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Abstract. The fact that one can associate a finite monoid with universal
properties to each language recognised by an automaton is central to the
solution of many practical and theoretical problems in automata theory.
It is particularly useful, via the advanced theory initiated by Eilenberg
and Reiterman, in separating various complexity classes and, in some
cases it leads to decidability of such classes. In joint work with Jean-Éric
Pin and Serge Grigorieff we have shown that this theory may be seen as
a special case of Stone duality for Boolean algebras extended to a duality
between Boolean algebras with additional operations and Stone spaces
equipped with Kripke style relations. This is a duality which also plays a
fundamental role in other parts of the foundations of computer science,
including in modal logic and in domain theory. In this talk I will give
a general introduction to Stone duality and explain what this has to do
with the connection between regular languages and monoids.

1 Stone duality

Stone type dualities is the fundamental tool for moving between linguistic spec-
ification and spatial dynamics or transitional unfolding. As such, it should come
as no surprise that it is a theory of central importance in the foundations of
computer science where one necessarily is dealing with syntactic specifications
and their effect on physical computing systems.

In 1936, M. H. Stone initiated duality theory by presenting what, in modern
terms, is a dual equivalence between the category of Boolean algebras and the
category of compact Hausdorff spaces having a basis of clopen sets, so-called
Boolean spaces [13]. The points of the space corresponding to a given Boolean
algebra are not in general elements of the algebra – just like states of a system
are not in general available as entities in a specification language but are of an
entirely different sort. In models of computation these two different sorts, spec-
ification expressions and states, are given a priori but in unrelated settings. Via
Stone duality, the points of the space may be obtained from the algebra as homo-
morphisms into the two-element Boolean algebra or equivalently as ultrafilters
of the algebra. In logical terms these are valuations or models of the Boolean
algebra. In computational terms they are possible states of the system. Each
element of the Boolean algebra corresponds to the set of all models in which it is
true, or all states in which it holds, and the topology of the space is generated by
these sets. A main insight of Stone is that one may recover the original algebra
as the Boolean algebra of clopen subsets of the resulting space.



In Boole’s original conception, Boolean algebras were meant to capture the
arithmetic of propositions and he thought of propositions as ‘classes’ or sets
of entities modelling them. In this sense Stone’s theorem closes the circle by
showing that every Boolean algebra is indeed isomorphic to a field of sets with the
set theoretic operations of intersection, union, and complement as the Boolean
operations. Stone duality is thus, in part, a representation theorem showing
that the axioms of Boolean algebras exactly capture the fields of sets just like
Cayley’s theorem shows that the axioms of groups exactly capture the groups of
permutations.

However, the fact that, with the topology in play, we obtain mathematical
objects with their own and very separate theory and intuitions which fully cap-
ture the original Boolean algebras as well as their morphisms is the real power of
Stone duality. The duality (as opposed to equivalence) aspect turns more com-
plicated constructions such as quotients into simpler ones such as subobjects, it
turns additional connectives on the algebras into transition structure on state
spaces. This ability to translate faithfully between algebraic specification and
spacial dynamics has often proved itself to be a powerful theoretical tool as well
as a handle for making practical problems decidable. This principle was applied
first by Stone himself in functional analysis, followed by Grothendieck in alge-
braic geometry who represented rings in terms of sheaves over the dual spaces of
distributive lattices (i.e., ‘positive’ Boolean algebras) and has since, over and over
again, proved itself central in logic and its applications in computer science. One
may specifically mention Scott’s model of the λ-calculus, which is a dual space,
Esakia’s duality [4] for Heyting algebras and the corresponding frame semantics
for intuitionist logics, Goldblatt’s paper [8] identifying extended Stone duality
as the theory for completeness issues for Kripke semantics in modal logic, and
Abramsky’s path-breaking paper [1] linking program logic and domain theory.
Our work with Grigorieff and Pin [7, 9, 6], with Pippenger [10] as a precursor,
shows that the connection between regular languages and monoids also is a case
of Stone duality.

1.1 Duality for finite distributive lattices

Lattices are partial orders with infima (meets) and suprema (joins) of finite sets,
but may also be seen as algebras (L,∧,∨, 0, 1) satisfying certain equations, see
[2] for the basics of lattice theory. A lattice is distributive provided the binary
meet (∧) and the binary join (∨) distribute over each other. Distributive lattices
corresponds to the negation-free reduct of classical propositional logic, and if in
a distributive lattice every element a has a complement (that is, an element b so
that a ∧ b = 0 and a ∨ b = 1) then the lattice is a Boolean algebra.

