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Objective of This Talk

Develop theory of Noetherian spaces
Understand motivating applications from computer
science.
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Noetherian Spaces

Introduction: model-checking

How I came to (re)invent Noetherian spaces

In 2005, Alain Finkel asked me:
The intuitive completion of Nk is Nk

ω;
. . . used in Karp-Miller procedure for Petri nets (1969).

For other well-structured transition systems, what should
be the completion of their state space X?
Is there anything in topology that would define the right
notion of completion?

My answer:

No way.
(I was wrong.)
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Noetherian Spaces

Introduction: model-checking

How I came to (re)invent Noetherian spaces (2006)

Consider the logic L:

F ::= ⊥ | > | A | F ∧ F | F ∨ F | ♦F | µA · F (A)

interpreted over a transition system (X ,−→):

x |= ♦F ⇔ ∃x ′ · x −→ x ′ ∧ x ′ |= F ,
x |= µA · F (A) ⇔ ∃n ∈ N · x |= F n(⊥).

E.g., reachability (∃x ′ · x −→∗ x ′ ∧ x ′ |= G?): µA ·G ∨ ♦A.

One can model-check F against (X ,−→) by. . .
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Introduction: model-checking

How I came to (re)invent Noetherian spaces (2006)

. . . by computing JF K, the set of states x such that x |= F :

J♦F K = Pre(JF K)

JµA · F (A)K =
⋃↑

n∈N JF Kn (∅).

where Pre(U) = {x | ∃x ′ ∈ U · x −→ x ′}.
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Introduction: model-checking

How I came to (re)invent Noetherian spaces (2006)

. . . by computing JF K, the set of states x such that x |= F :

J♦F K = Pre(JF K)

JµA · F (A)K =
⋃↑

n∈N JF Kn (∅).

For effectivity, topologize X , then:

Lemma

If −→ is lower semi-continuous and r.e., then:
JF K is open;
JF K is r.e..

(Many things hidden under the rug here. Effective codes for opens, notably.)
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Introduction: model-checking

How I came to (re)invent Noetherian spaces (2006)

What about decidability?
Reachability is undecidable in general
Main culprit: the infinite union

⋃↑
n∈N JF Kn (∅)

Let’s make a bold move!
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Introduction: model-checking

How I came to (re)invent Noetherian spaces (2006)

Definition (#0)

A topological space X is Noetherian iff every open is compact.

Compact = every open cover has a finite subcover (no separation here!)

Lemma (#1)

X Noetherian⇔ ascending seqs (Un)n∈N of opens stabilize.

Proof.

(⇒) U =
⋃↑

n∈N Un is compact; finite subcover contains maximal Un, which equals U.

(⇐) Let U non-compact open: let (Ui )i∈I open cover of U with no finite subcover; U1
does not cover U: find U2 such that U1 ∪ U2 strictly larger; still does not cover,
and so on.
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Introduction: model-checking

Deciding reachability, and more

Theorem

Let (X ,−→) be a transition system. Assume:
X is Noetherian
Every open U has a code
∪, ∩ are computable, ⊆ is decidable on opens
Pre is computable on opens

Then JF K is computable.

Proof. Previous algorithm terminates.

In particular, if x ∈ U is decidable, then x |= F is decidable.
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Introduction: model-checking

Examples?

Any finite transition system

Petri nets, X = Nk

Lossy Channel Systems, X = Q × (Σ∗)k

In fact, every Well-Structured Transition System: X with
Alexandroff topology of ≤ wqo, −→ monotonic.

Proposition

Coverability (i.e., ∃x ′ ≥ t · x −→∗ x ′?) is decidable on WSTS.

Proof. Test x |= µA ·G ∨ ♦A with JGK = ↑ t , i.e., compute
Pre∗(↑ t) =

⋃↑
n∈N Pre≤n(↑ t) (“Std. backward algorithm.”) .
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Introduction: model-checking

Wqos

WSTS are based on wqos ≤. Equivalently, ≤ is wqo on X
(equivalently):

every sequence (xn)n∈N is good: xi ≤ xj for some i < j

every sequence (xn)n∈N is perfect:
has non-decreasing subsequence xi1 ≤ xi2 ≤ . . . ≤ xik ≤ . . .

≤ is well-founded and has no infinite antichain
every upward closed subset is of the form ↑E , E finite.

