x, y) ∈ X2
B | ∀a ∈ A : a ∈ x⇔ a ∈ y}.

The next lemma shows that θA is equal to the kernel of some map. So, in
particular, it shows that θA is an equivalence relation.

Lemma 7.16 Let B be a Boolean algebra and A a Boolean subalgebra of B.
Furthermore, let i : A→ B the inclusion of A in B. Then

θA = Ker(F (i))

where F (i) : XB → XA is the dual of the inclusion map i.

Proof. Observe that for all x, y ∈ XB

(x, y) ∈ Ker(F (i)) ⇔ F (i)(x) = F (i)(y)

⇔ i−1(x) = i−1(y)

⇔ x ∩A = y ∩A

⇔ ∀a ∈ A : a ∈ x⇔ a ∈ y

⇔ (x, y) ∈ θB .

So θB = Ker(F (i)).

61

2

Now we can easily deduce the following proposition.

Proposition 7.17 Let A,B be Boolean algebras such that A is a subalgebra
of B. Then

˜F (i) : XB/θA → XA.

is a homeomorphism. In particular, θA is a Stone equivalence for all subal-
gebras A of B.

Proof. By Lemma 7.16 we have

XB/θA = XB/Ker(F (i)),

where F (i) is the dual of the inclusion map i : A → B. By Theorem 7.14
the map F (i) is a topological quotient map. That is,

˜F (i) : XB/Ker(F (i)) → XA

is a homeomorphism. Certainly XA is a Stone space, as it is the dual space
of the Boolean algebra A.

2

This proposition gives rise to another way of looking at the dual space of a
subalgebra A of B. We can either think of XA as the set of prime filters of
the algebra A or we can consider XA to be the set of all equivalence classes
of XB under the equivalence relation θA. That is, that elements of XA are
sets of prime filters of XB .

Now suppose A and C are both subalgebras of a Boolean algebra B. This
gives rise to two Stone equivalence relations θA and θC on XB . The fol-
lowing theorem points out the relationship between subalgebras and their
corresponding equivalence relations.

Proposition 7.18 Let B be Boolean algebra and A and C subalgebras of
B. Then

A is a subalgebra of C ⇐⇒ θC ⊆ θA.

For the proof of this proposition we need the following lemma on the exis-
tence of certain prime filters.

62

Lemma 7.19 Let B be a Boolean algebra, A a proper subalgebra of B and
a ∈ B \ A. There exist prime filters x, y of B such that x ∩ A = y ∩A and
a ∈ x, a /∈ y.

Proof. Consider F = ↑a and I = ↓(↓a ∩ A). Then (F, I) is a disjoint
filter-ideal pair and applying the Prime Filter Theorem we obtain a prime
filter x of B such that F ⊆ x and x ∩ I = ∅. Clearly a ∈ x.
Now consider F ′ = ↑(↑x ∩ A) and I ′ = ↓a. Also (F ′, I ′) is a disjoint filter-
ideal pair and applying the Prime Filter Theorem we obtain a prime filter
y of B such that F ′ ⊆ y and I ′ ∩ y = ∅. As a ∈ I ′ this implies a /∈ y.
Now let b ∈ x ∩ A. Then b ∈ F ′ and thus b ∈ y. That is, x ∩ A ⊆ y ∩ A.
Both x ∩A and y ∩A are prime filters of A hence x ∩A = y ∩A.

2

Proof of Theorem 7.18. ⇒ Let A be a subalgebra of C and suppose and
(x, y) ∈ θC . This implies

x ∩A = x ∩ (C ∩A)

= (x ∩ C) ∩A

= (y ∩ C) ∩A

= y ∩ (C ∩A)

= y ∩A.

That is, (x, y) ∈ θA.

⇐ Now suppose θC ⊆ θA. Assume there exists a ∈ A such that a /∈ C.
Then, by Lemma 7.19, there exist x, y ∈ XB such that x ∩ C = y ∩ C and
a ∈ x, a /∈ y. That is x ∩A 6= y ∩A, a contradiction.
Hence A ⊆ C. As we know that both A and C are subalgebras of B this
implies that A is a subalgebra of C.

2

Corollary 7.20 Let A,C be subalgebras of a Boolean algebra B. Then

θA = θC ⇐⇒ A = C.

This corollary tells us in particular that the map

A 7→ θA.

63

that sends subalgebras of a Boolean algebra to Stone equivalence relations
on its dual space, is injective. In a similar way we can construct a map that
sends (Stone) equivalence relations to subalgebras.

Definition 7.21 Let B be a Boolean algebra and θ ⊆ X2
B an equivalence

relation on the dual space of B. We define

Aθ = {b ∈ B | ∀(x, y) ∈ θ : b ∈ x⇔ b ∈ y}.

This now gives a correspondence between equivalences on XB and subalge-
bras of B as is expressed in the following lemma.

Lemma 7.22 Let B be a Boolean algebra and θ an equivalence on XB.
Then Aθ is a subalgebra of B.

Proof. First of all note that 0 /∈ x for all x ∈ XB and 1 ∈ x for all x ∈ XB .
Hence 0, 1 ∈ Aθ. Secondly, note that for all b ∈ B and x ∈ XB

b ∈ x⇔ ¬b /∈ x.

Hence b ∈ Aθ implies ¬b ∈ Aθ. Now suppose a, b ∈ Aθ and (x, y) ∈ θ. Then

a ∈ x⇔ a ∈ y and b ∈ x⇔ b ∈ y.

Now there are four possibilities:
1. a, b ∈ x. Then a, b ∈ y. Hence a ∨ b ∈ x and a ∨ b ∈ y, as x and y are

both up-sets. Also a ∧ b ∈ x and a ∧ b ∈ y as x and y are prime and
thus closed under ∧.

2. a ∈ x and b /∈ x. Then a ∈ y and b /∈ y. Hence a∨ b ∈ x and a∨ b ∈ y.
Furthermore a ∧ b /∈ x and a ∧ b /∈ y as x and y do not contain b.

3. a /∈ x and b ∈ x. This case is similar to the previous.
4. a /∈ x and b /∈ x. Then a, b /∈ y and hence a ∨ b /∈ x and a ∨ b /∈ y as x

and y are both prime. And obviously a ∧ b /∈ x and a ∧ b /∈ y.
Hence for a, b ∈ Aθ and (x, y) ∈ θ we have

a ∨ b ∈ x⇔ a ∨ b ∈ y and a ∧ b ∈ x⇔ a ∧ b ∈ y.

That is, a∨b, a∧b ∈ Aθ. Together with the previous observations this proves
that Aθ is a subalgebra of B.

2

64

Proposition 7.23 Let B be a Boolean algebra and C a Boolean subalgebra
of B. Furthermore let θC be the relation as defined in Definition 7.15. Then

AθC
= C.

Proof. Let b ∈ C and (x, y) ∈ θC . That is x∩C = y∩C. So b ∈ x⇔ b ∈ y.
Hence b ∈ AθC

.
Now suppose b /∈ C. Then, by lemma 7.19, there exist prime filters x, y of
B, such that x ∩ C = y ∩ C (that is (x, y) ∈ θC) and b ∈ x, b /∈ y. This
implies b /∈ Aθc

.
Thus AθC

= C.

2

Lemma 7.22 tells us that the map

θ 7→ Aθ

sends equivalence relations on XB to subalgebras of B. In addition, Propo-
sition 7.23 shows that it is onto and that it is the inverse of the map

A 7→ θA

that relates subalgebras to Stone equivalence relations. These observations
lead to the following corollary.

Corollary 7.24 Let B be a Boolean algebra. There is a one-to-one corre-
spondence between subalgebras of a Boolean algebra B and Stone equivalence
relations on its dual space XB given by

θ 7→ Aθ = {a ∈ B | ∀(x, y) ∈ θ : (a ∈ x⇔ a ∈ y)}

A 7→ θA = {(x, y) ∈ X2
B | ∀a ∈ A : (a ∈ x⇔ a ∈ y)}.

7.4 Extended Stone duality

In this section we consider a Boolean algebra B equipped with an additional
binary operation ·. We assume that the additional operation satisfies for all
a, b, c ∈ B

(a ∨ b) · c = a · c ∨ b · c

a · (b ∨ c) = a · b ∨ a · c.

65

And for all a ∈ B

a · 0 = 0

0 · a = 0.

That is, we assume that the operation preserves binary and empty joins in
each coordinate. It is easy to see this is equivalent to preserving all finite
joins in each coordinate. Note that the product of languages on the Boolean
algebra P(A∗) as defined in Chapter 1 is exactly of this kind. Also in the
general case we will refer to the additional operation as the product opera-
tion.