The restriction of Stone’s duality for distributive lattices to finite objects
yields a duality between finite posets and finite distributive lattices which re-
stricts further to a duality between finite sets and finite Boolean algebras. This
duality was a precursor to Stone’s duality and is due to Birkhoff. We begin with a
description of Birkhoff duality as the essential features are easiest to understand
in this setting. This duality is based on the fact that each element in a finite



lattice is the join of all join irreducible elements below it and that all down-sets
of join irreducible elements yield distinct elements if the lattice is distributive.
The component facts are proved in [2, Lemma 5.11, page 117].

Definition 1. An element p in a bounded lattice D is join irreducible provided

p 6= 0 and p = x ∨ y in D implies p = x or p = y. An element p in a bounded

lattice D is join prime provided p 6= 0 and p 6 x ∨ y in D implies p 6 x or

p 6 y.

We denote by Dfin the category of finite bounded distributive lattices with
bounded lattice homomorphisms and by Pfin the category of finite posets with
order preserving maps. Birkhoff duality is given by two functors

J : Dfin → Pfin and H : Pfin → Dfin

that establish the dual equivalence of the two categories. The functor J sends
a finite bounded distributive lattice D, to the poset J(D) of join irreducible
elements of D with the order induced from D. For a finite poset P , the dual
lattice H(P ) is the lattice of all down-sets of P with meet and join given by
intersection and union. On the object level the dual equivalence of the categories
Dfin and Pfin is given by the isomorphisms: D ∼= H(J(D)), a 7→ ↓a∩ J(D) and
P ∼= J(H(P )), p 7→ ↓p, see [2, Chapter 5]. The following figure provides two
examples. Note that an element of a Boolean algebra is join irreducible if and
only if it is an atom, i.e., an element right above 0, and thus the dual of a Boolean
algebra is just a set.
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The fact that the above correspondence extends to a categorical duality is
what makes it so powerful. In order to specify the categorical duality we have
also to give the correspondence between the morphisms in the two categories.
This correspondence is essentially based on the notion of adjoint maps.

Definition 2. Let D and E be finite lattices. Let f : D → E and g : E → D be

functions satisfying for all d ∈ D and for all e ∈ E:

f(d) 6 e ⇐⇒ d 6 g(e).

Then g is called an upper adjoint of f and f is called a lower adjoint of g.

It is easy to see that adjoints are unique when they exist and that a map
between complete lattices has an upper adjoint if and only if it preserves arbitrary
joins and order dually for lower adjoints. If f has an upper adjoint, we will
denote it by f ♯ and if g has a lower adjoint, we will denote it by g♭. Note that



a bounded lattice homomorphism between finite lattices h : D → E preserves
arbitrary joins and meets. So it has both an upper adjoint and a lower adjoint.
The duality for maps is based on the fact that a map f : E → D (such as h♭)
has an upper adjoint which has an upper adjoint if and only if it sends join
irreducible elements to join irreducible elements.

Definition 3. Let D and E be finite distributive lattices, h : D → E a bounded

lattice homomorphism. The dual of h is

J(h) = h♭ ↾ J(E),

that is, the restriction of the lower adjoint h♭ of h viewed as a map from J(E)
to J(D). For finite posets P and Q and f : P → Q an order preserving map,

we define H(f) = (f→)♯ where f→ : H(P )→ H(Q) is the forward image map,

S 7→ f [S]. Note that H(f) = (f→)♯ is then actually the inverse image map

T 7→ f−1(T ) because the inverse image map is the upper adjoint of the forward

image map.

Using the uniqueness of upper and lower adjoints, it is easy to show that J
and H on morphisms in the two categories establish one-to-one correspondences
as needed for the duality.

In closing, we note that the functors J and H can be extended to a duality
between the category DL+ of down-set lattices with complete lattice homomor-
phisms and the category P of posets with order preserving maps by replacing
binary meets and joins by arbitrary ones in the definitions above. However, this
duality does not encompass distributive lattices in general (as can be seen, e.g.
from the example at the end of the next subsection).

1.2 Duality for bounded distributive lattices

The basic idea of the dualities is to represent a distributive lattice by its set of join
irreducible elements. However, for infinite lattices, there may not be enough of
these, and idealised elements, in the form of ideals or filters, must be considered.
Let D be a bounded distributive lattice. A subset I of D is an ideal provided it
is a down-set closed under finite joins. We denote by Idl(D) the set of all ideals
of D partially ordered by inclusion. The embedding D → Idl(D), a 7→ ↓a is the
free

∨
-completion of the lattice D. In this sense one should think of an ideal

as standing for the element which would be the supremum of the ideal if the
supremum existed. A subset F of D is a filter provided it is an up-set closed
under finite meets. We denote by Filt(D) the partially ordered set of all filters of
D. Filters represent (possibly non-existing) infima and thus the order on filters
is given by reverse inclusion. The embedding D → Filt(D), a 7→ ↑a is the free∧

-completion of the lattice D. An ideal or filter is proper provided it isn’t the
entire lattice. A proper ideal I is prime provided a∧b ∈ I implies a ∈ I or b ∈ I.
A proper filter F is prime provided a ∨ b ∈ F implies a ∈ F or b ∈ F .

