
Lecture Notes
Part III of MPRI 2 – 02

2021 - 2021

Michele Pagani
pagani@irif.fr

January 28, 2022

Contents

1 The Probabilistic Extension pPCF of PCF 1
1.1 The Syntax of pPCF . 1
1.2 Compendium of Markov Chains . 4
1.3 The Markov Chain of pPCF . 5
1.4 Basic Examples . 6

List of exercises

Exercise 1 t . 3
Exercise 2 t . 3
Exercise 3 t . 3
Exercise 4 t . 3
Exercise 5 t . 3
Exercise 6 t . 3
Exercise 7 t . 6
Exercise 8 t . 6
Exercise 9 t . 6
Exercise 10 t . 7
Exercise 11 t . 7
Exercise 12 t . 7
Exercise 13 t . 7
Exercise 14 t . 7
Exercise 15 t . 8

These notes are a continuation of the lecture notes by Thomas Ehrhard, https://www.
irif.fr/~ehrhard/pub/mpri-2020-2021.pdf.

1 The Probabilistic Extension pPCF of PCF

1.1 The Syntax of pPCF

Figure 1 sketches the probabilistic extension of PCF, written pPCF. Let Γ be a typing context
and A be a type, we denote by ΛA

Γ the set of all terms M such that Γ ⊢ M : A. In the case

1

pagani@irif.fr
https://www.irif.fr/~ehrhard/pub/mpri-2020-2021.pdf
https://www.irif.fr/~ehrhard/pub/mpri-2020-2021.pdf

A,B, . . . := ι | A ⇒ B

(a) The grammar of types, ι is the ground type of natural numbers.

M,N, . . . := n | x | succ(M) | if(M,P, z ·R) | λxAM | (M)N

| fix(M) | coin

(b) The grammar of terms, with n ∈ N, p ∈ [0, 1], and x, y. . . variables.

Γ ⊢ n : ι Γ, x : A ⊢ x : A Γ ⊢ coin : ι

Γ ⊢ M : ι
Γ ⊢ succ(M) : ι

Γ, x : A ⊢ M : B

Γ ⊢ λxAM : A ⇒ B

Γ ⊢ M : A ⇒ B Γ ⊢ N : A
Γ ⊢ (M)N : B

Γ ⊢ M : A ⇒ A
Γ ⊢ fix(M) : A

Γ ⊢ M : ι Γ ⊢ P : A Γ, z : ι ⊢ R : A

Γ ⊢ if(M,P, z ·R) : A

(c) The typing rules, with Γ = y1 : A1, . . . , yk : Ak a typing context, k ∈ N and yi ̸= yj whenever
i ̸= j.

(
λxAM

)
N

1→ M [N/x] fix(M)
1→ (M) fix(M)

succ(n)
1→ n+ 1 if(0, P, z ·R)

1→ P if(n+ 1, P, z ·R)
1→ R [n/z]

coin
1/2→ 0 coin

1/2→ 1

M
p→ M ′

(M)N
p→ (M ′)N

M
p→ M ′

succ(M)
p→ succ(M ′)

M
p→ M ′

if(M,P, z ·R)
p→ if(M ′, P, z ·R)

(d) The reduction relation M
p→ M ′, with p ∈ [0, 1], M,M ′ pPCF terms.

Figure 1: Résumé of pPCF.

2

where Γ is empty, and so the elements of ΛA
Γ are closed, we use ΛA

0 to denote that set. A
program will be a closed term of pPCF of ground type ι, i.e. an element of Λι

0

By a simple inspection of the typing rules, the reader can check the following.
Remark : Let M be a term and Γ be a typing context. There is at most one type A such
that Γ ⊢ M : A.

Exercise 1. Give an example of expression M generated by the grammar of Figure 1b,
such that M cannot be typed by the rules of Figure 1c. Can you find an M using only
abstractions, applications and variables? and another M using only only variables, numerals,
coin, branchings and succ(M)?

