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Abstract. In this paper, we study the advice complexity of the online bin packing
problem. In this well-studied setting, the online algorithm is supplemented with
some additional information concerning the input. We improve upon both known
upper and lower bounds of online algorithms for this problem. On the positive
side, we first provide a relatively simple algorithm that achieves a competitive
ratio arbitrarily close to 1.5, using constant-size advice. Our result implies that 16
bits of advice suffice to obtain a competitive ratio better than any online algorithm
without advice, thus improving the previously known bound of O(log(n)) bits
required to attain this performance. In addition, we introduce a more complex
algorithm that still requires only constant-size advice, and which is below 1.5-
competitive, namely has competitive ratio arbitrarily close to 1.47012. This is the
currently best performance of any online bin packing algorithm with sublinear
advice. On the negative side, we extend a construction due to Boyar et al. [10] so
as to show that no online algorithm with sub-linear advice can be 7/6-competitive,
which improves upon the known lower bound of 9/8.

1 Introduction

Bin packing is a fundamental optimization problem that has played an important role in
the development of approximation and online algorithms. An instance of the problem
is defined by a set of items of different sizes, and the objective is to place these items
into a minimum number of bins. For convenience, it is often assumed that the bins have
capacity 1 and items have sizes in the range (0, 1]. In the online setting, the input set
is revealed in a sequential manner, and the online algorithm must make an irrevocable
decision concerning the placement of an item without any knowledge about the forth-
coming items. We follow the canonical framework of competitive analysis of online
algorithms, in which the performance of an algorithm A is determined by its compet-
itive ratio, namely the maximum ratio between the cost of A (i.e., the number of bins
opened by A) and that of an optimal offline algorithm OPT for the same sequence. For
the bin packing problem, in particular, we are interested in the asymptotic competitive
ratio which considers sequences for which the costs of A and OPT are arbitrarily large.
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For this reason, throughout this paper we refer to the asymptotic competitive ratio as
simply the competitive ratio.

The bin packing problem has provided some of the first-known explicit online algo-
rithms. NEXTFIT is a simple algorithm that maintains at each step a single open bin. If
an incoming item fits in the bin, it is placed there; otherwise, that bin is closed and a new
bin is opened to accommodate the item. FIRSTFIT orders bins by their opening time and
places an incoming item into the first bin which has enough space (opening a new bin
if required). BESTFIT works similarly, except that it places the item into the bin with
minimum available capacity which still has enough space for the item. It is known that
Next Fit is 2-competitive, whereas FIRSTFIT and BESTFIT are both 1.7-competitive
[18]. The best known online algorithm is HARMONIC++ which has a competitive ratio
of 1.588 [22]. No online algorithm can have a competitive ratio better than 1.54037 [3],
a result that holds for both deterministic and randomized algorithms.

Competitive analysis, due to its inherent comparison to the offline optimum, often
leads to a more pessimistic performance evaluation of online algorithms than what ob-
served in practice [8]. Different models have been proposed in order to address this
issue, and one such approach is by allowing the online algorithm certain additional
power. For example, the algorithm may be allowed to repack some items [14,15]. Alter-
natively, it may have access to lookahead [16], and, finally, may know the length of the
input sequence [2] or the value of OPT [13]. The advice model is a generalization of the
latter in which, any information can be passed to the algorithm in the form of advice.
In this sense, we can think of the advice as generated by a benevolent offline oracle
with access to the entire input; the online algorithm can exploit the advice so as to pro-
duce a better solution. In principle, there is a certain correlation between the number of
advice bits and the quality of the resulting solution. For many problems, including bin
packing, a large number of advice bits is required in order to achieve optimal solutions;
however, this does not imply that one may not achieve efficient (albeit non-optimal)
solutions with significantly smaller number of bits. In this paper, we study the impact
of small-size advice (typically constant size) in improving the competitive ratio of bin
packing algorithms. While our interest in studying the advice complexity stems from
theoretical considerations, we emphasize that the advice setting may in fact have tan-
gible applications. For instance, the advice model captures, among others, any relevant
statistical information about the input that may be available through either preprocess-
ing or historical data. We define the bin packing problem under the advice setting as
follows:

Definition 1. In the online bin packing problem with advice, the input is a sequence
of items σ = 〈x1, . . . , xn〉, with 0 < xi ≤ 1. At time step t, an online algorithm must
pack item xt into a bin, and this decision is a function of Φ, x1, . . . , xt−1, where Φ is
the content of the advice tape. An algorithm has advice complexity s(n) if it accesses at
most s(n) bits of an advice tape Φ for any input of length n.