Note that a filter is prime if and only if its complement is a (prime) ideal so
that prime filters and prime ideals come in complementary pairs. In particular



this means that the set of prime ideals with the inclusion order is isomorphic
to the set of prime filters with the reverse inclusion order. For a bounded dis-
tributive lattice D we will denote this partially ordered set by XD or just X .
Since there are so many set theoretic levels, we will revert to lower case letters
x, y, z . . . for elements of X and to make clear when we talk about the corre-
sponding prime filter or the complementary ideal we will denote these by Fx
and Ix, respectively. In the case of a finite distributive lattice, filters and ideals
are all principal generated by their meet and their join, respectively. In this case,
the meets of prime filters are exactly the join prime elements of the lattice while
the joins of the prime ideals are exactly the meet prime elements of the lattice.
Thus these come in pairs p, κ(p) =

∧
{a ∈ D | p � a} which split the lattice in

two disjoint pieces, that is,

∀a ∈ D ( p � a ⇐⇒ a 6 κ(p) )

In a finite Boolean algebra, the meet of a prime filter is necessarily an atom
while a meet irreducible is a co-atom and κ(p) = ¬p in finite Boolean algebras.

In the infinite case prime filters play the role of the join irreducible elements,
and it is not hard to verify that the following map is a bounded lattice homo-
morphism

ηD : D → P(XD)

a 7→ ηD(a) = {x ∈ XD | a ∈ Fx}

Using the Axiom of Choice one may in addition show that any distributive lattice
has enough prime filters in the sense that this map also is injective.

One may also show that the sets in the image of ηD are down-sets in the
reverse order of inclusion. However, for an infinite distributive lattice, it is never
the set of all such down-sets. Stone’s insight was to generate a topology with
the sets in the image of ηD. This works but yields a non-Hausdorff space in
the non-Boolean case. A slight variant of Stone duality was later developed by
Priestley and this is what we will use here. The (Priestley) dual space of bounded
distributive lattice D is the ordered topological space (XD,6, π) where XD is
the set of prime filters of D under reverse inclusion order and π is the topology
on XD generated by the subbasis

{ηD(a), (ηD(a))c | a ∈ D}.

The space (XD,6, π) is then compact and totally order disconnected, that is, for
x, y ∈ XD with x � y there is a clopen down-set U with y ∈ U and x 6∈ U . The
dual of a homomorphism h : D → E is the restriction of the inverse image map
to prime filters, h−1 : XE → XD, and, for any homomorphism h : D → E, the
map h−1 : XE → XD is continuous and order preserving.

A Priestley space is an ordered topological space that is compact and to-
tally order disconnected and the morphisms of Priestley spaces are the or-
der preserving continuous maps. The dual of a Priestley space (X,6, π) is
the bounded distributive lattice ClopD(X,6, π) of all subsets of X that are



simultaneously clopen and are down-sets. For f : X → Y a morphism of
Priestley spaces, the restriction of the inverse image map to clopen down-sets,
f−1 : ClopD(Y ) → ClopD(X), is a bounded lattice homomorphism and is the
dual of f under Priestley duality.

This accounts for Priestley duality. The point is that, for each distributive
lattice D, the lattice ClopD(XD,6, π) is isomorphic to D via the map ηD as
described above and these isomorphisms transform homomorphisms between
lattices into their double dual homomorphisms. Similarly, any Priestley space is
order isomorphic and homeomorphic to its double dual via the map which assigns
to any point its neighbourhood filter and the double duals of order preserving
continuous functions are naturally isomorphic to the original maps. This very
tight relationship between the two categories allows one to translate essentially
all structure, concepts, and problems back and forth between the two sides of
the duality.

Note that in the case where the lattice D is a Boolean algebra, that is, each
element a has a complement ¬a, then the order on prime filters (which are in this
case the same as the ultrafilters or the maximal proper filters) is trivial, and since
(ηD(a))c = ηD(¬a), the image of η is already closed under complementation. In
this case, the Priestley duality agrees with the original Stone duality and we
may refer to it as Stone duality rather than as Priestley duality.