In this section we will show how an operation on a Boolean algebra satisfy-
ing the properties above defines a ternary relation on the dual space of the
Boolean algebra. This observation gives rise to an extension of the duality
between Boolean algebras and Stone spaces developed so far. The theory of
extended Stone duality for additional operations, including the proofs of all
the theorems discussed in this section, can be found in [11]. Here we will
just present the minimal amount of information needed for the development
of the rest of the theory.

Let 〈B, ·〉 be a Boolean algebra with an additional operation. We can define
a ternary relation R on the dual space of B in the following way:

R = {(x, y, z) ∈ X3
B | ∀a, b ∈ B : [a ∈ x, b ∈ y]⇒ a · b ∈ z}.

In order for this relation to make sense as the dual concept of the additional
operation, we have to make sure that we are able to recover · from R. Let
us first fix some notation.

For R ⊆ X3 a ternary relation and x, y ∈ X, we define

R[x, y,] = {z ∈ X | R(x, y, z)}

R[x, ,] = {(y, z) ∈ X2 | R(x, y, z)}.

The sets R[, y], R[x, , z], etc. are defined in a similar way. Furthermore
given subsets U, V of X we define

R[U, V,] = {z ∈ X | ∃x ∈ U,∃y ∈ V : R(x, y, z)}

R[U, ,] = {(y, z) ∈ X2 | ∃x ∈ U : R(x, y, z)}.

66

The sets R[, V,], R[U, ,W], etc. are defined in a similar way.

The next theorem shows how the operation · can be recovered from the
relation R.

Theorem 7.25 Let 〈B, ·〉 be a Boolean algebra with an additional operation
that is finite join preserving and let R be the ternary relation on XB as
defined above. Then for all a, b ∈ B

a · b = ϕ−1
B (R[ϕB(a), ϕB(b),]).

That is, given the relation R on XB, we are able to recover the operation ·
on B.

Proof. Let a, b ∈ B. Since ϕB is an isomorphism and hence bijective, it is
sufficient to prove

ϕB(a · b) = ϕB(ϕ−1
B (R[ϕB(a), ϕB(b),])).

That is,
ϕB(a · b) = R[ϕB(a), ϕB(b),].

Let z ∈ R[ϕB(a), ϕB(b),]. Then we can find x ∈ ϕB(a) and y ∈ ϕB(b)
such that R(x, y, z). Since a ∈ x and b ∈ y, this implies a · b ∈ z. That is
z ∈ ϕB(a · b). So

ϕB(a · b) ⊇ R[ϕB(a), ϕB(b),].

Now suppose z ∈ ϕB(a · b). We want to find x ∈ ϕB(a) and y ∈ ϕB(b) such
that z ∈ R(x, y, z). In other words, we have to find x, y ∈ XB , such that
a ∈ x, b ∈ y and x · y ⊆ z. Since a ∈ x we have to make sure

y ⊆ {c ∈ B | a · c ∈ z}.

In other words, we are looking for a prime filter y of B that does not intersect
the set

S = {c ∈ B | a · c /∈ z}.

We show that S is an ideal disjoint from ↑b and then apply the Prime Filter
Theorem to obtain y.
First of all note that a ·0 = 0 /∈ z. Hence 0 ∈ S, so S is non-empty. Suppose
s ∈ S and c ∈ B with c ≤ s. Then a · c ≤ a · s /∈ z, which implies a · c /∈ z
as z is an up-set. Hence c ∈ S, so S is a down-set. Now suppose s1, s2 ∈ S.

67

That is, a · s1, a · s2 /∈ z. As z is a prime filter, this implies a · s1 ∨ a · s2 /∈ z.
But a · s1 ∨ a · s2 = a · (s1 ∨ s2) as · is join preserving. Hence s1 ∨ s2 ∈ S.
So S is an ideal. Finally a · b ∈ z, implies b /∈ S. Since S is a down-set this
implies S ∩ ↑b = ∅.
By the Prime Filter Theorem there exists a prime filter y such that ↑b ⊆ y
and y∩S = ∅. Obviously y ∈ ϕB(b). Now we are going to construct a prime
filter x ∈ ϕB(a), such that x · y ⊆ z in a similar way. Define

T = {c ∈ B | ∃c′ ∈ y : c · c′ /∈ z}.

We show that T is an ideal disjoint from ↑ a.
First of all note that 0 · b = 0 /∈ z. Hence 0 ∈ T , so T is non-empty.
Suppose t ∈ T and c ∈ B with c ≤ t. As t ∈ T there exists c′ ∈ y with
t · c′ /∈ z. But c · c′ ≤ t · c′, hence c · c′ /∈ z. That is, c ∈ T . So T is a
down-set. Now suppose t1, t2 ∈ T . That is, there exists c1, c2 ∈ y such that
t1 · c1 /∈ z and t2 · c2 /∈ z. Hence t1 · (c1 ∧ c2) /∈ z and t2 · (c1 ∧ c2) /∈ z.
This implies t1 · (c1 ∧ c2) ∨ t2 · (c1 ∧ c2) /∈ z as z is a prime filter. But
t1 · (c1 ∧ c2) ∨ t2 · (c1 ∧ c2) = (t1 ∨ t2) · (c1 ∧ c2) as · is join-preserving.
Furthermore c1 ∧ c2 ∈ y since y is a filter, hence t1 ∨ t2 ∈ T . Finally recall
that for all c ∈ y, a · c ∈ z, so a /∈ T . Also T is a down-set, so T ∩↑a = ∅. So
T is an ideal disjoint from ↑a. By the prime filter theorem we can construct
an prime filter that contains ↑a and is disjoint from T . Define x to be such
a prime filter. Then obviously a ∈ x and x · y ⊆ z.

2

The ternary relations arising as the duals of an additional operation on a
Boolean algebra are characterized in the following proposition.

Proposition 7.26 Let 〈B, ·〉 be a Boolean algebra with an additional oper-
ation that is finite join preserving and let R be the ternary relation on XB

as defined above. Then

i) for all clopen subsets U and V of XB the set R[U, V,] is clopen;

ii) for each x ∈ XB, the set R[, , x] is closed in the product topology on
X2

B.

We will not prove this proposition here but note that the first property is a
direct consequence of the proof of Theorem 7.25.

Now the full duality between Boolean algebras with an additional opera-
tions and Stone spaces equipped with a ternary relation is expressed in the

68

following theorem. This theorem is proved (in a more general setting) in
[11].

Theorem 7.27 There is a one-to-one correspondence between Boolean al-
gebras with an additional finite join preserving operation and Stone spaces
with a ternary relation satisfying the two properties in Proposition 7.26.

In the same way as we have seen before, we can extend this correspondence
to a categorical correspondence involving structure preserving maps as well.
Although we do not need this full correspondence in the rest of the theory,
we just give it here as another example of a one-to-one relationship between
an algebraic concept and its topological counterpart. Remember that in the
previous section we had a similar one-to-one relationship between subalge-
bras of a Boolean algebra and Stone equivalence relations on its dual space.
In part IV we encounter a third correspondence that combines these two.
That is, we will show that certain subalgebras, the so-called quotienting
subalgebras, correspond one-to-one to Stone equivalences that ‘respect’ the
relation R dual to the additional operations.

69

70

Part IV

Languages, Boolean Algebras

and Duality

71

Chapter 8

Quotienting subalgebras

The main result in this chapter is a specialization of the duality between
subalgebras and Stone equivalence relations for so-called quotienting subalge-
bras. Before we state this result we will motivate why, from a computational
point of view, it makes sense to consider quotienting algebras.

8.1 Quotienting subalgebras and computation

In order to be able to apply any of the duality theory developed in the previ-
ous chapters, we have to assume that the classes of languages we work with
are Boolean subalgebras of P(A∗). In this section we will argue that classes
of interest to the theory of computation are not only Boolean subalgebras,
but often so-called quotienting subalgebras of P(A∗). We will motivate this
by considering the class of regular languages and their correspondence to
finite automata.

Recall that we defined two quotient operations / and \ on P(A∗) as follows

L/K = {u ∈ A∗ | uv ∈ L for all v ∈ K}

K\L = {u ∈ A∗ | vu ∈ L for all v ∈ K}.

By considering the singleton languages we can easily specialize these defini-
tions for quotients by words in A∗. That is,

L/v = {u ∈ A∗ | uv ∈ L}

v\L = {u ∈ A∗ | vu ∈ L}.

Let L be a regular language and AL an automaton that recognizes L. Then
for any word v ∈ A∗, the automata that recognize L/v and v \L can be

72

obtained from the automaton AL by simply changing the initial or final
state(s). The automaton for the language L/v is obtained from AL by mov-
ing every final state ‘backwards’ along a path with label v. The automaton
for the language v \ L is obtained from AL by moving the initial state ‘for-
ward’ along the path with label v. We will illustrate this by some examples.

