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Abstract. We establish a topological duality for bounded lattices. The two
main features of our duality are that it generalizes Stone duality for bounded

distributive lattices, and that the morphisms on either side are not the stan-

dard ones. A positive consequence of the choice of morphisms is that those on
the topological side are functional.

In the course of the paper, we obtain the following results: (1) canoni-

cal extensions of bounded lattices are the algebraic versions of the existing
dualities for bounded lattices by Urquhart and Hartung, (2) there is a univer-

sal construction which associates to an arbitrary lattice two distributive lattice

envelopes with an adjoint pair between them, and (3) we give a topological du-
ality for bounded lattices which generalizes Priestley duality and which shows

precisely which maps between bounded lattices admit functional duals. For
the result in (1), we rely on previous work of Gehrke, Jónsson and Harding.

For the universal construction in (2), we modify a construction of the injective

hull of a semilattice by Bruns and Lakser, adjusting their concept of ‘admis-
sibility’ to the finitary case. For (3), we use Priestley duality for distributive

lattices and our universal characterization of the distributive envelopes.

1. Introduction

Topological duality for Boolean algebras [22] and distributive lattices [23] is a useful
tool for studying relational semantics for propositional logics. Canonical extensions
[16, 17, 11, 10] provide a way of looking at these semantics algebraically. In the
absence of a satisfactory topological duality, canonical extensions have been used
[3] to treat relational semantics for substructural logics. The relationship between
canonical extensions and topological dualities in the distributive case suggests that
canonical extensions should be taken into account when looking for a topological
duality for arbitrary bounded1 lattices. The main aim of this paper is to investigate
this line of research.
Let us outline our approach to duality for arbitrary lattices, by analogy with the
more special case of distributive lattices. The starting point of the representation
theory of distributive lattices is the following classical theorem of Birkhoff.
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Theorem 1.1 (Birkhoff). Any finite distributive lattice D is isomorphic to the
lattice of downsets of the partially ordered set of join-irreducible elements of D.

Proof. The isomorphism between D and the lattice of downsets of the partially
ordered set (J(D),≤D) of join-irreducible elements is given by sending a ∈ D to
the set

â := ↓a ∩ J(D) = {p ∈ D | p join-irreducible, p ≤ a}. �

Thus, for finite distributive lattices, the poset J(D) of join-irreducible elements
determines the lattice D. Examining the proof sketched here in some more detail,
it is not hard to see that the same proof goes through for all perfect distributive lat-
tices, that is, for completely distributive complete lattices in which the completely
join-irreducible elements are

∨
-dense [21].2

Corollary 1.2 (Raney [21]). Any perfect distributive lattice C is isomorphic to the
lattice of downsets of the partially ordered set of completely join-irreducible elements
of C.

Topological dualities for distributive lattices (Stone [23], Priestley [20]) generalize
Birkhoff’s result to distributive lattices which are no longer assumed to be finite.
The points of the dual space X(D) of a distributive lattice D are now defined to be
the prime filters of D. Any element a ∈ D yields a subset â := {F ∈ X(D) | a ∈ F}
of X(D). Taking the collection {â : a ∈ D} as a basis for the open sets of a topology
on X(D) yields the Stone dual space of D.
We will now explain how Birkhoff’s representation of perfect distributive lattices
relates to the Stone dual space. Consider the situation depicted in Figure 1.

CD

J∞(C)

a

â

Figure 1. A topological space from an embedding D ↪→ C

Here, e : D ↪→ C is an embedding of a distributive lattice D into some perfect
distributive lattice C. By Corollary 1.2, since C is perfect, the lattice C is deter-
mined entirely by the poset J∞(C) of completely join-irreducible elements of C.

2These lattices go by many different names. They are also called doubly algebraic, bi-algebraic,
or completely prime-algebraic distributive lattices.
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Any a ∈ D drops a ‘shadow’ on J∞(C), namely the set â := ↓e(a)∩ J∞(C). Thus,
D can be represented as a collection of subsets of J∞(C). One can now use this
collection of subsets {â : a ∈ D} to define a topology on J∞(C).
We emphasize that ‘topologizing’ J∞(C) in this manner is possible for any embed-
ding e : D ↪→ C. However, for an arbitrary choice of embedding e : D ↪→ C into a
perfect lattice, the topological space thus obtained will not in general allow one to
recover D. For the canonical extension e : D ↪→ Dδ of a distributive lattice D, on
the other hand, the following theorem holds.

Theorem 1.3 (Gehrke, Jónsson [11]). Let D be a distributive lattice. The canonical
extension of D is the unique embedding of D into a perfect lattice for which the
associated topological space of completely join-irreducibles is exactly the Stone dual
space of D.

The definition of canonical extension, that we will give in Section 2 for arbitrary
lattices, is purely algebraic and does not refer to the Stone dual itself. In this
sense, canonical extensions of distributive lattices provide an algebraic description
of Stone duality.
In the case of an arbitrary lattice L, an analogue of Stone duality is not avail-
able, but canonical extensions are [10]. However, Birkhoff’s representation of finite
and perfect distributive lattices to the non-distributive setting has been general-
ized [6, 7]: a perfect lattice C is a complete lattice in which J∞(C) is

∨
-dense

and M∞(C), the set of completely meet-irreducibles, is
∧

-dense. The structure
(J∞(C),M∞(C),≤) completely describes the perfect lattice C (see Section 2 for
details). Therefore, the canonical extension Lδ, which is a perfect lattice, may be
used to define a dual space for a lattice L, in a way completely analogous to the
distributive case. This is the approach that we will take in this paper.
We give a brief outline of the rest of this paper. In Section 2, we will recall the
basics of canonical extensions and show how they can be used to put existing
topological dualities, both for distributive and for arbitrary lattices, in a common
framework. This will enable us to provide some examples which show that the
topological dual of an arbitrary lattice may lack properties that the topological
dual of a distributive lattice always has, such as sobriety and coherence. In the
light of these ‘bad’ properties, we consider an alternative to topology in the form of
quasi-uniform spaces in Section 3. The bicompletions of the quasi-uniform spaces
introduced there are the Stone dual spaces of certain distributive lattices, that we
call distributive envelopes, a name that is justified by the theory we develop in
Section 4. The results in that section will enable us, in Section 5, to define a class
of ‘admissible’ morphisms between lattices, which are precisely the maps that admit
liftings to the distributive envelopes. Still in Section 5, we then obtain a topological
duality for the category of lattices with admissible morphisms which generalizes
Stone duality for the category of distributive lattices with homomorphisms.

2. Existing dualities from canonical extensions

As outlined in the introduction, we aim to use canonical extensions to obtain topo-
logical representations of arbitrary lattices, which generalize Stone duality. In this
section, we will first derive Stone’s dual topological space from the canonical exten-
sion of a distributive lattice, and then also Urquhart’s and Hartung’s dual objects
from the canonical extension of an arbitrary lattice. We will finish the section by
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showing that the topological dual frame of a lattice obtained in this way may have
undesirable properties.
We first briefly recall the basics of canonical extensions for arbitrary lattices.

Definition 2.1. Let L be a lattice. A canonical extension of L is an embedding
e : L ↪→ C of L into a complete lattice C satisfying

(i) (dense) For all u ∈ C, we have∨{∧
e[S] | S ⊆ L,

∧
e[S] ≤ u

}
= u =

∧{∨
e[T ] | T ⊆ L, u ≤

∨
e[T ]

}
.

(ii) (compact) For all S, T ⊆ L, if
∧
e[S] ≤

∨
e[T ] in C, then there are finite

S′ ⊆ S and T ′ ⊆ T such that
∧
S′ ≤

∨
T ′ in L.

We denote by F (L) and I(L) the sets of filters and ideals of a lattice L, respec-
tively. If e : L ↪→ C is an embedding of L into a complete lattice C, we let
Fe(C) := {

∧
e[S] : S ⊆ L} and Ie(C) := {

∨
e[T ] : T ⊆ L} be the meet- and

join-closure of L in C. In the case where C is a canonical extension of L, we call
elements of Fe(C) filter elements, and elements of Ie(C) ideal elements. With this
terminology, the ‘denseness’ condition in the definition of canonical extension can
be rephrased as: the filter elements are

∨
-dense and the ideal elements are

∧
-dense.

The following proposition justifies this terminology: filter and ideal elements of a
canonical extension correspond to filters and ideals of the lattice L.

Proposition 2.2. Let e : L ↪→ C be a canonical extension of L. Define

φF : F (L)→ Fe(C) by F 7→
∧
e[F ],

φI : I(L)→ Ie(C) by I 7→
∨
e[I].

Then the following properties hold.

(i) φF and φI are bijections, which moreover satisfy F ⊇ G ⇐⇒ φF (F ) ≤
φF (G) and I ⊆ J ⇐⇒ φI(I) ≤ φI(J);

(ii) For F ∈ F (L) and I ∈ I(L), we have φF (F ) ≤ φI(I) iff F ∩ I 6= ∅;
(iii) For a ∈ L, we have φF (↑a) = e(a) = φI(↓a).

Proof. For item (i), see [10], Lemma 3.3. The second and third items follow from
the compactness property of the canonical extension. �

The following two theorems now say that every lattice has a unique canonical
extension.

Theorem 2.3. Let L be a lattice. There exists a canonical extension e : L ↪→ C.

Proof ([10], Proposition 2.6). Consider the Galois connection u : P(F (L)) � P(I(L)) :
l given by

u(A) := {I ∈ I(L) | ∀F ∈ A : F ∩ I 6= ∅} (A ⊆ F (L)),

l(B) := {F ∈ F (L) | ∀I ∈ B : F ∩ I 6= ∅} (B ⊆ I(L)).

Since (u, l) is a Galois connection, lu is a closure operator on P(F (L)). Let C be
the complete lattice of stable sets, i.e., C := {A ⊆ F (L) | lu(A) = A}. Define the
map e : L → C by sending a ∈ L to e(a) := {F ∈ F (L) | a ∈ F}. One may check
that e is a well-defined dense and compact embedding. �
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Theorem 2.4. Let L be a lattice. Suppose e : L ↪→ C and e′ : L ↪→ C ′ are canonical
extensions of L. Then there is a complete lattice isomorphism φ : C → C ′ such
that φ ◦ e = e′.

Proof. See [10], Proposition 2.7. �

Because of the existence and uniqueness of the canonical extension of a lattice, we
may henceforth speak of the canonical extension of a lattice L, and we will denote
it by Lδ. We will usually omit reference to the embedding e, and regard L as a
sublattice of Lδ.
We remarked above that the denseness condition says that the filter elements are∨

-dense in Lδ. In fact, one may show, using the axiom of choice, that the set of
completely join-irreducible elements is already

∨
-dense in Lδ.

Proposition 2.5 (Canonical extensions are perfect lattices). Let L be a lattice, Lδ

its canonical extension. Then the set of completely join-irreducible elements J∞(Lδ)
is
∨

-dense in Lδ, and the set of completely meet-irreducible elements M∞(Lδ) is∧
-dense in Lδ.

Proof. See [10], Lemma 3.4. �

We now expand on the claim that canonical extensions of distributive lattices ‘cap-
ture’ Stone duality. We saw in Proposition 2.2 that filters and ideals of a lattice L
correspond to elements of the canonical extension Lδ. In the case of distributive
lattices, prime filters can also be retrieved as particular elements of the canonical
extension, namely, as the completely join-irreducible elements.

Proposition 2.6. Let D be a distributive lattice. The bijection φF from Proposi-
tion 2.2 restricts to a bijection between the set of prime filters and the set J∞(Dδ).
Also, φI restricts to a bijection between the set of prime ideals and the set M∞(Dδ).