The reduction relation for evaluating pPCF terms is given in Figure 1d. In the β-rule
(topmost leftmost rule of Figure 1d), the term M [N/x] stands for M where the variable x is
substituted with the term N , avoiding the capture of the free variables in N . If M p→ M ′ is
the conclusion of one axiom rule (i.e. one of the rules in the first three lines of Figure 1d), then
we call M the redex of the reduction, M ′ its contractum and p the probability to happen. This
reduction is called weak-head reduction (or simply weak reduction) since it always reduces the
leftmost outermost redex and never reduces redexes under abstractions. We say that M is
weak-normal, or a value, if there is no reduction M

p→ M ′.

Lemma 1 (Substitution) Assume Γ, x : A ⊢ M : B and Γ ⊢ N : A, then Γ ⊢ M [N/x] : B.

Exercise 2. Prove Lemma 1.

Proposition 2 (Subject reduction) Assume M
p→ M ′. If Γ ⊢ M : A, then Γ ⊢ M ′ : A.

Exercise 3. Give a proof of Proposition 2.

Exercise 4. Give a counterexample to the inverse of subjection reduction, called subject
expansion: give an example of reduction M

p→ M ′ and of type A, environment Γ, such that
Γ ⊢ M ′ : A but it is false that Γ ⊢ M : A.

Exercise 5. Characterise the set of closed values of pPCF.

A reduction sequence from a term M to a term M ′ is a finite sequence φ = (Mi)
k
i=0 such

that M0 = M , Mk = M ′ and for every i < k, Mi
pi→ Mi+1 for some probability pi ∈ [0, 1]. By

inspection of the rules in Figure 1d, the reader can check that the probability pi in Mi
pi→ Mi+1

is unique, given Mi and Mi+1. The length of φ is k and the probability p(φ) of φ is the product∏k−1
i=0 pi.
We say that a term M deterministically reduces to a value V , written M →d

∗ V , if there is
a reduction sequence φ from M to V of probability 1. Notice that such a reduction is unique,
i.e. any other reduction sequence starting from M is a prefix of φ. The following exercise
exploits the deterministic fragment of pPCF.

Exercise 6. Define terms representing the following functions:

3

1. the predecessor function, i.e. a term pred such that:

(pred)n →d
∗

{
0 if n = 0

n− 1 if n > 0

2. the addition function, i.e. a term add such that:

(add)nm →d
∗ n+m

3. the exponential function, i.e. a term exp2 such that:

(exp2)n →d
∗ 2n

4. the comparison function, i.e. a term cmp such that:

(cmp)nm →d
∗

{
0 if n ≤ m

1 if n > m

The constructor coin is the stochastic primitive of pPCF, leading to different outcomes.
Given a term M and a value V , we define the set of different reduction sequences from M to
V as:

Path≤n(M,V) = {φ |φ reduction sequence of length at most n from M to V } (1)

Path(M,V) =
⋃
n∈N

Path≤n(M,V) (2)

The quantity
∑

φ∈Path(M,V) p(φ) defines the probability that M reduces to V . We will for-
malise this idea in Section 1.3 by representing the reduction relation as a discrete time Markov
chain whose states are terms, weak-normal terms being stationary. Before that, let us recall
some notions we need in the sequel.

1.2 Compendium of Markov Chains

Let S be a countable set and let R ∈ [0, 1]S×S be a matrix with S-indexed rows and columns.
One says that R is sub-stochastic if ∀i ∈ S,

∑
j∈S Ri,j ≤ 1, we call R stochastic whenever the

previous sum is equal to 1 for all i. Given two such matrices R and T , their product RT is
given by

∀(i, j) ∈ S2, (RT)i,j =
∑
k∈I

Ri,kTk,j

which is also a (sub-)stochastic matrix. Given n ∈ N, we denote by Rn the n-fold product of
R, which is the diagonal matrix if n = 0.

A stochastic matrix represents a one-step evolution of a discrete-time Markov process. A
typical example is a random-walk, as the following one.
Example. Let S = N and consider the following matrix over [0, 1]S×S :

Wi,j =


1 if i = j = 0,
1
2 if i > 0 and (j = i− 1 or j = i+ 1),
0 otherwise.