Example 8.1 Recall the automaton A1 from example 2.5 in Chapter 2.
Let L(A1) be the language recognized by this automaton. We will show how
to obtain automata for the languages L(A1)/ab and ab\L(A1), respectively.
The ‘backward’ paths

2
b
← 2

a
← 2

and
2

b
← 1

a
← 1

show that the automaton for L(A1)/ab is obtained from A1 by adding the
final state 1. Hence the language L(A1)/ab is recognized by the following
automaton.

1 2

a

b

a, b

Similarly the path

1
a
→ 1

b
→ 2

shows that the automaton for ab \ L(A1) is obtained from A1 by changing
the initial state from 1 to 2. Hence the language ab \L(A1) is recognized by
the following automaton.

1 2

a

b

a, b

73

It is not hard to see that these constructions work for arbitrary finite au-
tomata. Note that it may be possible that there are no backwards paths for
certain words. Then the set of final states becomes the empty set and the
corresponding language the empty language.

The observations above show that the complexity of an automaton, and
therefore the complexity of a language, does not change significantly when
taking its left or right quotient by a word. That is, the transition struc-
ture stays the same, only the final or initial state may have changed. So
if C ⊆ Reg(A∗) is a class of languages that represents the complexity of a
certain model of computation, it will usually be the case that both L/u and
u\L are both elements of C for all u ∈ A∗.

The next proposition shows that, in the case of the regular languages, clo-
sure under the quotient operations with respect to singleton languages in
the denominator is the same as closure under the quotient operations with
respect to arbitrary languages in the denominator.

Proposition 8.2 Let C be a Boolean subalgebra of Reg(A∗). Then the fol-
lowing are equivalent

i) u\L,L/u ∈ C for all L ∈ C, u ∈ A∗

ii) K\L,L/K ∈ C for all L ∈ C,K ∈ P(A∗).

The proof of this proposition uses the following lemma.

Lemma 8.3 Let L,K ∈ P(A∗) and ∼ a congruence on A∗ that saturates
L. Then

K\L = K\L and L/K = L/K

where K is the closure of K with respect to ∼.

Proof. Certainly K ⊆ K implies K \ L ⊆ K \L. Now let u ∈ K \ L. That
is, ku ∈ L for all k ∈ K. Suppose k′ ∈ K. Then there is a k ∈ K with
k ∼ k′. As ∼ is a congruence this implies ku ∼ k′u. Hence k′u ∈ L, since ∼
saturates L.

2

Proof of Proposition 8.2. Assume u\L,L/u ∈ C for all L ∈ C and u ∈ A∗.
Suppose L ∈ C and K ∈ P(A∗). As L ∈ Reg(A∗), the syntactic congruence

74

∼L on A∗ is of finite index. Hence the closure K of K with respect to this
congruence is a union of finitely many equivalence classes. That is, there
exist u1, . . . , un such that

K =
i=n
⋃

i=1

ui

Applying Lemma 8.3 we obtain

K\L = K\L

= (

i=n
⋃

i=1

ui)\L

=

i=n
⋂

i=1

(ui\L)

=

i=n
⋂

i=1

(ui\L).

As C is a Boolean algebra it is in particular closed under finite intersection.
Hence, K \L ∈ C. In a similar way we can show L/K ∈ C. The other
direction of the equivalence is obvious.

2

The observations above lead to the following definition of a special kind of
subalgebra of P(A∗), that involves a special closure property with respect
to the additional operations / and \.

Definition 8.4 Let 〈P(A∗), ·, /, \〉 be the Boolean algebra of languages with
additional operations. We say that C ⊆ P(A∗) is a quotienting subalge-
bra of P(A∗) if

i) C is a Boolean subalgebra of P(A∗)

ii) for all L ∈ C and K ∈ P(A∗), L/K ∈ C and K\L ∈ C.

That is, C is a subalgebra closed under the quotient operations with denom-
inators taken in P(A∗).

For Boolean subalgebras of Reg(A∗) we get the following corollary as a direct
consequence of Proposition 8.2.

75

Corollary 8.5 Let C be a Boolean subalgebra of Reg(A∗). Then the follow-
ing are equivalent:

i) L/u, u\L ∈ C for all L ∈ C, u ∈ A∗.

ii) C is a quotienting subalgebra of P(A∗).

Since we argued before that classes of regular languages corresponding to
some level of complexity are closed under taking quotients by words, this
lemma tells that us that these classes actually are quotienting algebras. Al-
though we can only give a proper motivation in the regular case, it turns out
that also outside the regular languages classes of languages related to com-
putational problems are often closed under taking quotients (rather than
that they are closed under product, the class of commutative languages we
introduce later on is a nice example of this).

One of the questions of interest posed in Chapter 1 was to determine for a
certain language L what languages are related to it in terms of computation.
The observations above motivate the following definition.

Definition 8.6 For any L ∈ P(A∗) we define QL to be the smallest quoti-
enting subalgebra of P(A∗) such that L ∈ QL.

At least in the regular case QL contains languages that are of a similar
complexity as L since the automata for languages in QL can be obtained by
moving around initial and final states and applying the Boolean operations
to the automaton recognizing L.

One may wonder what the use is of considering quotienting subalgebras
instead of ordinary subalgebras. In order to take full advantage of the fact
that we are dealing with quotienting algebras, we will explore what special
properties the Stone equivalence relations coming from quotienting algebras
have. This is the content of the last section of this chapter. Before we get
to this, we will consider the results on duality for additional operations for
so-called residuated Boolean algebras.

8.2 Residuated Boolean algebras

So far we have only applied Stone duality in its traditional form. We did not
yet use the fact that P(A∗) is equipped with an additional operation and

76

that we have a duality for this operation as observed in Section 7.4. In fact,
P(A∗) is endowed with three additional operations, the product and the left
and right quotient operations, which form a so-called residuated family.

Definition 8.7 Let B be a Boolean algebra and (·, /, \) be a triple of binary
operations on B. We call (·, /, \) a residuated family if for all a, b, c ∈ B

a · b ≤ c⇐⇒ a ≤ c/b⇐⇒ b ≤ a\c.

We refer to the operation · as the product and to the operations / and \ as
the left, respectively, right residual of ·.

The following definition captures the abstract properties of the algebra
P(A∗) and in particular of the additional operations.

Definition 8.8 Let 〈B, ·, /, \〉 be a Boolean algebra with three additional
binary operations. We call B a residuated Boolean algebra if the oper-
ations (·, /, \) form a residuated family on B.

As a result of Theorem 1.3 the algebra 〈P(A∗), ·, /, \〉 as defined in Chapter
1 is an example of a residuated Boolean algebra.

It can be shown that the triple (·, /, \) being a residuated family implies
that · preserves finite joins in each coordinate. In section 7.4 we considered
a Boolean algebra with an additional operation that preserved finite joins
in each coordinate. Since the product operation of a residuated Boolean
algebra has this properties, the extended duality theory developed in section
7.4 applies. That is, a residuated Boolean algebra 〈B, ·, /, \〉 gives rise to a
dual space with a ternary relation on it. Recall that the relation R on XB

dual to the additional operation was defined as follows.

R = {(x, y, z) ∈ X3
B | ∀a, b ∈ B : [a ∈ x, b ∈ y]⇒ a · b ∈ z}.

Because of the residuation relationship between the operations (·, /, \), we
could also have defined R in terms of either / or \, as is shown by the
following proposition.

Proposition 8.9 Let 〈B, ·, /, \〉 be a residuated Boolean algebra and x, y, z ∈
XB. Then the following are equivalent:

i) ∀a, b ∈ B : a ∈ x, b ∈ y ⇒ a · b ∈ z

77

ii) ∀a, b ∈ B : b ∈ y, a /∈ z ⇒ a/b /∈ x

iii) ∀a, b ∈ B : b ∈ x, a /∈ z ⇒ b\a /∈ y

Proof. We only prove i) ⇔ ii) since the proof of the other equivalence is
similar. Observe that

∀a, b ∈ B : b ∈ y, a /∈ z ⇒ a/b /∈ x

is equivalent to
∀a, b ∈ B : a/b ∈ x, b ∈ y ⇒ a ∈ z.

So let x, y, z ∈ XB such that

∀a, b ∈ B : a ∈ x, b ∈ y ⇒ a · b ∈ z.

Assume a/b ∈ x and b ∈ y. We want to derive a ∈ z. We have that a/b ∈ x
and b ∈ y implies (a/b) · b ∈ z. And by residuation

a/b ≤ a/b⇐⇒ (a/b) · b ≤ a.

Hence a ∈ z.
Now let x, y, z ∈ XB such that.

∀a, b ∈ B : a/b ∈ x, b ∈ y ⇒ a ∈ z.

Suppose a ∈ x and b ∈ y. We want to derive a · b ∈ z. By residuation

a · b ≤ a · b⇔ a ≤ (a · b)/b.

Hence a ≤ (a · b)/b ∈ x. Since b ∈ y this implies a · b ∈ z.