Proof. Note that if x ∈ J∞(Dδ), then by denseness, x =
∨
{
∧
e[S] | S ⊆ L,

∧
e[S] ≤

x}, so x =
∧
e[S] for some S ⊆ L, and indeed x ∈ Fe(L). If F is a prime filter,

then
∧
e[F ] is a completely join-irreducible element of Dδ, as can be seen easily

using compactness and the assumption that F is a prime filter. Conversely, if
x ∈ J∞(Dδ), then one easily checks that F := ↑x ∩D is a prime filter of D, using
distributivity of Dδ. The statement about prime ideals is order dual. �

Corollary 2.7. Let D be a distributive lattice. In Dδ, the completely join-irreducible
elements are completely join-prime.

Proof. By the proposition, a completely join-irreducible element of Dδ is equal to∧
e[F ] for a prime filter F . Using compactness, one may show that meets of prime

filters are completely join-prime. �

In fact, the bijection from Proposition 2.6 extends to a homeomorphism, establish-
ing that the Stone dual space of a distributive lattice can be retrieved from the
canonical extension, thus proving part of Theorem 1.3.

Proposition 2.8. Let D be a distributive lattice. Let X1 be the space of prime
filters of D, whose topology is given by taking {{F ∈ X1 : a ∈ F} : a ∈ D} as
a basis for the open sets. Let X2 be the space J∞(Dδ), whose topology is given
by taking {↓a ∩ J∞(Dδ) : a ∈ D} as a basis for the open sets. Then φF is a
homeomorphism from X1 to X2.
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Proof. By Proposition 2.6, φF is a bijection. One may easily check that it carries
basic opens to basic opens, so that it is open and continuous. �

A slight variant of this proposition shows that the Priestley dual space of D can
also be retrieved from the canonical extension: the Priestley topology on X1 is
given by taking {{F ∈ X1 : a ∈ F}, {F ∈ X1 : a 6∈ F} : a ∈ D} as a subbasis for
the open sets, and correspondingly the topology on X2 is given by taking {↓a ∩
J∞(Dδ), (↓a)c ∩ J∞(Dδ) : a ∈ D} as a subbasis for the open sets. The Priestley
order of reverse inclusion of prime filters on X1 corresponds to the restriction of
the order of the canonical extension to X2.
Given a distributive lattice D, we will denote the Stone dual space of D by D∗. One
may use the presentation of the dual space as X2 to prove Stone’s duality result
using canonical extensions. We will not do this completely, as it is not our main
aim here, but we illustrate the idea by giving a quick proof of Stone’s representation
theorem for distributive lattices.

Proposition 2.9. Let D be a distributive lattice. Then D is isomorphic to the
lattice of compact open sets of D∗.

Proof. We regard the set D∗ as J∞(Dδ). For any a ∈ D, recall that â := {x ∈
D∗ | x ≤ a} is the basic open set corresponding to a. We prove that â is compact.

If {t̂}t∈T is a cover of â by basic opens, then, since J∞(Dδ) is
∨

-dense in Dδ, we get
a ≤

∨
T . By the compactness property of Dδ, there is a finite subset T ′ ⊆ T such

that a ≤
∨
T ′. It follows that {t̂}t∈T ′ covers â. Since J∞(Dδ) is

∨
-dense in Dδ, it

now follows that the map a 7→ â is an order embedding from D into the lattice of
compact open sets of D∗. We now show it is surjective. Let K be a compact open
subset of D∗. Then K =

⋃
{â : â ⊆ K} since K is open, and therefore K =

⋃n
i=1 âi

for some a1, . . . , an ∈ D since K is compact. By Corollary 2.7, join-irreducibles of

Dδ are join-prime, so it follows that K =
∨̂n
i=1 ai. �

We have explained above how the canonical extension of a distributive lattice cap-
tures the dual space. We will now show that this idea can be generalized to arbitrary
lattices.
Following the successful program of Stone duality for distributive lattices via canon-
ical extensions, a first attempt at defining a topological dual for an arbitrary lattice
L would be to take J∞(Lδ) with topology generated by taking the sets â, a ∈ L,
as a basis for the open sets, where â := ↓a ∩ J∞(Lδ) = {x ∈ J∞(Lδ) : x ≤ a}.
However, this first attempt does not work as nicely for arbitrary lattices as it did
for distributive lattices. As a case in point, the following example shows that one
can not hope to retrieve the lattice L from only the poset J∞(Lδ), even for finite
lattices (where the topology does not carry any additional information, as it is given
by the order).

Example 2.10. Recall that the canonical extension of any finite lattice is equal to
the lattice itself: if L is finite, then L is complete, and L ↪→ L is a compact and dense
embedding. In particular, the poset J∞(Lδ) is simply the poset of join-irreducibles
of L.
Let L and L′ be the lattices depicted in Figure 2. Note that both posets J∞(Lδ)
and J∞((L′)δ) of join-irreducibles of L = Lδ and L′ = (L′)δ are the three ele-
ment antichain: the ‘new’ element in L′ is not join-irreducible. The topologies are
discrete, so the spaces J∞(Lδ) and J∞((L′)δ) are homeomorphic.
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L L′

Figure 2. Two non-isomorphic lattices L and L′, whose posets
J∞ are isomorphic.

Observe that the posets of meet-irreducibles of L and L′ are not isomorphic. Thus,
in a representation of lattices, both J∞ and M∞ will need to play a role.

The above example indicates that two-sorted dual structures are more natural when
representing arbitrary lattices. This observation has led to the development of
formal concept analysis [6].

Definition 2.11. A polarity (context)3 is a tuple P = 〈X,Y,R〉, where X and Y
are sets and R ⊆ X × Y is a relation. Any polarity naturally induces a Galois
connection u : P(X) � P(Y ) : l, where

u(A) := {y ∈ Y | ∀a ∈ A : aRy} (A ⊆ X),

l(B) := {x ∈ X | ∀b ∈ B : xRb} (B ⊆ Y ).

Since (u, l) is a Galois connection, the map A 7→ lu(A) is a closure operator on the
poset P(X). A set A ∈ P(X) is called a stable set (closed concept) if lu(A) = A.
The collection of stable sets of a polarity P , ordered by inclusion, forms a complete
lattice, that we will denote by P+.

Note that with this definition, we may rephrase the proof of the existence of the
canonical extension (Theorem 2.3 above) as follows. For an arbitrary lattice L,
its canonical extension Lδ can be constructed as the complete lattice (PL)+ from
the polarity PL = 〈XL, YL, RL〉, where XL = F (L), YL = I(L), and F RL I iff
F ∩ I 6= ∅.
For finite lattices, one arrives at the following generalization of Birkhoff’s represen-
tation theorem (Theorem 1.1).

Theorem 2.12. Let L be a finite lattice. Let L+ = 〈J(L),M(L),≤〉, where J(L)
is the set of join-irreducibles, M(L) is the set of meet-irreducibles, and ≤ is the
restriction of the order of L to J(L)×M(L). Then L is isomorphic to (L+)+.

Proof. There is a function L→ (L+)+ which sends an element a ∈ L to the stable
set ul(↓a ∩ J(L)) ∈ (L+)+. One may readily check that this is indeed a lattice
isomorphism. �

Remark 2.13. To see that this theorem indeed generalizes Theorem 1.1, note
that the join-irreducible elements of a finite distributive lattice D are the join-
prime elements, and the meet-irreducible elements are the meet-prime elements.
Moreover, there is a bijection between the sets of join- and meet-primes which
sends a join-prime element x ∈ J(D) to κ(x), defined as the largest element of D

3A note on terminology. In this paper, we largely follow the terminology of “Generalized
Kripke Frames” [7]. In this definition, to accomodate the reader who is more familiar with the

terminology of formal concept analysis [6], we give the equivalent terms between parentheses.
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which is not above x. One may show that κ(x) is a meet-prime and κ defines a
bijection between J(D) and M(D), and x ≤ a iff a � κ(x). So the polarity D+ is
isomorphic to the polarity 〈J(D), J(D),�〉. The stable subsets of J(D) are exactly
the downsets.

As with Birkhoff’s theorem, the following is a straightforward corollary of the proof
of Theorem 2.12.

Corollary 2.14. Let C be a perfect lattice. Let C+ = 〈J∞(C),M∞(C),≤〉, where
J∞(C) is the set of completely join-irreducibles, M∞(C) is the set of completely
meet-irreducibles, and ≤ is the restriction of the order of C to J∞(C) ×M∞(C).
Then C is isomorphic to (C+)+.

We will now outline how one may arrive at dual structures for an arbitrary lattice
from its canonical extension. This will be a generalization of the approach to Stone
duality from canonical extensions outlined above. We use the canonical extension
Lδ of an arbitrary lattice L to describe the topological dual structures defined by
Urquhart [24] and Hartung [15].
The following generalization of Proposition 2.6 is crucial. Following Urquhart [24],
we call (F, I) ∈ F (L)×I(L) a maximal pair if F is maximal among all filters disjoint
from I and I is maximal among all ideals disjoint from F .

Proposition 2.15. Let L be a lattice. The bijection φF from Proposition 2.2
restricts to a bijection between the set J∞(Lδ) and the set of filters F which are in
a maximal pair (F, I), for some ideal I. Also, φI restricts to a bijection between the
set M∞(Lδ) and the set of ideals I which are in a maximal pair (F, I), for some
filter F .

Proof. See [10], Lemma 3.4. �

In a distributive lattice D, a filter F is in some maximal pair (F, I) iff the filter F
is prime. Moreover, if F is a prime filter, then I = F c is an ideal, so it is the unique
ideal such that (F, I) is a maximal pair.
We briefly recall how Hartung [15] defined the dual structure of a lattice, and then
show that a more transparent definition of the same object can be given using
the canonical extension of L. For an arbitrary lattice L, Hartung defines its dual
topological polarity L∗ := 〈XL, YL, RL〉 as follows. The points of XL are the filters
which are in some maximal pair, the points of YL are the ideals which are in some
maximal pair, and RL is the relation defined by F RL I iff F ∩ I 6= ∅. The topology
on XL is defined by taking the sets {F ∈ XL | a ∈ F}, for a ∈ L, as a subbasis for
the closed sets, and the topology on YL is defined by taking the sets {I ∈ YL | b ∈ I},
for b ∈ L, as a subbasis for the closed sets.
From the point of view of the canonical extension, the topological polarity dual
to a lattice L can be equivalently defined as follows (cf. Figure 3). For a ∈ L
we define â := ↓a ∩ J∞(Lδ) and qa := ↑a ∩M∞(Lδ). Let τJc be the topology on
J∞(Lδ) given by taking {â : a ∈ L} as a subbasis for the closed sets. Let τMc be
the topology on M∞(Lδ) given by taking {qa : a ∈ L} as a subbasis for the closed
sets. It may come as a surprise that the sets â are taken to be closed, whereas
these sets are the compact open sets in the usual topology on the Stone spectrum
of a distributive lattice. However, we will see in Example 2.20, among other things,
that the topology on J∞(Lδ) obtained by taking the sets â to be open may fail to
be compact when L is a non-distributive lattice.
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LδL

J∞(Lδ)

M∞(Lδ)

a

â

qa

Figure 3. Topological spaces from the embedding of a lattice L
into its canonical extension Lδ.

The following proposition is a precise statement of Remark 2.10 in [10].

Proposition 2.16. Let L be a lattice. Define the topological polarity

L∗ := 〈(J∞(Lδ), τJc ), (M∞(Lδ), τMc ),≤〉.

Then L∗ is isomorphic to Hartung’s topological polarity 〈XL, YL, RL〉.

Proof. The bijections φF and φI from Proposition 2.2 restrict to homeomorphisms
between XL and J∞(Lδ), and between YL and M∞(Lδ), respectively, and φF (F ) ≤
φF (I) iff F RL I. �

In the same Remark 2.10 of [10], the following fact is left to the reader as a “non-
trivial exercise”. This fact now follows immediately from the above results.

Proposition 2.17. The map L→ (L∗)
+ defined by a 7→ â is the canonical exten-

sion of L.

