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2 CNRS and Université Paris Diderot - Paris 7,
adiro@liafa.univ-paris-diderot.fr

Abstract. We consider the model of online computation with advice
[6]. In particular, we study the k-server problem under this model. We

prove three upper bounds for this problem. First, we show a
⌈
dlog ke
b−2

⌉
-

competitive online algorithm for general metric spaces with b bits of
advice per request, where 3 ≤ b ≤ log k. This improves upon the result
of [1]. Moreover, we believe that our algorithm and our analysis are more
intuitive and simpler than those of [1]. Second, we give a 1-competitive
online algorithm for finite trees which uses 2+2dlog(p+1)e bits of advice
per request, where p is the caterpillar dimension of the tree. Lastly, we
present a variant of the algorithm for the tree that is optimal for the line
with 1-bit of advice.

Keywords: online computation with advice, k-server problem, online
algorithms, competitive analysis

1 Introduction

Online algorithms have been the subject of intense research activity over the
past decades. The traditional setting is that of an online algorithm that does
not have any knowledge about the future and that of a worst-case analysis using
competitive analysis (cf. [3]). In the present paper, we consider a model intro-
duced by Emek et al. [6], dubbed online computation with advice, which is aimed
at relaxing the “absolutely no knowledge about the future” setting and at giving
a general framework to quantify the interplay between the amount of knowledge
about the future and the possible improvement in the competitive ratio. Roughly
speaking, this model augments the power of the online algorithm by a series of
queries. Each query is issued by the online algorithm when it receives a new re-
quest. These queries map the whole request sequence, including future requests,
to some domain of advice. Thus, they provide the online algorithm with some in-
formation about the future. One is typically interested in the interplay between
the size of the domain of advice, i.e., how many bits of advice are received with
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each request, and the attainable competitive ratio. For a formal definition of this
model, see Section 2.

A number of results for various online problems have been obtained in the
above model and in a variant thereof introduced by Böckenhauer et al. [2]. In
the present paper, we consider the k-server problem under the model of online
computation with advice. Emek et al. [6] gave an upper bound of kO( 1

b ) on the
competitive ratio of deterministic algorithms on general metric spaces, where b
is the number of bits of advice per request. This upper bound was improved

to 2
⌈
dlog ke
b−1

⌉
by Böckenhauer et al. [1]. Better bounds for specific metric space

where also given (see “Related Work” below).

In this paper, we improve the upper bound for deterministic k-server algo-
rithms with advice on general metric spaces by giving a deterministic online
algorithm with b bits of advice per request, for 3 ≤ b ≤ log k, whose competitive

ratio is
⌈
dlog ke
b−2

⌉
. While the improvement over the previous result is only about

a factor of 2, we believe that our algorithm and analysis are more intuitive and
simpler than previous ones, and may lead to further improvements in the upper
bound. Also, we consider the class of metric spaces of finite trees, and give a
1-competitive deterministic online algorithm. The number of bits of advice per
request used by this algorithm is 2 + 2dlog(p + 1)e, where p is the caterpillar
dimension of the tree (cf. [9]). If log k < 2 + 2dlog(p + 1)e, then the trivial al-
gorithm with advice, i.e., encoding the server id used by an optimum algorithm
per request could be used instead of the algorithm presented in this paper.

The caterpillar dimension of the tree is preferable over other measures, such
as height, because it remains constant for degenerate trees, such as the line, the
spider and the caterpillar. Moreover, the caterpillar dimension is at most the
height of the tree, and it is at most logN , where N is the number of nodes in
the tree [9]. For the line, the caterpillar dimension is 1 implying that 4 bits of
advice are needed using the algorithm for the tree. In the last section, we present
an algorithm that is strictly 1-competitive for the line using 1 bit of advice.