We close this subsection with an example. Let D = 0 ⊕ (Nop × Nop) be the
first lattice in the figure below. Note that D has no join irreducible elements
whatsoever. The prime filters of D correspond to the hollow points in the lattice
D (by taking the intersection with D of their individual up-sets) and the prime
ideals of D are all principal down-sets given by the points as marked with κ’s.
The dual space XD consists of two chains with a common lower bound, the
image of ηD consists of the cofinite down-sets, and the topology is that of the
one point compactification of a discrete space where the limit point is the least
element. We recover D as the clopen down-sets.
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1.3 Duality for additional operations

Any further structure on either side of the duality may be translated as corre-
sponding structure on the other side. The translation of additional operations



on lattices and Boolean algebras to their dual spaces is particularly important.
We give the simplest but prototypical example in the finite setting. Let B be a
finite Boolean algebra and f : B → B a unary join and 0 preserving operation
on B. This is usually called a normal modal (possibility) operator and it comes
about in many applications. In order to dualise such an operation in case B is
finite, we just need to know where the elements of J(B) get sent. That is,

Rf = {(x, y) ∈ XB ×XB | x 6 f(y)}

encodes f as a binary relation on the dual of B. This relation is not a function
unless f actually was a homomorphism on B. We illustrate this with an example.

Example 1. Consider the situation of the muddy children puzzle: there are n
children each of whom may or may not have a muddy forehead thus giving rise
to the Boolean algebra B whose atoms are the complete conjunctions over these
n statements. Each child can see the foreheads of the others but not his own and
we want to consider modal operators <i>, for each i from 1 to n, where <i>φ
means φ is possible according to child i.

The dual space of B is the set of the 2n atoms

(0, 0, 0)

R1

(1, 0, 0)

(1, 1, 0)

R2

R3

(1, 1, 1)

XB

of B which may be thought of as n tuples each
specifying which children have muddy foreheads
and which don’t. As explained above, the modal
operators, <i>, are given dually by relations Ri
where xRiy for x, y ∈ 2n if and only if x 6 <i>y.
Since the order in a Boolean algebra is the order
of implication and x implies <i>y precisely when
x and y differ at most in the ith coordinate, the
relational image of each point in 2n consists of
precisely two points. In the case of three children

for example, the dual space has 8 elements and the three relations each partition
the points in two element sets along each of the three dimensions. Thus R2

identifies points vertically above/below each other. This dual structure is quite
simple and it is indeed also what one usually works with when analysing the
associated dynamic epistemic puzzle [5].

For infinite lattices one first has to extend the operation to be dualised to the
filters or the ideals (depending on whether it preserves join or meet) in order to
have the operation defined on prime filters or ideals and thus on points of the dual
space. Despite this slight complication, we get here too, for an n-ary operation, an
(n+ 1)-ary relation on the dual space. The dual relations will have appropriate
topological properties. For a unary modality these amount to R being point-
closed (R[x] = {y | xRy} is closed for each x) and pre-images of clopens are
clopen (R−1[U ] = {x | ∃y ∈ U with xRy} is clopen for each clopen U). One
can also describe the duals of morphisms of lattices with additional operations.
These are are often called bounded morphisms or p-morphisms. Altogether this
yields what is known as extended Stone or Priestley duality. The details for a
fairly large class of additional operations may be found in the first section of [8].



2 Monoids and recognition by automata

The starting point of the algebraic approach to automata theory is the clas-
sical result that one can effectively assign a finite monoid to each finite state
automaton. We give a derivation of this basic result using extended duality.

An automaton is a structure A = (Q,A, δ, I, F ) where Q is a finite set whose
elements are called states, A is a finite alphabet for the automaton, and δ ⊆
Q×A ×Q is the transition relation which specifies the transition behaviour of
the machine when it is fed a letter in a given state. The set I of initial states is
a subset of Q as is the set F of final states.
We denote by A∗ the free monoid over the alphabet A and any subset L ⊆ A∗ is
called a language over A∗. The language recognised by A, denoted L(A), is the
subset of A∗ of all words a1 . . . an over the alphabet A such that there are states
q0, . . . , qn in Q with (qi−1, ai, qi) ∈ δ for each i with 1 6 i 6 n and q0 ∈ I and
qn ∈ F .

Example 2. Let A = (Q,A, δ, I, F ) where Q = {1, 2}, A = {a, b}, and δ is as
specified in the picture. That is, (q, x, q′) ∈ δ if and only if there is an arrow
from q to q′ labelled by x. The initial and final states are I = {1} = F .

The language recognised by A consists of all those words that

1 2
a

b

may be read by starting in 1 and ending in state 1. That is,
L(A) = (ab)∗ where S∗ denotes the submonoid generated by
S ⊆ A∗ and u∗ = {u}∗ for a word u ∈ A∗.

There may be many different automata that produce a given language but
some languages recognised by automata require inherently more complex ma-
chines than others. A fundamental insight is that we can get at the essential
features of the machines recognising a given language in a purely algebraic way
from the language. As we shall see, we may think of the underlying transition
system of an automaton as a kind of state space, and the languages recognised
by it with various choices of initial and final states as a dual algebra of sets.
Then, given what we know about duality, it should come as no surprise that the
operations on languages dual to concatenation are given by adjunction.