Proof. Combine Proposition 2.5, Corollary 2.14 and Proposition 2.16. �

To show that the structure L∗ is sufficient to recover the original lattice L, one needs
the following remarkable fact, which is the non-distributive analogue of Proposi-
tion 2.9.

Proposition 2.18. The lattice L is isomorphic to the sublattice CL of (L∗)
+,

which consists of those A ∈ P(J∞(Lδ)) such that both A and u(A) are closed in
the topologies τJc and τMc , respectively.

Proof (Sketch). By Proposition 2.17 and the definitions of the topologies τJc and
τMc , it is clear that L order-embeds into the sublattice CL via a 7→ â. To show that
this embedding is surjective, one needs the non-trivial argument which is given in
the proof of Proposition 2.1.7 of Hartung [14] and uses the axiom of choice in the
form of Rado’s Selection Theorem [13]. �
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Remark 2.19. Before Hartung, Urquhart [24] had already defined the dual struc-
ture of a lattice to be a doubly ordered topological space 〈Z, τ,≤1,≤2〉 whose points
are maximal pairs (F, I). We briefly outline how this structure can be obtained from
the canonical extension.
Let P be the subset of J∞(Lδ)×M∞(Lδ) consisting of pairs (x, y) such that x �Lδ
y, i.e., P is the set-theoretic complement of the relation RL of L∗. Then P inherits
the subspace topology from the product topology τJc × τMc on J∞(Lδ)×M∞(Lδ).
We define an order � on P by (x, y) � (x′, y′) iff x ≥Lδ x′ and y ≤Lδ y′; in other
words, � is the restriction of the product of the dual order and the usual order of
Lδ. Urquhart’s space 〈Z, τ〉 then corresponds to the subspace of �-maximal points
of P , and the orders ≤1 and ≤2 correspond to the projections of the order � onto
the first and second coordinate, respectively.

We have shown how Hartung’s and Urquhart’s constructions of the dual structure
of a lattice both arise naturally from the embedding of a lattice L into its canonical
extension Lδ. This perspective enables us to prove that the spaces which occur
in Hartung’s duality may be rather badly behaved. We will show that the dual
structures of an arbitrary lattice may lack the nice properties that dual spaces of
distributive lattices always have. In particular, the topology on the dual space may
not be sober, and the compact open sets will not in general be closed under finite
intersections.

Example 2.20 (A lattice whose dual topology is not sober). Let L be a countable
antichain with top and bottom, as depicted in Figure 4.

L

.....

Figure 4. The lattice L, a countable antichain with top and bottom.

One may easily show that L ↪→ L is a canonical extension, so L = Lδ. The set
J∞(L) is the countable antichain (as is the set M∞(L)). The topology τJc is the
cofinite topology on a countable set, which is not sober: the entire space is itself a
closed irreducible subset which is not the closure of a point.
Also note that if one instead would define a topology on J∞(L) by taking the sets
â, for a ∈ L, to be open, instead of closed, then one obtains the discrete topology
on J∞(L), which is in particular not compact.

In the light of the above example, one may wonder whether the sobrification of the
space (J∞(L), τJc ) may have better properties, and in particular whether it will be
spectral. However, the following example shows that it can not be, since the frame
of opens of the space (J∞(L), τJc ) in this example is not arithmetic: intersections
of compact opens do not need to be compact open.

Example 2.21 (A lattice whose dual topology is not spectral). Consider the lattice
K depicted in Figure 5. In this figure, the elements of the original lattice K are
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K ↪→ Kδ

b2 c2

a2b1 c1

a1b0 c0

a0

..
.

..
.

..
.

0

b

a

c z0z1z2. . .

Figure 5. The lattice K, for which (J∞(Kδ), τc) is not spectral.

drawn as filled dots, and the three additional elements a, b and c of the canonical
extension Kδ are drawn as white dots.
The set J∞(Kδ) is {bi, ci, zi | i ≥ 0} ∪ {b, c}. We take {â : a ∈ K} as a subbasis
for the closed sets, so {(â)c : a ∈ K} is a subbasis for the open sets.

In particular, (b̂0)c and (ĉ0)c are compact open sets. However, their intersection is

not compact: {(ân)c}∞n=0 is an open cover of (b̂0)c ∩ (ĉ0)c = {zi : i ≥ 0} with no
finite subcover.

The above examples indicate that the spaces obtained from Hartung’s duality can
be badly behaved. In particular, they do not fit into the framework of the duality
between sober spaces and spatial frames. The individual spaces which occur in
Hartung’s duality may fail to be the Stone duals of any distributive lattice.
In the next section, we will show how one may put a quasi-uniform structure rather
than a topology on the sets J∞ and M∞ to associate a quasi-uniform space to a
lattice. This will naturally lead to the definition of the distributive envelope of a
lattice.

3. Quasi-uniform spaces associated with a lattice

So far we have obtained a pair of representations L ↪→ P(XL), a 7→ â and L ↪→ P(YL),
a 7→ qa where XL = J∞(Lδ) and YL = M∞(Lδ) (see figure 3). In the case of a
distributive lattice, the topological space obtained by taking the sets representing
the elements of L as a basis is a particularly nice sober space. For a lattice in
general this is not so, as we have seen at the end of Section 2 above.
In this section we consider what happens if we take instead the Pervin quasi-uniform
space generated by the representations of L in P(XL) and P(YL), respectively. As
seen in [9] this links up with duality theory for bounded distributive lattices. It will
allow us to give a spatial meaning to certain distributive lattices associated with a
lattice L.
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Uniform spaces generalize metric spaces beyond the setting of spaces with a count-
able basis. Uniform spaces, as well as metric spaces, encode more information than
topologies and this approach will allow us to encode important information about
a lattice. In a metric space, for each ε > 0, we get, at each point of the space,
an ε-ball; this is modeled in a uniform space, X, by a subset U ⊆ X × X that
should be thought of as the set of all (x, y) so that y is in the ε-ball centered at
x. Quasi-uniform spaces is a non-symmetric generalization of uniform spaces. We
give the basic notions needed here and for further details on the theory of uniform
spaces and quasi-uniform spaces we refer to [1] and [4], respectively.
A quasi-uniform space is a pair (X,U), where X is a set, and U is a collection of
subsets of X ×X having the following properties:

(i) U is a filter of subsets of X × X contained in the up-set of the diagonal
∆ = {(x, x) | x ∈ X};

(ii) for each U ∈ U , there exists V ∈ U such that V ◦ V ⊆ U ;

The collection U is called a quasi-uniformity and its elements are called entourages.
The condition (ii) corresponds to the triangle inequality. A quasi-uniform space is
said to be a uniform space provided U is symmetric in the sense that the converse,
U−1, of each entourage U is again an entourage of the space.
A function f : (X,U)→ (Y,V) between quasi-uniform spaces is uniformly continu-
ous provided (f×f)−1(V ) ∈ U for each V ∈ V. Sometimes we will write f : X → Y
is (U ,V)-uniformly continuous instead to express this fact. A quasi-uniform space
(X,U) always gives rise to a topological space. This is the space X with the in-
duced topology, which is given by letting V ⊆ X be open provided that, for each
x ∈ V , there is U ∈ U such that U(x) = {y ∈ X | (x, y) ∈ U} ⊆ V . Just as for
metric spaces, in general, several different quasi-uniformities on X give rise to the
same topology. We will assume that all spaces are Komolgorov, that is, the induced
topology is T0. A quasi-uniform space is Kolmogorov if, and only if, for any two
distinct points x, y ∈ X, there is an entourage U with (x, y) 6∈ U or (y, x) 6∈ U .
This requirement is equivalent to the intersection of all the entourages in U being
a partial order rather than just a quasi-order on X.
Given a set X, we denote, for each subset A ⊆ X, by UA the subset

(Ac ×X) ∪ (X ×A) = {(x, y) | x ∈ A =⇒ y ∈ A}

of X×X. Given a topology τ on X, the filter Uτ in the power set of X×X generated
by the sets UA for A ∈ τ is a quasi-uniformity on X. The quasi-uniform spaces
(X,Uτ ) were first introduced by Pervin [19] and are now known in the literature
as Pervin spaces. Generalizing this idea, given any subcollection K ⊆ P(X), we
define (X,UK) to be the quasi-uniform space whose quasi-uniformity is the filter
generated by the entourages UA for A ∈ K. Here we will call this larger class of
quasi-uniform spaces Pervin spaces.
The first crucial point is that, for any collectionK ⊆ P(X), the bounded distributive
sublattice D(K) of P(X) generated by K may be recovered from (X,UK) even
though this cannot be done in general from the associated topology. The generated
sublattice is recovered as the blocks of the quasi-uniform space: The blocks of a
space (X,U) are the subsets A ⊆ X such that UA is an entourage of the space, or
equivalently, those for which the characteristic function χA : X → 2 is uniformly
continuous with respect to the Sierpiński quasi-uniformity on 2, which is the one
containing just 22 and {(0, 0), (1, 1), (1, 0)}.
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Further, it is not hard to see that if D ⊆ P(Y ) and E ⊆ P(X) are bounded
sublattices of the respective power sets, then a map f : (X,UE) → (Y,UD) is
uniformly continuous if and only if f−1 induces a lattice homomorphism from D to
E by restriction. Thus, the category of sublattices of power sets with morphisms
that are commuting diagrams

D E

P(Y ) P(X)

h

φ

where φ is a complete lattice homomorphism, is dually isomorphic to the category
of Pervin spaces with uniformly continuous maps.
To be able to state the main result from [9] that we want to apply here, we need to
define bicompletions of quasi-uniform spaces. For more details see [4, Chapter 3].
Bicompleteness generalizes the notion of completeness for uniform spaces, which is
well-understood (see, e.g., [1, Chapter II.3]): a uniform space (X,U) is complete
if every Cauchy filter converges. Here, we recall that a proper filter F of P(X) is
Cauchy if every entourage U ∈ U contains a set of the form F ×F for some F ∈ F ,
and the filter F is said to converge to x ∈ X if U(x) ∈ F for all U ∈ U . In a
uniformity that comes from a metric space, Cauchy filters correspond exactly to
Cauchy sequences.
Now let (X,U) be a quasi-uniform space. The converse, U−1, of the quasi-uniformity
U , consisting of the converses U−1 of the entourages U ∈ U , is again a quasi-
uniformity on X. Further, the symmetrisation, Us, which is the filter of P(X ×X)
generated by the union of U and U−1, is a uniformity on X. A quasi-uniform space
(X,U) is called bicomplete if and only if (X,Us) is a complete uniform space. It has
been shown by Fletcher and Lindgren [4, Chapter 3.3] that the full subcategory of
bicomplete quasi-uniform spaces forms a reflective subcategory of the category of
quasi-uniform spaces with uniformly continuous maps. Thus, for each quasi-uniform

space (X,U), there is a bicomplete quasi-uniform space (X̃, Ũ) and a uniformly

continuous map ηX : (X,U)→ (X̃, Ũ) with a universal property.
Now we are ready to state the main result of Section 1 of [9]: The set representation
of a distributive lattice D given by Stone/Priestley duality is obtainable from any
bounded lattice embedding e : D ↪→ P(X) of D into a power set by taking the
bicompletion of the corresponding quasi-uniform Pervin space (X,UIm(e)). To be
more precise, we have:

Theorem 3.1. [9, Theorem 1.6] Let D be a bounded distributive lattice, and let
e : D ↪→ P(X) be any bounded lattice embedding of D in a power set lattice and

denote by D the image of the embedding e. Let X̃ be the bicompletion of the Pervin

space (X,UD). Then X̃ with the induced topology is the Stone dual space of D.

Alternatively, one can think of the quasi-uniform space (X̃, ŨD) as an ordered uni-

form space, as follows. Equip the uniform space (X̃, ŨsD) with the order ≤ defined

by
⋂
a∈D Uâ. Then (X̃, ŨsD,≤) is a uniform version of the Priestley dual space of D.