Related Work. The model of online computation with advice considered in the
present paper was introduced by Emek et al. [6]. In that paper, the authors gave
tight bounds of Θ(log n/b) for deterministic and randomized online algorithms
with advice for Metrical Task Systems [4], where n is the number of states of
the system and b is the number of bits of advice per request. They also gave
a deterministic online algorithm with advice for the k-server problem which is
kO( 1

b )-competitive, where Θ(1) ≤ b < log k. This was improved by Böckenhauer
et al. [1] who gave a deterministic online algorithm with advice for general met-

ric spaces with a competitive ratio of 2
⌈
dlog ke
b−1

⌉
. Böckenhauer et al., also, gave

a deterministic algorithm for the Euclidean plane with a competitive ratio of
1

1−2 sin( π
2b

) , where b ≥ 3 is the number of bits of advice per request. For the uni-

form metric space (the problem of paging), a 1-competitive deterministic online
algorithm with 1 bit of advice per request is implicit in [5].



Böckenhauer et al. [2] introduced a somewhat similar model for online algo-
rithms with advice, where the advice is a single tape of bits instead of being given
separately for each request. This allows an algorithm to read a different number
of bits of advice per request, but it requires that the online algorithm knows
how many bits of advice to read with each request. Thus, the two models are, in
general, incomparable. We note that upper bounds in the model of [6], as those
given in the present paper, carry over to the model of [2]. An algorithm defined
in the model of [6] can be transformed into an algorithm defined in the model of
[2] by concatenating all the bit strings received per request in the model of [6],
using it as the advice tape in the model of [2] and reading the same number of
bits from the advice tape per request in [2] as received in [6].

Several results were given in this related model [5, 2, 7, 8, 1]. For example, in
[5, 2], the authors explore the number of bits of advice required for deterministic
and randomized paging algorithms, algorithms for the DiffServe problem, algo-
rithms for a special case of the Job Shop Scheduling problem, and algorithms
for the Disjoint Path Allocation problem to be 1-competitive.

2 Preliminaries

Online algorithms receive their input piece by piece. Each piece, or request, is
an element of some set R, and the algorithm receives a request sequence denoted
σ = r1, . . . , rn, where n = |σ| and ri is the ith request. An online algorithm must
perform all of the actions pertaining to a request before receiving the subsequent
requests. The online algorithm incurs some cost performing these actions. In this
paper, we consider only minimization problems.

We use the definition of deterministic online algorithms with advice as pre-
sented in [6]. An online algorithm with advice is defined as a request-answer
game that consists of a request set, R; a sequence of finite nonempty answer sets,
A1, A2, . . . ; and a sequence of cost functions, costn : Rn×A1×A2× · · ·×An →
R+∪{∞} for n = 1, 2, . . .. In addition, online algorithms with advice have access
via a query to an advice space, U , which is a finite set. The advice space has a
size of 2b, where b ≥ 0 is the number of bits of advice provided to the algorithm
with each request. With each request, the online algorithm receives some advice
that is defined by a function, ui : R∗ → U , where i is the request index, that is
applied to the whole request sequence, including future requests. A determinis-
tic online algorithm with advice can, thus, be represented as a sequence of pairs
(gi, ui) and gi : Ri×U i → Ai for i = 1, 2, . . ., where gi is the action of the online
algorithm. The action that the online algorithm takes upon receiving request
ri is a function of the first i requests, r1, . . . , ri, and the advice received so far,
u1(σ), . . . , ui(σ), i.e., the action on request ri is gi(r1, . . . , ri, u1, . . . , ui).

The cost of the online algorithm is defined as ALG(σ) = costn(σ,ALG[σ]),
where ALG[σ] =< a1, . . . , an >∈ A1 × · · · × An and, for j = 1, . . . , n, aj =
gj(r1, . . . , rj , ui, . . . , uj). At the risk of a slight abuse of notation, we will denote
the cost of a subsequence of σ as ALG(ri, . . . , rj), where the prefix is understood
implicitly.



