## Home |
## Contact |
## Research |
## Teaching |

My research interests lie at the interface between computer science and logic, in particular proof theory. More specifically:

- denotational semantics of functional programming languages,
- lambda calculus and its non-deterministic extensions (e.g. probabilistic, differential and quantum lambda-calculus),
- linear logic and proof nets,
- normalization and confluence.

Professional Service:

- SC member: TLCA (until 2015, now merged with RTA into the new conference FSCD)
- PC member: ITRS 2018 (chair), POPL 2017, LICS 2016, MFPS 2015, DICE 2014.
- OC member: CIE 2016, rencontres mensuelles CHOCOLA (until 2017)

Research projects I am currently involved in:

- ELICA - Expanding Logical Ideas for Complexity Analysis: French ANR Project (2015-2019),

Research projects I was involved in:

- COQUAS - COmputing with QUAntitative Semantics: French ANR JCJC Project (2013-2016, project leader),
- LOGOI - LOgic and Geometry Of Interaction: French ANR Project (2010-2014),
- ALAL - ALgebraic Approaches to Lambda calculi: Ile de France Digiteo Project (2011-2012, project leader),
- QUAND - QUantitative Aspects of Non-Determinism: French INS2I PEPS Project (2010-2012),
- CHOCO - Curry-HOward for COncurrency: French ANR Project (2008-2011),
- CONCERTO - CONtrollo e CERTificazione dell'uso delle risOrse: Italian MIUR Project (2008-2010),
- FOLLIA - FOndazione Logiche di LInguaggi Astratti di programmazione: Italian MIUR Project (2004-2006).

Most of the papers available from this document appear in print, and the corresponding copyright is held by the publisher.

While the papers can be used for personal use, redistribution or reprinting for commercial purposes is prohibited.

- T. Ehrhard, M. Pagani, C. Tasson

**"Full Abstraction for Probabilistic PCF"**

to appear in*Journal of the ACM*, DOI.

abstract pdf bibWe present a probabilistic version of PCF, a well-known simply typed universal functional language. The type hierarchy is based on a single ground type of natural numbers. Even if the language is globally call-by- name, we allow a call-by-value evaluation for ground type arguments in order to provide the language with a suitable algorithmic expressiveness. We describe a denotational semantics based on probabilistic coherence spaces, a model of classical Linear Logic developed in previous works. We prove an adequacy and an equational full abstraction theorem showing that equality in the model coincides with a natural notion of observational equivalence.

- M. Pagani, P. Tranquilli

**"The Conservation Theorem for Differential Nets"**

*Mathematical Structures in Computer Science*, vol. 27, num. 6, 2017.

abstract pdf bibWe prove the conservation theorem for differential nets -- the graph-theoretical syntax of the differential extension of Linear Logic (Ehrhard and Regnier's DiLL). The conservation theorem states that the property of having infinite reductions (here infinite chains of cut elimination steps) is preserved by non-erasing steps. This turns the quest for strong normalization into one for non-erasing weak normalization, and indeed we use this result to prove strong normalization of simply typed DiLL (with promotion). Along the way to the theorem we achieve a number of additional results having their own interest, such as a standardization theorem and a slightly modified system of nets, DiLLdeltarho.

- M. Pagani

**"Visible acyclic differential nets, Part I : Semantics"**

*Annals of Pure and Applied Logic*, vol. 163, num. 3, 2012.

abstract pdf bibWe give a geometric condition that characterizes the differential nets having a finitary interpretation in finiteness spaces: visible acyclicity. This is based on visible paths, an extension to differential nets of a class of paths we introduced in the framework of linear logic nets. The characterization is then carried out as follows: the differential nets having no visible cycles are exactly those whose interpretation is a finitary relation. Visible acyclicity discloses a new kind of correctness for the promotion rule of linear logic, which goes beyond sequent calculus correctness.

- D. de Carvalho, M. Pagani, L. Tortora de Falco

**"A semantic measure of the execution time in Linear Logic"**

*Girard's Festschrift, special issue Theoretical Computer Science*, vol. 412, num. 20, 2011.

abstract pdf bibWe give a semantic account of the execution time (i.e. the number of cut elimination steps leading to the normal form) of an untyped MELL net. We first prove that: 1) a net is head-normalizable (i.e. normalizable at depth 0) if and only if its interpretation in the multiset based relational semantics is not empty and 2) a net is normalizable if and only if its exhaustive interpretation (a suitable restriction of its interpretation) is not empty. We then give a semantic measure of execution time: we prove that we can compute the number of cut elimination steps leading to a cut free normal form of the net obtained by connecting two cut free nets by means of a cut-link, from the interpretations of the two cut free nets. These results are inspired by similar ones obtained by the first author for the untyped lambda-calculus.