2

The definition of R in terms of the residuals makes it possible to define a
relation RA on a subalgebra A of B that is closed under the residuals but
not necessarily under the product operation. In particular, Proposition 8.9
makes it possible to define a relation RA on the dual spaces of quotienting
subalgebras A of B. Such algebras are the subject of the next section.

78

8.3 Quotienting subalgebras and R-congruences

In this section we explore, in a general setting, the interaction between the
relation R dual to a residuated family of operations and the Stone equiv-
alences coming from quotienting subalgebras. First we need an abstract
definition of the concept of quotienting algebra (similar to Definition 8.4).

Definition 8.10 Let 〈B, ·, /, \〉 be a residuated Boolean algebra. We call
a subset A of B a quotienting subalgebra if

i) A is a Boolean subalgebra of B

ii) for all a ∈ A and b ∈ B : a/b ∈ A and b\a ∈ A.

That is, A is closed under the operations / and \ with denominators taken
in B. Note that a quotienting subalgebra of 〈B, ·, /, \〉 does not have to be
closed under the product operation.

In Chapter 7 we have seen that a subalgebra A of a Boolean algebra B gives
rise to a Stone equivalence relation θA on XB . Furthermore we have seen
that the additional operations on B give rise to a ternary relation R on XB .
It will turn out that the Stone equivalence relations coming from quotienting
subalgebras of B in some sense ‘respect’ the relation R. What this means is
made precise by the following definition.

Definition 8.11 Let X be a Stone space and θ a Stone equivalence relation
on X. Furthermore let R be a ternary relation on X. We say that θ is an
R-congruence on X provided for all x, x′, y, y′, z ∈ X

R(x, y, z) and (x, x′), (y, y′) ∈ θ ⇒ ∃z′ : R(x′, y′, z′) and (z, z′) ∈ θ.

Observe that this definition is in fact a generalization of the concept of con-
gruence with respect to an operation as defined in Definition 2.13. That is,
Definition 2.13 deals with the case that R is functional.

Definition 8.12 Let R be a ternary relation on a set X. We say that R
is functional if for all x, y ∈ X there exists exactly one z ∈ X such that
R(x, y, z).

79

Every ternary relation that is functional defines a binary operation on X
and an R-congruence in this case is the same as a congruence with respect
to this operation. Using the notion of R-congruence, we can formulate the
main theorem of this chapter.

Theorem 8.13 Let 〈B, ·, /, \〉 be a residuated Boolean algebra and A a
Boolean subalgebra of B. Furthermore let R be the relation dual to the ad-
ditional operations on B and θA the Stone equivalence on XB induced by A.
Then A is a quotienting subalgebra of B if and only if θA is an R-congruence.

For the proof of this theorem we need the following lemma about prime
filters.

Lemma 8.14 Let 〈B, ·, /, \〉 be a residuated Boolean algebra and x ∈ XB.
We have for all a, b ∈ B

a/b /∈ x⇐⇒ ∃y, z ∈ XB : a /∈ z, b ∈ y and R(x, y, z).

Proof. ⇒) Let a, b ∈ B and x ∈ XB such that a/b /∈ x. Define

I = {d ∈ B | ∃c ∈ x with c · d ≤ a}.

Certainly I is a down-set. Furthermore let d1, d2 ∈ a. That is, there exist
c1, c2 ∈ x such that c1 · d1 ≤ a and c2 · d2 ≤ a. Define c = c1 ∧ c2. Then
c ∈ x and c · d1 ≤ a and c · d2 ≤ a, hence c · (d1 ∨ d2) = c · d1 ∨ c · d2 ≤ a.
That is d1 ∨ d2 ∈ I. Hence I is an ideal.
Now suppose b ∈ I. Then there is a c ∈ x such that c · b ≤ a. By residuation

c · b ≤ a⇔ c ≤ a/b.

But then a/b ∈ x, as c ∈ x. This is a contradiction. So b /∈ I.
Hence defining F = ↑b gives rise to a disjoint filter-ideal pair (F, I). We
apply the Prime Filter Theorem and obtain a filter y such that b ∈ y and
y ∩ I = ∅.
To obtain z we will again use the Prime Filter Theorem. We define

F ′ = {e ∈ B | ∃c ∈ x, c′ ∈ y with c · c′ ≤ e}.

Certainly F ′ is an up-set. Now suppose e1, e2 ∈ F
′. Then there are c1, c2 ∈ x

and c′1, c
′
2 ∈ y such that c1 · c

′
1 ≤ e1 and c2 · c

′
2 ≤ e2. Thus c1 ∧ c2 ∈ x and

c′1 ∧ c
′
2 ∈ y and

(c1 ∧ c2) · (c
′
1 ∧ c

′
2) ≤ c1 · c

′
1 ∧ c2 · c

′
2 ≤ e1 ∧ e2.

80

Hence e1 ∧ e2 ∈ F
′. Thus F ′ is a filter. By the definition of I and the fact

that y ∩ I = ∅ we have that a /∈ F ′. Hence defining I ′ = ↓a gives rise to
a disjoint filter-ideal pair (F ′, I ′). We apply the Prime Filter Theorem and
obtain a prime filter z such that F ′ ⊆ z and a /∈ z. But F ⊆ z implies
c · c′ ∈ z for all c ∈ x, c′ ∈ y. That is, R(x, y, z).
⇐) The other direction follows directly from Proposition 8.9.

2

Apart from being a technical useful Lemma, the above result actually tells
us that we can recover the operations / and \ directly from R. This is useful
for quotienting subalgebras not closed under the product operation.

Proof of Theorem 8.13. ⇒) Suppose that A is a quotienting subalgebra
of B. We have to show that

θA = {(x, x′) ∈ X2
B | x ∩A = x′ ∩A}

is anR−congruence. That is, given x, x′, y, y′, z ∈ XB such that (x, x′), (y, y′) ∈
θA and R(x, y, z), we want to find z′ ∈ XB such that (z, z′) ∈ θA and
R(x′, y′, z′). We define

F = ↑(x′ · y′) = {d ∈ B | ∃b ∈ x′, c ∈ y′ with b · c ≤ d}.

Then F is a prime filter (as the definition of F is similar to the definition of
F ′ in the proof of Lemma 8.14). Furthermore we define

I = ↓(A ∩ zc).

Certainly I is a down-set. Now let c1, c2 ∈ I. Then you can find a1, a2 ∈
A ∩ (z)c such that ci ≤ ai. That means c1 ∨ c2 ≤ a1 ∨ a2 and the latter
is in A∩zc as A is a subalgebra and zc is a (prime) ideal. Hence I is an ideal.

Now we will prove that F and I are disjoint by showing that a ∈ F and
a ∈ A implies a ∈ z. Assume a ∈ A and a ∈ F . The latter means that we
can find b ∈ x′ and c ∈ y′ such that b · c ≤ a. By residuation this implies
c ≤ b\a. Because c ∈ y′, we have b\a ∈ y′. In addition b\a ∈ A as a ∈ A
and A is a quotienting subalgebra of B. Hence

b\a ∈ y′ ∩A = y ∩A.

In particular b\a ∈ y.
Furthermore observe that b · b\a ≤ a implies b ≤ a/(b\a). As b ∈ x′ this
implies a/(b\a) ∈ x′. Also a/(b\a) ∈ A. Hence

a/(b\a) ∈ x′ ∩A = x ∩A.

81

In particular a/(b\a) ∈ x.
So a/(b\a) · b\a ∈ z. As a/(b\a) · b\a ≤ a (by residuation) this implies a ∈ z.
Hence (F, I) is a disjoint filter-ideal pair. Now we apply the Prime Filter
Theorem and obtain a prime filter z′ that contains F . By definition of F
this means R(x′, y′, z′). Furthermore, z′ ∩ (A ∩ (z)c) = ∅, so z′ ∩A ⊆ z ∩A.
But as z∩A and z′∩A are both prime filters of A this implies z′∩A = z∩A.
That is (z, z′) ∈ θA.

⇐) Suppose θA is an R-congruence. By Theorem 7.23 AθA
= A. Hence it

suffices to show that AθA
is a quotienting subalgebra of B. Recall that

AθA
= {b ∈ B | ∀(x, x′) ∈ θA : b ∈ x⇔ b ∈ x′}

= {b ∈ B | ∀(x, x′) ∈ θA : b /∈ x⇔ b /∈ x′}

Let a ∈ AθA
and b ∈ B. We will show that a/b ∈ AθA

. So let (x, x′) ∈ θA.
We have

a/b /∈ x ⇔ ∃y, z ∈ XB with a /∈ z, b ∈ y and R(x, y, z))

⇔ ∃y, z, z′ ∈ XB with a /∈ z, b ∈ y and R(x′, y, z′) and (z, z′) ∈ θA

⇔ ∃y, z′ ∈ XB with a /∈ z′, b ∈ y and R(x′, y, z′)

⇔ a/b /∈ x′.

