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These notes are a continuation of the lecture notes by Thomas Ehrhard, https://www.
irif.fr/~ehrhard/pub/mpri-2020-2021.pdf.

1 The Probabilistic Extension pPCF of PCF

1.1 The Syntax of pPCF

Figure 1 sketches the probabilistic extension of PCF, written pPCF. Let Γ be a typing context
and A be a type, we denote by ΛA

Γ the set of all terms M such that Γ ⊢ M : A. In the case
where Γ is empty, and so the elements of ΛA

Γ are closed, we use ΛA
0 to denote that set. A

program will be a closed term of pPCF of ground type ι, i.e. an element of Λι
0

By a simple inspection of the typing rules, the reader can check the following.
Remark : Let M be a term and Γ be a typing context. There is at most one type A such
that Γ ⊢ M : A.

Exercise 1. Give an example of expression M generated by the grammar of Figure 1b,
such that M cannot be typed by the rules of Figure 1c. Can you find an M using only
abstractions, applications and variables? and another M using only only variables, numerals,
coin, branchings and succ(M)?

Answer of Exercise 1. The expressions succ(λx.x) or λx. (x)x cannot be simply typed. By struc-
tural induction, one can prove that an expression generated with only variables, numerals, coin, branch-
ings and succ(M) is always typable with the ground type ι.

The reduction relation for evaluating pPCF terms is given in Figure 1d. In the β-rule
(topmost leftmost rule of Figure 1d), the term M [N/x] stands for M where the variable x is
substituted with the term N , avoiding the capture of the free variables in N . If M p→ M ′ is
the conclusion of one axiom rule (i.e. one of the rules in the first three lines of Figure 1d), then
we call M the redex of the reduction, M ′ its contractum and p the probability to happen. This
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A,B, . . . := ι | A ⇒ B

(a) The grammar of types, ι is the ground type of natural numbers.

M,N, . . . := n | x | succ(M) | if(M,P, z ·R) | λxAM | (M)N

| fix(M) | coin

(b) The grammar of terms, with n ∈ N, p ∈ [0, 1], and x, y. . . variables.

Γ ⊢ n : ι Γ, x : A ⊢ x : A Γ ⊢ coin : ι

Γ ⊢ M : ι
Γ ⊢ succ(M) : ι

Γ, x : A ⊢ M : B

Γ ⊢ λxAM : A ⇒ B

Γ ⊢ M : A ⇒ B Γ ⊢ N : A
Γ ⊢ (M)N : B

Γ ⊢ M : A ⇒ A
Γ ⊢ fix(M) : A

Γ ⊢ M : ι Γ ⊢ P : A Γ, z : ι ⊢ R : A

Γ ⊢ if(M,P, z ·R) : A

(c) The typing rules, with Γ = y1 : A1, . . . , yk : Ak a typing context, k ∈ N and yi ̸= yj whenever
i ̸= j.

(
λxAM

)
N

1→ M [N/x] fix(M)
1→ (M) fix(M)

succ(n)
1→ n+ 1 if(0, P, z ·R)

1→ P if(n+ 1, P, z ·R)
1→ R [n/z]

coin
1/2→ 0 coin

1/2→ 1

M
p→ M ′

(M)N
p→ (M ′)N

M
p→ M ′

succ(M)
p→ succ(M ′)

M
p→ M ′

if(M,P, z ·R)
p→ if(M ′, P, z ·R)

(d) The reduction relation M
p→ M ′, with p ∈ [0, 1], M,M ′ pPCF terms.

Figure 1: Résumé of pPCF.
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reduction is called weak-head reduction (or simply weak reduction) since it always reduces the
leftmost outermost redex and never reduces redexes under abstractions. We say that M is
weak-normal, or a value, if there is no reduction M

p→ M ′.

Lemma 1 (Substitution) Assume Γ, x : A ⊢ M : B and Γ ⊢ N : A, then Γ ⊢ M [N/x] : B.

Exercise 2. Prove Lemma 1.

Answer of Exercise 2. By induction on the derivation of Γ, x : A ⊢ M : B.

Proposition 2 (Subject reduction) Assume M
p→ M ′. If Γ ⊢ M : A, then Γ ⊢ M ′ : A.

Exercise 3. Give a proof of Proposition 2.

Answer of Exercise 3. By structural induction on a derivation of M p→ M ′. All cases are easy,
but for the β and if-reduction, where the substitution lemma should be used.

Exercise 4. Give a counterexample to the inverse of subjection reduction, called subject
expansion: give an example of reduction M

p→ M ′ and of type A, environment Γ, such that
Γ ⊢ M ′ : A but it is false that Γ ⊢ M : A.

Answer of Exercise 4. M = (λxι 0) y
d→ 0 = M ′. We have ⊢ M ′ : ι, while M cannot be typed

under the empty context.

Exercise 5. Characterise the set of closed values of pPCF.

Answer of Exercise 5. The closed values are either numerals or abstractions. In fact, these are
normal forms for p→. Viceversa, if M is a closed normal form for p→, we prove that it is a numeral
or an abstraction, by structural induction on M .

Notice that M cannot be a variable since it is closed, neither a fixpoint nor coin, otherwise it would
reduce. If M = succ(N) for some closed term N , then N also must be a normal form (see rules Figure
1d) so that by induction hypothesis N is a numeral and hence M = succ(N) is not normal. The case
M = if(N,P, z · R) is similar. In case M = (P )Q, we have that P also is a closed normal form. By
typing, P cannot be a numeral, so it is an abstraction and hence M is a β-redex.

A reduction sequence from a term M to a term M ′ is a finite sequence φ = (Mi)
k
i=0 such

that M0 = M , Mk = M ′ and for every i < k, Mi
pi→ Mi+1 for some probability pi ∈ [0, 1]. By

inspection of the rules in Figure 1d, the reader can check that the probability pi in Mi
pi→ Mi+1

is unique, given Mi and Mi+1. The length of φ is k and the probability p(φ) of φ is the product∏k−1
i=0 pi.
We say that a term M deterministically reduces to a value V , written M →d

∗ V , if there is
a reduction sequence φ from M to V of probability 1. Notice that such a reduction is unique,
i.e. any other reduction sequence starting from M is a prefix of φ. The following exercise
exploits the deterministic fragment of pPCF.

Exercise 6. Define terms representing the following functions:
1. the predecessor function, i.e. a term pred such that:

(pred)n →d
∗

{
0 if n = 0

n− 1 if n > 0
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2. the addition function, i.e. a term add such that:

(add)nm →d
∗ n+m

3. the exponential function, i.e. a term exp2 such that:

(exp2)n →d
∗ 2n

4. the comparison function, i.e. a term cmp such that:

(cmp)nm →d
∗

{
0 if n ≤ m

1 if n > m

Answer of Exercise 6.

pred = λxι if(x, 0, z · z) add = λxι fix(λaι⇒ι λyι if(y, x, z · succ((a) z)))

exp2 = fix(λeι⇒ι λxι if(x, 1, z · (add) (e) z (e) z))

cmp = fix(λcι⇒ι⇒ι λxι λyι if(x, 0, z · if(y, 1, z′ · (c) z z′)))

The constructor coin is the stochastic primitive of pPCF, leading to different outcomes.
Given a term M and a value V , we define the set of different reduction sequences from M to
V as:

Path≤n(M,V ) = {φ |φ reduction sequence of length at most n from M to V } (1)

Path(M,V ) =
⋃
n∈N

Path≤n(M,V ) (2)

The quantity
∑

φ∈Path(M,V ) p(φ) defines the probability that M reduces to V . We will for-
malise this idea in Section 1.3 by representing the reduction relation as a discrete time Markov
chain whose states are terms, weak-normal terms being stationary. Before that, let us recall
some notions we need in the sequel.

1.2 Compendium of Markov Chains

Let S be a countable set and let R ∈ [0, 1]S×S be a matrix with S-indexed rows and columns.
One says that R is sub-stochastic if ∀i ∈ S,

∑
j∈S Ri,j ≤ 1, we call R stochastic whenever the

previous sum is equal to 1 for all i. Given two such matrices R and T , their product RT is
given by

∀(i, j) ∈ S2, (RT )i,j =
∑
k∈I

Ri,kTk,j

which is also a (sub-)stochastic matrix. Given n ∈ N, we denote by Rn the n-fold product of
R, which is the diagonal matrix if n = 0.

A stochastic matrix represents a one-step evolution of a discrete-time Markov process. A
typical example is a random-walk, as the following one.
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Example. Let S = N and consider the following matrix over [0, 1]S×S :

Wi,j =


1 if i = j = 0,
1
2 if i > 0 and (j = i− 1 or j = i+ 1),
0 otherwise.

(3)

Notice that W is stochastic. In fact, W defines a Markov process describing a particle trav-
elling over N: once the particle reaches 0, it will stay there, otherwise it will move +1 or −1
with equal probability 1

2 . The matrix Wn will then describe the state of the particle after n
iterations.

Given a stochastic matrix R over S, the set of stationary states of R is defined by:

SR
1 = {i ∈ S | Ri,i = 1} (4)

so that if i ∈ SR
1 and Ri,j ̸= 0 then i = j.

Let (i, j) ∈ S×SR
1 . Then the n-indexed sequence (Rn)i,j ∈ [0, 1] is monotone. Indeed, for

all n we have
(Rn+1)i,j =

∑
k∈S

(Rn)i,kRk,j ≥ (Rn)i,jRj,j = (Rn)i,j

So we can define a matrix R∞ ∈ [0, 1]S×S as follows

(R∞)i,j =

{
supn∈N(R

n)i,j if (i, j) ∈ S × SR
1

0 otherwise.
(5)

The matrix S∞ is a sub-stochastic matrix because, given i ∈ I∑
j∈S

(R∞)i,j =
∑
j∈SR

1

sup
n∈N

(Rn)i,j

= sup
n∈N

∑
j∈SR

1

(Rn)i,j by the monotone convergence theorem

≤ sup
n∈N

∑
j∈S

(Rn)i,j = 1

1.3 The Markov Chain of pPCF

Given a context Γ and a type A, we consider ΛA
Γ as a set of states, and we define the reduction

relation as a stochastic matrix Red given by

Red(Γ, A)M,M ′ =


p if M p→ M ′

1 if M is a value and M ′ = M

0 otherwise.
(6)

We also use the notation Red(A) for the matrix Red(Γ, A) when the typing context is empty.
Also, we will simply write Red if the typing annotation is irrelevant or clear from the context.
The number Red(Γ, A)M,M ′ is the probability of M to reduce to M ′ in one step. Notice that all
weak-normal terms are stationary states of Red(Γ, A), but not all stationary states are weak-
normal terms. Therefore, if V is a weak-normal form, then the n-fold product Red(Γ, A)nM,V

gives the probability that M reduces to V in at most n steps. This is precised by the following
proposition (recall notation (1)).
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Proposition 3 Let M be term and V be a value in ΛA
Γ . One has

Red(Γ, A)nM,V =
∑

φ∈Path≤n(M,V )

p(φ) .

Hence, Red(Γ, A)∞M,V =
∑

φ∈Path(M,V ) p(φ).

Exercise 7. Prove Proposition 3.