Throughout the paper, for a given algorithm A, we denote by A(σ) the number of
bins used by A on sequence σ. Due to space limitations, we omit or sketch certain
proofs (complete proofs can be found in the long version of the paper).
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1.1 Previous work and our contribution

The online advice model was first introduced by Böckenhauer et al. [7,6] and by Emek
et al. [12]. Both papers were inspired by the work of Dobrev et al. [11]. In the model
of Emek et al. an online algorithm receives a fixed number of bits of advice with each
input item. Note that this model does not allow advice of sublinear size. In the model of
Böckenhauer et al., the advice is written on a read-only tape prior to the algorithm’s ex-
ecution, and the algorithm can read advice bits from that tape at will. The advice com-
plexity has established itself as a prolific sub-field of online computation, and many
online problems have been studied under the setting of online computation with ad-
vice (e.g., metrical task systems [12], job shop scheduling [7,19], the k-server problem
[12,6,20], knapsack [5], buffer reordering management [1], and list update [9]).

In this paper, we study online bin packing under the advice-on-tape model. In this
setting, Boyar et al. [10] proved tight bounds on the size of advice required to be optimal
and showed that advice of super-linear size is necessary in order to attain optimality.
They also proved that with advice of linear size, i.e., Θ(n) bits for a sequence of length
n, one can achieve a competitive ratio of 4/3 + ε. This result was improved by Renault
et al. [21] who showed that a competitive ratio arbitrary close to 1 can be achieved
with Θ(n) bits. A related question is how many bits of advice are sufficient in order to
outperform all online algorithms. Boyar et al. showed that advice of size Θ(log n) is
sufficient to achieve an algorithm with competitive ratio of 1.5, which is strictly better
than the lower bound 1.54037 for online algorithms. They also proved that no algorithm
is better than 9/8-competitive with advice of sub-linear size. A related problem, namely
the minimum makespan problem on identical machines was studied in [21].

In our work, we address the power of small-sized advice in online bin packing.
This is motivated by settings in which one may have some very limited information
about the input, e.g., whether or not the input has many items of size beyond a certain
threshold or some related statistical information. On the positive side, we prove that
O(1) advice suffices to outperform all online algorithms. More precisely, we first show
that with only 16 bits of advice, we can achieve a competitive ratio of 1.530 (Section 2).
Following a more complex approach, we show that constant-size advice suffices to go
beyond the barrier of 1.5-competitiveness; more precisely, we achieve a competitive
ratio arbitrarily close to 1.47012 (Section 3). This is, to date, the best upper bound for
advice of sublinear size and demonstrates the significant impact of small-size advice
on algorithmic performance. We should mention that the simple algorithm of Section
2 reaches 1.5 + ε with fewer advice bits than the complicated algorithm of Section 3.
Last, we give a lower-bound construction that builds on ideas of [10] and which shows
that advice of size Ω(n) is required to achieve a competitive ratio better than 7/6, thus
improving the previous lower bound of 9/8 (Section 4).

In terms of techniques, for the upper bound of Section 2, we use information indi-
rectly related to the ratio of “big” to “small” items; we show that this limited amount of
information suffices to bring us arbitrarily close to the performance of algorithms that
use logarithmic number of bits. For the more complicated upper bound of Section 3, we
introduce two algorithms that, when combined, result in the desired upper bound. One
of these algorithms uses a rounding technique to create close-to-optimal packings when
there is an empty space of size ε or more in all bins of an optimal solution (ε is an arbi-
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trary small positive value). The other algorithm achieves a competitive ratio of 1.3904
when all items are larger than 1/3. Both algorithms use advice of constant size, i.e.,
independent of the length of sequence. Last, concerning the lower bound (Section 4),
we base our construction on that of [10], using a better amortization scheme that leads
to an improvement of the bound.