(3)

4

Notice that W is stochastic. In fact, W defines a Markov process describing a particle trav-
elling over N: once the particle reaches 0, it will stay there, otherwise it will move +1 or −1
with equal probability 1

2 . The matrix Wn will then describe the state of the particle after n
iterations.

Given a stochastic matrix R over S, the set of stationary states of R is defined by:

SR
1 = {i ∈ S | Ri,i = 1} (4)

so that if i ∈ SR
1 and Ri,j ̸= 0 then i = j.

Let (i, j) ∈ S×SR
1 . Then the n-indexed sequence (Rn)i,j ∈ [0, 1] is monotone. Indeed, for

all n we have
(Rn+1)i,j =

∑
k∈S

(Rn)i,kRk,j ≥ (Rn)i,jRj,j = (Rn)i,j

So we can define a matrix R∞ ∈ [0, 1]S×S as follows

(R∞)i,j =

{
supn∈N(R

n)i,j if (i, j) ∈ S × SR
1

0 otherwise.
(5)

The matrix S∞ is a sub-stochastic matrix because, given i ∈ I∑
j∈S

(R∞)i,j =
∑
j∈SR

1

sup
n∈N

(Rn)i,j

= sup
n∈N

∑
j∈SR

1

(Rn)i,j by the monotone convergence theorem

≤ sup
n∈N

∑
j∈S

(Rn)i,j = 1

1.3 The Markov Chain of pPCF

Given a context Γ and a type A, we consider ΛA
Γ as a set of states, and we define the reduction

relation as a stochastic matrix Red given by

Red(Γ, A)M,M ′ =


p if M p→ M ′

1 if M is a value and M ′ = M

0 otherwise.
(6)

We also use the notation Red(A) for the matrix Red(Γ, A) when the typing context is empty.
Also, we will simply write Red if the typing annotation is irrelevant or clear from the context.
The number Red(Γ, A)M,M ′ is the probability of M to reduce to M ′ in one step. Notice that all
weak-normal terms are stationary states of Red(Γ, A), but not all stationary states are weak-
normal terms. Therefore, if V is a weak-normal form, then the n-fold product Red(Γ, A)nM,V

gives the probability that M reduces to V in at most n steps. This is precised by the following
proposition (recall notation (1)).

Proposition 3 Let M be term and V be a value in ΛA
Γ . One has

Red(Γ, A)nM,V =
∑

φ∈Path≤n(M,V)

p(φ) .

Hence, Red(Γ, A)∞M,V =
∑

φ∈Path(M,V) p(φ).

5

Exercise 7. Prove Proposition 3.

Exercise 8. Does Red have stationary states that are not weak-head normal terms? and
what about Red2?

Exercise 9. A stochastic program can have different notions of termination. Given a program
M , we say that :

• M strongly terminates (ST), whenever the set
⋃

n Path(M,n) is finite;

• M positively almost surely terminates (PAST), whenever the expected runtime∑
n∈N

∑
φ∈Path(M,n)

p(φ)length(φ)

is finite;

• M almost surely terminates (AST), whenever
∑

n Red
∞
M,n = 1.

Prove that ST → PAST → AST and that no implication can be inverted. (This exercise is
not trivial. You can have a look at [?] to have some inspiration. . .).

1.4 Basic Examples

We illustrate the expressive power of pPCF by encoding in this language simple probabilistic
algorithms. We explain intuitively the behaviour of these programs, but a formal proof of
their soundness would require more sophisticated tools, like a denotational semantics. In fact,
the next section will provide one of such semantics, based on probabilistic coherence spaces.

“Let” construction. This version of pPCF, which is globally call-by-name, offers however
the possibility of handling integers in a call-by-value way. For instance, we can define the
typical call-by-value “let” construction as follows

let x be M in N = if(M,N [0/x] , z ·N [succ(z)/x]) (7)

and this construction is restricted to the type of natural numbers; it can be typed as:

Γ ⊢ M : ι Γ, x : ι ⊢ N : A

Γ ⊢ let x be M in N : A

The effect of this construction is that, before replacing x with M in N , M must be evaluated
to a value n. This is particularly important in the case where M is a probabilistic integer
since this construction allows to “roll the dice” only once and then provide N with as many
copies of the result as needed.