Answer of Exercise 7. By induction on n. For n = 0, if M = V , we have Red(Γ, A)0M,V = 1 by
definition of diagonal matrix, and

∑
φ∈Path≤0(M,V ) p(φ) = 1 as φ ∈ Path≤0(M,V ) contains the empty

path. If M ̸= V , then Red(Γ, A)0M,V = 0 as well as Path≤0(M,V ) is empty.
For n > 0, we have:

Red(Γ, A)nM,V =
∑

M ′∈ΛA
Γ

Red(Γ, A)M,M ′Red(Γ, A)n−1
M ′,V by def.

=
∑

M ′∈ΛA
Γ

Red(Γ, A)M,M ′
( ∑
φ∈Path≤n−1(M ′,V )

p(φ)
)

by IH

=
∑

M ′∈ΛA
Γ

∑
φ∈Path≤n−1(M ′,V )

Red(Γ, A)M,M ′p(φ)

=
∑

φ∈Path≤n(M,V )

p(φ) by def.

The last statement is immediate: Red(Γ, A)∞M,V = supn Red(Γ, A)
n
M,V = supn

∑
φ∈Path≤n(M,V ) p(φ) =∑

φ∈Path(M,V ) p(φ).

Exercise 8. Does Red have stationary states that are not weak-head normal terms? and
what about Red2?

Answer of Exercise 8. The only possible stationary states of Red are the weak-head normal
terms: the proof is by inspection of the rules in Figure 1d, checking that whenever M

1→ M ′, we have
M ′ ̸= M . Indeed, the case of β-reduction is not trivial (notice that in untyped λ-calculus we have
that (λx (x)x) (λx (x)x)

1→ (λx (x)x) (λx (x)x)). In case of pPCF, if M
1→ M by β-reduction we

should have M =
(
λxA M1

)
M2 = M1[M2/x]. This means M1 = (P )Q with P [M2/x] = λxA M1 and

Q[M2/x] = M2. Moreover, suppose that Γ ⊢ M : B, so that Γ, x : A ⊢ M1 : B and Γ ⊢ M2 : A, with
x : A not in Γ. We consider two cases:

• if P = x, then from P [M2/x] = λxA M1, we have M2 = λxA M1, so A ⇒ B = A, which is
impossible;

• if P ̸= x, then from P [M2/x] = λxA M1, P = λyA P ′ with P ′[M2/x] = M1. Since x is a free
variable in M1, this means that M2 should have x free also. But this contradicts the fact that
Γ ⊢ M2 : A, with x not in Γ.

On the contrast, the term fix(λx.x) is an example of not weak-head normal term but stationary for
Red2, in fact fix(λx.x) 1→ (λx.x) fix(λx.x)

1→ fix(λx.x).

Exercise 9. A stochastic program can have different notions of termination. Given a program
M , we say that :

• M strongly terminates (ST), whenever the set
⋃

n Path(M,n) is finite;
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• M positively almost surely terminates (PAST), whenever the expected runtime∑
n∈N

∑
φ∈Path(M,n)

p(φ)length(φ)

is finite;

• M almost surely terminates (AST), whenever
∑

n Red
∞
M,n = 1.

Prove that ST → PAST → AST and that no implication can be inverted. (This exercise is
not trivial. You can have a look at [1] to have some inspiration. . . ).

Answer of Exercise 9. ST → PAST is immediate (notice that
⋃

n Path(M,n) is a disjoint sum).
As for PAST → AST. By Proposition 3 we have that:

∑
n∈N

∑
φ∈Path(M,n)

p(φ)length(φ) =
∞∑
k=1

(1−
∑
n∈N

RedkM,n)

Then,
∑∞

k=1(1−
∑

n∈N RedkM,n) < ∞ implies limk→∞(1−
∑

n∈N RedkM,n) = 0, so limk→∞
∑

n∈N RedkM,n =

1 and we conclude as limk→∞
∑

n∈N RedkM,n =
∑

n∈N Red∞M,n.
For the counterexamples of the inversions, consider the terms:

M1 = fix(λxι if(coin, x, z · 0))
M2 = fix(λf ι⇒ι λxι if(x, if(coin, 0, z · (f) (exp2)x), z · (f) z))1

Clearly M1 is not ST. However, one can check that M1 reduces to itself in 4 steps with probability 1
2

and to 0 always in 4 steps with probability 1
2 . So that:

∑
n∈N

∑
φ∈Path(M1,n)

p(φ)length(φ) =
∞∑
i=1

4i

2i
= 2

∞∑
i=1

i

2i−1
= 8

so that M1 is PAST. Concerning M2, one have that the expected runtime diverges as the reduction
sequences are of length exponentials in the number of probabilistic choices. M2 however is easily proven
to be AST.

1.4 Basic Examples

We illustrate the expressive power of pPCF by encoding in this language simple probabilistic
algorithms. We explain intuitively the behaviour of these programs, but a formal proof of
their soundness would require more sophisticated tools, like a denotational semantics. In fact,
the next section will provide one of such semantics, based on probabilistic coherence spaces.

“Let” construction. This version of pPCF, which is globally call-by-name, offers however
the possibility of handling integers in a call-by-value way. For instance, we can define the
typical call-by-value “let” construction as follows

let x be M in N = if(M,N [0/x] , z ·N [succ(z)/x]) (7)

and this construction is restricted to the type of natural numbers; it can be typed as:

Γ ⊢ M : ι Γ, x : ι ⊢ N : A

Γ ⊢ let x be M in N : A

8



The effect of this construction is that, before replacing x with M in N , M must be evaluated
to a value n. This is particularly important in the case where M is a probabilistic integer
since this construction allows to “roll the dice” only once and then provide N with as many
copies of the result as needed.

In accordance with this intuition, one can also check that the following reduction inference
is derivable from the rules of Figure 1d

M
p→ M ′

let x be M in N
p→ let x be M ′ in N

(8)

whereas it is not true that
M

p→ M ′

N [M/x]
p→ N [M ′/x]

(9)

Exercise 10. Prove (8) and give a counterexample to (9).

Answer of Exercise 10. One can notice that (8) is an instance of the contextual if-rule in

Figure 1d. A counterexample of (9) is for N = (add)xx and M = coin. We have M
1
2→ 0, but N [M/x]

does not reduce to N [0/x] = (add) 0 0. The only one-step contractums of N [M/x] are (add) 0 coin and
(add) 1 coin, with probability 1

2 . From there we get, in several steps, the values 0 and 2, each with
probability 1

4 , and 1 with probability 1
2 . On the contrast, N [0/x] deterministically evaluates to 0, and

N [1/x] deterministically evaluates to 2.

We have of course

let x be n in N
1→ N [θ(n)/x]

where θ(0) = 0 and θ(n+ 1) = succ(n) (which reduces to n+ 1 in one deterministic step) by
definition of this construction.

Random Generators. Using the functions defined in Exercice 6, we can define a closed
term unif2 of type ι ⇒ ι which, given an integer n, yields a uniform probability distribution
on the integers 0, . . . , 2n − 1:

unif2 = fix(λf ι⇒ι λxι if(x, 0, z · if(coin, (f) z, z′ · (add) (exp2) z (f) z))) (10)

Observe that, when evaluating (unif2)M (where ⊢ M : ι), the term M is evaluated only once
thanks to the CBV feature of the conditional construct. Indeed, we do not want the upper
bound of the interval on which we produce a probability distribution to change during the
computation (the result would be unpredictable!).

Exercise 11. Using the unif2 and let constructions, define a term unif which, given an integer
n, yields a uniform probability distribution on the integers 0, . . . , n.

Answer of Exercise 11. Given n ∈ N, the idea is to apply iteratively unif2 until the result is ≤ n:

unif = λxι let y be x in fix(λf ι let z be (unif2) y in if((cmp) z y, z, w · f))

One checks easily that ⊢ unif : ι ⇒ ι. It is not hard to check that the resulting distribution is uniform
(with probability 1

n+1 for each possible result). Notice that this algorithm is almost sure terminating,
but not strongly terminating, as the recursive call does not decrease any parameter (see Exercice 9).
What about its expected runtime?

9



Exercise 12. Define a closed term binom of type ι ⇒ ι which, given an integer n, yields a
(fair) binomial distribution out of n trials, i.e. (binom)n evaluates to k with the probability
of getting k-times 1 in a sequence of n independent evaluations of coin.

Answer of Exercise 12.

binom = fix(λf ι⇒ι λxι if(x, 0, z · if(coin, (f) z, w · succ((f) z))))

Notice in fact that (binom)n will perform exactly n recursive calls, each recursive call being preceded
by exactly one evaluation of a coin redex. So that we can represent the evaluation tree of (binom)n as
a complete binary tree of height n where each branching is labelled by either 0 (if the corresponding
evaluation of coin returns 0) or 1. Notice that (binom)n evaluates to k exactly on the branches where
we have had k evaluations of coin to 1, independently from the order of the evaluations. Now, the
number of different branches of this tree having exactly k evaluations of coin to 1 (independently from
their order) is given by the binomial coeffiecient

(
n
k

)
= n!

k!(n−k)! . Also, any branch happens with equal
probability given by 1

2n , so that (binom)n evaluates to k with probability 1
2n

(
n
k

)
, this describing the

binomial law.

Las Vegas algorithms. A Las Vegas algorithm is a randomized algorithm that always
gives the correct result but its running time depends on the draws from the random variables
in the algorithm.

Exercise 13. One of the simplest example of a Las Vegas algorithm can be used to find zeros
in a finite array: given a function f : N → N and n ∈ N, find a k ∈ {0, . . . , n} such that
f(k) = 0. This can be done by iterating random choices of k until we get a value such that
f(k) = 0. Define a closed term M of type (ι ⇒ ι) ⇒ ι ⇒ ι that implements this algorithm.

Answer of Exercise 13.

M = λf ι⇒ι λxι fix(λrι let y be (unif)x in if((f) y, y, z · r))

with ⊢ M : (ι ⇒ ι) ⇒ ι ⇒ ι.

One can notice that our CBV version of the conditional is fundamental in solving Ex-
ercise 13. In fact, we strongly believe that this algorithm cannot be written with the usual
version of the conditional (as in standard PCF) but we didn’t really try to prove this. Do you
have some hints in proving (or disproving) this conjecture?

Random-walks. We can define a random-walk over N as a closed term W of type ι ⇒ ι,
meaning that a particle at position i ∈ N will evolve in one step to position j ∈ N with the
probability of (W ) i to evaluate to j.

Exercise 14. Define a closed term W of type ι ⇒ ι representing the random-walk of Equa-
tion (3).

Answer of Exercise 14. W = λxι if(x, 0, z · if(coin, succ(succ(z)), z′ · z))
The following exercise give you an exemple of how natural is the use of higher-order

combinators for probabilistic programming. One can in fact defines an iterator of random
processes independently from the specific process to iterate.

Exercise 15. Define a closed term iter of type (ι ⇒ ι) ⇒ ι ⇒ ι ⇒ ι that takes a term
W representing a random-walk, a numeral n and returns a term of type ι ⇒ ι simulating
n-iterations of W .

10



Answer of Exercise 15.

iter = λwι⇒ι fix(λf ι⇒ι⇒ι λnι λxι if(n, x, z · (w) (f) zx))

In the above exercices, we just argue intuitively that the solutions actually satisfy the
required specification. In fact, proving the soundness formally can be quite burdensome: for
example, try to prove that the term (iter)W n, with W and iter defined in resp. Exercice 14
and 15, expresses in pPCF the matrix Wn, for W given in (3). The major difficulty is
that the operational semantics of pPCF, i.e. the definition of the matrix Red∞ is not defined
compositionally but with respect to a Makov chain (section 1.3). The next section will present
the probabilistic coherence spaces as a denotational model of pPCF. One major feature of
a denotational semantics is to be defined compositionally on the structure of a term. The
adequacy theorem will then prove the equivalence between the denotational model and the
definition of Red∞ on ground types, so allowing for compositional proofs of soundness.
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2 The standard model of pPCF in Pcoh!