We now want to apply this theorem to the setting of this paper. Let L be a bounded
lattice, Lδ, the canonical extension of L, and XL = J∞(Lδ) and YL = M∞(Lδ).
Then L induces quasi-uniform space structures (XL,UL̂) and (YL,UqL) on XL and
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YL, respectively. Here UL̂ is the Pervin quasi-uniformity generated by the image

L̂ = {â | a ∈ L} and U
qL is the Pervin quasi-uniformity generated by the image

qL = {qa | a ∈ L}. By Theorem 3.1, the bicompletions of these Pervin spaces are
Stone spaces and the corresponding bounded distributive lattices are the sublattices

of P(XL) and P(YL) generated by L̂ and qL, respectively.

Definition 3.2. Let L be a bounded lattice, XL = J∞(Lδ), and YL = M∞(Lδ).

Then we denote by D∧(L) the sublattice of P(XL) generated by L̂ = {â | a ∈
L} and by D∨(L) the sublattice of P(YL) generated by qL. We call D∧(L) the
distributive ∧-envelope and D∨(L) the distributive ∨-envelope of D. We will see in
the next section that these names are appropriate.

The following theorem is then a corollary of Theorem 3.1.

Theorem 3.3. Let L be a bounded lattice, then the bicompletion of the associ-
ated quasi-uniform Pervin space, (XL,UL̂), is the dual space of the distributive
∧-envelope, D∧(L), of L. Order dually, the bicompletion of the associated quasi-
uniform Pervin space, (YL,UqL), is the dual space of the distributive ∨-envelope,
D∨(L), of L.

Example 3.4. For any finite lattice L, the distributive envelope D∧(L) is the
lattice of downsets of the poset J(L), with the order inherited from L. Thus, in
the finite case, the quasi-uniform space XL is already bicomplete, and hence equal
to its own bicompletion. The same of course holds for D∨(L) and YL. In the finite
case, we therefore stay faithful to Hartung’s duality.
For the lattice L discussed in Example 2.20 above, the distributive envelope D∧(L)
is (isomorphic to) the lattice consisting of all finite subsets of the countable an-
tichain, and a top element. Thus, in the bicompletion of XL, we find one new
point, corresponding to the prime filter consisting of only the top element.
For the lattice K discussed in Example 2.21, the distributive envelope D∧(K) is
a much bigger lattice than K, and the bicompletion of XL will contain many new
points. In particular, the bicompletion will not just be the sobrification of XL.

4. Distributive envelopes

In this section we will study the two distributive envelopes D∧(L) and D∨(L) of
L, which appeared in the previous section as the distributive lattices dual to the
bicompletions of the quasi-uniform spaces (XL,UL̂) and (YL,UqL), respectively. We
will give algebraic constructions of the distributive envelopes, and characterize the
envelopes by universal properties. Some of the results in this section can be seen as
finitary versions of the results on injective hulls of semilattices of Bruns and Lakser
[5]. We will relate our results to theirs in Remark 4.16. However, the reader who
is not familiar with [5] should be able to read this section independently.
We give an algebraic construction of the distributive ∧-envelope D∧(L) of L. The
construction of the distributive ∨-envelope D∨(L) of L is order dual, cf. Re-
mark 4.17 at the end of this section. The following definition is central, being
the finitary version of the definition of admissible given in [5].

Definition 4.1. A finite subset M ⊆ L is join-admissible if its join distributes over
all meets with elements from L, i.e., if, for all a ∈ L,

(1) a ∧
∨
M =

∨
m∈M

(a ∧m)
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The join-admissible subsets of L are those subsets whose join ‘is already distributive’
in L. From the perspective of the canonical extension Lδ, a set is join-admissible
iff the join-irreducibles behave like join-primes with respect to the join of that set.
This is made precise in the lemma below.

Lemma 4.2. Let L be a lattice and M ⊆ L a finite subset. Then the following are
equivalent.

(i) M is join-admissible;
(ii) For any x ∈ J∞(Lδ), if x ≤

∨
M , then x ≤ m for some m ∈M .

Proof. (i) ⇒ (ii). Suppose M is join-admissible, and let x ∈ J∞(Lδ) such that
x ≤

∨
M . Define x′ :=

∨
m∈M (x ∧m). It is obvious that x′ ≤ x. We show that

x ≤ x′. Let y be an ideal element of Lδ such that x′ ≤ y. Then, for each m ∈ M ,
we have x ∧m ≤ y, so by compactness, there exists am ∈ L such that x ≤ am and
am ∧m ≤ y. Let a :=

∧
m∈M am. Since M is join-admissible, we get

x ≤ a ∧
∨
M =

∨
m∈M

(a ∧m) ≤
∨
m∈M

(am ∧m) ≤ y.

Since y was an arbitrary ideal element above x′, by denseness we conclude that
x ≤ x′. So x = x′ =

∨
m∈M (x ∧m). Since x is join-irreducible, we get x = x ∧m

for some m ∈M , so x ≤ m.
(ii) ⇒ (i). Let a ∈ L be arbitrary. Because the other inequality is obvious, we only
need to show that a ∧

∨
M ≤

∨
m∈M (a ∧m) holds in L. We show the inequality

holds in Lδ and use that L ↪→ Lδ is an embedding. Let x ∈ J∞(Lδ) such that
x ≤ a ∧

∨
M . By (ii), pick m ∈ M such that x ≤ m. Then x ≤ a ∧ m ≤∨

m∈M (a ∧m). Since x ∈ J∞(Lδ) was arbitrary, by Proposition 2.5 we conclude
a ∧

∨
M ≤

∨
m∈M (a ∧m). �

The above lemma will be our main tool in studying admissible sets. It is a typical
example of the usefulness of canonical extensions: one can formulate an algebraic
property (join-admissibility) in a spatial manner (using the ‘points’, i.e., completely
join-irreducibles, of the canonical extension).
Note that the same proof goes through without the restriction that M is finite, if
one extends the definition of join-admissibility to include infinite sets. We will not
expand on this point here, because we will only need the result for finite sets.
To construct D∧(L), we want to ‘add joins’ to L. This can of course be done with
ideals. In the case of D∧(L) the required ideals will be closed under admissible
joins. To formalize this idea, we define a-ideals.

Definition 4.3. A subset A ⊆ L is called an a-ideal if (i) A is a downset, i.e., if
a ∈ A and b ≤ a then b ∈ A, and (ii) A is closed under admissible joins, i.e., if
M ⊆ A is join-admissible, then

∨
M ∈ A.

Remark 4.4. Note that any (lattice) ideal of a lattice L is in particular an a-ideal.
Moreover, any intersection of a-ideals is again an a-ideal. In particular, the poset
aIdl(L) of all a-ideals of L is a closure system. Therefore, for any subset T of L,
there exists a smallest a-ideal containing T . We will denote this a-ideal by 〈T 〉ai
and call it the a-ideal generated by T . As usual, we say that an a-ideal A is finitely
generated if there is a finite set T such that A = 〈T 〉ai. In a distributive lattice D,
all joins are admissible, and a-ideals coincide with lattice ideals.
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Recall thatD∧(L) was defined in the previous section as the sublattice of P(J∞(Lδ))
generated by the sets â := {x ∈ J∞(Lδ) : x ≤ a}, where a ranges over the elements
of L. Note that, for any finite subset T ⊆ L, we have⋂

a∈T
â =

∧̂
T .

Hence, an arbitrary element of D∧(L) is a finite union of sets of the form â, where
a ∈ L. We aim to establish an isomorphism between the poset of finitely generated
a-ideals and the poset D∧(L). To do so, the following criterium will be useful.

Lemma 4.5. Let L be a lattice, T ⊆ L a finite subset and b ∈ L. The following
are equivalent:

(i) b ∈ 〈T 〉ai;
(ii) b̂ ⊆

⋃
a∈T â;

(iii) There exists a finite join-admissible M ⊆ ↓T such that b =
∨
M .

Proof. (i)⇒ (ii). Note that A := {b ∈ L : b̂ ⊆
⋃
a∈T â} is an a-ideal which contains

T : it is clearly a downset, and it is closed under admissible joins, using Lemma 4.2.
Hence, b ∈ 〈T 〉ai ⊆ A, as required.
(ii) ⇒ (iii). Let M := {b ∧ a | a ∈ T}. We claim that b =

∨
M and M is

join-admissible. Note that
∨
M ≤ b, so

∨̂
M ⊆ b̂. Using (iii), we also get:

b̂ = b̂ ∩
⋃
a∈T

â =
⋃
a∈T

(̂b ∩ â) =
⋃
a∈T

b̂ ∧ a =
⋃
m∈M

m̂ ⊆
∨̂
M ⊆ b̂.

Therefore, equality holds throughout, and in particular b =
∨
M and

⋃
m∈M m̂ =∨̂

M , so that M is join-admissible by Lemma 4.2.
(iii)⇒ (i). Since 〈T 〉ai is a downset containing T , 〈T 〉ai contains M , and therefore,
being closed under admissible joins, it contains b =

∨
M . �

We can now prove that the finitely generated a-ideals form a lattice isomorphic to
D∧(L).

Proposition 4.6. Let φ be the function which sends a finitely generated a-ideal
A = 〈T 〉ai to the set

⋃
a∈T â ∈ D∧(L). Then φ is a well-defined order isomorphism

between the poset of finitely generated a-ideals and D∧(L).

Proof. Let T and U be finite subsets of L. Note that if 〈T 〉ai = A = 〈U〉ai, then in

particular b ∈ 〈T 〉ai for each b ∈ U , so b̂ ⊆
⋃
a∈T â by Lemma 4.5. Hence,

⋃
b∈U b̂ ⊆⋃

a∈T â. The proof of the other inclusion is symmetric, so indeed
⋃
a∈T â =

⋃
b∈U b̂,

and φ is well defined. This argument also shows that φ is order preserving. Finally, if

φ(〈U〉ai) =
⋃
b∈U b̂ ⊆

⋃
a∈T â = φ(〈T 〉ai), then for each b ∈ U we have b̂ ⊆

⋃
a∈T â,

so by Lemma 4.5 we get b ∈ 〈T 〉ai. Since this holds for each b ∈ U , we get
〈U〉ai ⊆ 〈T 〉ai, so φ is order reflecting. It is immediate from the definition of D∧(L)
as finite unions of sets of the form â that φ is surjective. �

Note that this proposition implies in particular that the finitely generated a-ideals
form a distributive lattice which is isomorphic to D∧(L). However, we have not said
anything so far about the operations ∧ and ∨ between finitely generated a-ideals.
Clearly, the join of two finitely generated a-ideals is generated by the union of the
sets of generators. Intersection is also well-behaved, as we will prove now.
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Proposition 4.7. Let L be an arbitrary lattice, and let T and U be finite subsets
of L. Then

〈T 〉ai ∩ 〈U〉ai = 〈t ∧ u | t ∈ T, u ∈ U〉ai.
In particular, the intersection of two finitely generated a-ideals is again finitely
generated.

Proof. By Lemma 4.5, we have that

〈T 〉ai∩〈U〉ai = {b ∈ L | b̂ ⊆
⋃
t∈T

t̂ and b̂ ⊆
⋃
u∈U

û} = {b ∈ L | b̂ ⊆

(⋃
t∈T

t̂

)
∩

(⋃
u∈U

û

)
}.

Note that (⋃
t∈T

t̂

)
∩

(⋃
u∈U

û

)
=

⋃
t∈T,u∈U

(t̂ ∩ û) =
⋃

t∈T,u∈U
t̂ ∧ u.

So we get that 〈T 〉ai∩〈U〉ai = {b ∈ L | b̂ ⊆
⋃
t∈T,u∈U t̂ ∧ u} = 〈t∧u | t ∈ T, u ∈ U〉ai,

again by Lemma 4.5. �

We will now prove that D∧(L) and D∨(L) satisfy universal properties, showing in
what sense exactly they are ‘distributive envelopes’ of L. We will regard D∧(L) as
the distributive lattice of finitely generated a-ideals, by Proposition 4.6. We denote
by η∧L : L ↪→ D∧(L) the embedding which sends a ∈ L to η∧L(a) := 〈a〉ai, which is
simply the downset of a in L. We say that a function f : L1 → L2 between lattices
preserves admissible joins if, for each finite join-admissible set M ⊆ L1, we have
f(
∨
M) =

∨
m∈M f(m). We will show that D∧(L) has a universal property with

respect to the class of maps which preserve finite meets and admissible joins.