A rich supply of wqos:
= on finite sets
≤ on Nk (Dickson 1913)
≤emb on Σ∗ (Higman 1952)
embedding on finite trees (Kruskal 1960)
etc.
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Introduction: model-checking

The theory of WSTS

Definition

A WSTS is (X ,≤,−→)
with ≤ wqo,
and −→ monotonic.

x ≤ //

δ

��

x′

δ
��

y ≤ //y′

Theorem (Finkel-Schnoebelen, Abdulla 1990s)

Coverability (∃x ′ ≥ t · x −→∗ x ′?) is decidable in eff. WSTS.

Proof. For U upw. closed, Pre(U) upw. closed by monotonicity.
Compute U =

⋃
n∈N Pre≤n(↑ t).

Must stabilize (why?).
Then test x ∈ U.
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Introduction: model-checking

Wqos and Noetherianness

Lemma

The Alexandroff topology of a wqo is Noetherian.

(Remember: here opendef
=upward closed.)

Proof. Let U =
⋃↑

n∈N Un. By wqo, U = ↑E for E finite.

Each x ∈ E is in some Un. Take the largest such n: U = Un.

Proposition

≤ wqo⇔ its Alexandroff topology is Noetherian.

Proof. Given (xn)n∈N, the sequence (↑{x0, x1, . . . , xj})j∈N stabilizes, say at j :

xj ∈ ↑{x0, x1, . . . , xj−1}, hence xi ≤ xj for some i < j .
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The mathematics of Noetherian spaces

Towards an algebra of Noetherian datatypes

A rich supply of wqos; Noetherian spaces strictly richer?
Reproving important wqo-related theorems in Noetherian
spaces?
New theorems with no equivalent in wqo theory?
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The mathematics of Noetherian spaces

Towards an algebra of Noetherian datatypes

A rich supply of wqos; Noetherian spaces strictly richer?
Yes. The spectrum of a Noetherian ring is Noetherian.
E.g., Spec(C[X1, . . . ,Xn]), or the induced topology on Cn.
Important in algebraic geometry.
Certainly does not arise from a wqo.

Useful in computer science?

Reproving important wqo-related theorems in Noetherian
spaces?
New theorems with no equivalent in wqo theory?



Noetherian Spaces

The mathematics of Noetherian spaces

Towards an algebra of Noetherian datatypes

A rich supply of wqos; Noetherian spaces strictly richer?
Reproving important wqo-related theorems in Noetherian
spaces?
Our plan: reproving suitable forms of Dickson, Higman, Kruskal.

New theorems with no equivalent in wqo theory?
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The mathematics of Noetherian spaces

Towards an algebra of Noetherian datatypes

A rich supply of wqos; Noetherian spaces strictly richer?
Reproving important wqo-related theorems in Noetherian
spaces?
New theorems with no equivalent in wqo theory?
Yes. My lips are sealed (for now).
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The mathematics of Noetherian spaces

Classical results transposed

A stab at Dickson

Nk is wqo, hence Noetherian.
Can be proved directly, or by showing that N is wqo, then
showing that finite products of wqos are wqo.

Question

Are finite products of Noetherian spaces Noetherian?

Yes. But we need additional tools. . .
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The mathematics of Noetherian spaces

Classical results transposed

Convergence, self-convergence

A net (xn)n converges to x iff every open neighborhood of
x contains xn for every n large enough
Limits are unique in Hausdorff spaces. . . but Noetherian
spaces will rarely be Hausdorff

Definition

(xn)n is self-convergent iff it converges to every xn.

E.g.:
in a wqo, the self-convergent sequences are those that are
eventually monotonic (exercise!)
(for experts) every irreducible closed set F defines a
canonical self-convergent net (x)x∈F ,≤
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The mathematics of Noetherian spaces

Classical results transposed

Three new characterizations

Theorem

The following are equivalent:
#0 X is Noetherian
#2 Every subspace of X is compact
#3 Every net (xn)n contains a cluster point xn

I.e., every open neighborhood of xn contains inf many xm.

#4 Every net (xn)n has a self-convergent subnet

Proof. See next slides.
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The mathematics of Noetherian spaces

Classical results transposed

Proof

#0 X is Noetherian
implies

#2 Every subspace A of X is compact

Well-known.
Take open cover (Ui)i∈I of A (inside A).
Ui = Vi ∩ A for Vi open in X .
V =

⋃
i∈I Vi open hence compact, so V has finite subcover Vi ,

i ∈ J.
Note that A =

⋃
i∈J Ui .
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The mathematics of Noetherian spaces

Classical results transposed

Proof

#2 Every subspace A of X is compact
implies

#3 Every net (xn)n contains a cluster point xn
I.e., every open neighborhood of xn contains inf many xm.