In order to interpret pPCF in a denotational model, we need:

1. a cartesian closed category, for modelling the simply typed λ-calculus (namely: variables,
abstraction and application) and its β-reduction,

2. completely partially ordered hom-sets, for modelling the fix-point operator,

3. convex hom-sets, for sampling from random data,

4. and an object of numerals, in order to express numerals, successor and our zero-test
conditional.

We consider the category Pcoh!, which is the Kleisli category associated with the !-
comonad of Pcoh. We recall briefly the categorical structure of Pcoh! from the linear logic
structure of Pcoh. The benefit of starting from a linear logic category is to be able to express
at a denotational level the linearity of some programming primitives of pPCF, which is a
remarkable feature for a denotational semantics of a probabilistic programming language.

2.1 The structure of Pcoh! out of that of Pcoh

The category Pcoh!. An object of Pcoh! is a PCS X = (|X|,PX), and the set Pcoh!(X,Y )

of morphisms from X to Y is the set of matrices f ∈ R+Mfin(|X|)×|Y | such that

∀x ∈ PX, f̂(x) = f · x(!) =

 ∑
m∈Mfin(|X|)

fm,bx
m


b∈|Y |

∈ PY (11)

where x(!) is the vector in P!X defined by x
(!)
m = xm =

∏
a∈supp(m) x

m(a)
a , for m ∈ Mfin(|X|).

Notice that the sum in (11) might diverge for arbitrary matrices f ∈ R+|X|×|Y | and vectors
x ∈ R+|X|.

Exercise 16. Recall the PCSs 1 = ({∗}, [0, 1]) and Bool = 1 ⊕ 1 = ({t, f}, {(λt, λf) ∈
[0, 1]2 ; λt + λf ≤ 1}). Give the following examples of matrices in R+Mfin(|Bool|)×|1|:

1. a matrix f such that f̂ is a total function from R+|Bool| to R+|1|, but it does not map
PBool into P1, so f /∈ Pcoh!(Bool, 1);

2. a matrix g such that ĝ is a total function from PBool to P1, so g ∈ Pcoh!(Bool, 1),
but ĝ diverges on some vectors of R+|Bool| outside PBool. (Hint: recall the example of
analytic function on the booleans given in Ehrhard’s notes).

Answer of Exercise 16.

1. Take for example the function fm,∗ =

{
2 if m = [],

0 otherwise.
. We have f̂(x) = 2, so f̂ is well-defined

on the whole R+2, however the codomain of f̂ is ouside P1 = [0, 1].

2. Take for example the function

g[tn,fk],∗ =

{
2n if n = k ≥ 1,
0 otherwise.

We have that ĝ(x) =
∑∞

n=1 2
nxn

t x
n
f . If x ∈ PBool, so xt + yf ≤ 1, the maximal value of this

function is reached when xf = 1−xt, so that we can consider the function λ 7→
∑∞

n=1 2
nλn(1−
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λ)n, with λ ∈ [0, 1]. The quantity λn(1−λ)n is maximal for λ = 1
2 , so that

∑∞
n=1 2

nλn(1−λ)n ≤∑∞
n=1

1
2n ≤ 1 and we have g ∈ Pcoh!(Bool, 1). On the contrast, if we take x = (1, 1), then of

course ĝ(x) diverges.

Exercise 17. Prove that Pcoh!(X,Y ) = Pcoh(!X,Y ). What is the difference between (11)
and the condition necessary for inferring f ∈ Pcoh(!X,Y )?

Answer of Exercise 17. f ∈ Pcoh(!X,Y ) means:

∀z ∈ P(!X), f · z ∈ PY

The above equation trivially implies (11), as x(!) ∈ P(!X). Let us prove the converse.
Take u ∈ P(!X), y ∈ PY , we have to prove that: ⟨f · u, y⟩ ≤ 1. Notice that we have:

⟨f · u, y⟩ = ⟨f, u⊗ y⟩ = ⟨f⊥ · y, u⟩

By hypothesis we have moreover that f⊥ · y ∈ {x(!) ; x ∈ PX}⊥ = (P!X)⊥, we conclude that
⟨f⊥ · y, u⟩ ≤ 1, as u ∈ P(!X).

The identity on X is given by the dereliction matrix derX ∈ Pcoh(!X,X):

IdKlXm,a = derXm,a =

{
1 if m = [a],

0 otherwise.
(12)

In fact, we have ÎdKlX(x) = derX ·x(!) = x, for every x ∈ PX.
The composition of a morphism f ∈ Pcoh!(X,Y ) and a morphism g ∈ Pcoh!(Y, Z) is

obtained via the matrix composition, the digging and the functorial promotion of Pcoh:

g ◦ f = g(!f) digX (13)

where we recall that digX ∈ Pcoh(!X, !!X) and !f ∈ Pcoh(!!X, !Y ) are:

digXm,M =

{
1 if m =

∑
M,

0 otherwise.
!fM,p =

∑
r∈L(M,p)

p!

r!
f r (14)

with f r =
∏

(m,b)∈supp(r) f
r(m,b)
m,b , p! =

∏
a∈|X| p(a)! is the multiset factorial and L(M,p) is the

set of all h ∈ Mfin(supp(M), supp(p)) such that:

∀m ∈ supp(M),M(m) =
∑

b∈supp(p)

h(m, b) and ∀b ∈ supp(p), p(b) =
∑

m∈supp(M)

h(m, b)

Exercise 18. Given f ∈ Pcoh!(X,Y ), g ∈ Pcoh!(Y,Z) and x ∈ PX, prove that ĝ ◦ f(x) =
ĝ(f̂(x)). (Hint: use the categorical properties of dig and !). Conclude that g◦f ∈ Pcoh!(X,Z).

Answer of Exercise 18.

ĝ ◦ f(x) = (g(!f) digX) · x(!) by definition

= (g(!f)) · (digX ·x(!)) = (g(!f)) · x(!)(!) by def. of dig

= g · ((!f) · x(!)(!)) = g · (f · x(!))(!) by funct. of !

= ĝ(f̂(x)) by def. of ̂
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We can conclude that g ◦ f ∈ Pcoh!(X,Z), since by hypothesis f̂(x) ∈ PY and hence ĝ(f̂(x)) ∈ PZ,
so condition (11) holds.

We can give an explicit definition of the coefficients of a composition of Pcoh! morphisms
by, given f ∈ Pcoh!(X,Y ) and g ∈ Pcoh!(Y,Z):

(g ◦ f)m,c =
∑

[b1,...,bh]∈Mfin(|Y |)

 ∑
(m1,...,mh) s.t.∑

i mi=m

h∏
i=1

fmi,bi

 g[b1,...,bh],c (15)

Notice that although the writing of Equation (15) depends on an explicit enumeration of
the occurrences in the multiset [b1, . . . , bh], the resulting scalar is independent from that
enumeration, as the inner sum varies over all possible sequences associating the parts of a
partition of m to the different bi’s.

Recall from Ehrhard’s notes that a crucial feature of Pcoh! is to be well-pointed, meaning
that a matrix f ∈ Pcoh!(X,Y ) is univocally characterised by its behaviour as the map f̂ :

Proposition 4 (Functional characterization) Given two matrices f, f ′ ∈ Pcoh!(X,Y ),
one has f = f ′ (as matrices) iff f̂ = f̂ ′ (as maps PX → PY ).

This property is extremely convenient, as one can define a morphism of Pcoh! extensionally,
without the need of giving the coefficients of the matrix associated with the morphisms.
In fact, we will use this property in Figure 2c, when giving a functional definition of the
denotation of the pPCF terms.

Cartesian closeness. The product of Pcoh! is the same as that of Pcoh, with the projec-
tions composed with der, that is, given a countable collection of PCSs (Xi)i∈I , we have:

|&i∈IXi| =
⋃
i∈I

{i} × |Xi|

P&i∈IXi = {x ∈ R|&i∈IXi|
≥0 ; ∀i ∈ I, (x(i,a))a∈|Xi| ∈ PXi}

πKl
j = πj der&i∈IXi

∈ Pcoh!

(
&i∈IXi, Xj

)
i.e. (πKl

j )m,a =

{
1 if m = [(i, a)] and j = i

0 otherwise

Recall that, given a collection fi ∈ Pcoh!(Y,Xi) = Pcoh(!Y,Xi) for i ∈ I, the morphism
⟨fi⟩i∈I ∈ Pcoh!(Y,&i∈IXi) can be explicitly defined by:

(⟨fi⟩i∈I)m,(i,b) = (fi)m,b

Exercise 19. Prove the universal property of the product in Pcoh!, i.e. given a collection
fi ∈ Pcoh!(Y,Xi) for i ∈ I, the morphism ⟨fi⟩i∈I ∈ Pcoh!(Y,&i∈IXi) is the only one
satisfying (πKl

j ◦ ⟨fi⟩i∈I) = fj for every j ∈ I.

Answer of Exercise 19.

(πKl
j ◦ ⟨fi⟩i∈I) = πj der(!⟨fi⟩) dig

= πj⟨fi⟩i∈I

= fj

The unicity follows from the unicity of ⟨fi⟩ for πj and the universal property of der and dig.

In the following we will use the infix notation X & Y and ⟨f, g⟩ for binary cartesian
products. Also, we will denote by T the zero-ary product, which is the PCS of empty web.
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Exercise 20. One might be tempted to give a different definition of projection as, for example
in the binary case X1 &X2, by giving the couple of morphisms pi ∈ Pcoh!(X1 &X2, Xi), for
i ∈ {1, 2}, given by: (pi)m,a = 1, if m(i, a) > 0, otherwise (pi)m,a = 0. Prove that the triple
(X1 &X2, p1, p2) does not give a product over X1, X2 for any PCS X1 and X2.

Answer of Exercise 20. One way of arguing that (X1 & X2, p1, p2) does not define a product
is by showing that it fails the universal property of products for some X1 and X2 and morphisms
fi ∈ Pcoh!(Z,Xi). Take for example X1 = X2 = Z = 1 = ({∗}, [0, 1]), and try to define a morphism
h ∈ Pcoh!(1, 1&1) which is the pairing of (two occurrences of) the identity IdKl1 ∈ Pcoh!(1, 1), i.e. h
should be the unique morphism such that pi ◦ h = IdKl1. Notice that:

(pi ◦ h)[⋆],⋆ = h[⋆],(i,⋆)h[],(3−i,⋆)

From the above equation and the hypothesis pi ◦ h = IdKl1, we get:

h[⋆],(1,⋆) = h[],(2,⋆) = 1, h[⋆],(2,⋆) = h[],(1,⋆) = 1

However, by considering (pi ◦ h)[],⋆, we should have h[],(1,⋆)h[],(2,⋆) = 0, which is in contradiction with
the above equalities.