2 Constant-size advice outperforms all online algorithms

In this section, we present an algorithm that achieves a competitive ratio of 1.5 + ε and
uses a constant number of bits of advice. Throughout the section, we distinguish items
based on their sizes. An item is huge if it is larger than 2/3, critical if it is in the range
(1/2, 2/3], small if it is in the range (1/3, 1/2], and tiny if it is in the range (0, 1/3].

Consider the algorithm RESERVECRITICAL [10] that works as follows. The algo-
rithm treats huge items separately and places each of them in a single bin. Similarly, it
places two small items in the same bin with no other items in said bin. The algorithm
knows the number of critical items and reserves space of size 2/3 for each of them
(i.e., it opens a bin for each item and assumes the filled space of the bin is 2/3). Critical
items are placed in the reserved spaces. For tiny items, the algorithm uses FIRSTFIT
to place them in critical bins with respect to their reserved spaces (and opens new bins
as needed). To encode the number of critical bins in binary, Θ(log n) advice bits are
needed. As shown in [10], RESERVECRITICAL has a competitive ratio of 1.5. (Since
our approach is related, in the long version of the paper, we provide a simpler proof of
the result in [10].)

In what follows, we analyze another algorithm, called the REDBLUE algorithm, that
receives an integer i, 0 ≤ i < 2k encoded in binary with k advice bits, where k is a
constant independent of the length of the sequence. The value of i is determined by the
packing of the RESERVECRITICAL algorithm. Let X and Y denote the number of bins
in the packing of RESERVECRITICAL that include a critical item, and the number of
bins opened for the tiny items, respectively. The advice encodes an approximate value
of X

X+Y , using k bits, by encoding the value of i such that

β =
i

2k
≤ X

X + Y
<
i+ 1

2k
= β +

1

2k
. (1)

Regardless of the value of β, REDBLUE always places each huge item in a single
bin, and places small items in dedicated bins, with two such items per dedicated bin. In
the following, we consider three (exhaustive) cases for β: β > 1−1/2k/2, β < 1/2k/2,
and 1− 1/2k/2 ≤ β ≤ 1/2k/2. For each case, we complete the definition of REDBLUE
by describing how the critical and tiny items are packed.

Consider the first case: β > 1−1/2k/2. For placing critical and tiny items, REDBLUE
maintains a set of blue bins such that each bin has a reserved space of 2/3 for critical
items. To pack a critical item, REDBLUE packs it using FIRSTFIT among the set of blue
bins, considering only the reserved space. To pack a tiny item, REDBLUE packs it us-
ing FIRSTFIT among the set of blue bins, considering, however, only the non-reserved
space (of size 1/3) of such bins. Any bin that FIRSTFIT opens for critical and tiny items
will be blue, i.e., it has a reserved space of 2/3 for critical and a space of 1/3 for tiny
items.
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Lemma 1. When β > 1− 1/2k/2, the competitive ratio of the REDBLUE algorithm is
at most 1.5 + 7.5

2k/2 .

Proof. From (1) and the statement of the lemma, we have:

Y

X + Y
≤ 1− β < 1

2k/2
⇒ Y <

1

2k/2
· (X + Y ). (2)

LetB denote the set of blue bins. The firstX bins inB are precisely the firstX bins
in the packing of RESERVECRITICAL, i.e., they include X critical items plus the same
tiny items. Let Y ′ denote the number |B| − X . Then Y ′ bins in B only include tiny
items (i.e., the reserved space is not occupied by a critical item); the level of all these
bins, except possibly one, is at least 1/6 (otherwise, FIRSTFIT could combine two in the
same bin). Since the tiny items placed in these bins are the same as those placed in the
last Y bins of the RESERVECRITICAL algorithm, we have Y ′ ≤ 6Y +1; this is because
the level of bins in the REDBLUE packing is at least 1/6. Let H and S denote the
number of huge and small items. From (2) and the fact that RESERVECRITICAL(σ) =
H + dS/2e +X + Y ≤ 1.5 OPT(σ), we obtain REDBLUE(σ) ≤ H + dS/2e +X +
6Y + 1 < (1 + 5/2k/2) · 1.5 OPT(σ) + 1. ut

Next, we consider the second case: β < 1/2k/2. In this case, REDBLUE maintains
a set of blue bins for critical items and a set of red bins for tiny items. The algorithm
applies FIRSTFIT to pack critical items into the set of blue bins and tiny items into the
set of red items. In this case, all the bins except the blue bins have a level of at least 2/3;
moreover, there are only a few blue bins. We can show that, on average, the level of all
the bins (except 1 bin) is very close to 2/3.