Let A be set of all xns. In a compact space, every net has a
cluster point.
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The mathematics of Noetherian spaces

Classical results transposed

Proof

#3 Every net (xn)n contains a cluster point xn
implies

#4 Every net (xn)n has a self-convergent subnet

Let I = {n | xn cluster point of (xn)n}. (xn)n∈I is a subnet:
non-empty by #3,
cofinal: for every m, (xn)n after m has a cluster point by #3,
directed: for i , j ∈ I, (xn)n after i,j has a cluster point by #3.

By Kelley’s Theorem, (xn)n∈I has a subnet (xα(j))j that is an
ultranet.
For every j , xα(j) is a cluster point of (xα(j))j (cofinality), hence a
limit (ultraness).
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The mathematics of Noetherian spaces

Classical results transposed

Proof

#4 Every net (xn)n has a self-convergent subnet
implies

#0 X is Noetherian

#4 trivially implies #3: every net contains a cluster point. And
#1⇔#0. Let us prove ¬#1⇒ ¬#3.
Assume ¬#1: there is an ascending sequence (Un)n∈N of
opens that does not stabilize.
In particular, pick xn ∈ Un, xn 6∈ Un−1.
xn is no cluster point, since Un only contains finitely many xms
(those with m ≤ n).
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The mathematics of Noetherian spaces

Classical results transposed

Back to products

Theorem

Every finite product of Noetherian spaces is Noetherian.

Proof. Assume X , Y Noetherian. Use #4.
Given net (xn, yn)n in X × Y , extract

self-convergent sequence (xα(j))j from (xn)n,

then self-convergent sequence (yα(β(k)))k from (yα(j))j .

Now (xα(β(k)), yα(β(k)))k is self-convergent.
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The mathematics of Noetherian spaces

Classical results transposed

A stab at Higman

Standard form:

Theorem (Higman’s Lemma Application: LCS)

Given a wqo ≤ on Σ, the subword quasi-ordering ≤∗ on Σ∗ is
wqo.

≤∗ ≤ ≤

b4 b5b3b2b1

a1 a2 a4 a5

≤ ≤≤

a3
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The mathematics of Noetherian spaces

Classical results transposed

A stab at Higman

Theorem (Topological Higman Lemma)

If X is Noetherian, then X ∗ is Noetherian.

Requires subword topology on X ∗, generated by
[U1U2 . . .Um]

def
={words with a subword in

∏
i Ui}

Specialization quasi-ordering is ≤∗
If X Alexandroff, then X ∗ Alexandroff, so Higman follows.

To show this, we require yet another characterization of
Noetherian spaces. . . inspired from wqo theory.
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The mathematics of Noetherian spaces

Classical results transposed

The bad sequence lemma

Lemma (Bad sequence)

Let B be a subbase of the topology of Y . If Y is not Noetherian,
then there are Un ∈ B (n ∈ N) such that Un 6⊆

⋃
m<n Um.

Call (Un)n∈N a bad sequence.

Note: trivial if B = {all opens}. Analogous to Alexander’s
subbase lemma.
Proof. Take non-compact open U, (Ui )i∈I open cover of U with no finite subcover. Can
take Ui ∈ B by Alexander.

Pick Ui1 , does not cover U: so some point in U is outside Ui1 , hence in some Ui2 ; some

point in U is outside Ui1 ∪ Ui2 , hence in some Ui3 ; and so on.
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The mathematics of Noetherian spaces

Classical results transposed

The minimal bad sequence lemma

Imitating Nash-Williams (1963):

Lemma (Minimal bad sequence)

Let B be a base of the topology of Y , with a well-founded
quasi-ordering v. If Y is not Noetherian, then it has a minimal
bad sequence (Un)n∈N:

(bad) Un 6⊆
⋃

m<n Um

(minimal) every sequence (Vn)n∈N such that V0 = U0,
V1 = U1, . . . , Vn−1 = Un−1, Vn @ Un for some n is good.

Proof. Exercise.

In X ∗, define [U1 . . .Um] v [U ′1 . . .U
′
m′ ] iff

U1 . . .Um is subword of U ′1 . . .U
′
m′ .
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The mathematics of Noetherian spaces

Classical results transposed

The zoom-in lemma

Lemma (Zoom-in)

Let X be Noetherian, an ∈ Un, Un open (n ∈ N).
There is a subsequence (ank )k∈N such that ank ∈

⋂
j≤k Unj .

Proof. By #3, pick a cluster point an0 of (an)n∈N. Infinitely many ans are in Un0 : extract

a subsequence starting with an0 contained in Un0 . Repeat with the rest of the

subsequence, obtaining an1 , etc.



Noetherian Spaces

The mathematics of Noetherian spaces

Classical results transposed

The topological Higman lemma

Theorem (Topological Higman Lemma)

If X is Noetherian, then X ∗ is Noetherian.