The first and the last equivalence are established by Lemma 8.14. The
second and third equivalence are established by taking y′ = y and the fact
that θA is an R-congruence. Also (z, z′) ∈ θA implies a′ /∈ z′ ⇔ a′ /∈ z for
all a′ ∈ A, in particular for our given a.
Hence a/b ∈ AθA

. In a similar way you can prove that b\a ∈ AθA
for all

a ∈ A, b ∈ B.

2

A pertinent result in algebra is the fact that a congruence with respect to
an operation gives rise to an operation on the quotient algebra. For example
if 〈X, ·〉 is a semigroup and θ a congruence with respect to · this defines an
operation · on X/θ is the following way

x/θ · y/θ = (x · y)/θ.

That is, we have
x/θ · y/θ = z/θ ⇔ (x · y, z) ∈ θ.

82

or
x/θ · y/θ = z/θ ⇔ ∃z′ ∈ X : x · y = z′ and (z, z′) ∈ θ.

We have formulated it in this last form to draw a parallel with the obser-
vation that an R-congruence θA defines a relation RA on the quotient space
XB/θA.

Definition 8.15 Let B be a residuated Boolean algebra and R the relation
on XB dual to the additional operations. We define for all x, y, z ∈ XB

RA(x, y, z)⇔ ∃z′ ∈ XB : R(x, y, z′) and (z, z′) ∈ θA.

where x, y, z are the equivalence classes of x, y, z with respect to θA.

By Proposition 7.17 we have that XB/θA
∼= XA. Hence the relation R de-

fines a relation RA on XA for every quotienting subalgebra A of B.

The equivalent definitions of R obtained in Proposition 8.9 also make it
possible to define the relation R on subalgebras closed under one of the three
additional operations. It can be proved that for quotienting subalgebras
these two notions agree. That is, it can be shown that

RA(x, y, z) ⇔ ∀a, b ∈ A : b ∈ y, a /∈ z ⇒ a/b /∈ x

⇔ ∀a, b ∈ A : b ∈ x, a /∈ z ⇒ b\a /∈ y.

As remarked above, Lemma 8.14 implies that RA captures / and \ on the
dual space and thus one can develop a dual correspondence for the opera-
tions / and \ without ·.

Before we apply the theory developed in this chapter to the residuated
Boolean algebra of all languages we consider the special case of the regular
languages in the next chapter. As mentioned before this will a formulation
of the relationship between regular languages and semigroups in terms of
duality.

83

Chapter 9

The dual space of the regular

languages

In this chapter we will apply the duality theory developed in the previous
chapter to the Boolean algebra of regular languages. The main result of this
chapter is the fact that the relation R dual to the additional operations is
functional on the dual space of this algebra. Furthermore we prove that the
dual space of the quotienting subalgebra generated by a regular language L is
(isomorphic to) the syntactic semigroup of L. This observation relates the
duality approach to the semigroup setting and places the previously existing
results about semigroups and regular languages in a more general setting.
Also it opens the door to generalize the theory and study classes outside the
regular languages as we will do in the next chapter.

9.1 The residuated Boolean algebra of regular lan-

guages

As 〈P(A∗), ·, /, \〉 is an example of a residuated Boolean algebra, we can
apply the theory developed so far to this setting. But before we discuss the
general case we will have a closer look at the Boolean algebra Reg(A∗) of all
regular languages. First we observe that this is also a residuated Boolean
algebra, as it is a subalgebra of P(A∗) closed under the additional operations.

Proposition 9.1 The class of regular languages is closed under the opera-
tions ·, / and \.

84

Proof. Let K,L be regular languages. By definition K · L is regular. Also
L/u and u\L are regular for all u ∈ A∗, since automata for L/u and u\L can
easily be constructed from an automaton for L as we have seen in Section
8.1. By Proposition 8.2 this implies that the languages L/K and K\L are
regular for all K ∈ P(A∗). So in particular L/K and K \L are regular for
K ∈ Reg(A∗).

2

So we can consider 〈Reg(A∗), ·, /, \〉, which is a residuated Boolean algebra.
The theory developed so far gives rise to a relation R on the dual space
XReg(A∗) of this algebra. In the case of the regular languages the relation R
dual to the additional operations turns out to be functional.

9.2 The dual space of the regular languages

To prove that R is functional on XReg(A∗) we need the following lemma.

Lemma 9.2 For x, y ∈ XReg(A∗) define

z = {L ∈ Reg(A∗) | ∃K ∈ x and H ∈ y such that K ·H ⊆ L}.

Then z is a prime filter of Reg(A∗).

Proof. It is easy to check that A∗ ∈ z and ∅ /∈ z. Furthermore z is an
up-set.
Now let L1, L2 ∈ z. That is, there are K1,K2 ∈ x and H1,H2 ∈ y such that
K1H1 ⊆ L1 and K2H2 ⊆ L2. Hence K1 ∩K2 ∈ x and L1 ∩ L2 ∈ y and

(K1 ∩K2)(H1 ∩H2) ⊆ K1H1 ∩K2H2 ⊆ L1 ∩ L2.

So L1 ∩ L2 ∈ z.
Now suppose L = L1 ∪ L2 ∈ z. We have to show L1 ∈ z or L2 ∈ z. Let
∼L1

and ∼L2
be the syntactic congruences of L1 and L2. As L1 and L2 are

regular languages both ∼L1
and ∼L2

are of finite index. Define

∼:=∼L1
∩ ∼L2

.

Then also ∼ is of finite index and it is easily checked that ∼ saturates L.
The fact that L ∈ z tells us that we can find K ∈ x and H ∈ y such that
KH ⊆ L. As ∼ is of finite index, there exists a finite K ′ ⊆ K such that

K ⊆ K =
⋃

u∈K ′

u.

85

where u denotes the equivalence class of u with respect to ∼. Hence u ∈ x
for some u ∈ K ′. Furthermore KH ⊆ L implies H ⊆ K \ L. This implies

H ⊆ K \ L

= K \ L

⊆ u \ L

= u \ L

= u \ (L1 ∪ L2)

= u \ L1 ∪ u \ L2.

Hence u \ L1 ∈ y or u \ L2 ∈ y. Without loss of generality we may assume
u \ L1 ∈ y. We have u \ L1 = u \ L1 and u · (u \ L1) ⊆ L1. Hence L1 ∈ z.

2

This lemma tells us that we can endow the space XReg(A∗) with an operation
∗ : XReg(A∗) ×XReg(A∗) → XReg(A∗) defined by

x ∗ y := {L ∈ Reg(A∗) | ∃K ∈ x,H ∈ y such that K ·H ⊆ L}.

The following theorem points out that the relation R on XReg(A∗) dual to
the additional operations is functional and gives rise to the operation ∗.

Theorem 9.3 Let 〈Reg(A∗), ·, /, \〉 be the residuated Boolean algebra of reg-
ular languages and R the relation on XReg(A∗) dual to the additional opera-
tions. Then R is functional. In particular for all x, y, z ∈ XReg(A∗)

R(x, y, z)⇐⇒ z = x ∗ y.

Proof. Let x, y ∈ XReg(A∗). Obviously L ∈ x and M ∈ y implies L ·M ∈
x ∗ y. Hence R(x, y, x ∗ y). Now suppose z ∈ XReg(A∗) and R(x, y, z). By
definition of R and the fact that z is a prime filters (and hence, in particular,
an up-set), this implies x ∗ y ⊆ z. By Lemma 9.2 we have that also x ∗ y is
a prime filter. Thus x ∗ y = z.

2

From the definition of the operation ∗ it is easily deduced that this operation
is associative. Hence it turns XReg(A∗) into a semigroup. If we combine this
result with Theorem 8.13 which says that quotienting subalgebras give rise
to R-congruences, we get the following corollaries.

86

Corollary 9.4 Let C be a quotienting subalgebra of Reg(A∗). Then θC is a
congruence on the semigroup 〈XReg(A∗), ∗〉.

Corollary 9.5 Let C be a quotienting subalgebra of Reg(A∗). Then XC is a
semigroup, with the operation inherited from XReg(A∗).

9.3 Dual space versus syntactic semigroup

We will now see that the application of duality theory to the residuated
Boolean algebra of regular languages gives rise to (an isomorphic copy) of
the syntactic semigroup of a regular language. Recall that for every lan-
guage L ∈ P(A∗) we defined the quotienting subalgebra generated by L as
follows.
Definition 9.6 For any L ∈ P(A∗) we define QL to be the smallest quoti-
enting subalgebra of P(A∗) such that L ∈ QL.