A crucial ingredient necessary to lift the closeness structure of Pcoh to Pcoh! is the strong
monoidal isomorphisms mat(m0) ∈ Pcoh(1, !T) and mat(m2

|X1|,|X2|) ∈ Pcoh(!X1⊗ !X2, !(X1&

X2)), transforming the tensor product of promoted spaces into the promotion of a product:

mat(m0)∗,[] = 1 mat(m2)(m1,m2),q
=


1 if q(i, a) = mi(a)

for i ∈ {1, 2}, a ∈ |Xi|,
0 otherwise.

(16)

The object of morphisms is defined by Girard’s decomposition:

X ⇒ Y = !X ⊸ Y = Pcoh(!X,Y ) = Pcoh!(X,Y ) (17)

The evaluation morphism evKl ∈ Pcoh!((X ⇒ Y ) &X,Y ) and the curryfication CurKl(f) ∈
Pcoh!(Z,X ⇒ Y ), for every f ∈ Pcoh!(Z &X,Y ) are then obtained by their corresponding
constructions in Pcoh as follows:

evKl = ev(derX⇒Y ⊗ Id!X)mat(m2
|X⇒Y|,|X|)

−1 i.e. evKl(m,p),b =

{
1 if m = [(p, b)],
0 otherwise.

(18)

CurKl(f) = Cur(fmat(m2
|Z|,|X|)

−1
) i.e. CurKl(f)m,(p,b) = f(m,p),b (19)

Notice that in the above two equations we deliberately use the relational strong monoidal
isomorphisms in order to represent with a pair (m, p) of two multisets a multiset over the
disjoint union of the supports of m and p.

Exercise 21. By using the properties of the morphisms of Pcoh, prove that:

1. êvKl(⟨f, x⟩) = f̂(x)

2.
̂

( ̂CurKl(f)(x))(z) = f̂(⟨x, z⟩)
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Answer of Exercise 21.

êvKl(⟨f, x⟩) = (ev(der⊗!X)mat(m2)
−1

) · (⟨f, x⟩)(!)

= (ev(der⊗!X)) · (mat(m2)
−1 · (⟨f, x⟩)(!))

= (ev(der⊗!X)) · (f (!) ⊗ x(!))

= ev ·((der⊗!X) · (f (!) ⊗ x(!)))

= ev ·(f ⊗ x(!))

= f · x(!)

= f̂(x)

̂
( ̂CurKl(f)(x))(z) = ((Cur(fmat(m2

|Z|,|X|)
−1

)) · x(!)) · z(!)

= (fmat(m2
|Z|,|X|)

−1
) · (x(!) ⊗ z(!))

= f · ⟨x, z⟩(!)

= f̂(⟨x, z⟩)

Cpo-enriched hom-sets. A categorical model of a typed programming language associates
the types with objects of the category and the programs with morphisms from the input type
interpretation to the output type interpretation. Some programming primitives may need
some structure on the hom-sets, for example the fix-point operator (giving recursion) needs
the hom-set to be cpo-enriched.

There is actually an equivalence between the sets PX associated with PCSs X and the
sets of the morphisms of Pcoh and Pcoh!. Namely, given a PCS X, PX is equivalent to the
set Pcoh(1, X) as well as Pcoh!(T, X). Viceversa, the sets Pcoh(X,Y ) and Pcoh!(X,Y )
are equivalent respectively to the sets P(X ⊸ Y ) and P(X ⇒ Y ). Henceforth, studying the
structure of PX for generic X corresponds to study the structure of the hom-sets of the
categories Pcoh and Pcoh!, which is what we will do in this subsection.

Given a PCS X, recall that PX is endowed with the partial order defined component-wise:

x ≤ x′ iff ∀a ∈ |X|, xa ≤ x′a (20)

Recall that the vectors in PX are bounded in a fixed direction, i.e. ∀a ∈ |X|,∃λ ∈ R≥0, ∀x ∈
PX,xa ≤ λ. Therefore, giving an increasing ω-chain, i.e. a countable increasing family of
vectors in PX, its limit can be defined as the component-wise supremum:

given (xi)i∈N ∈ PX s.t. xi ≤ xi+1, we define sup
i
(xi) =

(
sup
i
(xia)

)
a∈|X| (21)

The following proposition states that Pcoh! behaves well with such a notion of limit.

Proposition 5 (Scott continuity) Let X,Y be PCSs, (xi)i∈N ∈ PX be an increasing ω-
chain,

1. supi(xi) ∈ PX,

2. for every f ∈ Pcoh!(X,Y ), (f̂(xi))i∈N is increasing and f̂(supi(xi)) = supi
(
f̂(xi)

)
.

Exercise 22. Prove Proposition 5.
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Answer of Exercise 22. For 1, given y ∈ PX⊥, we have: ⟨supi(xi), y⟩ = supi⟨xi, y⟩ ≤ 1.
For 2, notice that xi ≤ xi+1 implies x

(!)
i ≤ x

(!)
i+1 and hence f · x(!)

i ≤ f · x(!)
i+1 as addition and

multiplication (with positive reals) are monotone increasing. We conclude that f̂ also is monotone
increasing and so (f̂(xi))i∈N is an increasing ω-chain. Similarly, f̂(supi(xi)) = supi

(
f̂(xi)

)
is an

immediate consequence of Equation 11 and the fact that addition and multiplication (with positive
reals) commutes with suprema.

An immediate consequence of the component-wise definition in (21) is that, given two
ω-chains (xi)i∈N ∈ PX and (yj)j∈N ∈ PY , we have:

⟨sup
i∈N

xi, sup
j∈N

yj⟩ = sup
i∈N

sup
j∈N

⟨xi, yj⟩ = sup
j∈N

sup
i∈N

⟨xi, yj⟩ = sup
i∈N

⟨xi, yi⟩ ∈ P(X & Y ) (22)

Exercise 23. Given increasing (fi)i∈N ∈ P(X ⇒ Y ) and (xi)i∈N ∈ PX, prove that:

̂(sup
i

fi)(sup
i
(xi)) = sup

i
(f̂i(xi)).

Answer of Exercise 23. By Exercice 21, Equation (22) and Proposition 5:

̂(sup
i

fi)(sup
i
(xi)) = êvKl(sup

i
⟨fi, xi⟩) = sup

i
êvKl(⟨fi, xi⟩) = sup

i
(f̂i(xi))

The two properties of Proposition 5 justifies the standard definition of the least fix-point
operator for Pcoh!. Given a PCS X, we set Yn ∈ Pcoh!(X ⇒ X,X) for any n ∈ N and its
limit Y ∈ Pcoh(X ⇒ X,X) as:

Y0 = 0, Yn+1 = evKl ◦ ⟨Id,Yn⟩, Y = sup
n

Yn.

Exercise 24.
1. Prove that (Yn)n is a increasing chain in P((X ⇒ X) ⇒ X), so that Y = supn Yn is

well-defined.
2. Prove that, for any n ∈ N, any f ∈ P(X ⇒ X), Ŷn+1(f) = f̂(Ŷn(f)). Conclude the

fix-point equation: Ŷ(f) = f̂(Ŷ(f)).

Answer of Exercise 24.

1. Remark that ◦ and pairing are monotone increasing. Therefore, by induction on n, we have
Yn ≤ Yn+1. The base of induction is trivial, since 0 is the minimum.

2. By definition

Ŷn+1(f) = ̂(evKl ◦ ⟨Id,Yn⟩)(f) by definition

=
(
êvKl( ̂⟨Id,Yn⟩(f))

)
by Ex. 18

=
(
êvKl(⟨f, Ŷn(f)⟩)

)
by def. pairing

= f̂(Ŷn(f)) by Ex 21

The fix-point equation is a trivial consequence of the above equality and Proposition 5.

This means that the standard least fix-point operator Y can be described as a power series,
which is not completely obvious at first sight.
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Convex hom-sets. Random data will be denoted by barycentric sums: for example, if
x, x′ ∈ PX will be the denotation of two values of some type X, and λ ∈ [0, 1], then λx+(1−
λ)x′ will represent a random program evaluating with probability λ to x, and with probability
(1 − λ) to x′. The following proposition states then the PCSs are closed under barycentric
sums:

Proposition 6 (Convexity) Let X be a PCS, ∀(xi)i∈I ∈ PX, ∀(λi)i∈I ∈ [0, 1] s.t.
∑

i∈I λi =
1, we have:

∑
i∈I λixi ∈ PX.

Exercise 25. Prove Proposition 6.

Answer of Exercise 25. Given y ∈ PX⊥, we have: ⟨
∑

i λixi, y⟩ =
∑

i λi⟨xi, y⟩ ≤ 1.

The object of numerals. The object of numerals is an object N associated with the ground
type ι of natural numbers and having enough structure to express the basic operations of pPCF
over ι: constants, successor and conditionals based on a zero testing.

In Pcoh!, one can define this object from standard constructions in the linear logic cate-
gory Pcoh. Namely, we let N to be the countable coproduct of the tensor unit:

N =
⊕
i∈N

1, i.e. N =
(
N,
{
v ∈ [0, 1]N ;

∑
i∈N

vi ≤ 1
})

(23)

First of all, notice that a numeral can be associated with a constant function nX ∈ Pcoh!(X,N)
by the weakening wX ∈ Pcoh(!X, 1) and the injections πn ∈ Pcoh(1,N):

nX = πn wX i.e. nXm,k =

{
1 if m = [] and k = n,
0 otherwise,

(24)

Another major benefit of this definition is to lift the structure of !-coalgebra of the tensor
unit 1 to N, by the morphism hN : Pcoh(N, !N):

(hN)n,m =

{
1 if m = k[n] for some k ∈ N
0 otherwise.

(25)

The following exercise shows that hN allows to duplicate and erase “true” natural numbers
en but not general elements of PN which can be considered as “computations” and not as
“values”.

Exercise 26. Prove that for any n ∈ N, hN · en = e
(!)
n . Moreover, observe that it is not true

however that ∀u ∈ PN hN · u = u(!), in fact what we have is: hN · u =
∑

n∈N unen
(!)

Answer of Exercise 26. In fact, if m = k[n] for some k, then (hN · en)m = 1 = (en)
m = (e

(!)
n )m.

Otherwise, if m = [n′] +m′ for some n′ ̸= n, then (hN · en)m = 0 = (en)n′(en)
m′

= e
(!)
n [n′]+m′ .

As for the second statement, consider u = 1
2e0+

1
2e1. We have that (hN ·u)[0,1] = 0 while u

(!)
[0,1] =

1
4 .

In general, we have that (hN · u) = hN · (
∑

n∈N unen) =
∑

n∈N un(hN · en) =
∑

n∈N unen
(!).

Finally, N enjoys the strong isos mat(θ) ∈ Pcoh(1⊕ N,N) given by the relation θ:

θ : |1⊕ N| → |N|
(1, ∗) 7→ 0
(2, n) 7→ n+ 1
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The successor morphism suc ∈ Pcoh!(N,N) is then the composition of dereliction, the
right injection and the above isomorphism:

suc = mat(θ)π2 der i.e. sucm,n =

{
1 if n > 0 and m = [n− 1], or n = 0 and m = [0],
0 otherwise.