Lemma 2. When β < 1
2k/2 , the competitive ratio of REDBLUE is at most 3/2 + 3

2k−2 .

Next, we focus on the case 1 − 1/2k/2 ≤ β ≤ 1/2k/2. In this case, the algorithm
maintains a set of blue bins such that each bin has a reserved space of 2/3 for critical
items. The remaining unreserved space of 1/3 will be used for packing tiny items. The
algorithm also maintains a set of red bins for packing tiny items.

We now explain precisely how REDBLUE packs critical and tiny items. For a critical
item x, REDBLUE uses FIRSTFIT among the blue bins, and places x in the reserved
space of such a bin. If x opens a new bin, the bin is declared blue. For a tiny item y, the
algorithm applies FIRSTFIT to place y in either the unreserved space of a blue bin, or
in a red bin. If the algorithm cannot place y in one of the existing bins, it opens a new
bin for y. It declares the new bin as either a red or a blue bin as follows. Let B and R
denote the number of blue and red bins, immediately before y is packed, respectively.
The algorithm will then declare the new bin as a blue bin if B+1

B+R+1 ≤ β; otherwise,
it will declare the new bin as red. Note that, in this way, REDBLUE guarantees that
Bn

Bn+Rn
≤ β, whereBn andRn denote the number of blue and red bins after processing

the entire sequence, respectively. It follows that the number of blue bins in the final
packing of REDBLUE is equal to X , i.e, the number of critical items in the sequence.
In other words, since β is a lower bound for the ratio X

X+Y , this strategy ensures that
all bins declared as blue eventually receive a critical item.
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Lemma 3. When 1/2k/2 ≤ β ≤ 1− 1/2k/2, the competitive ratio of REDBLUE is less
than 1.5 + 3

2k/2−2 .

Proof. From (1) and the statement of the lemma, we have X
X+Y < β + 1/2k ⇒ X <

β+1/2k

1−β−1/2k Y . In the given range for β, we have β(1− β)2k − β > 2k/2−1 − 1. Hence,

1− β
β

X <

(
1 +

1

β(1− β)2k − β

)
Y <

(
1 +

1

2k/2−1 − 1

)
Y (3)

Let yi be a tiny item for which REDBLUE opens the very last red bin in its packing.
Let Ri and Bi denote the number of red and blue bins after placing yi, respectively.
From the statement of the algorithm, we have Bi+1

Bi+Ri
> β, which implies that Ri <

(1−β)Bi+1
β . Let Rn and Bn be the number of red and blue bins in the final packing of

the algorithm. We have Rn = Ri and Bi ≤ Bn = X . For the given range of β, in the
final packing, all blue bins receive a critical item. Hence,Rn ≤ 1−β

β X+1/β. From the

above inequality, we obtainBn+Rn ≤ X+Y +
(

2
2k/2−2

)
Y +2k/2, and the cost of the

algorithm can then be bounded as follows: REDBLUE(σ) = H + dS/2e+Bn +Rn ≤
H+dS/2e+X+Y +2Y /(2k/2) − 2)+2k/2 ≤ 1.5 OPT(σ)+ 3

2k/2−2 OPT(σ)+2k/2,
where we used (3) and the fact that RESERVECRITICAL(σ) = H + dS/2e+X + Y ≤
1.5 OPT(σ). Note also that 2k/2 is a constant independent of n. ut

Theorem 1. For any k ≥ 4, there is an online algorithm for bin packing with k bits of
advice that has competitive ratio 1.5 + 15

2k/2+1 .

Proof. From Lemmas 1, 2,3, the competitive ratio of the algorithm is no more than
1.5 + max

{
15

2k/2+1 ,
3

2k−2 ,
3

2k/2−2

}
which is 1.5 + 15

2k/2+1 when k ≥ 4. ut

In particular, for k = 16 bits of advice, we achieve a competitive ratio smaller than
1.530, which is strictly better than any online algorithm.