For a minimization problem, we say that an algorithm is c-competitive, or
has a competitive ratio of c, if, for every finite request sequence σ, ALG(σ) ≤
c ·OPT(σ) + ζ, where ζ is not dependent on the request sequence and OPT(σ)
is the optimum cost over σ. If ζ = 0, we say that an online algorithm is strictly
c-competitive.

The k-server problem consists of a metric space, M, k mobile servers, an
initial configuration, and a finite request sequence, σ. LetM = (M,d), where M
is a set of nodes, d : M×M → R+ is a distance function on M and |M | = N > k.
A configuration is a multiset X ⊆ M such that |X| = k. Each x ∈ X indicates
the position one of the k servers in the metric space M . Each request of σ
will be to a node of M, and a server must be moved to the requested node
before the algorithm will receive the subsequent request. The goal is to minimize
the distance travelled by the k servers over σ. A lazy k-server algorithm is an
algorithm that, upon each request, only moves a single server to the request if
it is uncovered.

For a metric space which is a tree, we say that a server, s, is adjacent to a
request, ri, if, along the path between the positions of s and ri, there are no
other servers.

The caterpillar dimension of a rooted tree, T , with root r, is denoted cdim(T ).
We will define it as it is defined in [9] which is as follows. For a tree, T , composed
of a single node, cdim(T ) = 0. For a tree, T , with two or more nodes, cdim(T ) ≤
k + 1 if there exist edge disjoint paths, P1, . . . , Pq, beginning at the root r such
that each component Tj of T \E(P1)\ . . .\E(Pq) has cdim(Tj) ≤ k, where E(Pi)
are the edges of Pi. The components Tj are rooted at their unique vertex lying
on some Pi. The decomposition of T into these edge disjoint paths is called the
caterpillar decomposition of the tree. All the nodes of Pi, 1 ≤ i ≤ q, except the
root, are assigned path level k + 1. The root is assigned path level k + 2. Note
that the root of the tree has a path level one more than the caterpillar dimension
of the tree.

Given an unrooted tree, G, we define the caterpillar dimension of G as the
minimum over all nodes, v ∈ G, of the caterpillar dimension of G when rooted
at v. In what follows, we refer to the caterpillar dimension of unrooted trees as
defined here.

3 An Upper Bound for General Metric Spaces

In this section, we present a
⌈
dlog ke
b−2

⌉
-competitive deterministic online algorithm

with advice, called CHASE, for the k-server problem on general metric spaces
with b bits of advice per request, where b ≥ 3. For convenience of notation, we

use α =
⌈
dlog ke
b−2

⌉
.

In order to clearly present the algorithm and the proof, we will first design
and analyze the algorithm such that it gets a variable number of bits of advice
with each request. The algorithm will receive at least 2 bits of advice with each
request, and the total number of advice bits will not exceed bn for any prefix of
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Fig. 1. An illustration of a caterpillar decomposition of a tree where the nodes are
marked by their assigned path level. P1 is the set of edge disjoint paths rooted at the
root, P2 is the set of edge disjoint paths rooted at a node of some path ∈ P1 and P3

is the set of edge disjoint paths rooted at a node of some path ∈ P2.

n requests. Afterwards, we will show how to adapt the algorithm so that it gets
at most b bits of advice with each request using a transformation of [1].

Roughly speaking, our algorithm works as follows: given a request sequence,
σ, we consider an optimal algorithm for this sequence. Based on this optimal
algorithm, we partition σ into k subsequences, σs for 1 ≤ s ≤ k, such that all
the requests of σs are served according to the optimal algorithm by server s.
With log k bits of advice per request, we can indicate, with each request of σs,
the identity of the server s, and, thus, our online algorithm with advice would
precisely follow the optimum algorithm. If, however, we have only b < log k bits
of advice per request, we can do that only roughly every log k/b requests of σs.
We call these requests “anchors”. The rest of the requests of σs are served in a
greedy manner, i.e., they are served by the closest server to the request which
then returns to its previous position. By serving requests in this way, server
s always stays at its last anchor. Thus, the cost of serving the (log k/b) − 1
non-anchor requests of σs between any two anchors is bounded from above by
2 log k/b times the distance from the last anchor to the furthest non-anchor re-
quest. This gives us a competitive ratio of O(log k/b). Some fine tuning of the
above ideas gives us our result. In what follows, we formally define the algorithm
and prove its competitive ratio.