Our conditional, which gathers a zero-test and a predecessor operation, is based on the inverse
of mat(θ) and the !-coalgebra morphism hN. We define If ∈ Pcoh!(N&X & (N ⇒ X), X) by:

!(N&X & (N ⇒ X))

!N⊗ !(X & (N ⇒ X))

N⊗ !(X & (N ⇒ X))

(1⊕ N)⊗ !(X & (N ⇒ X))

!(X & (N ⇒ X))⊕ (N⊗ !(X & (N ⇒ X)))

X ⊕ (!N⊗ (N ⇒ X))

X

mat(m2)
−1

der⊗ Id

mat(θ)−1 ⊗ Id mat(distr)

[π1(π1 der), π2(hN ⊗ π2 der)]

[Id, ev]

where we omit to explicit the associativity and neutrality isos of ⊗, mat(distr)X1,X2,Z
∈

Pcoh((X1⊕X2)⊗Z, (X1⊗Z)⊕ (X2⊗Z)) is the strong isos of the distributive lax of ⊗ over
⊕ given by the following relation:

distr : |(X1 ⊕X2)⊗ Z| → |(X1 ⊗ Z)⊕ (X2 ⊗ Z)|
((i, a), b) 7→ (i, (a, b))

with also πi ∈ Pcoh(Xi, X1⊕X2) being the injection of the coproduct X1⊕X2, for i ∈ {1, 2},
and [f1, f2] ∈ Pcoh(X1 ⊕X2, Z) being the copairing of fi ∈ Pcoh(Xi, Z).

In fact, the explicit definition of If ∈ Pcoh!(N&X & (N ⇒ X), X) as a matrix is:

If(m1,m2,m3),a =


1 if m1 = [0], m2 = [a], m3 = [],
1 if m1 = [n+ 1], m2 = [], m3 = [([nk], a)] for k ≥ 0,
0 otherwise

(26)

Exercise 27. Given u ∈ PN, v ∈ PX and f ∈ P(N ⇒ X), prove that Îf(u, v, f) = u0v +∑∞
n=0 un+1f̂(en).

Answer of Exercise 27. We sketch the proof by travelling through the diagram defining If, every
single step being an easy consequence of the definitions.
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!(N&X & (N ⇒ X))

⟨u, v, f⟩(!)

!N⊗ !(X & (N ⇒ X))

u(!) ⊗ ⟨v, f⟩(!)

N⊗ !(X & (N ⇒ X))

u⊗ ⟨v, f⟩(!)

(1⊕ N)⊗ !(X & (N ⇒ X))

(1, u0⋆)⊗ ⟨v, f⟩(!) + (2, (un+1)n ⊗ ⟨v, f⟩(!))

!(X & (N ⇒ X))⊕ (N⊗ !(X & (N ⇒ X)))

(1, u0⟨v, f⟩(!)) + (2, (un+1)n ⊗ ⟨v, f⟩(!))

X ⊕ (!N⊗ (N ⇒ X))

u0v +
∑∞

n=0 un+1(en)
! ⊗ f

X

u0v +
∑∞

n=0 un+1f̂(en)

mat(m2)
−1

der⊗ Id

mat(θ)−1 ⊗ Id mat(distr)

[π1(π1 der), π2(hN ⊗ π2 der)]

[Id, ev]

2.2 The interpretation pPCF

Section 2.1 has detailed all basic bricks of Pcoh! that we can assemble now in Figure 2,
defining the standard model of pPCF.

Subfigure 2a gives the denotation of types of pPCF and, given a context Γ = x1 :
A1, . . . , xn : An, a type A and a term M such that Γ ⊢ M : A, then Subfigure 2b defines by
structural induction on M the denotation of M as:

JMKΓ ∈ Pcoh!(JΓK, JAK) = Pcoh(!JΓK, JAK) (27)

where JΓK = JA1K & · · · & JAkK. Moving from Pcoh! to Pcoh means swapping between
the denotation of M seen as a morphism in a cartesian closed category with domain the
interpretation of the input types and this same denotation of M seen as a morphism in a
linear logic category with domain the promotion of the denotation of the input types.

Recall that Proposition 4 states that the analytical maps between PCSs are univocally
characterised by their functional behaviour. This allows for a further equivalent definition of
the semantics of M as the set-theoretical map:

ĴMKΓ : PJA1K × · · · × PJAnK → PJAK (28)

which is detailed by Figure 2c.

Exercise 28. Check the equations of Figure 2c with the definitions in Figure 2b.

Answer of Exercise 28. The If equation is a consequence of Exercise 27, the abstraction and
application cases follow from Exercise 21. The fix-point equation is from Exercise 24, and all other
cases can be easily checked from the definitions in Figure 2b.

Exercise 29. Compute the functional behaviour of the denotation of the terms pred, add,
exp2, cmp defined in Exercise 6.

Answer of Exercise 29.

Computation of JpredK. We have:

ĴpredK(u) = ̂Jλxι if(x, 0, z · z)K(u)

= ̂Jif(x, 0, z · z)Kx:ι(u)

= u0e0 +

∞∑
n=0

un+1en
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JιK = N JA ⇒ BK = JAK ⇒ JBK

(a) The interpretation of types.

JxKΓ,x:A = Γ &A A
πKl
n+1

JλxAMKΓ = Γ A ⇒ B
CurKl(JMKΓ,x:A)

J(M)NKΓ = Γ (A ⇒ B) &A B
⟨JMKΓ, JNKΓ⟩ evKl Jfix(M)KΓ =Γ (A ⇒ A) A

JMKΓ Y

JnKΓ = Γ N
n Jsucc(M)KΓ = Γ N N

JMKΓ suc JcoinKΓ = Γ N

1
2J0KΓ + 1

2J1KΓ

Jif(P,Q, v ·R)KΓ = Γ N&A& (N ⇒ A) A
⟨JP KΓ, JQKΓ,CurKl(JRKΓ,v:N)⟩ If

(b) The denotation of a term Γ ⊢ M : A seen as a morphism JMKΓ ∈ Pcoh!(JΓK, JAK). In the
above diagrams, we avoid the double-bracket notation JAK for the denotation of a type A, and for
environments as well. Also, the morphisms and the composition live in the category Pcoh!, whose
structure has been detailed in Section 2.1.

ĴxiKΓ(u⃗) = ui

ĴnKΓ(u⃗) = en

̂Jsucc(M)KΓ(u⃗) =
∞∑
n=0

(
ĴMKΓ(u⃗)

)
n
en+1

̂JcoinKΓ(u⃗) =
1

2
e0 +

1

2
e1

̂Jif(P,Q, z ·R)KΓ(u⃗) = (ĴP KΓ(u⃗))0ĴQKΓ(u⃗) +
∞∑
n=0

(ĴP KΓ(u⃗))n+1
̂JRKΓ,z:ι(u⃗, en)

̂( ̂JλxA P KΓ(u⃗)
)
(u) = ̂JP KΓ,x:A(u⃗, u)

̂J(P )QKΓ(u⃗) =
̂̂

JP KΓ(u⃗)(ĴQKΓ(u⃗))

̂Jfix(P )KΓ(u⃗) = Ŷ(ĴP KΓ(u⃗))

(c) The denotation of a term Γ ⊢ M : A seen as a function ĴMKΓ :
∏n

i=1 PJAiK → PJAK. The writing
u⃗ stands for (u1, . . . , un) ∈ PJA1K × · · · × PJAnK.

Figure 2: The standard model of pPCF in Pcoh!.
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Computation of JaddK. Henceforth, let us ease the notation by adopting the following conven-
tions: given a matrix f ∈ Pcoh!(X,Y ), we will denote by the same writing f the function f̂ from
Cl(X) to Cl(Y ) associated with f . We also adopt the standard conventions of λ-calculus, so that (f)uv

denotes
(̂
f̂(u)

)
(v).

With these notations, we have:

(JaddK)uv = (Jλxι fix(λaι⇒ι λyι if(y, x, z · succ((a) z)))K)uv
=
(
Jfix(λaι⇒ι λyι if(y, x, z · succ((a) z)))Kx:ιu

)
v

Now we have a fix-point operator, let us then compute the semantics of the body of the the fix-point
operator, which depends on u:

(φu)fv = (Jλaι⇒ι λyι if(y, x, z · succ((a) z))Kx:ι)ufv
= (Jif(y, x, z · succ((a) z))Kx:ι,a:ι⇒ι,y:ι)ufv

= v0u+

∞∑
n=0

vn+1

∞∑
k=0

((f)en)k ek+1

By Exercise 24 we have that (Y)φu = (φu)(Y)φu, this together with the two above equations, where f
is replaced by (Y)φu, we have:

(JaddK)uv = ((Y)φu)v

= (φu)(Y)φuv

= v0u+

∞∑
n=0

vn+1

∞∑
k=0

((Y)φuen)k ek+1

We have then to compute (Y)φuen. By the above equations we get:

(Y)φuen = (φu)(Y)φuen

= (en)0u+

∞∑
h=0

(en)h+1

∞∑
k=0

((Y)φueh)k ek+1

=

{
u if n = 0,∑∞

k=0 ((Y)φuen−1)k ek+1 if n > 0.

=

∞∑
k=0

ukek+n

So, eventually, we get:

(JaddK)uv = v0u+

∞∑
n=0

vn+1

∞∑
k′=0

( ∞∑
k=0

ukek+n

)
k′

ek′+1

= v0u+

∞∑
n=0

vn+1

∞∑
k=0

ukek+n+1

= v0(

∞∑
k=0

ukek+0) +

∞∑
n=1

vn

∞∑
k=0

ukek+n

=

∞∑
n=0

∞∑
k=0

vnukek+n

Computation of Jexp2K. TODO.
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Computation of JcmpK. TODO.

Exercise 30. Compute the functional behaviour of the denotation of the random generators
unif2, unif and binom defined in Exercise 11 and 12.

Answer of Exercise 30.

Computation of JbinomK. We adopt the notational conventions used in the solution of Exer-
cise 29. We have:

(JbinomK)u = (Jfix(λf ι⇒ι λxι if(x, 0, z · if(coin, (f) z, w · succ((f) z))))K)u (29)

We have a fix-point operator, let us then compute the semantics of the body of the the fix-point operator:

(φ)fu = (Jλf ι⇒ι λxι if(x, 0, z · if(coin, (f) z, w · succ((f) z)))K)fu
= (Jif(x, 0, z · if(coin, (f) z, w · succ((f) z)))Kf :ι⇒ι,x:ι)fu

= u0e0 +

∞∑
n=0

un+1(Jif(coin, (f) z, w · succ((f) z))Kf :ι⇒ι,x:ι,z:ι)fuen

= u0e0 +
∞∑

n=0

un+1
1

2

(
(f)en +

∞∑
k=0

((f)en)kek+1

)

= u0e0 +

∞∑
n=0

un+1
1

2

∞∑
k=0

((f)en)k(ek + ek+1)

By Exercise 24 we have that (Y)φ = (φ)(Y)φ, this together with the two above equations, where f is
replaced by (Y)φ, we have:

(JbinomK)u = ((Y)φ)u

= (φ)(Y)φu

= u0e0 +

∞∑
n=0

un+1
1

2

∞∑
k=0

((Y)φen)k(ek + ek+1)

= u0e0 +

∞∑
n=0

un+1
1

2

∞∑
k=0

((φ)(Y)φen)k(ek + ek+1)

So we have to compute (φ)(Y)φen. The above equations then give:

(φ)(Y)φen = (en)0e0 +

∞∑
h=0

(en)h+1
1

2

∞∑
k=0

((Y)φeh)k(ek + ek+1)

=

{
e0 if n = 0,
1
2

∑∞
k=0((Y)φen−1)k(ek + ek+1) if n > 0.