3 Beyond 1.5-competitiveness with O(1) advice bits

We will present and analyze an online algorithm with constant number of advice bits
that has a competitive ratio that is arbitrarily close to 1.47012. To this end, we will first
introduce an algorithm for sequences in which all items are relatively large, namely
larger than 1/3. We will then use this algorithm as a subroutine in the final algorithm
that handles arbitrary sequences.

3.1 Sequences with items larger than 1/3

Assume all items are larger than 1/3. We will show that with only 1 bit of advice, we can
achieve solutions which are 1.3904-competitive. For the remainder of this subsection,
an item is said to be small if it is no larger than 1/2, large if it has size larger than
1/2 and is placed with a small item in the optimal packing, and huge if it is larger
than 1/2 and is alone in its bin in the optimal packing. We use S, L and H to denote
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the number of small, large and huge items, respectively. We can assume that the size
of any huge item is no smaller than large items (otherwise they can be switched and
thus obtain another optimal packing). The cost of OPT for the input sequence σ is then
OPT(σ) = H + L/2 + S/2. We use OPT2(σ) to denote the number of bins in the
optimal packing that include two items, i.e., OPT2(σ) = S/2 + L/2.

The following is the main theorem of this subsection, and will also be used later in
the proof of Lemma 10, in the context of general sequences.

Theorem 2. For a sequence σ in which all items are strictly larger than 1/3, there is
an online algorithm with 1 bit of advice that opens at most H +1.3904 ·OPT2(σ) bins.

The following result is direct from Theorem 2, observing that OPT(σ) = H+OPT2(σ).

Corollary 1. There is an algorithm for online bin packing with items larger than 1/3
that uses 1 bit of advice and that has competitive ratio 1.3904.

The single advice bit serves the purpose of determining the best algorithm among
two purely online algorithms: ALMOSTBESTFIT (ABF) and CROSSBESTFIT (CBF).
ABF is similar to BESTFIT except that it opens a new bin for each item larger than 1/2.
CBF also applies BESTFIT, but it opens a new bin for each item smaller than or equal
to 1/2.

In order to prove Theorem 2, we consider three different cases and show that in each
case, at least one of ABF and CBF is better than 1.3904-competitive. To define these
cases, we consider two parameters α and β such that 0 ≤ α ≤ 1 and 1 ≤ β < 2. We
will determine the values of these parameters later in the proof. Note that in an optimal
packing, L large items are matched with small items. We call such two items partners.
Thus, the partner of a large item (respectively a small item) x is a small (respectively
large) item which is placed in the same bin as x in the optimal packing. Let X ≤ L
denote the number of large items which have their partners among the forthcoming
items (at the time they are placed). We consider the following three (exhaustive) cases:
I) L ≤ β−1

2−βS, II) L > β−1
2−βS and X ≥ αL, and III) L > β−1

2−βS and X < αL.
In the final packing of ABF, all small items (except potentially one of them) are

placed with another item. With this observation, we can prove the following for Case I:

Lemma 4. If L ≤ β−1
2−βS, ABF opens at most H + β · OPT2(σ) bins.

Next, we consider Case II.

Lemma 5. If L > β−1
2−βS and X ≥ αL then ABF opens at most H + (3/2 − α/2) ·

OPT2(σ) bins.

Proof. We claim that in the packing of ABF at least X small items are packed with
large items. If this is true, then the number of bins opened by ABF is at most H +
L + (S − X)/2 ≤ H + L + (S − αL)/2 = H + (2 − α)L/2 + S/2. Note that the
ratio (2−α)L/2+S/2

L/2+S/2 is maximized when L as large as possible, namely when L = S. It

follows that (2−α)L/2+S/2
L/2+S/2 ≤ 3−α

2 , from which we obtain that (2 − α)L/2 + S/2 ≤
3−α
2 OPT2(σ). We thus conclude that ABF(σ) ≤ H + (3/2− α/2)OPT2(σ).
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It remains to prove the claim. We maintain a mapping of size X as follows formed
by X pairs of items. The mapping is initially formed by the X large items and their
partners which appear later. We use m(y) to denote the mapped item of an item y. The
mapping is said to be valid if it has the following properties: i) for any pair (x,m(x))
in the mapping, x is larger than 1/2 and x+m(x) ≤ 1; and ii) for any pair (x,m(x)) in
the mapping, x appears earlier than m(x) in the sequence. Note that the initial mapping
is valid. We will show how to maintain a valid mapping of size X , upon the arrival and
packing of each item, in such a way that all pairs of mapped items are placed in the
same bin by the ABF algorithm.