Let A be a finite alphabet. The concatenation operation on A∗ gives rise to
a residuated or adjoint family of operations on the set of all languages over A∗

as follows. Complex or lifted concatenation on P(A∗) is given by

KL = {uv | u ∈ K and v ∈ L}. (1)

The residuals of this operation are uniquely determined by the residuation or
adjunction laws :

∀K,L,M ∈ P(A∗) KM ⊆ L ⇐⇒ M ⊆ K\L
(2)

⇐⇒ K ⊆ L/M.

One easily sees from this that K\L = {u ∈ A∗ | ∀v ∈ K vu ∈ L}. In particular,
for K = {x} a singleton language x\L = {u ∈ A∗ | xu ∈ L}. The operations



L 7→ x\L are widely used in language theory and usually x\L is denoted by
x−1L and these operations are referred to as quotients.

One may now easily verify that the quotient operations on the left and the
right correspond to moving the initial and final states along words respectively.

Proposition 1. Let L = L(A) be a language recognised by an automaton A =
(Q,A, δ, I, F ). Then the languages x−1Ly−1 for x, y ∈ A∗ are recognised by

automata A′ = (Q,A, δ, I ′, F ′) obtained from A by altering only the sets of

initial and final states. Consequently, the set

{x−1Ly−1 | x, y ∈ A∗}

is finite.

Definition 4. Let A be a finite alphabet and L ⊆ A∗ a language over A. Let

B(L) be the Boolean subalgebra of P(A∗) generated by the set {x−1Ly−1 | x, y ∈
A∗}. We will call B(L) the quotienting ideal generated by L. More generally

a quotienting ideal of P(A∗) is a Boolean subalgebra which is closed under the

quotienting operations x−1( ) and ( )y−1 for all x, y ∈ A∗.

Using the fact that the quotienting operations x−1( ) preserve all the Boolean
operations and that S\( ) =

⋂
x∈S x

−1( ) (and the same on the right), we can
then prove the following proposition.

Proposition 2. Let L be a language recognised by some automaton. Then B(L)
is closed under the operations S\( ) and ( )/S for all S ⊆ A∗. In particular,

B(L) is closed under the binary operations \ and /.

The stronger property that the Boolean subalgebra B(L) of P(A∗) has of
being closed under residuation with arbitrary denominators, we call being a
residuation ideal.

Example 3. For the language L of Example 2, it is clear that moving the final
and initial states around along transitions yields the four automata given below
corresponding to L, Lb−1, a−1L, and a−1Lb−1, respectively.

1 2
a

b

1 2
a

b

1 2
a

b

1 2
a

b
Thus B(L) is the Boolean subalgebra of P(A∗) generated by these four languages.
It is not hard to see that this is the Boolean algebra generated by the atoms 1,
(ab)+, a(ba)∗, b(ab)∗, (ba)+, and 0, where 1 = {ε} = L ∩ a−1Lb−1, and 0 is the
complement of the union of the four generating languages. Note that B(L) is not

closed under the lifted multiplication.

Theorem 1. Let L be a language recognised by an automaton, then the extended

dual of the Boolean algebra with additional operations (B(L), \, /) is the syntactic

monoid of L. In particular, it follows that the syntactic monoid of L is finite and

is effectively computable.



Proof. It is not hard to see that the atoms of the Boolean algebra generated by
the finite collection C = {x−1Ly−1 | x, y ∈ A∗} are the equivalence classes of
the finite indexed equivalence relation

u ≈L v if and only if ∀x, y ∈ A∗ (u ∈ x−1Ly−1 ⇐⇒ v ∈ x−1Ly−1)

if and only if ∀x, y ∈ A∗ (xuy ∈ L ⇐⇒ xvy ∈ L)

and the set A∗/ ≈L= S(L) is in fact the set underlying the syntactic monoid of
L. It is a general fact that all the operations of a residuated family have the same
dual relation up to the order of the coordinates. So we focus on the operation \. It
turns joins in the first coordinate into meets and meets in the second coordinate
into meets. For this reason some swapping between join irreducible and meet
irreducible elements using κ is needed. For X,Y, Z ∈ A∗/ ≈L we have

R\(X,Y, Z) ⇐⇒ X\κ(Y ) ⊆ κ(Z)

⇐⇒ X\(Y c) ⊆ Zc

⇐⇒ Z 6⊆ X\Y c

⇐⇒ XZ 6⊆ Y c

⇐⇒ ∃x ∈ X, z ∈ Z with xz ∈ Y

⇐⇒ ∃x, z with X = [x]≈L
, Z = [z]≈L

, Y = [xz]≈L

so that R\ is the graph of the operation on the quotient. Thus the dual space
(XB(L), R\) is the quotient monoid (A∗/ ≈L, ·/ ≈L). ⊓⊔

Example 4. Continuing with our running example L = (ab)∗, we have seen that
the Boolean algebra B(L) has six atoms, namely 1 = {ε}, (ab)+, a(ba)∗, b(ab)∗,
(ba)+, and 0 (the latter consisting of all words in A∗ containing two consecutive
identical letters). Note that the product of two languages in B(L) may intersect
several languages in B(L) (e.g., (ab)∗(ba)∗ intersects 1, (ab)+, (ba)+, and 0).