Proof. If X∗ not Noetherian, let Un = [Un1 . . .Unmn ] be minimal bad sequence.
Let wn ∈ Un r

⋃
m<n Um (badness).

Write wn as w ′nanw ′′n with an ∈ Un1, w ′′n ∈ [Un2 . . .Unmn ]. (Why is wn non-empty?)
By zoom-in, extract subsequence (ank )k∈N with ank ∈

⋂
j≤k Unj 1. The sequence

U0U1 . . .Un0−1[Un02 . . .Un0mn0
] . . . [Unk 2 . . .Unk mnk

] . . .

is smaller than (Un)n∈N hence good (minimality).

So [Unk 2 . . .Unk mnk
] ⊆ ⋃n0−1

m=0 Um ∪
⋃

j<k [Unj 2 . . .Unj mnj
] for some k .

Since w ′′nk
is in [Unk 2 . . .Unk mnk

],

either w ′′nk
∈ Um for some m < n0: impossible since wnk = w ′nk

ank w ′′nk
would

also be in Um

or w ′′nk
∈ [Unj 2 . . .Unj mnj

] for some j < k , whence
wnk ∈ [Unj 1Unj 2 . . .Unj mnj

] = Unj , impossible as well.
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The mathematics of Noetherian spaces

Classical results transposed

The topological Kruskal theorem

Theorem

If X is Noetherian, then so is T(X ).

T(X ) = finite trees with nodes labeled by elements of
X=terms over signature X
under the tree topology, defined in the same style as the
subword topology
proof omitted!
(Uses a very funny auxiliary topology built from differences of opens arising from

some minimal bad sequence. See my book, Theorem 9.7.46)

usual Kruskal tree theorem a special case.
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Beyond wqos

Beyond wqos

Examples of Noetherian spaces that are not wqo:
Ck with Zariski topology, spectra of polynomial rings, of
Noetherian rings (already mentioned)
Words under the prefix topology

(prefix ordering not a wqo)

P(X ) under the lower Vietoris topology:
subbasic opens ♦U = {A ∈ P(X ) | A ∩ U 6= ∅}
correspond quasi-ordering would be A ≤[ B iff every a ∈ A
is below some b ∈ B. . .
not a wqo by Rado’s counterexample.
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The mathematics of Noetherian spaces

Beyond wqos

The powerset

Theorem

For X Noetherian, P(X ) is Noetherian.

Proof. If P(X) not Noetherian, bad sequence lemma gives opens Un with
♦Un 6⊆

⋃
m<n ♦Um.

Check that ♦ commutes with unions (recall A ∈ ♦U iff A meets U), so
♦Un 6⊆ ♦

⋃
m<n Um.

Check that ♦ is monotonic, so Un 6⊆
⋃

m<n Um: (Un)n∈N is bad, contradicting X

Noetherian.

Note to domain theorists: P(X) and Hoare powerdomain H(X) have same lattice of

opens, so H(X) Noetherian as well.
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The mathematics of Noetherian spaces

Beyond wqos

An algebra of Noetherian datatypes

D ::= A (finite qo)
| N
| Ck (Zariski topology) ∗
| Spec(R) (R Noetherian ring) ∗
| D1 × D2 × . . .× Dn (product)
| D1 + D2 + . . .+ Dn (disjoint union)
| D∗ (words, Higman)
| D~ (multisets)
| T(D) (trees, Kruskal)
| D∗,pref (words, prefix topology) ∗
| H(D) (Hoare hyperspace) ∗
| P(D) (powerset) ∗
| S(D) (sobrification) ∗

(∗: operator preserves Noetherianness, not wqo-ness.)
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The mathematics of Noetherian spaces

Topological WSTS

Reminder

Definition

A WSTS is (X ,≤,−→)
with ≤ wqo,
and −→ monotonic.

x ≤ //

δ

��

x′

δ
��

y ≤ //y′

Theorem (Finkel-Schnoebelen, Abdulla 1990s)

Coverability (∃x ′ ≥ t · x −→∗ x ′?) is decidable in eff. WSTS.

In fact, logic L as a whole is decidable.
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The mathematics of Noetherian spaces

Topological WSTS

Topological WSTS

Definition

A topological WSTS is (X ,−→) with X Noetherian, and −→
lower semi-continuous (i.e., Pre maps opens to opens).

Generalizes WSTS=special case where X is Alexandroff.

Theorem

Let (X ,−→) be an effective topological WSTS.
JF K is computable.
Reachability of open subsets is decidable.