It might be not yet obvious which kind of closed-form expression can be associated to the above recur-
rence, so let us unfold the first cases:

(φ)(Y)φe0 = e0

(φ)(Y)φe1 =
1

2
(e0 + e1)

(φ)(Y)φe2 =
1

22
(e0 + 2e1 + e2)

(φ)(Y)φe3 =
1

23
(e0 + 3e1 + 3e2 + e3)
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We can then guess (and formally prove by induction on n);

(φ)(Y)φen =
1

2n

n∑
h=0

(
n

h

)
eh

Finally, this gives:

(JbinomK)u = u0e0 +

∞∑
n=0

un+1
1

2

∞∑
k=0

(
1

2n

n∑
h=0

(
n

h

)
eh

)
k

(ek + ek+1)

= u0e0 +

∞∑
n=0

un+1

2n+1

n∑
k=0

(
n

k

)
(ek + ek+1)

=
u0

20
e0 +

∞∑
n=1

un

2n

n−1∑
k=0

(
n− 1

k

)
(ek + ek+1)

=
u0

20
e0 +

∞∑
n=1

un

2n

((
n− 1

0

)
e0 +

(
n−1∑
k=1

((
n− 1

k − 1

)
+

(
n− 1

k

))
ek

)
+

(
n− 1

n− 1

)
en

)

=
u0

20
e0 +

∞∑
n=1

un

2n

((
n

0

)
e0 +

(
n−1∑
k=1

(
n

k

)
ek

)
+

(
n

n

)
en

)

=
u0

20
e0 +

∞∑
n=1

un

2n

n∑
k=0

(
n

k

)
ek

=

∞∑
n=0

un

2n

n∑
k=0

(
n

k

)
ek

Computation of Junif2K. TODO.

Computation of JunifK. TODO.

The above exercises show how Pcoh! provides a convenient framework for reasoning on
programs (i) compositionally and (ii) with standard mathematical tools (arithmetics, series,
etc). However, we have not yet proved that the denotation of a program actually is equivalent
to its evaluation: this will be the goal of the next section, achieving the soundness and the
adequacy properties.

2.3 The soundness property

The soundness of a denotational model with respect to an operational semantics states the
invariance of the denotation of a program under its evaluation. This invariance turns into
Theorem 9 in case of probabilistic programs. The following lemmata and definition are needed
to prove the Soundness Theorem and are quite standard.

Lemma 7 (Substitution) Assume that Γ, x : A ⊢ M : B and that Γ ⊢ P : A. Then
JM [P/x]KΓ = JMKΓ,x:A ◦ ⟨IdJΓK, JP KΓ⟩ in Pcoh!. In other words, for any u⃗ ∈ PJΓK, we have

̂JM [P/x]KΓ(u⃗) = ̂JMKΓ,x:A(u⃗, ĴP KΓ(u⃗)).

Exercise 31. Prove Lemma 7.
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Answer of Exercise 31. First, notice that by Lemma 1 both JM [P/x]KΓ and JMKΓ,x:A ◦ ⟨IdJΓK, JP KΓ⟩
are morphisms in Pcoh!(JΓK, JBK). The proof is then by induction on M , the simplest way to write
it being to use the functional characterisation of the semantics (Figure 2c). We detail two cases, the
other cases are similar.

If M = n: we have ̂JM [P/x]KΓ(u⃗) = ĴnKΓ(u⃗) = en = ̂JnKΓ,x:A(u⃗, ĴP KΓ(u⃗)) = ̂JMKΓ,x:A(u⃗, ĴP KΓ(u⃗)).

If M = λyC N : we have

̂( ̂JM [P/x]KΓ(u⃗)
)
(u) =

̂( ̂JλyC N [P/x]KΓ(u⃗)
)
(u) def substitution

= ̂JN [P/x]KΓ,y:C(u⃗, u) def semantics of λ

= ̂JNKΓ,y:C,x:A(u⃗, u, ̂JP KΓ,y:C(u⃗, u)) induction hypothesis

= ̂JNKΓ,x:A,y:C(u⃗, ̂JP KΓ,y:C(u⃗, u), u) assoc and comm &

= ̂JNKΓ,x:A,y:C(u⃗, ĴP KΓ(u⃗), u) auxiliary lemma not free vars

=
̂( ̂JλyC NKΓ,x:A(u⃗, ĴP KΓ(u⃗))

)
(u) def semantics of λ

which implies ̂JM [P/x]KΓ(u⃗) = ̂JMKΓ,x:A(u⃗, ĴP KΓ(u⃗)), by Proposition 4. Notice that in one
equation we have used an auxiliary lemma stating that ̂JP KΓ,y:C(u⃗, u) = ĴP KΓ(u⃗), whenever y is
not a free variable of P (which can always be supposed by renaming M). This lemma can be
proved easily by structural induction on P .

The next definition and lemma formalise the fact that the operational semantics of Fig-
ure 1d, although stochastic, implements a deterministic strategy, meaning that given a term
there is at most one minimal redex that can be fired by the rules of Figure 1d. This redex is
underlined by what is called an evaluation context.

An evaluation context is a term with exactly one (typed) hole given by the following
grammar, for some typing environment Γ and type A:

E[]Γ⊢A := []Γ⊢A |
(
E[]Γ⊢A

)
N | succ(E[]Γ⊢A) | if(E[]Γ⊢A, P, z · r) (30)

In the following we can omit to explicit the type of the hole if irrelevant or clear from the
context.

Lemma 8 Given a term Γ ⊢ M : A, either M is a value or there exists a unique evaluation
context E[]Γ

′⊢A′ and redex R such that M = E[R]Γ
′⊢A′ , and for every M

p→ M ′, we have
M ′ = E[P ]Γ

′⊢A′ and R
p→ P by one axiom rule of Figure 1d. In particular Red(Γ, A)M,M ′ =

Red(Γ′, A′)R,P .

Proof. By inspection of the rules of Figure 1d, one can remark that if M p→ M ′ is in the
conclusion of a rule, the top-level constructor of M characterises univocally the rule of which
it is conclusion. 2

We formulate the invariance of the interpretation of terms under weak-reduction, using
the stochastic reduction matrix introduced in Equation (6).

Theorem 9 (Soundness) Assume that Γ ⊢ M : A. One has

JMKΓ =
∑

M ′∈ΛA
Γ

Red(Γ, A)M,M ′JM ′KΓ (31)
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Proof. If M is a value, then Red(Γ, A)M,M ′ is non-zero only if M ′ = M and the equality is
trivial.

Otherwise, by Lemma 8, we have that M = E[R]Γ
′⊢A′ for some redex R and the proof is

by induction on E[]Γ
′⊢A′ .

The base of the induction is when M = R
p→ M ′ is obtained by one of the axioms of

Figure 1d. We detail two cases, the other cases of the base of induction are similar:

M = coin, then we have ĴMKΓ(u⃗) = 1
2e0+

1
2e1 =

1
2 Ĵ0KΓ(u⃗)+

1
2 Ĵ1KΓ(u⃗) =

∑
M ′ Red(Γ, ι)M,M ′ ĴM ′KΓ(u⃗).

M =
(
λxAN

)
P , then we have:

̂J(λxAN)P KΓ(u⃗) =
̂̂

JλxANKΓ(u⃗)(ĴP KΓ(u⃗))

= ̂JNKΓ,x:A(u⃗, ĴP KΓ(u⃗))

= ̂JN [P/x]KΓ,x:A(u⃗) by Lemma 7

So giving ĴMKΓ(u⃗) =
∑

M ′ Red(Γ, A)M,M ′ ĴM ′KΓ(u⃗), as this latter sum has only one
non-null factor, corresponding to M ′ = N [P/x].

The induction step splits in the three inductive cases of the definition of an evaluation
context (Equation (30)). We detail only one case, the other cases being similar:

M = (P )Q with P = E[R]Γ
′⊢A′ and R

p→ R′, then:

̂J(P )QKΓ(u⃗) =
̂

(ĴP KΓ(u⃗))(ĴQKΓ(u⃗))

=
̂

(
̂∑

P ′

Red(Γ, B ⇒ A)P,P ′JP ′KΓ(u⃗))(ĴQKΓ(u⃗)) by IH, denoting P ′ = E[R′]

=
∑
P ′

Red(Γ, B ⇒ A)P,P ′
̂

(ĴP ′KΓ(u⃗))(ĴQKΓ(u⃗)) by linearity

=
∑
P ′

Red(Γ, B ⇒ A)P,P ′ ̂J(P ′)QKΓ(u⃗)

=
∑
M ′

Red(Γ, A)(P )Q,M ′ ĴM ′KΓ(u⃗) by Lemma 8.

2

As a corollary we get the following inequality.

Corollary 10 Let M be such that ⊢ M : ι. Then for all n ∈ N we have

Red(ι)∞M,n ≤ JMKn .

Proof. Iterating Theorem 9 we get, for all k ∈ N:

JMK =
∑

M ′∈Λι
0

Red(ι)kM,M ′JM ′K

Therefore, for all k ∈ N we have JMKn ≥ Red(ι)kM,n and the result follows, since n is weak-
normal. 2
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u Rι M iff ∀n, un ≤ Red(⊢ ι)∞M,n, (33)

f RA→B P iff ∀u RA Q, f̂(u) RB (P )Q (34)

Figure 3: The logical relation RA between Pcoh! vectors in P(JAK) and closed pPCF terms
of type A.

3 Adequacy of Pcoh! for pPCF

The Adequacy Theorem provides the inverse inequality of Corollary 10, so getting:

Theorem 11 (Adequacy) Let M be a program of pPCF, i.e. a term ⊢ M : ι. Then,

∀n ∈ N,Red(⊢ ι)∞M,n = JMKn (32)

We prove this theorem by using the logical relations, which is a powerful technique in
order to verify program properties in a compositional way.

The idea is to prove Equation (32) by structural induction on M . Suppose that M is for
example an application (P )Q, with ⊢ P : A ⇒ ι and ⊢ Q : A with A an arbitrary type of
pPCF. The problem is that Equation (32) is restricted to closed programs of ground type,
so what is the induction hypothesis for the higher-order terms P and Q? Logical relations
give an answer to this question, providing a standard way of extending a property on ground
programs to statements on terms of any type (in fact any “logic based” type), so that whatever
these latter compose, at the ground type you can conclude with the original property.

Logical relations are very versatile, they can be applied to different properties, not only
model adequacy, different languages, not only call-by-name pPCF, and to different type con-
structors, not only the intuitionistic arrow. We consider here the basic version needed for
Theorem 11, but you can google to have a first glance at how spread the method of logical
relations are in the theory of the programming languages.

Figure 3 gives the definition of the logical relation f RA M for A a type of pPCF, M a
closed term of type A and f a vector in P(JAK). This definition tames two different challenges
of pPCF: (i) the extension of the adequacy property to arrow types, by definition (34), (ii)
the partiality of pPCF (the possibility of a program to diverge) by considering general vectors
in P(JAK) rather then just program denotations. For this latter, the idea is that whenever
u ≤ JMK, then this means that u is a semantical approximant of JMK. The crucial point is
then to prove that JMK RA M for any closed term (Lemma 17), which gives at ground type
the inverse inequality of Corollary 10, so concluding with the equality (32).