The last corollary of the previous section shows that the dual space XC

of any quotienting subalgebra of Reg(A∗) is a semigroup. In particular,
every regular language L gives rise to a semigroup 〈XQL

, ∗〉, that is the
dual space of the quotienting algebra QL generated by L. At the end of
this section we will show that this semigroup is in fact isomorphic to the
syntactic semigroup A∗/∼L. First we prove that the syntactic congruence
determines exactly the languages that belong to the quotienting algebra QL.

Definition 9.7 Let L ∈ P(A∗) be a language and ∼ a congruence on A∗.
We say that ∼ recognizes L if ∼ saturates L. That is, if L is a union of
equivalence classes with respect to ∼ .

It is not hard to prove that for every formal language L, the syntactic
congruence ∼L recognizes L.

Lemma 9.8 Let L ∈ P(A∗) be a languages and ∼L be the syntactic con-
gruence of L. Then ∼L recognizes L.

Proof. Suppose u ∼L v. By definition this implies for all s, t ∈ A∗

sut ∈ L⇔ svt ∈ L.

In particular, s = λ and t = λ implies

u ∈ L⇔ v ∈ L.

That is, ∼L saturates L.

87

2

In addition we can prove that the languages recognized by ∼L are exactly
those in QL.

Proposition 9.9 Let L be a regular language. We have for all L′ ∈ Reg(A∗)

L′ ∈ QL ⇐⇒ L′ can be recognized by ∼L .

The proof of this proposition uses the following lemma.

Lemma 9.10 Let L ⊆ A∗ and ∼ a congruence on A∗ that saturates L, that
is, for which L is a union of equivalence classes. Then ∼ saturates K \ L
and L/K for all K ∈ P(A∗).

Proof. Let v, v′ ∈ A∗ with v ∼ v′. As ∼ is a congruence, this implies

uv ∼ uv′ ∀u ∈ A∗.

In particular
kv ∼ kv′ ∀k ∈ K.

Now let L ∈ P(A∗) be a language that is saturated by ∼ we have

v ∈ K \ L ⇔ k · v ∈ L ∀k ∈ K

⇔ kv′ ∈ L ∀k ∈ K

⇔ v′ ∈ K \ L.

So K \L is saturated by ∼. In the same way we can prove that ∼ saturates
L/K.

2

Proof of Proposition 9.9. First observe that a language is recognized by
A∗/∼L if and only if it is saturated by ∼L. By Lemma 9.8 L is saturated
by ∼L. Now suppose L1 and L2 are saturated by ∼L. Then obviously
(L1)

c, L1 ∩ L2 and L1 ∪ L2 are saturated by ∼L. Furthermore by Lemma
9.10 L1/K and K\L1 are saturated for all K ∈ P(A∗). Hence every language
in QL is saturated by ∼L. Note that this does not rely on the fact that L is
regular and this is true for all L ∈ P(A∗)
What is left to show is that every language that is saturated by ∼L is in
QL. Let u ∈ A∗ and u the equivalence class of u with respect to ∼L. We
want to show that u is in QL. Since L is saturated by ∼L we have

u ⊆ L or u ⊆ Lc.

88

Both L and Lc are in QL, so without loss of generality we may assume u ∈ L.
If u = L, then u ∈ QL and we are done. So suppose there is a v ∈ A∗ such
that v ∈ L and v /∈ u. Then not u ∼L v. That is, there exist s, t ∈ A∗ such
that either

sut ∈ L and svt /∈ L

or
sut /∈ L and svt ∈ L.

Without loss of generality we may assume that the first is the case. This
implies

u ∈ s\L/u and v /∈ s\L/u.

Now define
L1 = L ∩ s\L/u.

Now observe that L1 ∈ QL and u ⊆ L1. Furthermore L1 is strictly smaller
than L as v ∈ L and v /∈ L1. Now using the fact that L is regular, we not
that A∗/∼L is finite. Thus we can repeat this procedure finitely many times
to obtain a language Ln such that u = Ln and Ln ∈ QL. Hence u ∈ QL for
every u ∈ A∗. Certainly this implies that any union of equivalence classes
is also in QL as QL is closed under union. Hence all the languages that are
recognized by A∗/∼L are in QL.

2

In particular this proposition 9.9 implies that QL is finite for every regular
language L, as ∼L is of finite index. Hence XQL

is a finite semigroup

Lemma 9.11 The elements of XQL
are all of the form

xu = {K ∈ QL | u ⊆ K}

where u denotes the equivalence class of u with respect to ∼L. Furthermore
the semigroup operation on XQL

inherited from 〈XReg(A∗), ∗〉 is defined by

xu ∗ xv = xuv.

Proof. First of all observe that Proposition 9.9 implies that

QL
∼= P(A∗/∼L)

and that QL is finite. This shows that every prime filter of QL is principal.
That is, that it is of the form xu for some u ∈ A∗.

89

For the second assertion, denote by xu the principal filter of Reg(A∗) gen-
erated by u. That is,

xu = {K ∈ Reg(A∗) | u ∈ K}.

It is not hard to see that xu ∗ xv = xuv. By Theorem 7.17 we have that
XReg(A∗)/θQL

∼= XQL
and an isomorphism is given by

f(x) = x ∩ QL for all x ∈ XReg(A∗)

where x denotes the equivalence class of x with respect to θQL
. This implies

f(xu) = xu ∩QL = xu for all u ∈ A∗. Hence we have

xu ∗ xv = f(xu) ∗ f(xv)

= f(xu ∗ xv)

= f(xu ∗ xv)

= f(xuv)

= xuv.

This establishes the second assertion.

2

We are now ready to prove the main result of this section.

Proposition 9.12 Let L be a regular language. Then

〈A∗/∼L, ·〉 is isomorphic to 〈XQL
, ∗〉

Proof. Define a map g : A∗/∼L → XQL
by

g : u 7→ xu

where u denotes the equivalence class of u with respect to ∼L for every
u ∈ A∗. As a result of the previous lemma this map is onto. Also xu = xv

implies u = v, thus g is injective. Furthermore for all u, v ∈ A∗ we have

g(u) ∗ g(v) = xu ∗ xv

= xuv

= g(uv)

= g(u · v).

Hence g defines a semigroup isomorphism between the semigroups A∗/∼L

and XQL
.

90

2

The results presented in this chapter show that in the case of the regular
languages the application of duality theory is closely related to the known
theory about finite semigroups. These results can also be found in [9] and
[10]. The duality approach has as a big advantage above the semigroup
approach, that it can be generalized for studying classes outside the regular
languages. In the next chapter we will show how this can be established.

9.4 An example outside the regular languages

We will end this chapter by showing that the relation R dual to the addi-
tional operations, in general, does not have to be functional. We will prove
this by giving an example of language L for which the relation R is not
functional on the dual space of QL, the quotienting subalgebra generated
by L. In particular, this shows that the algebra QL is not inside the regular
languages, and thus that L is not a regular language.

Let A = {a, b} and define for u ∈ A∗

|u|a := number of a’s occuring in u

|u|b := number of b’s occuring in u.

Let L ∈ P(A∗) be the language defined by

L := {u ∈ A∗ | |u|a − |u|b ≥ 0}.

We denote by QL the quotienting subalgebra generated by L.

Proposition 9.13 QL is isomorphic to the quotienting subalgebra of P(Z)
generated by ↑0.

Proof. Consider the semigroup (Z,+) and the semigroup morphism h :
A∗ → Z defined by

h : u 7→ |u|a − |u|b.

Then L = h−1(↑0). As h is onto, we have that h−1 : P(Z) → P(A∗) is a
Boolean algebra embedding. Furthermore, by Lemma 9.10, h−1 preserves
the operations / and \, hence the image of the quotienting subalgebra of
P(Z) generated by ↑0 under h−1 is exactly QL and furthermore, h−1 defines
an isomorphism between the two.

91

2

Now let Q be the quotienting subalgebra of P(Z) generated by ↑0. We have

(↑0)/T = {k ∈ Z | k + t ≥ 0 for all t ∈ T}.

This implies

(↑0)/T =

{

∅ if T has no minimum
↑(−min(T)) otherwise.

Hence ↑k ∈ Q for all k ∈ Z. Observe that (↑0)/T = T \ (↑0), since + is
commutative. Closing under the Boolean algebra operation gives rise to the
following characterization of Q.

Q = {S ⊆ Z | S is finite}

∪ {S ⊆ Z | ∃k ∈ Z,∃ finite S′ ⊆ Z : S = ↑k ∪ S′}

∪ {S ⊆ Z | ∃k ∈ Z,∃ finite S′ ⊆ Z : S = ↓k ∪ S′}

∪ {S ⊆ Z | ∃k, k′ ∈ Z,∃ finite S′ ⊆ Z : S = ↑k ∪ ↓k′ ∪ S′}

We will now consider the dual space XQ of Q, consisting of all the prime
filters of Q.