Lemma 4.8. Let L be a lattice. Then η∧L : L ↪→ D∧(L) preserves finite meets and
admissible joins.

Proof. Clearly, η∧L(a ∧ b) = η∧L(a) ∩ η∧L(b) and η∧L(1) = 1D∧(L). Let M be a finite
join-admissible set. Then

∨
m∈M η∧L(m) = 〈M〉ai. By Lemma 4.5, b ∈ 〈M〉ai iff

b̂ ⊆
⋃
m∈M m̂, and

⋃
m∈M m̂ =

∨̂
M by Lemma 4.2, since M is join-admissible. So

b ∈
∨
m∈M η∧L(m) = 〈M〉ai iff b̂ ⊆

∨̂
M iff b ∈ 〈

∨
M〉ai = η∧L(

∨
M). �

Theorem 4.9. Let L be a lattice and D a distributive lattice. If f : L → D pre-
serves finite meets and admissible joins, then there exists a unique homomorphism

f̂ : D∧(L)→ D such that f̂ ◦ η∧L = f .

L D∧(L)

D

f
f̂!

η∧L

Proof. Let f : L→ D be a function which preserves meets and admissible joins. If
g : D∧(L)→ D is a homomorphism such that g ◦η∧L = f , then, for any finite subset
T ⊆ L, we have

g(〈T 〉ai) = g

(∨
t∈T

η∧L(t)

)
=
∨
t∈T

g(η∧L(t)) =
∨
t∈T

f(t).
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So there is at most one homomorphism g : D∧(L)→ D satisfying g ◦ η∧L = f .

Let f̂ : D∧(L)→ D be the function defined for a finite subset T ⊆ L by

f̂(〈T 〉ai) :=
∨
t∈T

f(t).

We show that f̂ is a well-defined homomorphism. For well-definedness, suppose
that 〈T 〉ai = 〈U〉ai for some finite subsets T,U ⊆ L. Let u ∈ U be arbitrary. We
then have u ∈ 〈T 〉ai. By Lemma 4.5, u =

∨
M for some finite join-admissible

M ⊆ ↓T . Using that f preserves admissible joins and order, we get

f(u) = f
(∨

M
)

=
∨
m∈M

f(m) ≤
∨
t∈T

f(t).

Since u ∈ U was arbitrary, we have shown that
∨
u∈U f(u) ≤

∨
t∈T f(t). The proof

of the other inequality is the same. We conclude that
∨
t∈T f(t) =

∨
u∈U f(u), so

f̂ is well-defined.

It is clear that f̂ ◦ η∧L = f . In particular, f̂ preserves 0 and 1, since f does. It

remains to show that f̂ preserves ∨ and ∧. Let T,U ⊆ L be finite subsets. Then
〈T 〉ai ∨ 〈U〉ai = 〈T ∪ U〉ai, so

f̂(〈T 〉ai ∨ 〈U〉ai) =
∨

v∈T∪U
f(v) =

∨
t∈T

f(t) ∨
∨
u∈U

f(u) = f̂(〈T 〉ai) ∨ f̂(〈U〉ai).

Using Proposition 4.7 and the assumptions that D is distributive and f is meet-
preserving, we have

f̂(〈T 〉ai ∧ 〈U〉ai) =
∨

t∈T,u∈U
f(t ∧ u) =

∨
t∈T,u∈U

(f(t) ∧ f(u))

=
∨
t∈T

f(t) ∧
∨
u∈U

f(u) = f̂(〈T 〉ai) ∧ f̂(〈U〉ai).�

It will be useful to know that the extension of an injective map to D∧(L) is injective.

Proposition 4.10. Let L be a lattice, D a distributive lattice, and f : L → D a
function which preserves finite meets and admissible joins. If f is injective, then

the unique extension f̂ : D∧(L)→ D is injective.

Proof. Note that f is order reflecting, since f is meet-preserving and injective.

Suppose that f̂(〈U〉ai) ≤ f̂(〈T 〉ai). We need to show that 〈U〉ai ⊆ 〈T 〉ai. Let u ∈ U
be arbitrary. Then f(u) ≤ f̂(〈U〉ai) ≤ f̂(〈T 〉ai) =

∨
t∈T f(t). For any a ∈ L, we

then have

f(a ∧ u) = f(a ∧ u) ∧
∨
t∈T

f(t) =
∨
t∈T

(f(a ∧ u) ∧ f(t))

=
∨
t∈T

f(a ∧ u ∧ t) ≤ f

(∨
t∈T

(a ∧ u ∧ t)

)
.

Since f is order reflecting, we thus get a ∧ u ≤
∨
t∈T (a ∧ u ∧ t). Since the other

inequality is clear, we get

a ∧ u =
∨
t∈T

(a ∧ u ∧ t).
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In particular, putting a = 1, we see that u =
∨
t∈T (u ∧ t), and the above equation

then says that {u ∧ t | t ∈ T} is join-admissible. So u ∈ 〈T 〉ai. We conclude that
U ⊆ 〈T 〉ai, and therefore 〈U〉ai ⊆ 〈T 〉ai. �

From Theorem 4.9, we can deduce that the assignment L 7→ D∧(L) extends to
an adjunction between categories. We first define the appropriate categories. We
denote by DL the category of distributive lattices with homomorphisms. The
relevant category of lattices is defined as follows.

Definition 4.11. We say a function f : L1 → L2 between lattices is a (∧,a∨)-
morphism if f preserves finite meets and admissible joins, and, for any join-admissible
set M ⊆ L1, f [M ] is join-admissible. We denote by L∧,a∨ the category of lattices
with (∧,a∨)-morphisms between them. (The reader may verify that L∧,a∨ is indeed
a category.)

We consider this definition in a bit more detail before we proceed, since it is central
to what follows. Note that if the lattice L2 is distributive, then the condition that f
sends join-admissible sets to join-admissible sets is vacuously true, since any subset
of a distributive lattice is join-admissible. This explains why we did not need to
state the condition that f preserves join-admissible sets in the universal property
of D∧(L) (Theorem 4.9). However, the following example shows that in general the
condition ‘f sends join-admissible sets to join-admissible sets’ can not be omitted
from the definition of (∧,a∨)-morphism.

Example 4.12. The composition g ◦ f of functions f : L1 → L2 and g : L2 → L3

between lattices which preserve meets and admissible joins need not preserve admis-
sible joins.
Let L1 be the diamond distributive lattice, let L2 be the three-element antichain
with 0 and 1 adjoined, and let L3 be the Boolean algebra with 3 atoms, as in
Figure 6 below. Note that L3 = D∧(L2).

L1

0

1

a1 b1

L2

0

1

a2 b2c2

L3

0

1

a3 b3c3

Figure 6. The lattices L1, L2 and L3 from Example 4.12.

Let f : L1 → L2 be the function defined by f(0) = 0, f(1) = 1, f(x1) = x2 for
x ∈ {a, b}. Let g : L2 → L3 be the function defined by g(0) = 0, g(1) = 1, g(x2) =
x3 for x ∈ {a, b, c}. Then f is a lattice homomorphism (moreover, f is injective).
Also note that g = η∧L2

, so it is in particular a (∧, a∨)-morphism. However, the
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composition g ◦ f does not preserve (admissible) joins: gf(a1 ∨ b1) = gf(1) = 1,
but gf(a1) ∨ gf(b1) = a3 ∨ b3 6= 1.
Note that f , despite it being a homomorphism, does not send join-admissible sets
to join-admissible sets: the image of {a1, b1} is {a2, b2}, which is not join-admissible
in L2.

However, the following proposition shows that for surjective maps, the condition ‘f
sends join-admissible sets to join-admissible sets’ can be omitted. It was already
observed by Urquhart [24] that surjective maps are well-behaved for duality, and
accordingly our duality in Section 5 also includes surjective lattice homomorphisms.

Proposition 4.13. Suppose f : L1 → L2 is a surjective function which pre-
serves finite meets and admissible joins. Then f sends join-admissible sets to
join-admissible sets (and therefore f is a morphism in L∧,a∨).

Proof. Suppose M ⊆ L1 is a join-admissible set. To show that f [M ] is join-
admissible, first let a ∈ L1 be arbitrary. Note that it follows from the definition
of join-admissibility that {a ∧m | m ∈M} is also join-admissible in L1. So, using
that f preserves meets and admissible joins, we get

f(a) ∧
∨
m∈M

f(m) = f(a ∧
∨
M) = f

( ∨
m∈M

(a ∧m)

)
=
∨
m∈M

(f(a) ∧ f(m)).

Since f is surjective, any b ∈ L2 is of the form b = f(a) for some a ∈ L1. Hence,
f [M ] is join-admissible. �

Note that, if L1 and L2 are distributive, then (∧,a∨)-morphisms from L1 to L2 are
exactly bounded lattice homomorphisms. Hence, we have a full inclusion of cate-
gories I∧ : DL ↪→ L∧,a∨. The following is now a consequence of the Theorem 4.9.

Corollary 4.14. The functor D∧ : L∧,a∨ → DL, which sends L to D∧(L) and a
(∧,a∨)-morphism f : L1 → L2 to the unique homomorphic extension of η∧L2

◦ f :
L1 → D∧(L2), is left adjoint to I∧ : DL ↪→ L∧,a∨ and η∧ is the unit of the
adjunction. Moreover, the counit ε∧ : D∧ ◦ I → 1DL is an isomorphism.

The following characterisation of D∧(L) now follows directly from the preceding
results.

Corollary 4.15. Let L be a lattice. If D is a distributive lattice and f : L→ D is
a function such that

(i) f preserves meets and admissible joins,
(ii) f is injective,
(iii) f [L] is join-dense in D,

then D is isomorphic to D∧(L) via the isomorphism f̂ .

Proof. The homomorphism f̂ is injective by Proposition 4.10. It is surjective be-

cause f [L] is join-dense in D and f̂ [D∧(L)] = {
∨
f [T ] | T ⊆ L}, by the construction

of f̂ in the proof of Theorem 4.9. �

Remark 4.16. We compare our results in this section so far to those of Bruns
and Lakser [5]. The equivalence of (i) and (ii) in Lemma 4.5 is very similar to the
statement of Lemma 3 in [5]. Our proofs are different from those in [5] in making
use of the canonical extension of L; in particular Lemma 4.2 has proven to be useful
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here. Our Corollary 4.15 is a finitary version of the characterisation in Corollary 2
of [5]. The fact that D∧ is an adjoint to a full inclusion can also be seen as a finitary
analogue of the result of [5] that their construction provides the injective hull of
a meet-semilattice. Note that our construction of D∧(L) could also be applied to
the situation where L is only a meet-semilattice, if we modify our definition of join-
admissible sets to require that the relevant joins exist in L. The injective hull of L
that was constructed in [5] can now be retrieved from our construction by taking
the free directedly complete poset (dcpo) over the distributive lattice D∧(L). This
is a special case of a general phenomenon, where frame constructions may be seen
as a combination of a finitary construction, followed by a dcpo construction [18].

Remark 4.17. We outline the order dual version of the construction given above
for later reference. A finite subset M ⊆ L is meet-admissible if for all a ∈ M ,
a ∨

∧
M =

∧
m∈M (a ∨m). An a-filter is an upset which is closed under admissible

meets. The poset of finitely generated a-filters of L, ordered by reverse inclusion, is
isomorphic to D∨(L), by sending the a-filter generated by a finite set T to

⋃
a∈T qa.