Proof. Already said in a different form. Just compute:

J♦FK = Pre(JFK)

JµA · F (A)K =
⋃↑

n∈N JFKn (∅).
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Topological WSTS

An intriguing application

Can analyze even programs looking a lot less like WSTS,
e.g., polynomial programs [MOS’02]:

if (*) { x = 2; y = 3; }
else { x = 3; y = 2; }

x = x ∗ y− 6; y = 0;
while (*) { x = x + 1; y = y− 1; };
x = x2 + x ∗ y;
return;

Deal with
algebra (ideals I)
through Zariski topology
(opens OI).

Algorithmic tools: represent ideals by Gröbner bases.
X 3 − 3XY 2 XY 2Z + 4X 3 + 27

YZ 2 + 8YZ + 5X − 1 Z 4 − 81

Combine algebra with wqo theory: the case of lossy
concurrent polynomial programs.
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Lossy Concurrent Polynomial Programs

Aim: analyze networks of polynomial programs, with lossy
communication channels transmitting control signals.

States:
Same for B Contents of

comm. channel,
in Σ∗

(qA, X1, . . . , Xm, qB , Y1, . . . , Yn, w)

Current line for program A, in QA

Current values of numerical vars of A, in Cm

Transitions:
x := P(x1, . . . , xm) (P polynomial), x :=?;
guards if P(x1, . . . , xm) 6= 0 then . . . ;
!a, ?a.
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Topological WSTS

Lossy Concurrent Polynomial Programs

Same for B Contents of
comm. channel,
in Σ∗

(qA, X1, . . . , Xm, qB , Y1, . . . , Yn, w)

Current line for program A, in QA

Current values of numerical vars of A, in Cm

Theorem (Decidability)

Given initial state s and set U described as forbidden patterns,
it is decidable whether one can reach U from s.

Note: one needs Gröbner bases for the polynomial part
+ subsets ↑E for the channel (wqo) part.

Topology allows us to blend the two seamlessly.
Key insight: the product of QA × Cm, QB × Cn (Noetherian with Zariski)

and Σ∗ (Noetherian since wqo) is Noetherian.
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Forward procedures

Until now, we stressed backward algorithms.

Always terminates.

Decides coverability
(reachability for lossy/oblivious systems).

Design forward procedures for general (topo.) WSTS?

A la Karp-Miller [KM69] . . . which works only for
(plain) Petri nets.
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. . . This may fail to terminate

(4, 3) (4, 3) (9, 0)

(5, 2)(0, 5)

(1, 4) (6, 1)

(2, 3) (7, 0) (2, 3) (7, 0)

(3, 2)(3, 2)

(4, 1) (4, 1)

(5, 0)(0, 3)

(1, 2)

(2, 1)
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The Karp-Miller construction

(+∞, +∞)

(5, 0)(0, 3)

(1, 2)

(2, 1)

(+∞, 1) (+∞, 1)

(+∞, +∞)

(0,3)→ (4,1) ≥ ancestor (2,1) accelerate to (+∞,2).
Always terminates (only on [plain] Petri nets).
Can be used for much more than coverability:
boundedness, U-boundedness, liveness, etc.
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The cover

Definition (Cover)

Let Post∗(E) = set of reachable states from states in E .
The cover of E is Cover(E) = ↓Post∗(E).

Note: s covers t iff s ∈ Pre∗(↑ t) iff t ∈ Cover{s}.
Note: Karp-Miller computes the cover (exactly):

(+∞, +∞)

(5, 0)(0, 3)

(1, 2)

(2, 1)

(+∞, 1) (+∞, 1)

(+∞, +∞)

. . . as the downward-closure of the finite set of
nodes of the tree:

Cover{(2,1)} = ↓{(2,1), (1,2), (0,3), (5,0),

(+∞,1), (+∞,1),

(+∞,+∞), (+∞,+∞)}
∩ N2
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Forward procedures

Until now, we stressed backward algorithms.

Always terminates.

Decides coverability (reachability for
lossy/oblivious systems).

Design forward procedures for general (topo.) WSTS?
A la Karp-Miller [KM69].

Would decide boundedness, liveness,
etc.

Cannot terminate on reset Petri nets
[FMcKP04], on LCS [CFPI96]
—boundedness undecidable there.
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Adding infinities

We first need to extend state space X (e.g., Nk )
to a completion X̂ (e.g., Nk

ω).
Remember?

In 2005, Alain Finkel asked me:

The intuitive completion of Nk is Nk
ω ;

. . . used in Karp-Miller procedure for Petri nets (1969).

For other well-structured transition systems, what should be the
completion of their state space X?

Is there anything in topology that would define the right notion
of completion?