However, the product of any two of the atoms is entirely contained in a unique
other atom (while we didn’t quite prove
that above, it is a consequence of what
we proved). It should be clear that in this
example, the element 1 will be the neu-
tral element, 0 will be absorbing, and the
multiplication of the remaining four ele-
ments will be as given in the adjoining
table.

(ab)+ a(ba)∗ b(ab)∗ (ba)+

(ab)+ (ab)+ a(ba)∗ 0 0
a(ba)∗ 0 0 (ab)+ a(ba)∗

b(ab)∗ b(ab)∗ (ba)+ 0 0
(ba)+ 0 0 b(ab)∗ (ba)+

Duality theory is not just about objects but also about maps, and it is straight
forward to check that the dual of the inclusion map ι : B(L) → P(A∗) is the
quotient map ϕL : A∗ → A∗/ ≈L, where A∗/ ≈L= S(L) is the syntactic monoid
of L. The content of this fact is that the dual of ϕL, which is ϕ−1

L : P(S(L))→
P(A∗), is naturally isomorphic to ι : B(L)→ P(A∗):



B(L)
ι //
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∼=
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P(A∗)
OO
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P(S(L))

ϕ−1
L // P(A∗).

This in turn precisely means that B(L) = {ϕ−1
L (P ) | P ⊆ S(L)}.

3 Recognisable subsets of an algebra and profinite

completions

Let A be any algebra, ϕ : A → B a homomorphism into a finite algebra. A
subset L ⊆ A is said to be recognised by ϕ provided there is a subset P ⊆ B
with L = ϕ−1(P ). A subset L ⊆ A is said to be recognised by B provided there
is a homomorphism ϕ : A → B which recognises L. The last observation of
the previous section can then be phrased as saying that the residuation ideal
generated by a regular language L consists precisely of those languages that
are recognised by the quotient map ϕL onto the syntactic monoid of L and, in
particular, that every language recognised by an automaton also is recognised
by a finite monoid. It is not hard to see that the converse of the latter statement
also holds so that the languages recognised by finite automata precisely are the
languages recognised by finite monoids. This is then the starting point of the
algebraic theory of automata. The next, and most crucial step, is the link to
profinite completions.

In this section we describe the duality theoretic link between recognition and
profinite completion. The technical result is Theorem 2 at the end of the section.
This result is crucial for the applications in Section 4. For the reader who finds
the proof given here too abstract, a more pedestrian proof may be found in [6]
where this result in the case of monoids occurs as Theorem 3 and a different
proof is given.

Let A be an algebra. A subset L ⊆ A is said to be recognisable provided there
is a finite algebra B such that L is recognised by B. We denote the Boolean
algebra of all recognisable subsets of A by Rec(A). We have:

Rec(A) = {ϕ−1(P ) | ϕ : A→ B ⊇ P with ϕ an onto morphism and B finite}

=
⋃
{ϕ−1(P(B)) | ϕ : A→ B is an onto morphism and B is finite}

By placing this definition in a more category-theoretic context we will be able
to apply the dualities of Section 1. First note that the finite quotients of A are
in one-to-one correspondence with the set Conω(A) of all congruences θ of A of
finite index (i.e. for which the quotient algebra A/θ is finite). Also, Conω(A) is
ordered by reverse set inclusion and is directed in this order since the intersection
of two congruences of finite index is again a congruence of finite index. Thus we
obtain an inverse limit system, FA, indexed by Conω(A) as follows:

1. For each θ ∈ Conω(A) we have the finite algebra A/θ;



2. Whenever θ ⊆ ψ we have a (unique) homomorphism A/θ → A/ψ which
commutes with the quotient maps qθ : A→ A/θ and qψ : A→ A/ψ.

The inverse limit system FA

C
D

B

A

The profinite completion of an algebra A, denoted Â, is by definition the inverse
limit, lim

←−
FA, of the system FA viewed as a system of topological algebras. Note

that A is not a topological algebra but the finite quotients are trivially so with
the discrete topology.