Algorithm CHASE: At the beginning, all servers are unmarked.
Given a request, rj , and the advice, do:

– If the advice is 00, serve rj with the closest server to rj and return it to its
previous position.

– If the advice is 10, serve rj with the closest unmarked server and mark this
server. Do not return the server to its previous position.



– If the advice is 11t, where t is a server number encoded in dlog ke bits, serve
the request with server number t.

In order to define the advice, we will fix a optimum algorithm, OPT, that
we assume to be a lazy algorithm. We will then partition the request sequence
into k subsequences, σ1, . . . , σk, where σs is the trace of the server s in OPT.
In other words, σs consists of the requests served by server s in the lazy opti-
mum. It should be noted that the requests of σs are not necessarily consecutive
requests in σ. Let rsj be the jth request served by server s over σs. Recall that

α =
⌈
dlog ke
b−2

⌉
. Independently, for each server, we choose an index 1 ≤ qs ≤ α.

The way to choose this index will be defined later . The request sequence σs is
divided into α-length cycles starting at rsqs+1. We will denote the ith cycle of
σs by csi . The first cycle, cs1, which starts at request rs1 and ends at request rsqs ,
may have a length less than α. Let Cs be the total number of cycles in σs.

The advice will be defined as follows for request rsj :

– 10, if j = qs, i.e., the last request of the first cycle.

– 11t, if j = qs + iα for some i ≥ 1, i.e., the last request of all cycles except
the first one. Here, t is the server number that serves request rsqs in CHASE
encoded in dlog ke bits.

– 00, if j 6= qs + iα, i.e., everywhere else.

The first two bits of the advice per request will be referred to as the control bits.

First, we state a technical lemma that we will use in our proof.

Lemma 1. Given a sequence of α non-negative values, a1, . . . , aα, there is an
integral value, q, where 1 ≤ q ≤ α, such that

q∑
i=1

(2(q − i) + 1)ai +

α∑
i=q+1

(2(α+ q − i) + 1)ai ≤ α
α∑
i=1

ai .



Proof. Summing the expression over all possible values of q, we get

α∑
q=1

[ q∑
i=1

(2(q − i) + 1)ai +

α∑
i=q+1

(2(α+ q − i) + 1)ai

]

=

α∑
q=1

[ α∑
i=1

(2(α+ q − i) + 1)ai −
q∑
i=1

2αai

]

=

[ α∑
q=1

(
2(α− q) + 1

)]
·
α∑
i=1

ai +

[ α∑
q=1

4q

]
·
α∑
i=1

ai −
α∑
q=1

α∑
i=1

2iai −
α∑
q=1

q∑
i=1

2αai

=

[ α∑
q=1

(
2(α− q) + 1

)]
·
α∑
i=1

ai + (2α2 + 2α)

α∑
i=1

ai −
[
2α

α∑
i=1

iai + 2α

α∑
i=1

(α− i+ 1)ai

]

=

[ α∑
q=1

(
2(α− q) + 1

)]
·
α∑
i=1

ai + (2α2 + 2α)

α∑
i=1

ai − (2α2 + 2α)

α∑
i=1

ai

=

[ α∑
q=1

(
2(α− q) + 1

)]
·
α∑
i=1

ai

= α2
α∑
i=1

ai .

It follows that one of the α possible values of q gives at most the average
value, i.e., α

∑α
i=1

ai. The lemma follows. ut

Now, we prove the main theorem of this section.

Theorem 1. For every b ≥ 3, algorithm CHASE is a
⌈
dlog ke
b−2

⌉
-competitive k-

server algorithm for general metric spaces with b bits of advice per request.