My answer:
No way.

I was wrong: X̂ is the sobrification of X .



Noetherian Spaces

Forward procedures

Adding infinities: completions

Sober spaces

closed F is irreducible iff: F ⊆ ⋃n
i=1 Fi ⇒ ∃i · F ⊆ Fi

E.g., ↓ x is irreducible.

Definition

X is sober iff T0 and the only irreducible closed subsets are ↓ x ,
x ∈ X .

If F irreducible closed, F = ↓ x means that x = max F .
E.g., in N, F = N is missing a largest element.
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Sobrification

Idea: add all missing elements. . . but keep the opens intact.

Definition

The sobrification S(X ) is the space of all irreducible closed
subsets of X , with the lower Vietoris topology
(♦U = {F | F meets U}).

embed X into S(X ) by x 7→ ↓ x
every continuous map f : X → Y (Y sober) has unique
continuous extension to S(X ).
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The Alexandroff case

In the Alexandroff case (where wqo⇔ Noetherian):

Theorem

For any poset X , S(X ) = ideal completion of X .
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Closed subsets

Define x ≤ y iff x ∈ cl(y). So cl(x) = ↓ x .

Proposition

The closed subsets F of a sober Noetherian space are the
subsets of the form ↓E , E finite.

Proof. Call F good if of the form ↓E , E finite, bad otherwise.

Assume F bad.

By #2 and taking complements, can take F minimal bad.

If F ⊆ ⋃n
i=1 Fi , but F ⊆ Fi for no i , F ∩ Fi is good (minimality),

so F ∩ Fi = ↓Ei , so F = ↓⋃i Ei is good: contradiction.

So F is irreducible. Sobriety implies F = ↓ x , contradicting badness.
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Sobrification preserves Noetherianness

Theorem

X is Noetherian⇔ S(X ) is Noetherian.

Proof. Isomorphic lattices of opens. Characterization #2 shows that Noetherianness

only depends on lattice of opens.
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The fundamental theorem

Define completion of X as X̂ = S(X ).

Theorem

If X is Noetherian, every

downward

closed subset F of X is finitely representable
as ↓E ∩ X for some finite E ⊆ X̂ .

Proof. F = cl(F ) ∩ X , and cl(F ) = ↓E .

X

"Limits"

x2

x3
x4

x1
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The fundamental theorem

Define completion of X as X̂ = S(X ).

Theorem

If X is wqo, every downward
closed subset F of X is finitely representable
as ↓E ∩ X for some finite E ⊆ X̂ .

Proof. F = cl(F ) ∩ X , and cl(F ) = ↓E .

X
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A library of completions

Computable completions

That every (downward-)closed can be finitely represented is:
necessary to be able to compute on such sets;
. . . (Karp-Miller computes downward-closure of set of reachable

states.)

but not enough: we now show that X̂ is computable.

Theorem

For all the Noetherian datatypes given earlier, the
quasi-ordering ≤̂ on X̂ is decidable. ∪, ∩, ascending unions are
computable.
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A library of completions

Completions: 1. D = Nk

D̂ is the expected thing (remember Petri nets):
Add a new limit element +∞:

N̂k = (N ∪ {+∞})k

Elements of N̂k , example: (2,+∞,3,+∞), represents
Nk ∩ ↓(2,+∞,3,+∞) = {(m,n,p,q) | m ≤ 2 ∧ p ≤ 3}.
Applies to the more general class of k -counter systems.
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Completions: 2. D = D∗1

D = {words over a possibly infinite alphabet D1}.
D̂ is a domain of regular expressions called word products:

P ::= ε | d?P | (d1 | . . . | dn)∗P

where:
↓D d? = words with at most one letter ≤ d ∈ D̂1;
↓D(d1 | . . . | dn)∗ = words whose letters are in
↓D1

d1 ∪ . . . ∪ ↓D1
dn.
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Completions: 2. D = D∗1 (cont’d)

Deciding ≤̂ on D = D∗1

≤̂ on D̂ is P-time computable (with oracle ≤̂1 on D̂1). On atoms:

d? ≤̂ d ′? iff d ≤̂1 d ′

d? ≤̂ (d1 | . . . | dn)∗ iff d ≤̂1 dj for some j
(d1 | . . . | dm)∗ 6≤̂ d?