Note that the order on a-filters is taken to be the reverse inclusion order, to ensure
that the unit of the adjunction will be order preserving (and not order reversing).
The universal property of Theorem 4.9 holds for D∨(L), interchanging the words
‘join’ and ‘meet’ everywhere. We say f : L1 → L2 is a (∨,a∧)-morphism if it
preserves finite joins, admissible meets, and sends meet-admissible sets to meet-
admissible sets. Then D∨ is a functor from the category L∨,a∧ to DL which is left
adjoint to the full inclusion I∨ : DL→ L∨,a∧. We denote the unit of the adjunction
by η∨ : 1L∨,a∧ → I∨ ◦ D∨. Finally, D∨(L) is the (up to isomorphism) unique
distributive meet-dense extension of L which preserves finite joins and admissible
meets.

We end this section by examining additional structure which links the two dis-
tributive envelopes D∧(L) and D∨(L), and enables us to retrieve L from the
lattices D∧(L) and D∨(L). Recall that in Section 2, we described the polarity
(J∞(Lδ),M∞(Lδ),≤) for any lattice L. In Definition 2.11, we described an adjoint
pair associated to any polarity. In particular, let uL : P(J∞(Lδ)) � P(M∞(Lδ)) :
lL be the adjunction coming from the polarity (J∞(Lδ),M∞(Lδ),≤). Here, the
map uL sends a set V ⊆ J∞(Lδ) to the set uL(V ) := {y ∈ M∞(Lδ) | ∀x ∈ V :
x ≤Lδ y}. In particular, if V = â for some a ∈ L, then uL(V ) = uL(â) = qa. Recall
that the distributive lattice D∧(L) can be identified with its image in P(J∞(Lδ))
and D∨(L) with its image in P(M∞(Lδ)). We then have:

Proposition 4.18. For any lattice L, the maps uL and lL restrict to an adjoint
pair uL : D∧(L) � D∨(L) : lL. The lattice of stable elements under this adjunction
is isomorphic to L.

Proof. Note that D∧(L) consists of finite unions of sets of the form â. If T ⊆ L,
then we have

uL

(⋃
a∈T

â

)
=
⋂
a∈T

qa = qt,

where t :=
∨
T . From this, it follows that uL(D∧(L)) ⊆ D∨(L), and the analogous

statement for lL is proved similarly. The lattice of stable elements under this
adjunction is both isomorphic to the image of uL in D∨(L) and the image of lL in
D∧(L). Both of these lattices are clearly isomorphic to L. �
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Note that in the presentation of D∧(L) and D∨(L) as finitely generated a-ideals
and a-filters, the maps u and l act as follows. Given an a-ideal I which is generated
by a finite set T ⊆ L, uL(I) is the principal a-filter generated by

∨
T . Conversely,

given an a-filter F which is generated by a finite set S ⊆ L, lL(F ) is the principal
a-ideal generated by

∧
S.

5. Topological duality for arbitrary lattices

In this section, we show how the results of this paper can be applied to obtain a new
duality for a category of lattices. This category of lattices will be the intersection
of the categories L∧,a∨ and L∨,a∧ defined in the previous section: its objects are all
bounded lattices, its morphisms are admissible homomorphisms (Definition 5.1).
We combine the facts from the previous section with the existing Stone/Priestley
duality for distributive lattices to obtain a duality for this category. Since the
L∧,a∨-morphisms are exactly the morphisms which can be lifted to homomorphisms
between the D∧-envelopes, these morphisms also correspond exactly to the lattice
morphisms which have functional duals between the X-sets of the dual frames; the
same remark applies to L∨,a∧-morphisms and the Y -sets of the dual frames. The
duals of admissible morphisms will be pairs of functions; one function being the
dual of the ‘L∧,a∨-part’ of the admissible morphism, the other being the dual of
the ‘L∨,a∧-part’ of the morphism.
The functors D∧ and D∨ that we defined in Section 4 are left adjoint to inclusions
of the category DL as a full subcategory in the categories L∧,a∨ and L∨,a∧, respec-
tively. In the light of Proposition 4.18, we can combine D∧ and D∨ to obtain a
single functor D into a category of adjoint pairs between distributive lattices. On ob-
jects, this functor D sends a lattice L to the adjoint pair uL : D∧(L) � D∨(L) : lL
(see Proposition 4.18 above). For the morphisms in the domain category of D, we
take the intersection of the set of morphisms in L∧,a∨ and the set of morphisms in
L∨,a∧. This intersection is defined directly in the following definition.

Definition 5.1. A function f : L→M between lattices is an admissible homomor-
phism if it is a lattice homomorphism which sends join-admissible subsets of L to
join-admissible subsets of M and meet-admissible subsets of L to meet-admissible
subsets of M . We denote by La the category of lattices with admissible homomor-
phisms.

Remark 5.2. Note that, indeed, f is an admissible homomorphism if and only if
it is a morphism both in L∧,a∨ and in L∨,a∧. Although the definition may look
rather restrictive, any homomorphism whose codomain is a distributive lattice is
automatically admissible. Also, any surjective homomorphism between arbitrary
lattices is admissible, by Proposition 4.13. This may be the underlying reason for
the fact that both surjective homomorphisms and morphisms whose codomain is
distributive have proven to be ‘easier’ cases in the existing literature on lattice
duality (see, e.g., [24, 14]). Of course, not all homomorphisms are admissible, cf.
Example 4.12.

We will now first define an auxiliary category of ‘doubly dense adjoint pairs between
distributive lattices’ (daDL) which has the following two features:

(i) The category La can be embedded into daDL as a full subcategory (Propo-
sition 5.4);

(ii) There is a natural Stone-type duality for the category daDL (Theorem 5.13).
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We will then give a dual characterization of the ‘special’ objects in daDL which are
in the image of the embedding of La from (i), calling these dual objects tight (cf.
Definition 5.18). The restriction of the natural Stone-type duality (ii) will then yield
our final result: a topological duality for lattices with admissible homomorphisms
(Theorem 5.19).

Definition 5.3. We denote by aDL the category with:

• objects: tuples (D,E, f, g), where D and E are distributive lattices and
f : D � E : g is a pair of maps such that f is lower adjoint to g;

• morphisms: an aDL-morphism from (D1, E1, f1, g1) to (D2, E2, f2, g2) is
a pair of homomorphisms h∧ : D1 → D2 and h∨ : E1 → E2 such that
h∨f1 = f2h

∧ and h∧g1 = g2h
∨, i.e., both squares in the following diagram

commute:

D1 E1

D2 E2

f1

g1

f2

g2
h∧ h∨

We call an adjoint pair (D,E, f, g) doubly dense if both g[E] is join-dense in D and
f [D] is meet-dense in E. We denote by daDL the full subcategory of aDL whose
objects are doubly dense adjoint pairs.

Proposition 5.4. The category La is equivalent to a full subcategory of daDL.

Proof. Let D : La → daDL be the functor defined by sending:

• a lattice L to D(L) := (D∧(L), D∨(L), u, l),
• an admissible morphism h : L1 → L2 to the pair D(h) := (D∧(h), D∨(h)).

We show that D is a well-defined full and faithful functor.
For objects, note that D(L) is a doubly dense adjoint pair by Corollary 4.15 and
Proposition 4.18 in the previous section.
Let h : L1 → L2 be an admissible morphism. We need to show that D(h) is
a morphism of daDL, i.e., that uL2 ◦ D∧(h) = D∨(h) ◦ uL1 and lL2 ◦ D∨(h) =
D∧(h)◦lL1 . SinceD∧(L1) is join-generated by the image of L1, and both uL2◦D∧(h)
and D∨(h) ◦ uL1

are join-preserving, it suffices to note that the diagram commutes
for elements in the image of L1. This is done by the following diagram chase:

uL2 ◦D∧(h) ◦ η∧L1
= uL2 ◦ η∧L2

◦ h = η∨L2
◦ h = D∨(h) ◦ η∨L1

= D∨(h) ◦ uL1 ◦ η∧L1
,

where we have used that η∧ is a natural transformation and that uL ◦ η∧L = η∨L.
The proof that lL2

◦D∨(h) = D∧(h) ◦ lL1
is similar.

It remains to show that the assignment h 7→ D(h) is a bijection between La(L1, L2)
and daDL(D(L1),D(L2)). If (h∧, h∨) : D(L1) → D(L2) is a daDL-morphism,
then h∧ maps lattice elements to lattice elements. That is, the function h∧ ◦ η∧L1

:
L1 → D(L2) maps into im(η∧L2

) = im(lL2
), since

h∧ ◦ η∧L1
= h∧ ◦ lL1

◦ uL1
◦ η∧L1

= lL2
◦ h∨ ◦ uL1

◦ η∧L1
.

We may therefore define h : L1 → L2 to be the function (η∧L2
)−1 ◦ h∧ ◦ η∧L1

. Note

that this function is equal to (η∨L2
)−1 ◦ h∨ ◦ η∨L1

, since

(η∨L2
)−1◦h∨◦η∨L1

= (η∨L2
)−1◦h∨◦uL1

◦lL1
◦η∨L1

= (η∨L2
)−1◦uL2

◦h∧◦η∧L1
= (η∧L2

)−1◦h∧◦η∧L1
,
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where we have used that, for any lattice L, lL ◦ η∨L = η∧L and uL ◦ η∧L = η∨L. So,
since (η∧L2

)−1 ◦ h∧ ◦ η∧L1
= h = (η∨L2

)−1 ◦ h∨ ◦ η∨L1
, it is clear that h is a homo-

morphism, since the left-hand-side preserves ∧ and the right-hand-side preserves ∨.
It remains to show that h is admissible, i.e., that h sends join-admissible subsets
to join-admissible subsets, and meet-admissible subsets to meet-admissible subsets.
Note that, by the adjunction in Corollary 4.14, if a function k : L → D admits a

homomorphic extension k̂ : D∧(L) → D, then k is (∧, a∨)-preserving, since it is

equal to the composite k̂◦η∧L. In particular, the map η∧L2
◦h is (∧, a∨)-preserving, its

homomorphic extension being h∧. It follows from this that h sends join-admissible
subsets to join-admissible subsets, since join-admissible subsets are the only subsets
whose join is preserved by η∧L2

. The proof that h preserves meet-admissible subsets
is similar.
Now, since h∧ ◦ η∧L1

= η∧L2
◦ h, we have that h∧ = D∧(h), since D∧(h) was defined

as the unique homomorphic extension of η∧L2
◦ h, and similarly h∨ = D∨(h). We

conclude that (h∧, h∨) = D(h), so h 7→ D(h) is surjective.
It is clear that if h 6= h′, then D∧(h) 6= D∧(h′), so D(h) 6= D(h′). Hence, the
assignment h 7→ D(h) is bijective, as required. �

Example 5.5. Not all daDLs are isomorphic to ones of the form (D∧(L), D∨(L), u, l).
This may easily be seen by taking any distributive lattice D and considering
the daDL given by (F∨(D,∧), F∧(D,∨), f, g), where F∨(D,∧) is the free join-
semilattice generated by the meet-semilattice reduct of D viewed as a distributive
lattice, and F∧(D,∨) is defined order dually, and f and g both are determined by
sending each generator to itself. Such a daDL is not of the form we are interested
in since the meet and join envelopes of any distributive lattice both are equal to
the lattice itself since all joins are admissible.

So, the category La, that we will be most interested in, is a proper subcategory of
daDL, but we start by giving a description of the topological duals of the objects
of daDL. To this end, let (D,E, f, g) be a doubly dense adjoint pair. If X and Y
are the dual Priestley spaces of D and E respectively, then it is well-known that an
adjunction (f, g) corresponds to a relation R satisfying certain properties. In our
current setting of doubly dense adjoint pairs, it turns out that it suffices to consider
the topological reducts of the Priestley spaces X and Y (i.e., forgetting the order)
and the relation R between them. Both the Priestley orders of the spaces X and
Y and the adjunction (f, g) can be uniquely reconstructed from the relation R, as
we will prove shortly. The dual of a doubly dense adjoint pair will be a totally
separated compact polarity (TSCP), which we define to be polarity (X,Y,R), where
X and Y are Boolean spaces and R is a relation from X to Y , satisfying certain
properties (see Definition 5.6 for the precise definition).