Lemma 12 (Expansion lemma) Assume Red(⊢ ι)M,M ′ = 1 with M,M ′ closed terms of
type A, and f ∈ P(JAK). If f RA M ′, then f RA M

Proof. Let f,M,M ′ as in the hypothesis. Let A = B1 ⇒ . . . Bk ⇒ ι, and consider vi RBi Ni

for every 1 ≤ i ≤ k. We should prove that ̂̂f(v1) · · ·(vk)n ≤ Red(⊢ ι)∞((M)N1···)Nk,n
for any

n. Notice that we have: Red(⊢ ι)∞((M)N1···)Nk,n
=
∑

L Red(⊢ ι)((M)N1···)Nk,((L)N1···)Nk
Red(⊢

ι)∞((L)N1···)Nk,n
. This latter sum is equal to Red(⊢ ι)∞((M ′)N1···)Nk,n

, because the sum has only one
non-null factor, corresponding with L = M ′. The inequality then follows from the hypothesis
f RA M ′. 2
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Exercise 32. Notice that the expansion lemma is stated for deterministic expansion: this is
in fact what is needed for proving the interpretation lemma. Can you give and prove a more
general statement that holds whenever Red(⊢ ι)M,M ′ = λ for a generic probability λ ∈ [0, 1]?

Answer of Exercise 32. The extension to stochastic reduction can be given by the following
statement :

⋆ Let A be a type. Let M,M ′ ∈ ΛA
0 and let f ∈ PJAK. Then M ′ RA f implies M RA

Red(A)M,M ′f .

The proof is similar to the above lemma. By taking A = B1 ⇒ . . . Bk ⇒ ι, and vi RBi
Ni for the

various i, we should prove:

̂̂
(Red(A)M,M ′f)(v1) · · ·(vk)n = Red(A)M,M ′

( ̂̂f(v1) · · ·(vk))
n

≤ Red(⊢ ι)∞((M)N1···)Nk,n

Now we have that Red(⊢ ι)∞((M)N1···)Nk,n
=
∑

L Red(⊢ ι)((M)N1···)Nk,((L)N1···)Nk
Red(⊢ ι)∞((L)N1···)Nk,n

≥

Red(⊢ ι)((M)N1···)Nk,((M ′)N1···)Nk
Red(⊢ ι)∞((M ′)N1···)Nk,n

. By hypothesis we know that ̂̂f(v1) · · ·(vk) ≤
Red(⊢ ι)∞((M ′)N1···)Nk,n

and so we can conclude as Red(⊢ ι)((M)N1···)Nk,((M ′)N1···)Nk
≤ Red(A)M,M ′ .

Lemma 13 (Zero lemma) Assume M is a closed term of type A, then 0 RA M .

Proof. Let A = B1 ⇒ · · · ⇒ Bk ⇒ ι. We have to prove that for any v1 RB1 N1, . . . ,

vk RBk
Nk, we have:

̂(
. . .
̂̂
0(u⃗)(v1) . . .

)
(vk) Rι (M)N1 . . . Nk. This claim is immediate from

the definitions, as 0̂(u) = 0 for any u. 2

Lemma 14 (Scott continuity) Assume u0 ≤ u1 ≤ u2 . . . is a countable increasing family
of vectors in P(JAK) such that for any i ∈ N, ui RA M for a closed term of type A. Then
supi∈N ui RA M .

Proof. Let A = B1 ⇒ · · · ⇒ Bk ⇒ ι. We have to prove that for any v1 RB1 N1, . . . ,
vk RBk

Nk, we have: ̂(
. . . ̂supi∈N ui(v1) . . .

)
(vk) Rι (M)N1 . . . Nk. This means to prove, for

any n ∈ N: (
̂(

. . . ŝup
i∈N

ui(v1) . . .
)
(vk)

)
n

≤ Red(⊢ ι)∞(M)N1...Nk,n
.

By Ex. 23, the left-hand side of the inequality is equivalent to supi∈N

(
̂(

. . . ûi(v1) . . .
)
(vk)

)
n
,

and so the inequality follows immediately by the hypothesis ui RA M , since for any i,(
̂(

. . . ûi(v1) . . .
)
(vk)

)
n
≤ Red(⊢ ι)∞(M)N1...Nk,n

. 2

Lemma 15 (Successor) Assume that ⊢ N : ι. Then, for any n ∈ N, we have

Red(ι)∞N,n = Red(ι)∞succ(N),n+1.

Proof. We prove in fact that for any k and for any N , Red(ι)kN,n = Red(ι)k+1
succ(N),n+1. The

proof is by induction on k. If N is a numeral h, then both scalars are 1 if h = n, otherwise
both are 0, for any k.
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If N is not a numeral, then we can suppose k > 0, otherwise both scalars are null. So:

Red(ι)kN,n =
∑
L

Red(ι)N,LRed(ι)
k−1
L,n

=
∑
L

Red(ι)N,LRed(ι)
k
succ(L),n+1 by induction hyp.

=
∑
L

Red(ι)succ(N),succ(L)Red(ι)
k
succ(L),n+1 because N not numeral

= Red(ι)k+1
succ(N),n+1

2

Lemma 16 (Branching) Assume that ⊢ M : ι, ⊢ P : A and z : ι ⊢ Q : A where A =
B1 ⇒ · · ·Bk ⇒ ι. Let N1, . . . , Nk be closed terms such that ⊢ Ni : Bi for i = 1, . . . , k.

Then, for any n ∈ N, we have

Red(ι)∞(if(M,P,z·Q))N1···Nk,n

= Red(ι)∞M,0Red(ι)
∞
(P )N1···Nk,n

+
∑
k∈N

Red(ι)∞M,k+1Red(ι)
∞
(Q[k/z])N1···Nk,n

Proof. One can easily prove by induction on ℓ ∈ N, the two inequalities:

Red(ι)∞(if(M,P,z·Q))N1···Nk,n

≥ Red(ι)ℓM,0Red(ι)
ℓ
(P )N1···Nk,n

+
∑
k∈N

Red(ι)ℓM,k+1Red(ι)
ℓ
(Q[k/z])N1···Nk,n

Red(ι)ℓ(if(M,P,z·Q))N1···Nk,n

≤ Red(ι)∞M,0Red(ι)
∞
(P )N1···Nk,n

+
∑
k∈N

Red(ι)∞M,k+1Red(ι)
∞
(Q[k/z])N1···Nk,n

which give the claim of the lemma. 2

Lemma 17 (Interpretation lemma) Assume Γ ⊢ M : A with Γ = x1 : A1, . . . , xk : Ak.
Then for all closed terms Ni of type Ai vectors ui ∈ P(JAK) such that ui RAi Ni for i = 1, . . . k,
one has:

ĴMKΓ(u1, . . . , uk) RA M [N1/x1, . . . , Nk/xk]. (35)

Proof. The proof is by induction on a type derivation Γ ⊢ M : A, splitting depending on
the last rule of this type derivation, which corresponds also to the top-level constructor of M .
In the following we will denote by u⃗ the sequence u1, . . . , uk and by [N⃗/x⃗] the sequence of
substitution [N1/x1, . . . , Nk/xk].

M = xi. In this case, ĴMKΓ(u⃗) = ui RA Ni = M [N⃗/x⃗].

M = n. In this case, ĴMKΓ(u⃗) = en Rι n = M [N1/x1, . . . , Nk/xk], as for every m ∈ N,
(en)m = Red(ι)∞n,m.

M = coin. In this case, JMKΓ(u⃗) = 1
2(e0 + e1) Rι coin = M [N1/x1, . . . , Nk/xk], as for every

m ∈ N, 1
2(e0 + e1)m = 1

2(Red(ι)0,m + Red(ι)1,m) = Red(ι)∞coin,m.
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M = succ(L). In this case, we have: JMKΓ(u⃗) =
∑

nJLKΓ(u⃗)nen+1. By induction hypothesis
ĴLKΓ(u⃗) Rι L[N⃗/x⃗], so that: ĴLKΓ(u⃗)n ≤ Red(ι)∞

L[N⃗/x⃗],n
for every n. We can conclude

ĴMKΓ(u⃗)n ≤ Red(ι)∞
M [N⃗/x⃗],n

, as by Lemma 15, Red(ι)∞
M [N⃗/x⃗],n+1

= Red(ι)∞
L[N⃗/x⃗],n

.

M = λyB L. In this case, A = (B ⇒ C) and Γ, y : B ⊢ L : C for some type C. In or-
der to prove ĴMKΓ(u⃗) RB⇒C M [N⃗/x⃗], we have to prove, for every v RB P , that

̂(
ĴMKΓ(u⃗)

)
(v) RB⇒C

(
M [N⃗/x⃗]

)
P . Notice that:

•
̂(

ĴMKΓ(u⃗)
)
(v) = ̂JLKΓ,y:B(u⃗, v) by the Figure 2c,

• M [N⃗/x⃗]P
1→ L[N⃗/x⃗, P/y], by Figure 1d,

• and ̂JLKΓ,y:B(u⃗, v) RC L[N⃗/x⃗, P/y] by induction hypothesis.

We can then conclude by Lemma 12.

M = (L)P . In this case, Γ ⊢ L : B ⇒ A and Γ ⊢ P : B for some type B. By induction
hypothesis we have that ĴLKΓ(u⃗) RB⇒A L[N⃗/x⃗] and ĴP KΓ(u⃗) RB P [N⃗/u⃗], so that by
definition of R we have:

̂J(L)P KΓ(u⃗) =
̂(

ĴLKΓ(u⃗)
)
(ĴP KΓ(u⃗)) RA

(
L[N⃗/x⃗]

)
P [N⃗/x⃗] =

(
(L)P

)
[N⃗/x⃗].

M = fix(L). In this case, Γ ⊢ L : A ⇒ A so that by induction hypothesis, ĴLKΓ(u⃗) RA⇒A

L[N⃗/x⃗]. By Lemma 13 we have that 0 RA fix(L[N⃗/x⃗]), so that
̂̂

JLKΓ(u⃗))(0) RA

(L[N⃗/x⃗]) fix(L[N⃗/x⃗]) and by Lemma 12,
̂̂

JLKΓ(u⃗)(0) RA fix(L[N⃗/x⃗]). By iterating this

reasoning we can prove for every n that
(

̂̂
JLKΓ(u⃗)

)n

(0) RA fix(L[N⃗/x⃗]), so that by

Lemma 14 we conclude.

M = if(L,P, z ·Q). In this case, Γ ⊢ L : ι, Γ ⊢ P : A and Γ, z : ι ⊢ Q : A. By in-
duction hypothesis we then have: ĴLKΓ(u⃗) Rι L[N⃗/x⃗], ĴP KΓ(u⃗) RA P [N⃗/x⃗], and
ĴQKΓ,z(u⃗, en) RQ L[N⃗/x⃗, n/z⃗], this latter because we have already proven above that
en Rι n for every n.