- M. Pagani, S. Ronchi Della Rocca

**"Linearity, Non-determinism and Solvability"**

*Fundamenta Informaticae*, vol. 103, num. 1-4, 2010.

abstract pdf bibWe study the notion of solvability in the resource calculus, an extension of the lambda-calculus allowing to model resource consumption. Since this calculus is non-deterministic two different notions of solvability arise, one optimistic (angelical, may) and one pessimistic (demoniac, must). We give a syntactical, operational and logical characterization for the may-solvability and only a partial characterization of the the must-solvability. Finally we discuss the open problem of a complete characterization of the must-solvability.

- M. Pagani, L. Tortora de Falco

**"Strong normalization property for second order linear logic"**

*Theoretical Computer Science*, vol. 411, pp. 410-444, Springer 2010.

abstract pdf bibThe paper contains the first complete proof of strong normalization (SN) for full second order linear logic (LL): Girard's original proof uses a standardization theorem which is not proven. We introduce sliced pure structures (sps), a very general version of Girard's proof-nets, and we apply to sps Gandy's method to infer SN from weak normalization (WN). We prove a standardization theorem for sps: if WN without erasing steps holds for an sps, then it enjoys SN. A key step in our proof of standardization is a confluence theorem for sps obtained by using only a very weak form of correctness, namely acyclicity slice by slice. We conclude by showing how standardization for sps allows to prove SN of LL, using as usual Girard's reducibility candidates.

- M. Pagani

**"Proofs, Denotational Semantics and Observational Equivalences in Multiplicative Linear Logic"**

*Mathematical Structures in Computer Science*, vol.17(2), pp. 341-361, CUP 2007.

abstract pdf bibWe study full completeness and syntactical separability of MLL proof nets with the mix rule. The general method we use consists first in addressing the two questions in the less restrictive framework of proof structures, and then in adapting the results to proof nets. At the level of proof structures, we find a semantical characterization of their interpretations in relational semantics, and we define an observational equivalence which is proved to be the equivalence induced by cut elimination. Hence, we obtain a semantical characterization (in coherent spaces) and an observational equivalence for the proof nets with the mix rule.

- T. Ehrhard, M. Pagani, C. Tasson

**"Measurable cones and stable, measurable functions: a model for probabilistic higher-order programming. "**

*Proceedings of the ACM on Programming Languages, Volume 2*(POPL 2018), Myers ed., PACMPL,2018.

abstract pdf bibWe define a notion of stable and measurable map between cones endowed with measurability tests and show that it forms a cpo-enriched cartesian closed category. This category gives a denotational model of an extension of PCF supporting the main primitives of probabilistic functional programming, like continuous and discrete probabilistic distributions, sampling, conditioning and full recursion. We prove the soundness and adequacy of this model with respect to a call-by-name operational semantics and give some examples of its denotations.

- R. Crubillé, T. Ehrhard, M. Pagani, C. Tasson

**"The Free Exponential Modality of Probabilistic Coherence Spaces"**

*Proceedings of the 20th International Conference on Foundations of Software Science and Computation Structures*(FOSSACS 2017), Esperanza and Murawski ed., ARCoSS, LNCS 2017.

abstract pdf bibProbabilistic coherence spaces yield a model of linear logic and lambda-calculus with a linear algebra flavor. Formulas/types are associated with convex sets of real valued vectors, linear logic proofs with linear functions and lambda-terms with entire functions, both mapping the convex set of their domain into the one of their codomain. Previous results show that this model is particularly precise in describing the observational equivalences between probabilistic functional programs. We prove here that the exponential modality is the free commutative comonad, giving a further mark of canonicity to the model.

- M. Pagani, C. Tasson, L. Vaux

**"Strong Normalizability as a Finiteness Structure via the Taylor Expansion of lambda-terms"**

*Proceedings of the 19th International Conference on Foundations of Software Science and Computation Structures*(FOSSACS 2016), Jacobs and Lodig ed., ARCoSS, LNCS 2016.

abstract pdf bibIn the folklore of linear logic, a common intuition is that the structure of finiteness spaces, introduced by Ehrhard, semantically reflects the strong normalization property of cut-elimination. We make this intuition formal in the context of the non-deterministic lambda-calculus by introducing a finiteness structure on resource terms, which is such that a lambda-term is strongly normalizing iff the support of its Taylor expansion is finitary. An application of our result is the existence of a normal form for the Taylor expansion of any strongly normalizable non-deterministic lambda-term.