Applying the discrete duality of Section 1.1, we get the direct limit system
dual to FA:

The direct limit system GA

P(C)
P(D)

P(B)

P(A)

In Section 2, we saw that for a regular language L, the dual of the residuation
algebra (B(L), \, /) is the syntactic monoid of L. One can actually show that the
extended Stone dual of any finite algebra is the Boolean algebra with residuation
operations obtained by taking the powerset of the algebra with the residuals of
the liftings of the operations of the algebra (as illustrated for a binary operation
in (1) and (2) in Section 2). Further, the quotient maps in the system FA are
dual to the inverse image maps which provide embeddings between the finite
powerset algebras, and one can show that the fact that the maps in FA are
algebra homomorphisms corresponds to the fact that the maps in GA embed
the residuation algebras as quotienting ideals (in the case of a single binary
operation, see Definition 4). All in all, we obtain a direct limit system GA of
finite residuation ideals of P(A). It is well-known in algebra that a direct limit
of subalgebras of an algebra simply is the union of these subalgebras. Thus we
get

lim
−→
GA =

⋃
{ϕ−1(P(B)) | ϕ : A→ B is an onto morphism and B is finite}

= Rec(A).

We have outlined the proof of the following theorem.

Theorem 2. Let A be an abstract algebra. Then Rec(A) is residuation ideal in

P(A) and the profinite completion, Â, of the algebra A is homeomorphic as a

topological algebra to the extended Stone dual of Rec(A) viewed as a Boolean

algebra with residuation operations.



4 Eilenberg-Reiterman: sub vs. quotient duality

In automata theory, deciding membership in a class of recognisable languages
and separating two such classes are central problems. Classes of interest arise by
restricting the class of automata allowed for recognition, or they arise via the
description of languages by regular expressions by putting some restriction on
the form of the expressions that are allowed. There is also, via Büchi’s logic on
words, a correspondence between recognisable languages and monadic second
order sentences of this logic. Thus natural subclasses arise as the classes of
languages corresponding to fragments of monadic second order logic.

The classical example is that of the star-free languages. These are the lan-
guages obtainable from the singleton languages by closure under the Boolean
connectives and the lifted concatenation product (but without using the Kleene
star). In terms of Büchi’s logic, these are precisely the languages that are models
of sentences of the first order fragment. While both of these descriptions of the
star-free languages are nice, neither allows one readily to decide whether or not
the language recognised by a given automaton is star-free or not. Schützenberger
[12] made a breakthrough in the mid-sixties by using syntactic monoids to give
an algebraic characterisation of the star-free languages which also provides a
decision procedure for the class: a regular languages is star-free if and only if its
syntactic monoid is aperiodic (for any element x in a finite monoid, there are m
and n so that xm+n = xm; aperiodicity means the n uniformly can be taken to
be equal to 1). This is clearly a decidable property of a finite monoid.

Eilenberg [3] greatly contributed to the success of the algebraic theory by
isolating an essential feature of the above example: the finite aperiodic monoids
form a variety of finite algebras. That is, a class of finite algebras closed under
subalgebras, quotients, and finite Cartesian products. Further he showed that
such varieties are in one-to-one correspondence with certain classes of regular
languages, which he called varieties of languages. Later, Reiterman proved that
profinite words (that is, elements of the profinite completion of A∗ for A finite)
can be viewed as |A|-ary term functions on any finite monoid, and that each
variety of finite monoids is given by a set of identities in profinite words [11]. In
conjunction we have: A class of regular languages is a variety of languages if and
only if it can be defined by a set of profinite identities. If a variety of languages
has a finite basis for its identities and the identities can be checked effectively,
then it follows that the class is decidable. This has become a standard route to
decidability, both for varieties of languages and for various generalisations for
which Eilenberg-Reiterman theorems have subsequently been proved.

With Grigorieff and Pin, we gave a general and modular Eilenberg-Reiterman
theorem based on duality theory [7]. The idea is the following. Let C be a sub-
lattice of Rec(A∗), that is

C −֒→ Rec(A∗).

Then, the Priestley dual XC is a quotient space of the dual space of Rec(A∗),

which we know to be Â∗:
Â∗ −։ XC .



That is, C is fully described by describing XC , and XC is fully described by
describing, in the case of a Boolean subalgebra of Rec(A∗), the equivalence rela-

tion on Â∗ that yields the quotient XC . In the sublattice case, not only are some
points identified going from Â∗ to XC , but the order may also be strengthened.
Thus sublattices correspond to certain quasiorders, called Priestley quasiorders,
on Â∗. This may be seen as the underlying source of profinite identities.

Fundamental to this relationship between sublattices and quotients is the
following binary satisfaction relation between pairs (u, v) ∈ Â∗×Â∗ and elements
L ∈ Rec(A∗):

L satisfies (u, v) ⇐⇒
(
ηRec(A∗)(L) ∈ v ⇒ ηRec(A∗)(L) ∈ u

)
.