Assume that A = B1 ⇒ · · ·Bk ⇒ ι, then we have to prove that for every u′1 RB1 N ′
1,

. . . , u′k RB1 N ′
k, we have:

̂̂
JMKΓ(u⃗)(u⃗′) Rι

(
M [N⃗/x⃗]

)
N⃗ ′, which means, for every ℓ ∈ N,

ĴLKΓ(u⃗)0
̂̂

JP KΓ(u⃗)(u⃗′)ℓ +
∑
n

ĴLKΓ(u⃗)n+1
̂̂

JQKΓ,z:ι(u⃗, en)(u⃗′)ℓ ≤ Red(ι)∞
(M [N⃗/x⃗])N⃗ ′,ℓ

By induction hyptothesis we have that:

ĴLKΓ(u⃗)0
̂̂

JP KΓ(u⃗)(u⃗′)ℓ ≤ Red(ι)∞
L[N⃗/x⃗],0

Red(ι)∞
(P [N⃗/x⃗])N⃗ ′,ℓ

ĴLKΓ(u⃗)n+1
̂̂

JQKΓ,z:ι(u⃗, en)(u⃗′)ℓ ≤ Red(ι)∞
L[N⃗/x⃗],n+1

Red(ι)∞
(Q[N⃗/x⃗,n])N⃗ ′,ℓ

, for every n ∈ N

We then conclude by Lemma 16. 2
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Proof of Theorem 11. Assume ⊢ M : ι. By Lemma 17, we have JMK Rι M , which means
JMKn ≤ Red(ι)∞M,n, for every n. The other other inequality is given by Corollary 10. 2

4 Contextual Equivalence and Full-Abstraction

The adequacy property states the equivalence between the operational and the denotational
semantics at the ground type. What about higher-order types? What does it mean for two
terms of an arrow type to be equivalent in Pcoh!? In contrast with the ground type, the
denotational equivalence of two higher-order terms does not correspond with the equality of
the corresponding reduction matrices:

Exercise 33. Give an example of two closed terms M,M ′ of type ι ⇒ ι such that JMK =
JM ′K, but there exists a value V such that Red(ι ⇒ ι)M,V ̸= Red(ι ⇒ ι)M,V .

Answer of Exercise 33. Take for example the two programs implementing the identity: M = λxι x
and M ′ = λxι if(x, 0, z · succ(z)). By the functional characterisation of Pcoh! morphisms, we have
JMK = JM ′K. On the contrast, Red(ι ⇒ ι)M,M = 1 while Red(ι ⇒ ι)M ′,M = 0.

Exercise 33 shows that the notion of equivalence induced by the reduction matrices unfits
higher-order types, as the syntactical equality of higher-order values is too strict. An opera-
tional equivalence larger than this latter is the so-called contextual equivalence, which we can
define as follows.

A context C[]Γ⊢A is a term with exactly one hole []Γ⊢A for some typing environment Γ and
type A. This is equivalent to extend the grammar 30 defining the evaluation contexts, with
the following cases:

C[]Γ⊢A := E[]Γ⊢A | (M)C[]Γ⊢A | if(M,C[]Γ⊢A, z ·R) | if(M,P, z · C[]Γ⊢A) (36)

Given an environment Γ and a type A, we define the following contextual preorder (also called
observational pre-order or Morris pre-order) on terms M,M ′ ∈ ΛA

Γ , as:

M ⪯Γ⊢A M ′ iff ∀C[]Γ⊢A of ground type,Red(ι)∞C[M ]Γ⊢A,0 ≤ Red(ι)∞C[M ′]Γ⊢A,0 (37)

We say that two terms M,M ′ ∈ ΛA
Γ are contextually equivalent, in symbol M ∼Γ⊢A M ′,

whenever M ⪯Γ⊢A M ′ and M ⪯Γ⊢A M ′. We may omit the typing subscript if irrelevant or
clear from the context.

Exercise 34. Prove that the definition of ⪯Γ⊢A does not depend on the chosen numeral 0.

Answer of Exercise 34. Juste remark that for any n ∈ N

Red(ι)∞C[M ]Γ⊢A,n = Red(ι)∞succ(C[M ]Γ⊢A),n+1 and Red(ι)∞C[M ]Γ⊢A,n+1 = Red(ι)∞(predΩ)C[M ]Γ⊢A,n

with predΩ = λxι if(x,Ω, z · z). So composing a context with a suitable iteration of succ or predΩ
returns the chosen numeral.

The adequacy property implies easily the following corollary, stating that the denotational
order implies the contextual pre-order.

Corollary 18 Given two terms M,M ′ ∈ ΛA
Γ , we have that:

JMKΓ ≤ JM ′KΓ implies M ⪯Γ⊢A M ′

Hence, JMKΓ = JM ′KΓ implies M ∼Γ⊢A M ′.
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Proof. Assume JMKΓ ≤ JM ′KΓ and C[]Γ⊢A be a context of ground type. By induction on
C[]Γ⊢A and using Figure 2c one can easily prove that JC[M ]Γ⊢AKΓ ≤ JC[M ′]Γ⊢AKΓ, which
implies Red(ι)∞

C[M ]Γ⊢A,0
≤ Red(ι)∞

C[M ′]Γ⊢A,0
by Theorem 11. 2

Exercise 35.
1. Give an example of two terms M,M ′ such that M ⪯Γ⊢A M ′, but M ′ ̸⪯Γ⊢A M .
2. Give an example of two different values that are contextually equivalent V ∼Γ⊢A V ′.
3. Prove your assertions!

Answer of Exercise 35.

1. Consider M = predΩ = λxι if(x,Ω, z · z) and M ′ = pred = λxι if(x, 0, z · z). Notice that JMK ≤
JM ′K, so that by Corollary 18, M ⪯Γ⊢A M ′. On the contrast, the context

(
[ ]⊢ι⇒ι

)
0 shows that

M ′ ̸⪯Γ⊢A M , as (M ′) 0 converges to 0, while (M) 0 diverges.

2. The two terms V = λxι x and V ′ = λxι if(x, 0, z · succ(z)) given in the solution of Exercice 33
are a suitable examples of different values such that V ∼Γ⊢A V ′, because of Corollary 18.

A denotational model satisfying also the inverse implications of Corollary 18 is deemed
(in)equationally fully abstract ((in)equationally FA for short). The equational full abstraction
can be also simply referred as full abstraction. Notice that the inequational full abstraction
implies the equational full abstraction, but in general it is not true the inverse implication, as
we will see below with the example of Pcoh!.

Ehrhard’s lectures show that the relational model of deterministic PCF is not equationally
fully abstract (hence neither inequationally FA), giving two terms that are denoted by two
different relations but that cannot be discriminated by a context of PCF. The following
exercise gives a variant of that example and show how the presence of a random primitive
increases considerably the discriminating power of the programming contexts.

Exercise 36. Consider the two PCF terms of type ι ⇒ ι, with i ∈ {1, 2},

Mi = λxι if(x, if(x,Ω, z · i), z · Ω)

where Ω = fix(λxι x).
1. Prove that Pcoh! discriminates the two terms, i.e. JM1K ̸= JM2K.
2. How can you argue that no context of deterministic PCF can separate M1 from M2?

(just give an hint, a formal proof is out of the scope of this exercise).
3. Give a probabilistic context of pPCF separating the two terms.

Answer of Exercise 36.

• Proving JM1K ̸= JM2K is equivalent by Proposition 4 to find a vector x ∈ PN discriminating the
the maps ĴM1K, ĴM2K. Since JΩK = 0, notice that:

ĴMiK(x) = x0

( ∞∑
n=1

xn

)
ei

so that any vector in PN having non-null values on 0 and on a further natural number will be
mapped to two different values by the two functions.

• One convenient method to prove the context equivalence is by using an adequate denotational
semantics of PCF equating the two terms (if any). For this example, you can use the semantics
of coherence spaces, presented in the lectures by Melliès, which is an adequate model of PCF
(but not of pPCF). In that semantics the web of the coherence space associated with the type
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ι ⇒ ι, is the set {({n}, q) ; n, q ∈ N} ∪ {({ }, q) ; q ∈ N}. In particular, for any point in this
web, the set associated with the antecedent of ι ⇒ ι is at most a singleton containing a unique
number n (notice the difference with the web of the Pcoh! interpretation, which is the set of
pairs of the form (m, q) for m any finite multiset of natural numbers, so possibly containing
different numbers). One can easily check that no point in the coherence space web belongs to
the interpretation of Mi, showing that both are denoted by the empty clique.
By an analogous of Corollary 18 for coherence spaces and PCF, this implies that M1 and M2

are contextually equivalent in deterministic PCF.

• By following the denotational interpretation of Pcoh!, any context giving to Mi a non trivial
probabilistic distribution of 0 and 1 will separate the two terms, so for example the context:(

[]⊢ι⇒ι
)
coin

In fact, Red(ι)(Mi)coin,n is equal to 1
4 on n = i and zero otherwise.

Exercise 37. The original example given in Ehrhard’s lectures was a parallel-or tester, given
by the following PCF terms of type (ι ⇒ ι ⇒ ι) ⇒ ι, for i ∈ {1, 2}

Mi = λf ι⇒ι⇒ι if((f) 0Ω, if((f) Ω0, if((f) 11,Ω, z · i), z · Ω), z · Ω)

One can also check that Pcoh! discriminates the two terms, as well as the contexts of pPCF.
For example, prove that the following context separates the two terms:(

[]⊢(ι⇒ι⇒ι)⇒ι
)
if(coin, or1, z · or2)

with ori = λxι1 λx
ι
2 if(xi, 0, z · if(x3−i, 0, z · 1)), for i ∈ {1, 2}. Notice that ori is implementing

an or-function (with 0 representing the true value) evaluating its i-th argument at first. The
term if(coin, or1, z · or2) is then a kind of “probabilistic” parallel-or, evaluating at first one of
its two arguments with equal probability 1

2 .

Answer of Exercise 37. We use Pcoh! to compute compositionally the result of evaluating Ti =

(Mi) if(coin, or1, z · or2). First, notice that: ̂̂JoriK(x1)(x2) = (xi0 + xi1x(3−i)0
)e0 + x11x21e1 . So we

have:

JTiK = ĴMiK(
1

2
Jor1K +

1

2
Jor2K) =

1

8
ei

The examples given in the above exercises are in fact instances of a much more general
property: in contrast with the deterministic setting, Pcoh! is equationally fully abstract for
probabilistic pPCF.

Theorem 19 (Equational FA) Given two pPCF terms Γ ⊢ M : A and Γ ⊢ M ′ : A, for a
typing context Γ and a type A, we have that JMKΓ = JM ′KΓ if, and only if, M ∼Γ⊢A M ′.

This theorem is proven in [3, 2]. The basic idea is to consider JMKΓ − JM ′KΓ as a power
series with a non-null coefficient, so to find a non-zero argument where the series is non-zero
and then from this argument to construct a context discriminating M from M ′.

What about inequational full abstraction? Unfortunately it fails for Pcoh!, in fact the
order on PCS, which compares the coefficients of two power series, is actually much sharper
than the extensional pre-order. For example, the terms M1 = λxι if(x, 0, z · 0) and M2 = λxι 0
of type ι ⇒ ι are such that JM1K ̸≤ JM2K, but M1 ⪯⊢ι⇒ι M2. The fact that JM1K ̸≤ JM2K
can be proven by computing the matrices associated with two terms:

JM1Km,n =

{
1 if m = [k] and n = 0,
0 otherwise.

JM2Km,n =

{
1 if m = [ ] and n = 0,
0 otherwise.
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The proof of M1 ⪯⊢ι⇒ι M2 is much more complex as it requires either an adequate
model of pPCF denoting M1 with a morphism smaller than M2 (such a model exists, for
example the model of Kegelspitzen [4, 5]), or it requires a context lemma, stating that to
check M1 ⪯⊢ι⇒ι M2 is enough to consider applicative contexts, i.e. context of the form ([ ])L
for L a closed term of type ι. Such a lemma can be proven by a logical relation, but we do
not detail it in these lectures.
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