- F. Breuvart, M. Pagani

**"Modelling Coeffects in the Relational Semantics of Linear Logic"**

*Proceedings of the 24th EACSL Annual Conference on Computer Science Logic*(CSL 2015), Kreutzer ed., LIPICS, 2015.

abstract pdf bibVarious typing system have been recently introduced giving a parametric version of the exponential modality of linear logic. The parameters are taken from a semi-ring, and allow to express coeffects -- i.e. specific requirements of a program with respect to the environment (availability of a resource, some prerequisite of the input, etc.). We show that all these systems can be interpreted in the relational category (REL) of sets and relations. This is possible because of the notion of multiplicity semi-ring, introduced by Carraro et al. and allowing a great variety of exponential comonads in REL. The interpretation of a particular typing system corresponds then to give a suitable notion of stratification of the exponential comonad associated with the semi-ring parametrising the exponential modality.

- M. Pagani, P. Selinger, B. Valiron

**"Applying Quantitative Semantics to Higher-Order Quantum Computing"**

*Proceedings of the 41th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages*(POPL 2014), Sewell ed., ACM, 2014.

abstract pdf doi bibFinding a denotational semantics for higher order quantum computation is a long-standing problem in the semantics of quantum programming languages. Most past approaches to this problem fell short in one way or another, either limiting the language to an unusably small finitary fragment, or giving up important features of quantum physics such as entanglement. In this paper, we propose a denotational semantics for a quantum lambda calculus with recursion and an infinite data type, using constructions from quantitative semantics of linear logic.

- T. Ehrhard, M. Pagani, C. Tasson

**"Probabilistic Coherence Spaces are Fully Abstract for Probabilistic PCF"**

*Proceedings of the 41th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages*(POPL 2014), Sewell ed., ACM, 2014.

abstract pdf doi bibProbabilistic coherence spaces (PCOH) yield a semantics of higher-order probabilistic computation, interpreting types as convex sets and programs as power series. We prove that the equality of interpretations in PCOH characterizes the operational indistinguishability of programs in PCF with a random primitive. This is the first result of full abstraction for a semantics of probabilistic PCF. The key ingredient relies on the regularity of power series and introduces, in denotational semantics, techniques coming from Calculus. Along the way to the theorem, we design a weighted intersection type assignment system giving a logical presentation of PCOH.

- P. Boudes, F. He, M. Pagani

**"A Characterization of the Taylor Expansion of the Lambda-Terms."**

*Proceedings of the 22nd EACSL Annual Conference Computer Science Logic*(CSL 2013), Ronchi della Rocca ed., LIPICS, 2013.

abstract pdf bibThe Taylor expansion of lambda-terms, as introduced by Ehrhard and Regnier, expresses a lambda-term as a series of multi-linear terms, called simple terms, which capture bounded computations. Normal forms of Taylor expansions give a notion of infinitary normal forms, refining the notion of Böhm trees in a quantitative setting. We give the algebraic conditions over a set of normal simple terms which characterize the property of being the normal form of the Taylor expansion of a lambda-term. From this full completeness result, we give further conditions which semantically describe normalizable and total lambda-terms.

- J. Laird, G. Manzonetto, G. McCusker, M. Pagani

**"Weighted Relational Models of Typed Lambda-Calculi."**

*28th Annual IEEE Symposium on Logic in Computer Science*(LICS 2013), Kupferman ed., IEEE, pp. 301-310, 2013.

abstract pdf bibThe category Rel of sets and relations yields one among the simplest denotational semantics of Linear Logic (LL). It is known that Rel is the biproduct completion of the Boolean ring. We consider the generalization of this construction to an arbitrary continuous semiring R, producing a cpo-enriched category which is a semantics of LL, and its (co)Kleisli category is an adequate model of an extension of PCF, parametrized by R. Specific instances of R allow us to compare programs not only with respect to "what they can do", but also "in how many steps" or "in how many different ways" (for non-deterministic PCF) or even "with what probability" (for probabilistic PCF).