Proof. For the proof, we will compare the cost of CHASE and OPT separately
for every subsequence σs, and cycle by cycle within each σs. Recall that α =⌈
dlog ke
b−2

⌉
. Note that the first cycle and the last cycle may be of length less than

α.
If the last cycle is less than α for some σs, we can repeat the last request

of σs until the last cycle is of length α. The repeated requests for each server
should be appended to σ. Let σ′ be the request sequence with the additional
requests. Clearly, CHASE(σ) ≤ CHASE(σ′). As the additional requests of σ′

will be to nodes containing the servers of OPT, OPT(σ′) = OPT(σ). Hence,
CHASE(σ) ≤ αOPT(σ) if CHASE(σ′) ≤ αOPT(σ′). Therefore, for this proof,
we can assume without the loss of generality that the last cycle for each server
is of length α.

Consider the ith cycle of server s in OPT for i > 1 (we will deal with the
first cycle later). Let t be the server in CHASE that serves request rsqs . We will
denote the position of rs(i−2)α+qs , the last request of the previous cycle, by INITsi .
We claim that, just before the cycle starts, both OPT and CHASE will have a



server at INITsi . This is true because the advice for request rs(i−2)α+qs indicates

to CHASE to bring server t to INITsi and, by the definition of the algorithm, t
will always return to INITsi between rs(i−2)α+qs and rs(i−2)α+qs+1. By definition of
the subsequence σs, OPT serves rs(i−2)α+qs with s and does not move s between
request rs(i−2)α+qs and request rs(i−2)α+qs+1.

Also, observe that just before each of the requests between rs(i−2)α+qs+1 and
rs(i−1)α+qs inclusive, i.e., the requests of the ith cycle, server t of CHASE is at

INITsi . Recall that CHASE serves these requests except the last one by using the
closest server to the request and, then, returns that server to its prior position.
Therefore, the cost to CHASE for any request rs(i−2)α+qs+j , where 1 ≤ j ≤ α−1,
i.e., the requests of cycle i except the last one, is

CHASE(rs(i−2)α+qs+j) ≤ 2d(INITsi , r
s
(i−2)α+qs+j) . (1)

By the triangle inequality and Inequality (1),

CHASE(rs(i−2)α+qs+j) ≤ 2

j∑
l=1

d(rs(i−2)α+qs+l−1, r
s
(i−2)α+qs+l) . (2)

For request rs(i−1)α+qs , i.e., the last request of cycle i, CHASE serves the
request using server t that is at rs(i−2)α+qs . We have, by the triangle inequality,

CHASE(rs(i−1)α+qs) = d(INITsi , r
s
(i−1)α+qs)

≤
α∑
l=1

d(rs(i−2)α+qs+l−1, r
s
(i−2)α+qs+l) . (3)

Observe that the cost of OPT to serve rs(i−2)α+qs+j for 1 ≤ j ≤ α, i.e.,

the requests of cycle i, is d(rs(i−2)α+qs+j−1, r
s
(i−2)α+qs+j). Using this fact and

Inequalities (2) and (3), we can bound the cost of CHASE over a cycle by the
cost of OPT as follows:

α∑
j=1

CHASE(rs(i−2)α+qs+j) ≤
α−1∑
j=1

(
2

j∑
l=1

OPT(rs(i−2)α+qs+l)

)

+

α∑
l=1

OPT(rs(i−2)α+qs+l)

=

α∑
j=1

[2(α− j) + 1]OPT(rs(i−2)α+qs+j) . (4)