We now first fix some useful terminology for topological polarities, regarding the
closure and interior operators induced by a polarity, its closed and open sets, and
its associated quasi-orders.4

4The reader may note the close similarity with Galois connections in the proof of Theorem 2.3.

Also note, however, that we are dealing with a covariant adjunction here rather than a contravari-
ant one, due to the fact that, the adjunction in a doubly dense adjoint pair coming from a lattice

is covariant.
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Let X and Y be sets and R ⊆ X × Y . Then we obtain a closure operator ( ) on
X given by

S := {x ∈ X | R[x] ⊆ R[S]} for S ⊆ X.
The subsets S of X satisfying S = S we will call R-closed. The R-closed subsets
of X form a lattice in which the meet is intersection and join is the closure of the
union. We of course also obtain an adjoint pair of maps:

P(X) P(Y )

♦

�

given by

♦S = R[S] = {y ∈ Y | ∃x ∈ S xRy}
and

�T =
(
R−1[T c]

)c
= {x ∈ X | ∀y ∈ Y (xRy =⇒ y ∈ T )}.

The relation with the closure operator on X is that S = �♦S. Note also that on
points of X this yields a quasi-order given by

x′ ≤ x ⇐⇒ R[x′] ⊆ R[x].

Similarly, on Y we obtain an interior operator

T ◦ = {y ∈ Y | ∃x ∈ X [xRy and ∀y′ ∈ Y (xRy′ =⇒ y′ ∈ T )]} = ♦�T

and a quasi-order on Y given by

y ≤ y′ ⇐⇒ R−1[y] ⊇ R−1[y′].

The range of ♦ is equal to the range of the interior operator, and we call these sets
R-open. This collection of subsets of Y forms a lattice isomorphic to the one of
R-closed subsets of X. In this incarnation, the join is given by union whereas the
meet is given by interior of the intersection. Note that the R-closed subsets of X
as well as the R-open subsets of Y all are down-sets in the induced quasi-orders.
We are now ready to define the objects which will be dual to doubly dense adjoint
pairs.

Definition 5.6. A topological polarity is a tuple (X,Y,R), where X and Y are
topological spaces and R is a relation. A compact polarity is a topological polarity
in which both X and Y are compact. A topological polarity is totally separated if
it satisfies the following conditions:

(i) (R-separated) The quasi-orders induced by R on X and Y are partial
orders.

(ii) (R-operational) For each clopen down-set U of X, the image ♦U is clopen
in Y ; For each clopen down-set V of Y , the image �V is clopen in X;

(iii) (Totally R-disconnected) For each x ∈ X and each y ∈ Y , if ¬(xRy) then
there are clopen sets U ⊆ X and V ⊆ Y with ♦U = V and �V = U so
that x ∈ U , and y 6∈ V .

Remark 5.7. In the definition of totally separated topological polarities, the first
property states that R separates the points of X as well as the points of Y . The
second property states that R yields operations between the clopen downsets of X
and of Y . Finally, the third property generalizes total order disconnectedness, well
known from Priestley duality, hence the name total R-disconnectedness.
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The following technical observation about total R-disconnectedness will be useful
in what follows.

Lemma 5.8. If a topological polarity (X,Y,R) is totally R-disconnected, then the
following hold:

• If x′ � x then there is U ⊆ X clopen and R-closed so that x ∈ U and x′ 6∈
U.

• If y′ � y then there is V ⊆ Y clopen and R-open so that y ∈ V and y′ 6∈
V.

Proof. Suppose that x′ � x. By definition of ≤, there exists y ∈ Y such that x′Ry
and ¬(xR y). By total R-disconnectedness, there exist clopen U and V such that
♦U = V , �V = U , x ∈ U and y 6∈ V . We now have x′ 6∈ U , for otherwise we would
get y ∈ ♦U = V . Since U = �V = �♦U , we get that U is R-closed, as required.
The proof of the second property is dual. �

Now, given a daDL (D,E, f, g), we call its dual polarity the tuple (X,Y,R), where
X and Y are the topological reducts of the Priestley dual spaces of D and E,
respectively (which are in particular compact), and R is the relation defined by

xR y ⇐⇒ f [x] ⊆ y,
where we regard the points of X and Y as prime filters of D and E, respectively.
Conversely, given a totally separated compact polarity (X,Y,R), we call its dual ad-
joint pair the tuple (D,E,♦,�), where D and E are the lattices of clopen downsets
of X and Y in the induced orders, respectively, and ♦ and � are the operations
defined above (note that these operations are indeed well-defined by item (ii) in the
definition of totally separated).
The following three propositions constitute the object part of our duality for doubly
dense adjoint pairs.

Proposition 5.9. If (D,E, f, g) is a doubly dense adjoint pair, then its dual po-
larity (X,Y,R) is compact and totally separated.

Proof. Let (D,E, f, g) be a doubly dense adjoint pair, and let L be the lattice which
is isomorphic to both the image of g in D and to the image of f in E.
The dual polarity (X,Y,R) is compact because the dual Priestley spaces of D and
E are compact.
For R-separation, suppose that x 6= x′ in X. We need to show that R[x] 6= R[x′].
Without loss of generality, pick d ∈ D such that d ∈ x and d 6∈ x′. Since L is join-
dense in D and x is a prime filter, there exists a ∈ L with a ≤ d, such that a ∈ x.
Note that a 6∈ x′ since a ≤ d and d 6∈ x′. It follows that f(a) 6∈ f [x′]: if we would
have d′ ∈ x′ such that f(a) = f(d′), then we would get d′ ≤ gf(d′) = gf(a) = a,
contradicting that a 6∈ x′. By the prime filter theorem, there exists a prime filter
y ⊆ E such that f [x′] ⊆ y and f(a) 6∈ y. Since we do have f(a) ∈ f [x], it follows
that x′Ry and ¬(xR y), so R[x′] 6= R[x], as required. The proof that R induces a
partial order on Y is similar.

For R-operationality, it suffices to observe that, for any d ∈ D, we have ♦d̂ =

R[d̂] = f̂(d) and, for any e ∈ E, we have �ê = ĝ(e).
For total R-disconnectedness, suppose that ¬(xR y). This means that f [x] 6⊆ y, so
there is d ∈ D such that d ∈ x and f(d) 6∈ y. Since d ≤ gf(d), we get gf(d) ∈ x, so

we may put U := ĝf(d) and V := f̂(d). �
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Proposition 5.10. If (X,Y,R) is a totally separated compact polarity, then its
dual adjoint pair is doubly dense.

Proof. From what was stated in the preliminaries above, it is clear that we get an
adjoint pair between the lattices of clopen downsets. We need to show that it is
doubly dense.
To this end, let U be a clopen downset of X. We show that U is a finite union of
clopen R-closed sets. First fix x ∈ U . For any x′ 6∈ U , we have that x′ � x. By
L-separation, pick a clopen R-closed set Ux′ such that x ∈ Ux′ and x′ 6∈ Ux′ . Doing
this for all x′ 6∈ U , we obtain a cover {U cx′}x′ 6∈U by clopen sets of the compact set U c.
Therefore, there exists a finite subcover {U ci }ni=1 of U c. Let us write Vx :=

⋂n
i=1 Ui.

We then get that x ∈ Vx ⊆ U , and Vx is clopen R-closed, since each of the Ui is.
Doing this for all x ∈ U , we get a cover {Ux}x∈X by clopen R-closed sets of the
compact set U , which has a finite subcover. This shows that U is a finite union of
clopen R-closed sets.
The proof that clopen downsets of Y are finite intersections of clopen R-open sets
is essentially dual; we leave it to the reader. �

Proposition 5.11. Any totally separated compact polarity is isomorphic to its
double dual.
More precisely, if (X,Y,R) is a TSCP, let (X ′, Y ′, R′) be the dual polarity of the
dual adjoint pair of (X,Y,R). Then there are homeomorphisms φ : X → X ′,
ψ : Y → Y ′ such that xR y iff φ(x)R′ψ(y).

Proof. Note that if (X,Y,R) is a TSCP, then X and Y with the induced orders are
Priestley spaces: total-order-disconnectedness follows from Lemma 5.8 and the fact,
noted above, that R-closed and R-open sets are downsets in the induced orders.
Therefore, by Priestley duality we have homeomorphisms φ : X → X ′ and ψ : Y →
Y ′, both given by sending points to their neighbourhood filters of clopen downsets.
It remains to show that φ and ψ respect the relation R. Note that, by definition, we
have x′R′ y′ iff for any clopen downset U in x′, we have that R[U ] is in y′. Suppose
xR y, and that U ∈ φ(x). Then x ∈ U , so y ∈ R[U ], so R[U ] ∈ ψ(y). Conversely,
suppose that ¬(xR y). By total R-disconnectedness, we pick a clopen R-closed set
U with x ∈ U and y 6∈ ♦U = R[U ]. This set U is a clopen downset which witnesses
that ¬(φ(x)R′ ψ(y)). �

We can extend this object correspondence between daDL’s and TSCP’s to a dual
equivalence of categories. The appropriate morphisms in the category of totally
separated compact polarities are pairs of functions (sX , sY ), which are the Priest-
ley duals of (h∧, h∨). The condition that morphisms in daDL make two squares
commute (see Definition 5.3) dualizes to back-and-forth conditions on sX and sY ,
as in the following definition.

Definition 5.12. A morphism in the category TSCP of totally separated compact
polarities from (X1, Y1, R1) to (X2, Y2, R2) is a pair (sX , sY ) of continuous functions
sX : X1 → X2 and sY : Y1 → Y2, such that, for all x ∈ X1, x′ ∈ X2, y ∈ Y1, y′ ∈ Y2:

(forth) If xR1 y, then sX(x)R2 sY (y),
(♦-back) If x′R2 sY (y), then there exists z ∈ X1 such that z R1 y and sX(z) ≤ x′,
(�-back) If sX(x)R2 y

′, then there exists w ∈ Y1 such that xR1 w and y′ ≤ sY (w).

The conditions on these morphisms should look natural to those familiar with
back-and-forth conditions in modal logic. More detailed background on how these
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conditions arise naturally from the theory of canonical extensions can be found in
[8, Section 5].

Theorem 5.13. The category daDL is dually equivalent to the category TSCP.

Proof. The hardest part of this theorem is the essential surjectivity of the functor
which assigns to a daDL its dual polarity. We proved this in Proposition 5.11. One
may then either check directly that the assignment which sends a daDL-morphism
(h∧, h∨) to the pair (sX , sY ) of Priestley dual functions between the spaces in the
dual polarities is a bijection between the respective Hom-sets, or refer to [8, Section
5] for a more conceptual proof using canonical extensions. �

In particular, combining Theorem 5.13 with Proposition 5.4, the category La of
lattices with admissible homomorphisms is dually equivalent to a full subcategory
of TSCP. The task that now remains is to identify which totally separated compact
polarities may arise as duals of doubly dense adjoint pairs which are isomorphic to
ones of the form (D∧(L), D∨(L), uL, lL) for some lattice L (not all doubly dense
adjoint pairs are of this form; cf. Example 5.5).
Given any daDL (D,E, f, g), there is an associated lattice, namely, L = Im(g) ∼=
Im(f) and this lattice embeds in D meet-preservingly and in E join-preservingly.
We write i : L ↪→ D and j : L ↪→ E for the embeddings of L into D and E,
respectively. These images generate D and E, respectively, because of the double
denseness. However, the missing property is that i and j need not preserve admis-
sible joins and meets, cf. Example 5.5. We will now give a dual description of this
property.
To do so, we will use the canonical extension of the adjunction f : D � E : g and
of the embeddings i and j. For the definitions and the general theory of canonical
extensions of maps we refer to [10, Section 4]. All maps in our setting are either join-
or meet-preserving, so that they are smooth and the σ- and π-extensions coincide.
We therefore denote the unique extension of a (join- or meet-preserving) map h by
hδ. Thus, we have maps fδ : Dδ � Eδ : gδ, iδ : Lδ → Dδ and jδ : Lδ → Eδ. For
our dual characterization, we will need the following basic fact, which is essentially
the content of Remark 5.5 in [10].