A language L satisfies (u, v) provided L lies in a sublattice of Rec(A∗) corre-

sponding to a Priestley quotient of Â∗ in which u ends up being below v. For
this reason we write u→ v for these profinite inequations instead of just (u, v).

Theorem 3. The assignments

Σ 7→ CΣ = {L ∈ Rec(A∗) | ∀u→ v ∈ Σ (L satisfies u→ v)}

for Σ ⊆ Â∗ × Â∗ and

K 7→ ΣK = {u→ v ∈ Â∗ × Â∗ | ∀L ∈ K (L satisfies u→ v)}

for K ⊆ Rec(A∗) establish a Galois connection whose Galois closed sets are the

Priestley quasiorders on Â∗ and the bounded sublattices of Rec(A∗), respectively.

Thus, for any sublattice C of Rec(A∗), we have CΣC
= C so that C is de-

termined by a set of inequations. Also, we may look for bases Σ ⊆ ΣC with
CΣ = C. In addition, if C is closed under the quotienting operations a−1( ) and
( )a−1 on languages then we know that the corresponding Priestley quotient is
also a monoid quotient, or equivalently, the corresponding Priestley quasiorder
is a monoid congruence. In this case, we know that, with each u→ v in ΣC , the
inequation xuy → xvy is also in ΣC and we can abbreviate this whole family
of inequalities as u 6 v. Similarly, for Boolean sublattices u → v in ΣC implies
v → u in ΣC , and it can be shown that C being closed under inverse images for
various kinds of homomorphisms of A∗ corresponds to the set of inequations for
C being closed with respect to various kinds of substitutions. The ensuing family
of Eilenberg-Reiterman theorems thus obtained is summed up in the following
table.



Closed under Equations Definition

∪,∩ u→ v ϕ̂L(v) ∈ PL ⇒ ϕ̂L(u) ∈ PL
quotienting u 6 v for all x, y, xuy → xvy
complement u↔ v u→ v and v → u

quotienting and complement u = v for all x, y, xuy ↔ xvy
Closed under inverses of morphisms Interpretation of variables

all morphisms words
nonerasing morphisms nonempty words

length multiplying morphisms words of equal length
length preserving morphisms letters

In order to understand the interpretation of profinite words in finite monoid
quotients of A∗, it is important to realise that, by duality, any map ϕ : A∗ → F
has a unique extension ϕ̂ : Â∗ → F obtained as the Stone dual of the Boolean
algebra homomorphism ϕ−1 : P(F )→ Rec(A∗).

Example 5. The class of star-free languages is axiomatised by xω = xω+1 with
the interpretation of x ranging over all profinite words. The fact that the class
is closed under the quotient operations and the Boolean operations means that
L is star-free if and only if ϕ−1

L (P ) is star-free for each P ⊆ S(L), not just for

PL. Now, it can be shown that for u ∈ Â∗ we have ϕ̂L(uω) = e(ϕ̂L(u)) where
e : S(L) → S(L) is the map that sends any element m of S(L) to the unique
idempotent in the cyclic monoid generated by m. Also, since each element of
S(L) is ϕ̂L(u) for some u ∈ Â∗, we have L is star-free if and only if

∀ P ⊆ S(L) ∀m ∈ S(L) ( e(m) ∈ P ⇐⇒ e(m)m ∈ P ).

Since this has to hold in particular for singleton subsets P of S(L), a language
L is star-free if and only if S(L) satisfies the identity e(x) = e(x)x. Here we
get a genuine identity, that is, an equation scheme closed under substitution
because the class of star-free languages is closed under inverse images of arbitrary
morphisms between free finitely generated monoids. Finally we note that our
language L = (ab)∗ is star-free since the elements 1, 0, (ab)+, and (ba)+ are
idempotent and e(a(ba)∗) = e(b(ab)∗) = 0 is absorbent.

A regular language with zero is a regular language whose syntactic monoid
has a 0. It is not hard to see that the class of regular languages with zero is
closed under the quotient operations and the Boolean operations, but not under
inverse images of arbitrary morphisms. Regular languages with 0 are given by
the A-specific identities xρA = ρA = ρAx where ρA is an idempotent in the
minimal (closed) ideal of Â∗ and x can range over all elements of Â∗. As in the
case of star-freeness, the closure under the Boolean and the quotient operations
allows us to quantify over all the subsets P of S(L) and thus we must have

∀m ∈ S(L)
(
mϕ̂L(ρA) = ϕ̂L(ρA) = ϕ̂L(ρA)m

)
.

Since ϕ̂L(ρA) will necessarily belong to the minimum ideal of S(L), it is easy to
see that it will evaluate to 0 if and only if S(L) has a zero so that these profinite
equations precisely say that S(L) has a zero.



For more details, see [9] where the various declensions of our theorem are
illustrated with various examples.
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