The analysis of the first cycle is, essentially, the same as the analysis of the
ith cycle, i > 1, with the exception that an additive constant is introduced per
request of the first cycle. The additive constant results from the fact that, during
the first cycle of σs, CHASE does not necessarily maintain a server at the initial
position of s. Recall that in CHASE, s may have been used to follow the trace



of another server of OPT that is not s. In such a case, s would be marked and
may be at a position in the metric space that is not the initial position of s.
Nevertheless, by the definition of CHASE, there will always be an unmarked
server in one of the locations of the initial configuration. Let ∆ be the diameter
of the initial configuration. Therefore, for any request of the first cycle, rsl , of
σs, analogously to Inequality (2), we have

CHASE(rsl ) ≤ 2
(
∆+

l∑
m=1

d(rsm−1, r
s
m)
)
, (5)

where rs0 is the initial position of s. Analogous to Inequality (4), summing In-
equality (5) over all requests of the first cycle of s, gives

qs∑
l=1

CHASE(rsl ) ≤
qs∑
l=1

[2(qs − l) + 1]OPT(rsl ) + 2α∆ . (6)

Note that the first cycle is of length qs ≤ α. If we define the cost for requests
with indexes less than 0 to be 0 for both OPT and CHASE, we can rewrite
Inequality (6) to be more congruent with Inequality (4) as follows:

α∑
j=1

CHASE(rs−α+qs+j) ≤
α∑
j=1

[2(α− j) + 1]OPT(rs−α+qs+j) + 2α∆ . (7)

Using Inequalities (4) and (7), and summing over all cycles, gives

CHASE(σs) ≤
Cs∑
i=1

α∑
j=1

[2(α− j) + 1]OPT(rs(i−2)α+qs+j) + 2α∆ . (8)

Now, we deal with assigning the values of qs. Define a1, . . . , aα to be aj =∑Cs

i=1
OPT(rs(i−1)α+j), i.e., the cost of OPT for the requests in σs in jumps of α

requests. We can rewrite Inequality (8) as

CHASE(σs) ≤
q∑
i=1

(2(q − i) + 1)ai +

α∑
i=q+1

(2(α+ q − i) + 1)ai + 2α∆ . (9)

By Lemma 1, there is a value 1 ≤ qs ≤ α such that

CHASE(σs) ≤ α
α∑
i=1

ai + 2α∆ = αOPT(σs) + 2α∆ .

We chose this qs separately for each server s in order to define the cycles.
Summing over all k subsequences σs concludes the proof of the competitive ratio.

Finally, we show that the algorithm uses at most bn bits of advice over any
prefix of n requests. There are two control bits with each request. Let t be the
server in CHASE that serves rsqs , i.e., the last request of the first cycle of σs.
There are at least α requests of σs between any two requests, where the id of t

is given in the advice. Since α =
⌈
dlog ke
b−2

⌉
, the claim follows. ut



In order to adapt the algorithm so that it receives b bits of advice per request,
we use a transformation of [1]. Two control bits will be given with each request,
and the remaining b− 2 bits will contain portions of server ids. The control bits
will be as defined previously. We then define a string as the concatenation of all
server ids given for the whole sequence. This string will be broken into (b−2)-bit
chunks and a single chunk will be given with each request. The algorithm can
store these (b−2)-bit chunks in a FIFO queue and will have dlog ke bits available
to be read from the queue when dictated by the control bits.

4 k-Server with Advice on Trees

In this section, we describe a deterministic online algorithm with advice for the
k-server problem on finite trees, called PATH-COVER, that is 1-competitive and
uses 2 + 2dlog(p + 1)e bits of advice per request, where p denotes the minimal
caterpillar dimension of the tree.

The algorithm and advice are such that the actions of the algorithm will
mimic the actions of a non-lazy optimum algorithm, denoted by OPTnl which
has specific properties with respect to the given request sequence. First, we
will describe the construction of the non-lazy algorithm and show that it has
optimum cost. Then, we will analyze the online algorithm with advice based on
OPTnl.