In accordance with this intuition, one can also check that the following reduction inference
is derivable from the rules of Figure 1d

M
p→ M ′

let x be M in N
p→ let x be M ′ in N

(8)

whereas it is not true that
M

p→ M ′

N [M/x]
p→ N [M ′/x]

(9)

6

Exercise 10. Prove (8) and give a counterexample to (9).

We have of course

let x be n in N
1→ N [θ(n)/x]

where θ(0) = 0 and θ(n+ 1) = succ(n) (which reduces to n+ 1 in one deterministic step) by
definition of this construction.

Random Generators. Using the functions defined in Exercice 6, we can define a closed
term unif2 of type ι ⇒ ι which, given an integer n, yields a uniform probability distribution
on the integers 0, . . . , 2n − 1:

unif2 = fix(λf ι⇒ι λxι if(x, 0, z · if(coin, (f) z, z′ · (add) (exp2) z (f) z))) (10)

Observe that, when evaluating (unif2)M (where ⊢ M : ι), the term M is evaluated only once
thanks to the CBV feature of the conditional construct. Indeed, we do not want the upper
bound of the interval on which we produce a probability distribution to change during the
computation (the result would be unpredictable!).

Exercise 11. Using the unif2 and let constructions, define a term unif which, given an integer
n, yields a uniform probability distribution on the integers 0, . . . , n.

Exercise 12. Define a closed term binom of type ι ⇒ ι which, given an integer n, yields a
(fair) binomial distribution out of n trials, i.e. (binom)n evaluates to k with the probability
of getting k-times 1 in a sequence of n independent evaluations of coin.

Las Vegas algorithms. A Las Vegas algorithm is a randomized algorithm that always
gives the correct result but its running time depends on the draws from the random variables
in the algorithm.

Exercise 13. One of the simplest example of a Las Vegas algorithm can be used to find zeros
in a finite array: given a function f : N → N and n ∈ N, find a k ∈ {0, . . . , n} such that
f(k) = 0. This can be done by iterating random choices of k until we get a value such that
f(k) = 0. Define a closed term M of type (ι ⇒ ι) ⇒ ι ⇒ ι that implements this algorithm.

One can notice that our CBV version of the conditional is fundamental in solving Ex-
ercise 13. In fact, we strongly believe that this algorithm cannot be written with the usual
version of the conditional (as in standard PCF) but we didn’t really try to prove this. Do you
have some hints in proving (or disproving) this conjecture?

Random-walks. We can define a random-walk over N as a closed term W of type ι ⇒ ι,
meaning that a particle at position i ∈ N will evolve in one step to position j ∈ N with the
probability of (W) i to evaluate to j.

Exercise 14. Define a closed term W of type ι ⇒ ι representing the random-walk of Equa-
tion (3).

The following exercise give you an exemple of how natural is the use of higher-order
combinators for probabilistic programming. One can in fact defines an iterator of random
processes independently from the specific process to iterate.

7

Exercise 15. Define a closed term iter of type (ι ⇒ ι) ⇒ ι ⇒ ι ⇒ ι that takes a term
W representing a random-walk, a numeral n and returns a term of type ι ⇒ ι simulating
n-iterations of W .

In the above exercices, we just argue intuitively that the solutions actually satisfy the
required specification. In fact, proving the soundness formally can be quite burdensome: for
example, try to prove that the term (iter)W n, with W and iter defined in resp. Exercice 14
and 15, expresses in pPCF the matrix Wn, for W given in (3). The major difficulty is
that the operational semantics of pPCF, i.e. the definition of the matrix Red∞ is not defined
compositionally but with respect to a Makov chain (section 1.3). The next section will present
the probabilistic coherence spaces as a denotational model of pPCF. One major feature of
a denotational semantics is to be defined compositionally on the structure of a term. The
adequacy theorem (Section ??) will then prove the equivalence between the denotational
model and the definition of Red∞ on ground types, so allowing for compositional proofs of
soundness.

8

	The Probabilistic Extension pPCF of PCF
	The Syntax of pPCF
	Compendium of Markov Chains
	The Markov Chain of pPCF
	Basic Examples