(d1 | . . . | dm)? ≤̂ (d ′1 | . . . | d ′n)∗ iff ∀i · ∃j · di ≤̂1 d ′j

On products, AP ≤̂ A′P ′ iff:
A 6≤̂ A′ and AP ≤̂ P ′,
or A = d?, A′ = d ′?, d ≤̂1 d ′ and P ≤̂ P ′,
or A′ is starred, A ≤̂ A′ and P ≤̂ A′P ′.
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Completions: 2. D = D∗1 (end)

Generalizes:
the simple regular expressions [ABJ98], which were
defined on a finite alphabet: D = A∗.
the word language generators [ADMN04], i.e., simple
regular expressions over an alphabet of multiset language
generators D = (A~)∗.
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Completions: 5. D = P(D1)

(*: outside theory of wqos.)

D̂ is the Hoare powerdomain H(D1).

By the Fundamental Theorem, elements of D̂ are:

P ::= ↓{P1, . . . ,Pn} (finite)

where P1, . . . , Pn ∈ D̂1.

X

"Limits"

x2

x3
x4

x1
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Completions: 6. D = Ck (Zariski Topology)

(*: outside theory of wqos.)

D̂ = Spec(Q[X1, . . . ,Xk ]) (spectrum).
Elements described by Gröbner bases.

X 3
1 − 3X1X 2

2 X1X 2
2 X3 + 4X 3 + 27

X2X 2
3 + 8X2X3 + 5X1 − 1 X 4

3 − 81
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Functional WSTS

A (functional, strongly monotonic here) WSTS is (X , (fi)
n
i=1)

where:
X is wqo.
fi : X → X , 1 ≤ i ≤ n, are partial monotonic functions
called the transitions.

Partial monotonicity means:
dom fi is upward-closed;
if s ∈ dom fi and s ≤ t then fi(s) ≤ fi(t).

s ≤ //

fi
��

t

fi
��

fi(s) ≤ //fi(t)
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Functional WSTS

A (functional, strongly monotonic here) WSTS is (X , (fi)
n
i=1)

where:
X is Noetherian.
fi : X → X , 1 ≤ i ≤ n, are partial continuous functions
called the transitions.

Partial continuity means:
dom fi is open;
∀U open, f−1

i (U) open.

s ≤ //

fi
��

t

fi
��

fi(s) ≤ //fi(t)
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Completions of Functional WSTS

X can be completed to X̂ . There is also a canonical way to
extend partial continuous maps to X̂ :

Definition (Sf )

For every partial continuous f : X → X , let Sf : X̂ → X̂ be
defined by:

dom Sf = {C ∈ Ŝ | C ∩ dom f 6= ∅};
Sf (C) = cl(f 〈C〉).
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Completions of Functional WSTS (cont’d)

X embeds into X̂ through η : s 7→ ↓ s.

Lemma

For every partial continuous f : X → X, Sf is partial continuous,
and extends f :

X η //

f

��

X̂

Sf
��

X η // X̂

Sf is in fact the only continuous extension of f to X̂ :
Sf (sup↑i si) = sup↑i f (si).
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Completions of functional WSTS (cont’d)

A canonical way to complete a whole WSTS:

Definition (Completion of a Topological WSTS)

For every functional topological WSTS X = (X , (fi)
n
i=1), the

completion X̂ is (X̂ , (Sfi)
n
i=1).

However, X̂ may fail to be a WSTS, even when X is
. . . because ≤̂ may fail to be wqo.
. . . Repair by requiring X ω2-wqo [FGL, ICALP’09],

or don’t
repair:

Proposition

If X is a topological WSTS, then so is X̂.

Proof. Because X̂ = S(X) Noetherian iff X Noetherian.
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A simple, conceptual Karp-Miller procedure

An analogue of Karp-Miller, computing
Cover(s) = ↓Post∗{s}.
We must first define lub-accelerations.

Definition (Lub-acceleration f∞)

Let X be a dcpo, f : X → X partial continuous.
dom f∞ = dom f ;

f∞(x) =

{
supn∈N f n(x) if x < f (x)
f (x) else

I.e., accelerate only if x < f (x).
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A simple, conceptual Karp-Miller procedure

An analogue of Karp-Miller, computing Cover(s) =
↓Post∗{s} cl(Post∗{s}).

. . . so that the concept generalizes to all topological WSTS (no
other modification.)
We must first define lub-accelerations.

Definition (Lub-acceleration f∞)

Let X be a dcpo, f : X → X partial continuous.
dom f∞ = dom f ;

f∞(x) =

{
supn∈N f n(x) if x < f (x)
f (x) else

I.e., accelerate only if x < f (x).
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A Simple, Conceptual Karp-Miller Procedure (cont’d)

Let X = (X ,G = (gi)
n
i=1) be an effective (top.) WSTS.