Proposition 9.14 The prime filters of Q are exactly

i) xk = ↑{k} = {S ∈ Q | k ∈ S} for all k ∈ Z

ii) x∞ = {S ∈ Q | ∃k : ↑k ⊆ S}

iii) x−∞ = {S ∈ Q | ∃k : ↓k ⊆ S}.

Proof. It is easy to check that all three definitions above yield prime filters
of Q. Now let x be a prime filter of Q. If x contains a finite subset of Z, then
obviously x = ↑{k} for some k ∈ Z. Now suppose that x does not contain
any finite subset of Z. As ↑k ∪ ↓k = Z for all k ∈ Z we have that ↑k ∈ x
or ↓k ∈ x for all k ∈ Z. Suppose there exist k, k′ ∈ Z such that ↑k ∈ x and
↓k′ ∈ x, then ↑k∩↓k′ ∈ x. This is a contradiction as ↑k∩↓k′ is finite. Hence

x = {S ∈ Q | ∃k : ↑k ⊆ S} = x∞

or
x = {S ∈ Q | ∃k : ↓k ⊆ S} = x−∞.

92

2

Now we can show that R is not functional on XQ. That is, we will show
R(x−∞, x∞, x) for all x ∈ XQ. Recall that by definition of R

R(x−∞, x∞, x)⇐⇒ ∀S, T ∈ P(Z) : [S ∈ x−∞, T ∈ x∞]⇒ S + T ∈ x.

Observe that S ∈ x−∞ implies ↓k ⊆ S for some k ∈ Z. Similarly, T ∈ x∞
implies ↑m for some m ∈ Z. As ↓k + ↑m = Z for all k,m ∈ Z, we have
S + T = Z for all S ∈ x−∞, T ∈ x∞. Hence

R(x−∞, x∞, x)⇐⇒ Z ∈ x.

This is the case for all x ∈ XQ.

In particular, this example shows that in general the dual space 〈XQL
, R〉

of an quotienting subalgebra of a language does not have to be a semigroup.
The dual space 〈XQL

, R〉 of QL can be seen as a generalization of the notion
of syntactic semigroup outside the regular languages. We will come back to
this observation in the next chapter.

93

Chapter 10

Syntactic Stone congruences

and frames

In this final chapter we will apply the duality results presented in the pre-
vious chapters to the theory of formal languages. We introduce the notions
of syntactic Stone congruence and syntactic Stone frame that generalize the
notions of syntactic congruence and syntactic semigroup in the regular case.
In the last section we consider the example of the class of commutative lan-
guages and illustrate that the syntactic Stone frame of an arbitrary language
tells whether or not it is commutative. More specifically, we show that a
language is commutative if and only if it syntactic Stone frame is commu-
tative.

10.1 Syntactic congruences and semigroups for non-

regular languages

Before we introduce the notion of syntactic Stone congruence and syntac-
tic Stone frame, we will shortly motivate why the syntactic congruence and
semigroup in general do not suffice to describe arbitrary classes of languages.

In the previous chapter we have seen that for regular languages the syntactic
semigroup of a language L recognizes precisely all the languages in QL, the
quotienting subalgebra of P(A∗) generated by L. For non-regular languages
this can no longer hold as can be shown by an easy argument on the car-
dinalities of both sets. The set of languages in QL is the underlying set of
a finitely generated algebra and hence countable. The set of all languages
recognized by A∗/∼L is of the same cardinality as P(A∗/∼L) and hence not

94

countable (A∗/∼L is of infinite index, since L is not regular). So in the case
of the non-regular languages the syntactic semigroup of a language recog-
nizes too many languages.

There is another reason why congruences on A∗ are not suitable to study
classes of languages in general. Given a class of languages C, there is a good
chance that it is not possible to find a congruence ∼ on A∗ such that ∼
recognizes exactly the languages in C. For example, if a congruence on A∗

recognizes all the regular languages then it can only contain the diagonal.
But not every languages is regular. So this congruence recognizes to many
languages.

10.2 Syntactic Stone congruences and frames

In the previous chapters we have developed a duality theory for Boolean
algebras. That is, we have seen that Boolean algebras are in one-to-one
correspondence to Stone spaces and that concepts in the theory of Boolean
algebras have topological counterparts. In particular we observed that sub-
algebras of a Boolean algebra are in one-to-one correspondence to Stone
equivalence relations on the dual space and that quotienting subalgebras
are in one-to-one correspondence to R-congruences on the dual space. We
will now see how we can use this relationship to obtain results in the theory
of formal languages.

In this section we will introduce the notions of syntactic Stone congruence
and syntactic Stone frame. In the regular case, the syntactic Stone frame is
actually a semigroup and it is isomorphic to the syntactic semigroup intro-
duced in Chapter 1. However, in the non-regular case these notions do in
general not agree, as we will show.

We can use the one-to-one correspondence between quotienting subalgebras
and Stone congruences established in Chapter 8 to define the notion of syn-
tactic Stone congruence.

Definition 10.1 Let C be a class of languages such that C is a quotient-
ing subalgebra of P(A∗). We call the relation θC on XP(A∗) as defined in
Definition 7.15 the syntactic Stone congruence of C.

95

We can now define what it means for language to be recognized by a Stone
congruence.

Definition 10.2 Let θ be a Stone congruence on XP(A∗) and L ∈ P(A∗) a
language. We say that θ recognizes L if and only if L ∈ Aθ. Where Aθ is
the subalgebra of P(A∗) as defined in Definition 7.21.

The following proposition shows that for every quotienting subalgebra of
P(A∗) there is a Stone congruence that recognizes exactly the languages in
C. Note that for syntactic congruences on A∗ this was not the case.

Proposition 10.3 Let C be a class of languages that is a quotienting subal-
gebra of P(A∗). Then the syntactic Stone congruence of C recognizes exactly
all the languages in C.

Proof. Let L ∈ C. Then L is recognized by θC if and only if L ∈ AθC . By
Proposition 7.23 we have

AθC = C.

2

Using the syntactic Stone congruence of a class of languages, you can con-
struct its syntactic Stone frame, as is shown in the following definition.

Definition 10.4 Let C be a quotienting subalgebra of P(A∗). The relational
space 〈X/θC , RC〉, where RC is the relation on X/θC as defined in Definition
8.15, is called the syntactic Stone frame of C.

In this terminology, Proposition 9.12 in the previous chapter says that for
regular languages the syntactic Stone frame of QL is isomorphic to the syn-
tactic semigroup of L. This motivates the following definition.

Definition 10.5 Let L ∈ P(A∗). The syntactic Stone frame of L is
〈XQL

, RQL
〉. That is, the syntactic Stone frame of QL.

As mentioned before the syntactic Stone frame does not agree with the syn-
tactic semigroup in the non-regular case. In the last section of this chapter
we will consider the class of commutative languages and see how we can
characterize these languages by their syntactic Stone frames.

Let us recall what kind of problems in formal language theory we are inter-
ested in from a computational point of view.

96

• Given L ∈ P(A∗) and C ⊆ P(A∗). Does L belong to C?

• Given C1, C2 ⊆ P(A∗). Is C1 a subset of C2?

• Given L ∈ P(A∗). What languages are related to L in terms of com-
putation?

In Chapter 8 we have argued that quotienting subalgebras are particularly
interesting from a computational point of view. Here we will assume our
classes C are quotienting subalgebras P(A∗). Note that the first question
can then easily be translated into a question of the second type, by consid-
ering the quotienting Boolean subalgebra of P(A∗) generated by L.

Applying the relationship between subalgebras and Stone equivalences on
the dual space obtained in Theorem 7.18 to the second question we get the
following result. It translates the second question above about containment
of Boolean algebras into a question about the corresponding Stone equiva-
lence relations.

Proposition 10.6 Let C1 and C2 be Boolean subalgebras of P(A∗). Then

C1 ⊆ C2 ⇐⇒ θC2
⊆ θC1

.

where θC1
and θC2

are the equivalence relations on XP(A∗) as defined in
Definition 7.15.

So far we have not used the fact that the classes C1 and C2 are quotienting
subalgebras of P(A∗). In this case the relations θC1

and θC2
are not just

Stone equivalence relations but also R-congruences. The benefit of this is
that we may be able to find a fairly small subset of E ⊂ θC2

that generates
θC2

as an R-congruence. It is then sufficient to check that E ⊆ θC1
, as also

C1 is an R-congruence. We close with an illustration of this principle.

10.3 An example: the class of commutative lan-

guages

The relationship between regular languages and finite semigroups has given
rise to numerous characterizations of classes of languages in terms of their
syntactic semigroups. For example, in the introduction we have mentioned
the characterization of the star-free languages by those languages whose syn-
tactic semigroup is aperiodic. We would like the syntactic Stone frame to

97

play a similar role in the setting of arbitrary languages to the role played by
the syntactic semigroup in the regular case.