Proposition 5.14. Let f : D � E : g be an adjunction between distributive
lattices. Then the following hold:

(i) fδ : Dδ � Eδ : gδ is an adjunction;
(ii) The image of gδ forms a complete

∧
-subsemilattice of Dδ which is isomor-

phic, as a completion of L, to Lδ;
(iii) The image of fδ forms a complete

∨
-subsemilattice of Dδ which is iso-

morphic, as a completion of L, to Lδ.

Proof. Item (i) is proved in [10, Proposition 6.6]. The image of an upper adjoint
between complete lattices always forms a complete

∧
-subsemilattice. To see that

the image of gδ is isomorphic to Lδ as a completion of L, it suffices by Theorem 2.4
to check that the natural embedding L ↪→ im(gδ) (given by the composition L ↪→
D ↪→ Dδ) is compact and dense. Neither of these properties is hard to verify. The
proof of item (iii) is order-dual to (ii). �

Let M be a finite subset of the lattice L. Recall that by Lemma 4.2, M is join-
admissible if and only if, for each x ∈ J∞(Lδ), we have x ≤

∨
M implies x ≤ m
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for some m ∈ M . In order to translate this to a dual condition, it is useful to get
a dual characterization of the elements of J∞(Lδ). In the following Lemma, we
will use the fact that the relation R can be alternatively defined using the lifted
operation f : regarding X as J∞(D∧(L)δ) and Y as J∞(D∨(L)δ), we have that
xR y ⇐⇒ y ≤ fδ(x).

Lemma 5.15. Let (D,E, f, g) be a daDL, (X,Y,R) its dual polarity, L ∼= im(g) ∼=
im(f), with i : L ↪→ D and j : L ↪→ E the natural embeddings. Then the following
hold:

(i) J∞(Dδ) ⊆ iδ[F (Lδ)] and M∞(Eδ) ⊆ jδ[I(Lδ)].
(ii) For all x ∈ X = J∞(Dδ), the following are equivalent:

(a) x ∈ iδ[J∞(Lδ)],
(b) R[x] 6= R[{x′ ∈ X | x′ < x}].

(iii) For all y ∈ Y = J∞(Eδ), the following are equivalent:
(a) κ(y) ∈ jδ[M∞(Lδ)],
(b) R−1[y] 6= R−1[{y′ ∈ Y | y′ > y}].

Proof. (i) Let x ∈ X = J∞(Dδ). Then x ∈ F (Dδ), so x is equal
∧
F for some

F ⊆ D. For each d ∈ F , since im(i) = im(g) is join-dense in D, we may
pick Sd ⊆ L such that d =

∨
i(Sd). Let us write Φ for the set of choice

functions F →
⋃
d∈F Sd. Then, by distributivity of Dδ, we have

x =
∧
F =

∧
{
∨
i(Sd) | d ∈ F} =

∨
{
∧
d∈F

i(φ(d)) | φ ∈ Φ}.

Since x is completely join-irreducible in Dδ, we get that x =
∧
d∈F i(φ(d))

for some φ ∈ Φ. Since iδ is completely meet-preserving, we get x = iδ(x′)
where x′ :=

∧
d∈F φ(d) ∈ F (Lδ). The proof that M∞(Eδ) ⊆ jδ[I(Lδ)] is

order-dual.
(ii) For the direction (a)⇒ (b), suppose that R[x] = R[{x′ ∈ X | x′ < x}]. By

definition of R, we then get that fδ(x) =
∨
x′<x f

δ(x′) holds in Eδ. Since

fδ is lower adjoint to gδ by Proposition 5.14(i), we get that

(?) x ≤ gδfδ
(∨
Dδ

{x′ ∈ X | x′ < x}

)
.

By item (i), we have that X ⊆ iδ[Lδ], so the right-hand-side of this in-
equality is equal to iδ(

∨
Lδ{v ∈ (iδ)−1(X) | iδ(v) < x}). It follows from

injectivity of iδ that if x = iδ(u), then u ≤
∨
Lδ{v ∈ (iδ)−1(X) | iδ(v) < x}.

Then u is actually equal to the join on the right-hand-side, so u is not join-
irreducible.

Conversely, if x 6∈ iδ[J∞(Lδ)], then (?) must hold for x, from which
it follows that R[x] = R[{x′ ∈ X | x′ < x}], using adjunction and the
definition of R again.

(iii) Order-dual to item (ii). �

Combining item (ii) of this Lemma with the characterization of join-admissibility
in Lemma 4.2, we now get the following. A finite set M ⊆ L being join-admissible
corresponds to saying that, for each x ∈ X with R[x] 6= R[{x′ ∈ X | x′ < x}],
we have R[x] ⊆ R [

⋃
{m̂ | m ∈M}] implies x ∈

⋃
{m̂ | m ∈ M}. Note that in its

dual incarnation this property does not really depend on M but only on the clopen
down-set

⋃
{m̂ | m ∈M}. Accordingly, we make the following definition.
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Definition 5.16. Let (X,Y,R) be a TSCP, and U ⊆ X a clopen down-set. We say
that U is R-regular provided that, for each x ∈ X with R[x] 6= R[{x′ ∈ X | x′ < x}],
we have R[x] ⊆ R[U ] implies x ∈ U .
Order dually, we say that a down-set V ⊆ Y is R-coregular provided that, for each
y ∈ Y with R−1[y] 6= R−1[y′ ∈ Y | y′ > y], we have R−1[y] ⊆ R−1[U ] implies
y ∈ U .

Recall that a clopen down-set U ⊆ X is R-closed provided that, for each x ∈ X,
we have R[x] ⊆ R[U ] implies x ∈ U . Thus it is clear that every R-closed clopen
down-set in X is R-regular. Preserving admissible joins exactly corresponds to the
reverse implication: as soon as U is R-regular it must also be R-closed. To sum up:

Proposition 5.17. Let (D,E, f, g) be a daDL, and let (X,Y,R) be its dual polarity.
Then the following are equivalent:

(i) There exists a lattice L such that (D,E, f, g) ∼= (D∧(L), D∨(L), uL, lL);
(ii) The embedding im(g) ↪→ D preserves admissible joins and the embedding

im(f) ↪→ E preserves admissible meets.
(iii) In (X,Y,R), all R-regular clopen downsets in X are R-closed, and all

R-coregular clopen downsets in Y are R-open.

Proof. The equivalence (i) ⇐⇒ (ii) holds by the results in Section 4.
Throughout the proof of the equivalence (ii) ⇐⇒ (iii), let us write L for the lattice
im(g), in which meets are given as in D and

∨
L S = gf(

∨
M S), for any S ⊆ L.

In this proof, we regard L as a sublattice of D, suppressing the notation i for the
embedding L ↪→ D.
For the implication (ii) ⇒ (iii), let U be an R-regular clopen downset in X. Since
im(g) is dense in D, there exists M ⊆ im(g) such that U =

⋃
m∈M m̂. We show

that M is join-admissible in the lattice L, using Lemma 4.2. If x ∈ J∞(Lδ) and
x ≤

∨
LM = gf(

∨
DM), then fδ(x) ≤ f(

∨
DM). So, by definition of R and the

fact that f is completely join-preserving, we get that R[x] ⊆ R[
⋃
m∈M m̂] = R[U ].

Since U is R-regular and x ∈ J∞(Lδ), we get that x ∈ U , so x ≤ m for some
m ∈M . So M is join-admissible, so (ii) implies that

∨
LM = gf(

∨
DM) =

∨
DM .

That is, U = U , so U is R-closed. The proof that R-coregular clopen downsets in
Y are R-open is dual.
For the implication (iii) ⇒ (ii), let M ⊆ L be a join-admissible subset. Let U :=⋃
m∈M m̂ ⊆ X. Then U is clearly a clopen downset. We show that U is R-regular.

Let x ∈ X such that R[x] 6= R[{x′ ∈ X | x′ < x}] and R[x] ⊆ R[U ]. Then
x ∈ J∞(Lδ) and fδ(x) ≤ f(

∨
DM), so x ≤ gf(

∨
DM) =

∨
LM . So, since M

is join-admissible, there exists m ∈ M such that x ≤ m. In particular, we have
x ∈ U , as required. By the assumption (iii), we conclude that U is R-closed, i.e.,
U = U , so that

∨
LM = gf(

∨
DM) =

∨
DM . The proof that im(f) ↪→ E preserves

admissible meets is dual. �

In the light of this proposition, we can now define a subcategory of TSCP’s which
will be dual to the category of lattices with admissible homomorphisms.

Definition 5.18. Let (X,Y,R) be a TSCP. We say that (X,Y,R) is tight if all
R-regular clopen downsets in X are R-closed, and all R-coregular clopen downsets
in Y are R-open. We denote by tTSCP the full subcategory of TSCP whose
objects are the tight TSCP’s.
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We then obtain our topological duality theorem for lattices with admissible homo-
morphisms.

Theorem 5.19. The category La of lattices with admissible homomorphisms is du-
ally equivalent to the category tTSCP of tight totally separated compact polarities.

Proof. By Proposition 5.4, we have that La is equivalent to a full subcategory
of daDL. By Theorem 5.13, the category daDL is dually equivalent to TSCP.
By Proposition 5.17, the image of La in daDL under this dual equivalence is
tTSCP. �

Let us make a few closing remarks. In this paper, in light of the examples in
Section 2, we set out to obtain a topological duality for lattices in which the spaces
are nicer than those of Hartung’s duality. Although the spaces obtained in our
duality are as nice as can be (they are compact, Hausdorff and totally disconnected),
this comes at the price of a rather complicated characterization. Therefore, we
are inclined to draw as a negative conclusion that topology may not be the most
opportune language to discuss ‘duality’ for lattices (unless the definition of a tTSCP
can be simplified). Fortunately, the perspective of canonical extensions provides an
alternative to topology: we have explained in Section 2 how canonical extensions
can be viewed as a point-free version of Hartung’s duality, and we have used them
in Section 5 to reason about the topological dual spaces introduced in this paper.
On the positive side, we developed the theory of distributive envelopes in Section 4
of this paper. We see our methodology there as an example of the phenomenon
that canonical extensions and duality may help to study lattice-based algebras,
even when they do not lie in finitely generated varieties. As a case in point, the
spatial representation of lattices in Section 2 gave us a concrete definition of a
distributive envelope for an arbitrary lattice at the end of Section 3, which was then
characterized algebraically in Section 4. This also led us to identify the (∧, a∨)-
morphisms between lattices, which are exactly the ones which have functional duals
on the X-components of the dual spaces. We believe that canonical extensions may
be used in a similar way for other varieties of algebras based on lattices, such as
residuated lattices.
Let us mention one more possible direction for further work. For distributive lat-
tices, the canonical extension functor is left adjoint to the inclusion functor of
perfect distributive lattices into distributive lattices. However, this is known to
be true for lattice-based algebras only in case all basic operations are both Scott
and dually Scott continuous (see [2, Proposition C.9, p. 196] for a proof in the
distributive setting). It follows from the results in Goldblatt [12] that the canon-
ical extension functor for modal algebras (i.e., Boolean algebras equipped with a
modal operator) can be viewed as a left adjoint. However, the codomain category
that is involved here is not immediately obvious: it is not the category of ‘perfect
modal algebras’ in the usual sense. We conjecture that the distributive envelope
constructions developed in Section 4 of this paper may be used to define a category
in which the canonical extension for lattices is a left adjoint. We leave the actual
development of this line of thought to future research.
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