Suppose that a new item y arrives. If y is larger than 1/2, a new bin is opened for it
and the mapping does not change. Next, suppose that y is small; moreover, suppose that
the pair (z, y) is in the current mapping, for some item z. If y is placed with z in the
same bin, then the mapping does not change. Assume y is placed with another item z′

which is larger than z (by BESTFIT it cannot be placed with a smaller item). If z′ is in
the mapping, we replace (z, y) with (z′, y) (with a slight abuse of notation, we will say
that an element r is in the mapping if there is an element q such that the pair (r, q) is in
the mapping). Otherwise, since z ≤ z′ we have z+m(z′) ≤ 1. In this case, we replace
(z, y) and (z′,m(z′)) with (z′, y) and (z,m(z′)), respectively. The result is still a valid
mapping. Finally, suppose that y is smaller than 1/2 and it is not in the mapping. The
mapping is not changed after packing y unless y is packed with an item z which is in
the mapping. Note that z cannot be small; otherwise, it would have been placed with
the large item that it is mapped to upon its arrival. Hence, z is a large item. In this case,
we replace the pair (z,m(z)) with (z, y); this maintains a valid mapping. ut

Finally, it remains to consider Case III. The proof of the following lemma uses
techniques similar to the proof of Lemma 5.

Lemma 6. Suppose L > β−1
2−βS and X < αL then the number of bins opened by CBF

is at most H + (4− 2(α+ β) + 2αβ) · OPT2(σ).

Proof of Theorem 2. From Lemmas 4, 5, 6, the competitive ratio of the best algorithm
among ABF and CBF is at most max{β, 3/2− α/2, 4− 2(α+ β) + 2αβ}, where 0 ≤
α ≤ 1 and 1 ≤ β < 2. The optimal choice is β = (7 +

√
17)/8 and α = (5−

√
17)/4

which gives a competitive ratio at most β < 1.3904. ut

3.2 Arbitrary sequences

We use the result of the previous section to show that advice of constant size suffices to
achieve a competitive ratio of 1.47012 + ε for any sequence and any arbitrarily small
constant ε, 0 < ε < 1/12. To this end, we first define ε-desirable solutions.

Definition 2. An ε-desirable packing of a sequence σ is a packing formed by a set of
ε-desirable bins. A bin is ε-desirable and belongs to class 0 if there is an empty space
of size at least ε in the bin. A bin is ε-desirable and belongs to class i (i ∈ {1, 2, 3}) if
its empty space is less than ε and if it includes i items in the range (1/i− ε, 1/i].

We begin with an outline of our approach. First, we will show that, for any packing
that consists of X ε-desirable bins, there is an online algorithm DESIRABLEROUDING
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(DR) which opens (1+ε)X bins and requires advice of size f(ε), where f is a function
of ε (Lemma 7). Given an ε and an optimal offline packing of a sequence σ, we will
define two new packings P1 and P2 in such a way that at least one of them provides
a good approximation of the optimal packing, and the packings can be approximated
in an online manner with constant advice. More precisely, P1 is an ε-desirable packing
of σ. The packing P2 is comprised of two packings, P2a and P2b, of a partitioning of
the items of σ. P2a is a packing of the items with size at least 1/3, and P2b is an ε-
desirable packing of the items with size no more than 1/3. To approximate P1, we use
the DR algorithm. To approximate P2, we use the algorithm from Section 3.1 so as to
approximate P2a and DR so as to approximate P2b. One additional bit of advice can
determine the best among the two online approximations of P1 and P2.

We now proceed with the technical details of the algorithm.

Lemma 7. Consider an ε-desirable packing OFF of a sequence σ. There is an online
algorithm DR with advice of size O(23.7/ε · log(1/ε)) that outputs a packing with at
most (1+ ε) OFF(σ) bins, where OFF(σ) is the number of bins in the desirable packing.