We will illustrate that this is at least the case for a relatively simple class of
languages, called the commutative languages. From the definition of com-
mutativity it is an easy observation that a language is commutative if and
only if its syntactic semigroup is commutative (in fact this is where the name
comes from). Although a characterization of commutative languages can be
given purely in terms of semigroups, this class provides an instructive exam-
ple, for which the answers are known and simple. This gives us a chance to
test the definition of a syntactic Stone frame. We will generalize the notion
of commutativity to frames and show that a language is commutative if and
only if its syntactic frame is commutative.

Definition 10.7 A language L ∈ P(A∗) is called commutative if and
only if for all t, u, v, w ∈ A∗

tuvw ∈ L⇐⇒ tvuw ∈ L.

We denote the class of all commutative languages over the alphabet A by
C(A∗) or simply by C when we are working over a fixed alphabet.

We can give a slightly different characterization of commutativity of lan-
guages by introducing the notion of a permutation of a word.

Definition 10.8 Let u ∈ A∗. A permutation of u is a word u′ ob-
tained by permutating the symbols of u. So let u = a1a2 . . . an, then
u′ = aα(1)aα(2) . . . aα(n) is a permutation of u, for any permutation α of
{1, 2, . . . , n}.

Now let A be a fixed alphabet. The concept of permutation defines an
equivalence relation ∼C on A∗ in the following way:

∀u, v ∈ A∗ : u ∼C v ⇐⇒ u is a permutation of v.

Note that u1 ∼C v1 and u2 ∼C v2 implies

u1u2 ∼C v1v2.

Hence ∼C is a congruence of the semigroup (A∗, ·).

98

For every u ∈ A∗ we define u ⊆ A∗ to be the equivalence class of u under
∼C . That is,

u = {v ∈ A∗ | v is a permutation of u}.

By the definition of a commutative language any permutation of a word is
again in the language. This observation proves the following lemma that
contains an equivalent characterization of the commutative languages.

Lemma 10.9 A language L is commutative if and only if

L =
⋃

u∈L

u.

In other words, L is commutative if and only if L is saturated by ∼C.

Using this lemma we prove that the class of commutative languages is closed
under complement, union, intersection and under the quotient operators /
and \ with arbitrary denominator.

Proposition 10.10 The class of commutative languages is a quotienting
subalgebra of P(A∗).

Proof. Let L1, L2 ∈ C. Then L1 and L2 are saturated by ∼C . This implies
L1 ∪ L2, L1 ∩ L2 and (L1)

c are saturated by ∼C and hence commutative.
Furthermore, by lemma 9.10 L1/K and K \L1 are saturated by ∼C for all
K ∈ P(A∗). Hence L1/K,K\L1 ∈ C for all K ∈ P(A∗).

2

Observe that from Lemma 10.9 it is easily deduced that a language is com-
mutative if and only if its syntactic semigroup A∗/∼L is a commutative
semigroup. In fact, this is exactly where the definition of a commutative
language originally comes from. However, as we have argued above, for
non-regular languages L the syntactic semigroup of L is not as useful an
invariant as the syntactic Stone frame of L. For this reason we want to be
able to recognize that L is commutative by an ‘equational’ property of its
syntactic Stone frame. The following equational property of Stone frames
allows us to do just that.

Definition 10.11 Let 〈XC , RC〉 be the syntactic Stone frame of a quotient-
ing subalgebra C of P(A∗). We call 〈XC , RC〉 commutative if

RC [x, y,] = RC [y, x,] for all x, y ∈ XC .

99

We will now prove that the syntactic Stone frame of a language tells us
whether or not the language is commutative in a similar way as the syntactic
semigroup does in the regular case.

Theorem 10.12 Let L ∈ P(A∗) be a language. We have

L ∈ C ⇐⇒ 〈XQL
, RQL

〉

is commutative.

For the proof of this theorem we need the following lemmas.

Lemma 10.13 Let L,K ∈ C. Then

L/K = K\L.

Proof. We have for all u ∈ A∗

u ∈ L/K ⇔ uv ∈ L for all v ∈ K

⇔ vu ∈ L for all v ∈ K

⇔ u ∈ K\L.

Hence L/K = K\L.

2

Lemma 10.14 The relation R on XP(A∗) dual to the additional operations,
is functional on the set of principal prime filters of P(A∗). That is,

R(xu, xv , z)⇐⇒ z = xuv.

where
xu = {L ∈ P(A∗) | u ∈ L}

for all u ∈ A∗.

Proof. Suppose u, v ∈ A∗ and z ∈ P(A∗) such that R(xu, xv, z). By
definition this means for all L ∈ xu and K ∈ xv we have LK ∈ z. In
particular {u} ·{v} = {uv} ∈ z. As z is an up-set, this implies xuv ⊆ z. The
fact that xuv and z are both prime filters establishes z = xuv.

100

2

Proof of Theorem 10.12. ⇒) Suppose L ∈ C. This implies QL ⊆ C, as
C is a quotienting algebra by Proposition 10.10. By the observation at the
end of section 8.3 we have for all x, y, z ∈ XQL

RQL
(x, y, z) ⇔ ∀L,K ∈ A : K ∈ y, L /∈ z ⇒ L/K /∈ x

⇔ ∀L,K ∈ A : K ∈ y, L /∈ z ⇒ K\L /∈ x

⇔ RQL
(y, x, z).

That is, 〈XQL
, RQL

〉 is commutative.

⇐) Now suppose 〈XQL
, RQL

〉 is commutative. Then by lemma 10.14 we
have

(xuv, xvu) ∈ θQL

By Theorem 8.13 θQL
is an R-congruence. This implies

(xsuvt, xsvut) ∈ θQL

for all s, t ∈ A∗. But that means for all L′ ∈ QL

suvt ∈ L′ ⇐⇒ svut ∈ L′.

So in particular
suvt ∈ L⇐⇒ svut ∈ L.

That is, L is commutative.

2

10.4 Further research

The last theorem of the previous section shows that the information whether
or not a language is commutative is given by its syntactic Stone frame. This
is similar to the characterization of classes of languages by their syntactic
semigroup in the regular case. Although the class of commutative languages
is just one quite trivial example, it does show that it is possible to extend
certain results beyond the setting of regular languages. In order to explore
this theory fully more classes of languages would have to be studied. The
next thing is to find an interpretation for the operations used to define the
‘implicit’ equations, introduced by Reiterman, to define pseudo-varieties of
finite semigroups.

101

Bibliography

[1] M.E. Adams. The frattini sublattice of a distributive lattice. Algebra
Universalis, 3:216–228, 1973.

[2] J. Almeida. Finite Semigroups and Universal Algebra. World Scientific,
1994.

[3] R. Balbes and P. Dwinger. Distributive Lattices. University of Missouri
Press, 1974.

[4] G. Birkhoff. On the structure of abstract algebras. Proc. Cambridge
Phil. Soc., 31:433–454, 1935.

[5] S. Burris and H.P. Sankappanavar. A Course in Universal Algebra. Free
online edition, 1981.

[6] D.M. Clark and B.A. Davey. Natural Dualities for the Working Alge-
braist. Cambridge University Press, 1998.

[7] B.A. Davey and H.A. Priestley. Lattices and Order. Cambridge Uni-
versity Press, 2002.

[8] S. Eilenberg. Automata, languages, and machines. Vol. B. Academic
Press [Harcourt Brace Jovanovich Publishers], 1976.

[9] M. Gehrke, S. Grigorieff, and J.-E. Pin. Duality and equational theory
of regular languages. Lecture Notes in Computer Science, 5125:246–257,
2008.

[10] M. Gehrke, S. Grigorieff, and J.-E. Pin. Monoids, recognizable lan-
guages and duality. Unpublished, February 2008.

[11] R. Goldblatt. Varieties of complex algebras. Annals of Pure and Applied
Logic, 44:173–242, 1989.

103

[12] P. Halmos. Lectures on Boolean Algebras. Springer-Verlag, 1974.

[13] S.C. Kleene. Representation of events in nerve nets and finite automata.
Automata Studies, 8:3–42, 1956.

[14] J. Martin. Introduction to Languages and the Theory of Computation.
McGraw-Hill Higher Education, 2003.

[15] J.-E. Pin. Finite semigroups and recogizable languages: an introduc-
tion. Unpublished, May 2002.

[16] N. Pippenger. Regular languages and stone duality. Theory of Com-
puting Systems, 30:121–134, 1997.

[17] M.O. Rabin and D. Scott. Finite automata and their decision problems.
IBM J. Res. and Develop., 3:114–125, 1959.

[18] J. Reiterman. The birkhoff theorem for finite algebras. Algebra Uni-
versalis, 14:1–10, 1982.

[19] M.P. Schützenberger. On finite monoids having only trivial subgroups.
Information and Control, 8:190–194, 1965.

[20] T.A. Sudkamp. Languages and Machines. Addison-Wesley Publishing
Company Inc., 1991.

104