- A. Diaz-Caro, G. Manzonetto, M. Pagani

**"Call-by-Value Non-determinism in a Linear Logic Type Discipline."**

*International Symposium on Logical Foundations of Computer Science*(LFCS 2013), Artemov and Nerode ed., LNCS, pp. 164-178, 2013.

abstract pdf bibWe consider the call-by-value $\lambda$-calculus extended with a may-convergent non-deterministic choice and a must-convergent parallel composition. Inspired by recent works on the relational semantics of linear logic and non-idempotent intersection types, we endow this calculus with a type system based on the so-called Girard's second translation of intuitionistic logic into linear logic. We prove that a term is typable if and only if it is converging, and that its typing tree carries enough information to give a bound on the length of its lazy call-by-value reduction. Moreover, when the typing tree is minimal, such a bound becomes the exact length of the reduction.

- T. Ehrhard, M. Pagani, C. Tasson

**"The Computational meaning of Probabilistic Coherence Spaces."**

*26th Annual IEEE Symposium on Logic in Computer Science*(LICS 2011), Grohe ed., IEEE, pp. 87-96, 2011.

abstract pdf bibWe study the probabilistic coherence spaces — a denotational semantics interpreting programs by power series with non negative real coefficients. We prove that this semantics is adequate for a probabilistic extension of the untyped $\lambda$-calculus: the probability that a term reduces to a head normal form is equal to its denotation computed on a suitable set of values. The result gives, in a probabilistic setting, a quantitative refinement to the adequacy of Scott's model for untyped $\lambda$-calculus.

- G. Mazonetto, M. Pagani

**"Bohm's Theorem for Resource Lambda Calculus through Taylor Expansion."**

*10th International Conference on Typed Lambda Calculi and Applications*(TLCA 2011), Ong ed., Springer ARCoSS, pp. 153-168, 2011.

abstract pdf bibWe study the resource calculus, an extension of the $\lambda$-calculus allowing to model resource consumption. We achieve an internal separation result, in analogy with Bohm's theorem of $\lambda$-calculus. We define an equivalence relation on the terms, which we prove to be the maximal non-trivial congruence on normalizable terms respecting $\beta$-reduction and sum idempotency. It is significant that this equivalence extends the usual $\eta$-equivalence and is related to Ehrhard's Taylor expansion — a translation mapping terms into series of finite resources.

- M. Pagani, S. Ronchi della Rocca

**"Solvability in Resource Lambda-Calculus"**

*13th International Conference on Foundations of Software Science and Computation Structures*(FOSSACS 2010, a member conference of ETAPS 2010), Ong ed., Springer LNCS 6014, 2010.

abstract pdf bibThe resource calculus is an extension of the lambda-calculus allowing to model resource consumption. Namely, the argument of a function comes as a finite multiset of resources, which in turn can be either linear or reusable, giving rise to non-deterministic choices, expressed by a formal sum. Using the lambda-calculus terminology, we call solvable a term that can interact with the environment: solvable terms represent meaningful programs. Because of the non-determinism, different definitions of solvability are possible in the resource calculus. Here we study the optimistic (angelical, or may) notion, and so we define a term solvable whenever there is a simple head context reducing the term into a sum where at least one addend is the identity. We give a syntactical, operational and logical characterization of this kind of solvability.

- M. Pagani, P. Tranquilli

**"Parallel Reduction in Resource Lambda-Calculus"**

*7th Asian Symposium on Programming Languages and Systems*(APLAS 2009), Hu ed., Springer LNCS 5904, pp. 226-242, 2009.

abstract pdf bibWe study the resource calculus — the non-lazy version of Boudol's lambda-calculus with resources. In such a calculus arguments may be finitely available and mixed, giving rise to nondeterminism, modelled by a formal sum. We define parallel reduction in resource calculus and we apply, in such a nondeterministic setting, the technique by Tait and Martin-Löf to achieve confluence. Then, slightly generalizing a technique by Takahashi, we obtain a standardization result.

- M. Pagani

**"The Cut-Elimination Theorem for Differential Nets with Boxes"**

*9th International Conference on Typed Lambda Calculi and Applications*(TLCA 2009), Curien ed., Springer LNCS 5608, pp. 219-233, 2009.

abstract pdf bibRecently Ehrhard and Regnier have introduced Differential Linear Logic, DILL for short — an extension of the Multiplicative Exponential fragment of Linear Logic that is able to express non-deterministic computations. The authors have examined the cut-elimination of the promotion-free fragment of DILL by means of a proofnet-like calculus: differential interaction nets. We extend this analysis to exponential boxes and prove the Cut-Elimination Theorem for the whole DILL: every differential net that is sequentializable can be reduced to a cut-free net.