Proof Sketch. We give an outline of the proof. The full details are in the long version
of the paper. Given an ε-desirable packing, the item sizes are rounded up so that there
are m different item sizes or item types, where m is inversely proportional to ε2. By
applying this rounding scheme, there will be a constant (inversely proportional to ε2)
number of possible bin types, where the type of a bin is based on the number and types
of the rounded items packed within. The advice indicates the approximate value for the
fraction of bins from each bin type in the desirable packing. Each of these values are
encoded in k bits, where k is function of ε. Provided with this advice, DR maintains
similar ratios for the bins of each type that it opens. To accomplish this, instead of
opening single bins, it opens a family of bins in which the bin types are pre-determined
so as to maintain the same fraction of bin types as indicated by the advice. Each arriving
item is packed into the appropriate reserved space based on the bin and item types. ut

Lemma 7 suggests that we need ε-desirable packings that are good approximations
of OPT(σ). Towards this direction, we need to distinguish between ε-hard and ε-easy
bins as follows.

Definition 3. We call a bin ε-hard if it contains two items of size larger than 1/3 such
that the total size of these two items is more than 1 − ε. Otherwise, we call the bin
ε-easy.

The following lemma implies that the set of ε-easy bins can be changed into a set
of ε-desirable bins without much overhead. This is accomplished by removing items so
as to make such bins desirable. New bins are opened for these removed items, in such a
way that 3 bins account for one extra bin.

Lemma 8. Given a set of items packed in m ε-easy bins, it is possible to obtain an
ε-desirable packing of these items using at most 4/3 ·m+ 2 bins.

We now define the packing P1 and the online algorithm that approximates it. Let H
and E denote the number of ε-hard and ε-easy bins in OPT(σ), respectively. Let also γ
denote the ratio H /E .
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To obtain P1, we apply the procedure of Lemma 8 to transform the E ε-easy bins in
OPT(σ) into at most 4/3E ε-desirable bins. Moreover, by applying a procedure similar
to Lemma 8, we can transform the H ε-hard bins in OPT(σ) into at most 1.5H ε-
desirable bins. To summarize, P1 has at most 1.5H + 4/3E = (1.5γ + 4/3)E bins
(omitting additive constants). From Lemma 7, the DR algorithm outputs a packing with
(1.5γ+4/3+ ε′)E bins. Comparing this to OPT(σ) = H +E = (1+ γ)E , we get the
following result.

Lemma 9. There is an online algorithm that receives advice of constant size (depen-
dant on ε) and achieves a competitive ratio of 9γ+8

6γ+6 + ε.

Next, we outline the packing P2 and the online algorithm that approximates it. In
particular, we will define the packings P2a and P2b (as described at the beginning of this
section). For our analysis, we partition the set of ε-easy bins in the optimal packing into
four groups depending on the number of items larger than 1/2 or 1/3 in these bins. Let
E1, E2, E3 andE4 indicate the number of bins from these groups (E1+E2+E3+E4 =
E ). With a similar classifying technique as in Lemmas 8, 9, we obtain P2 with the
following number of bins.

H + 1/2 · E1 + E2 + E3︸ ︷︷ ︸
P2a:=bins with items>1/3

+2ε′H + E1 + 2/3 · E2 + 4/9 · E3 + 4/3 · E4︸ ︷︷ ︸
P2b:=desirable bins with items≤1/3

To approximate P2a, since it consists of items of size larger than 1/3, we can use the
online algorithm with 1-bit of advice of Section 3.1. To approximate P2b, since all the
bins are ε-desirable, we use the online algorithm DR. This defines an online algorithm
with at most ((1.3904+ 3ε′)γ +1.8349+ ε′) ·E bins. The formal details can be found
in the proof of the following lemma.

Lemma 10. There is an online algorithm that receives advice of constant size (depen-
dant on ε) and achieves a competitive ratio of 1.3904γ+1.8349

γ+1 + ε.

Theorem 3. There is an online algorithm with advice of constant size (dependant on ε)
that achieves a competitive ratio of at most 1.47012 + ε.