Procedure CloverX̂(s0) :
1. A← {s0}; (* A finite subset of completion *)
2. while PostS(A) 6v A do

(a) Choose fairly (g, a) ∈ SG∗ × A such that a ∈ dom g;
(b) A← A ∪ {g∞(a)};

3. return Max A;

Theorem (Clover)

If Clover
X̂

(s0) terminates, then it computes the clover
Clover

X̂
(s0) = {max elements of CoverX(s0)}.

X

Clover
X̂

(s) x1 x2 x3 x4

CoverX(s)
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Conclusion

Noetherian spaces: a natural topological extension of wqos
The standardTM backward algorithm still terminates
A rich collection of Noetherian datatypes
The right intuitions for forward procedures [FGL,
ICALP’09]—and clovers, a finite representation of
(downward-)closures of reachable states [FGL, STACS’09]
Other things: Noetherian spaces are spectral, exact
characterization of sober Noetherian spaces, Stone duals,
the VJGL lemma, . . .
Open: extending Robertson-Seymour XX? analogues of
bqos?
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Additional Notes

Not presented live.
On a remark by Max Dickmann, asked after the talk.
On another remark made to me after the talk.
On a question by Paul-André Melliès, asked after the talk.
On a question by Mai Gehrke, asked after the talk.
What sober Noetherian spaces really are (not part of the
talk.)
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Max Dickmann’s remark

Max Dickmann made the observation that a lot of properties I
presented of Noetherian spaces are well-known (e.g.,
characterizations #0 through #4, from what I understood; the
fundamental theorem as well).
This should also appear in a forthcoming book of his on
spectral spaces.
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Another remark

I have said that proving that the product of two Noetherian
spaces was Noetherian is tricky.
A participant told me that there was a more elementary proof
than the one I presented, see http:
//matheuscmss.wordpress.com/2012/03/01/spcs-8/,
Proposition 4.

http://matheuscmss.wordpress.com/2012/03/01/spcs-8/
http://matheuscmss.wordpress.com/2012/03/01/spcs-8/
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Paul-André Melliès’ question

Paul-André Melliès observed that the proof of the topological
Higman lemma is incredibly close to the classical proof of
Higman’s Lemma.
He asked whether that could be generalized to some form of
topological Ramsey theory.
I don’t know the answer to this question (yet).
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Mai Gehrke’s question

I said that there were Noetherian spaces that did not arise from
wqos, where I meant that the underlying quasi-ordering was no
wqo.
Mai Gehrke asked whether this was still true, even by wildly
changing the underlying space of points, but keeping the same
opens (up to iso).
The answer is no, as found by Yann Péquignot: take N with the
cofinite topology. This is Noetherian, and its sobrification is
itself plus a fresh top element. Any wqo with the same opens
would embed in the latter, but could only include only finitely
many points from N (an infinite antichain); so would only have
finitely many opens.
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Sober Noetherian spaces

Lemma

Every sober Noetherian space X is spectral.

I.e.,
sober (by assumption)
compact-opens form a base (of course)
compact-opens closed under intersection (obvious)
compact (X is open)

Can now import theory of spectral spaces (Hochster, 1969).
E.g., dual X d (X with basis of complements of compact-opens
of X ) is spectral, and X dd = X .
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Sober Noetherian spaces

Theorem

The sober Noetherian spaces are the posets (X ,≤) with:
≤ well-founded
(T) X = ↓E for some finite set E
(W) ↓ x ∩ ↓ y = ↓Exy for some finite set Exy

with the upper topology (↓ x subbasis of closed sets).

Proof. (⇒) Take ≤ specialization ordering. Well-founded since (xn)n∈N descending⇒
({ ↓ xn)n∈N ascending seq. of opens (#2).
X d has (open) basis consisting of all closed subsets of X .
The unions of closed subsets are the down closed subsets: if A down-closed, then
A =

⋃
x∈A ↓ x .

So topology of X d is Alexandroff top. of ≥.
The sat. compacts of X d are of the form ↑≥ E = ↓E , E finite⇒ (T), (W).

By duality, the closed subsets of X d are the sat. compacts of X d, i.e., finite unions of

↓ x ⇒ topology of X is upper.
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Sober Noetherian spaces

Theorem

The sober Noetherian spaces are the posets (X ,≤) with:
≤ well-founded
(T) X = ↓E for some finite set E
(W) ↓ x ∩ ↓ y = ↓Exy for some finite set Exy

with the upper topology (↓ x subbasis of closed sets).

Proof. (⇐) First show that any sequence ↓E0 ⊇ ↓E1 ⊇ . . . ⊇ ↓En ⊇ . . . stabilizes
(En finite).
So upper topology is Noetherian, by #2.

And closed subsets must be ↓E , E finite. Sobriety follows.
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