- M. Pagani, C. Tasson

**"The Taylor Expansion Inverse problem in Linear Logic"**

*24th Annual IEEE Symposium on Logic in Computer Science*(LICS 2009), Pitts ed., IEEE, pp. 222-232, 2009.

abstract pdf bibLinear Logic is based on the analogy between algebraic linearity (i.e. commutation with sums and with products with scalars) and the computer science linearity (i.e. calling inputs only once). Keeping on this analogy, Ehrhard and Regnier introduced Differential Linear Logic (DILL) — an extension of Multiplicative Exponential Linear Logic with differential constructions. In this setting, promotion (the logical exponentiation) can be approximated by a sum of promotion-free proofs of DILL, via Taylor expansion. We present a constructive way to revert Taylor expansion. Precisely, we define merging reduction — a rewriting system which merges a finite sum of DILL proofs into a proof with promotion whenever the sum is an approximation of the Taylor expansion of this proof. We prove that this algorithm is sound, complete and can be run in non-deterministic polynomial time.

- D. Mazza, M. Pagani

**"The separation property for differential interaction nets"**

*14th International Conference on Logic for Programming Artificial Intelligence and Reasoning*(LPAR 2007), Springer LNAI 4790, pp. 393-407, 2007.

abstract pdf bibDifferential interaction nets (DIN) have been introduced by Thomas Ehrhard and Laurent Regnier as an extension of linear logic proof-nets. We prove that DIN enjoy an internal separation property: given two different normal nets, there exists a dual net separating them, in analogy with Böhm's theorem for the lambda-calculus. Our result implies in particular the faithfulness of every non-trivial denotational model of DIN (such as Ehrhard's finiteness spaces). We also observe that internal separation does not hold for linear logic proof-nets: our work points out that this failure is due to the fundamental asymmetry of linear logic exponential modalities, which are instead completely symmetric in DIN.

- M. Pagani

**"Acyclicity and Coherence in Multiplicative and Exponential Linear Logic"**

*15th EACSL Annual Conference on Computer Science Logic*(CSL'06), Springer LNCS 4207, pp. 531-545, 2006.

abstract pdf bibWe give a geometric condition that characterizes the MELL proof structures whose interpretation is a clique in the non-uniform coherent spaces: visible acyclicity. We define the visible paths and we prove that the proof structures which have no visible cycles are exactly those whose interpretation is a clique. It turns out that visible acyclicity has also nice computational properties, especially it is stable under cut reduction.

- M. Pagani, A. Saurin

**"Stream Associative Nets and LambdaMu-calculus"**

*preprint INRIA*, pp. 51, 2008.

abstract pdf bibLambdamu-calculus has been built as an untyped extension of Parigot's lambdamu-calculus in order to recover Böhm theorem which was known to fail in lambdamu-calculus. An essential computational feature of Lambdamu-calculus for separation to hold is the unrestricted use of abstractions over continuations that provides the calculus with a construction of streams. Based on the Curry-Howard paradigm Laurent has defined a translation of lambdamu-calculus in polarized proof-nets. Unfortunately, this translation cannot be immediately extended to Lambdamu-calculus: the type system on which it is based freezes Lambdamu-calculus's stream mechanism. We introduce stream associative nets (SANE), a notion of nets which is between Laurent's polarized proof-nets and the usual linear logic proof-nets. SANE have two kinds of par (hence of tensor), one is linear while the other one allows free structural rules (as in polarized proof-nets). We prove confluence for SANE and give a reduction preserving encoding of Lambdamu-calculus in SANE, based on a new type system introduced by the second author. It turns out that the stream mechanism at work in Lambdamu-calculus can be explained by the associativity of the two different kinds of par of SANE. At last, we achieve a Böhm theorem for SANE. This result follows Girard's program to put into the fore the separation as a key property of logic.

- M. Pagani

**"Some Advances in Linear Logic"**

Habilitation à diriger les recherches, Université de Paris 13, 2013.

pdf

- M. Pagani

**"Proof nets and cliques: towards the understanding of analytical proofs"**

Ph.D. Thesis, Università di Roma Tre and Université Aix-Marseille II, 2006.

bib