Proof. We consider two cases depending on the value of γ. Define γ∗ = 5015/1096 ≈
4.7633. If γ ≤ γ∗, then we apply the algorithm of Lemma 9; this gives a ratio of at
most 9·γ∗+8

6·γ∗+6 + ε < 1.470112 + ε. If γ > γ∗, then we apply the algorithm of Lemma

10; the competitive ratio is at most 1.3904·γ∗+1.8349
γ+1 + ε < 1.47012 + ε. ut

4 A 7/6 lower bound for sublinear-sized advice

In this section, we prove that any online algorithm with o(n) bits of advice has a com-
petitive ratio of at least 7/6. Our construction is inspired by the one given in [10], which
showed a lower bound of 9/8. Both lower bounds use a reduction from a variant of the
binary string guessing problem (2-SGKH) [12,4]. In 2-SGKH, the online algorithm
must guess an n-length bitstring bit-by-bit. The value of each bit is revealed after the
algorithm makes its guess and the algorithm incurs a cost of 1 for each incorrect guess.
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In particular, we use the binary string guessing problem with promise (2-SGKHβ) that
is parameterized by β. This problem is the same as 2-SGKH except that the input string
is guaranteed to have exactly a β fraction of 0s (i.e., βn in total). 1

Lemma 11. Any deterministic algorithm for 2-SGKHβ that is guaranteed to guess
correctly more than αn bits, for max {β, 1− β} < α < 1, requires at least b(n) =
(1+(1−α) log(1−α)+α logα)n−e(γn)−1 bits of advice, where γ = min {β, 1− β}
and e(γn) = dlog(γn+ 1)e+ 2 dlog (dlog(γn+ 1)e+ 1)e+ 1.

Given an instance B of the 2-SGKH1/2 problem with a bitstring of length n, we
construct a request sequence σ for the online bin packing problem with length 2n fol-
lowing [10]. (This is described fully in the long version of the paper.) The sequence
consists of a prefix of n/2 items of size 1/2 + ε, a central part of n items of size less
than 1/2 and a suffix of n/2 items that are the exact complement of the n/2 smallest
items in the central part. Among these n central items, we refer to the smallest n/2 items
as small items and to the remaining items as large items. We observe that OPT(σ) = n.
The n/2 small items are packed with their complements in the suffix; moreover, the
remaining n/2 large items are packed each with an item of the prefix.

Let B denote an algorithm for the bin packing problem; we will show how to obtain
an online algorithm A for 2-SGKH1/2 that constructs σ and uses B. B must open a bin
for the n/2 items of the prefix of σ. The manner in which B packs each of n central
items will determine the n guesses of A. Let bi be the i-th such item. Algorithm B has 3
options for packing bi: (1) to open a new bin for bi; (2) to pack bi in a bin with an item
from the prefix; or (3) to pack bi in a bin with some item bj , j < i. If B chooses option
(1), the item is labeled as small and A guesses 0. If B chooses either option (2) or (3),
the item is labeled as large and A guesses 1.

The following lemma relates the number of incorrect guesses (or number of misla-
beled items) to the number of extra bins opened (in comparison to OPT). We will use
the same accounting technique as in [10], but a new mapping of incorrect guesses to
mislabellings, which leads to an improved bound. More precisely, we show that each
extra bin corresponds to 3 mislabellings (as opposed to [10], in which the correspond-
ing number equals 4). Let fn denote the family of all request sequences σ constructed
as described above, for all possible bitstrings of length n with exactly n/2 0s.

Lemma 12. Suppose that there is an algorithm B that uses b(n) bits of advice and
opens at most OPT(σ) + c bins for all σ ∈ fn. Then, there exists an algorithm for the
2-SGKH1/2 problem that uses b(n) bits of advice and makes at most 3c errors.

We can now show that Ω(n) advice bits are necessary to obtain a competitive ratio
better than 7/6.

Theorem 4. Any deterministic online algorithm with advice for the bin packing prob-
lem requires at least (1 + (1− α) log(1− α) + α logα)n− e(n/2)− 1 bits of advice
to be ρ-competitive, 1 < ρ < 7/6, where α = 4 − 3ρ and e(x) = dlog(x+ 1)e +
2 dlog (dlog(x+ 1)e+ 1)e+ 1.

1Technically, the statement of Lemma 11 is very similar to Lemma 9 in [10]. We note, how-
ever, that the latter is correct only when the number of 0s is n/2. To avoid any ambiguity, the
statement of Lemma 11 is parameterized by β, as opposed to Lemma 9 in [10].
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