In this section, the definition of the algorithm, the advice and OPTnl is
based on the caterpillar decomposition of the tree that minimizes the caterpillar
dimension. If there is not a unique caterpillar decomposition that minimizes
the caterpillar dimension, one of the minimizing caterpillar decomposition can
chosen arbitrarily to define the algorithm, the advice and OPTnl. Further, in
this section, an ancestor of a node is with respect to the root used for the chosen
caterpillar decomposition and we assume that a node is an ancestor of itself.

The intuition for our algorithm can be seen most easily using the height of a
rooted tree, h, instead of the caterpillar dimension. Consider any lazy optimum
algorithm on the tree. A server move on the tree of such an algorithm can be
broken into two parts. The first part is to the lowest common ancestor of the
server and the request and the second part is to the request. Such an optimum can
be altered into a non-lazy optimum algorithm that before the initial request and
immediately after serving each request, it moves the server to the lowest common
ancestor between the server’s current position and the next request it would
serve in the lazy optimum. 2 log h bits of advice are sufficient to communicate
the height of the node containing the server used for the request in the non-lazy
optimum and the height of the lowest common ancestor between this request
and the next request handled by the active server in the non-lazy optimum.
Therefore, modulo an initialization phase, an algorithm with 2 log h bits of advice
can follow the non-lazy algorithm for each request by using a server at the
position indicated by the advice and, after serving the request, moving the server
to the second position indicated by the advice. For the algorithm described
below, we choose the caterpillar dimension over the height of the tree since it



gives a 1-competitive algorithm with a constant number of bits of advice per
request for degenerate trees such as the line or a caterpillar. Furthermore, the
caterpillar dimension is at most the height of the tree, and is at most logN ,
where N is the number of nodes in the tree [9].

4.1 Non-Lazy Optimum

Let OPTl be any lazy optimum for the given request sequence. For a given
caterpillar decomposition of the tree, OPTnl will be constructed from OPTl
such that OPTnl has three properties. Let s be the server used by OPTnl to
serve request ri. Then, given that OPTnl can choose the starting configuration,
the three properties are:

1. Immediately after serving ri and before serving ri+1, s and only s can be
moved, and, if s is moved, it can only be to the nearest node of a higher
path level in the tree.

2. The position of s, immediately before ri is given, is at the same path level
or higher than ri.

3. Immediately before ri is given, s is adjacent to ri.

Let T be the tree representing the metric space M. Given the caterpillar
decomposition of T that minimizes cdim(T ) as described above, we first construct
OPT′nl which has the first two properties. For any u, v ∈ T , let maxPath(u, v)
be the ancestor of u with the maximum path level on the path between u and
v (see Figure 2). The initial position of each server, 1 ≤ s ≤ k, in OPT′nl is
maxPath(us, vs), where us is the initial position of server s in OPTl and vs is
the position of the first request served by s in OPTl.

x

v u

Fig. 2. An illustration of x = maxPath(u, v), using the caterpillar decomposition from
Figure 1.

For each request, ri in σ, let si be the server used by OPTl to serve ri. For
ri, OPT′nl will:



1. Serve ri with si.
2. Immediately after serving ri, move si to maxPath(ri, rj) where rj is the next

request served by si in OPTl.

Fact 1 OPT′nl has the first two properties.

Proof. The definition of the algorithm guarantees Property 1.
As OPT′nl uses the same server as OPTl for each request, the initial configu-

ration of OPT′nl guarantees that each server s will be at the same level or higher
than the first request it serves; and the second step for ri guarantees Property
2 for the rest of the request sequence. ut

Fact 2 For any σ, OPT′nl(σ) = OPTl(σ).

Proof. The claim follows from the fact that the trajectories followed by each
of the servers according to OPT′nl and OPTl are the same. The only difference
being that some of the moves are done earlier in OPT′nl than OPTl. ut

Next, we construct OPTnl from OPT′nl so that Property 3 will be satisfied,
properties 1 and 2 will be maintained and the cost will not increase.

Intuitively, we will iterate over all the server moves of OPT′nl and, in each
instance where a non-adjacent server moves to a request, we will swap the non-
adjacent server and the adjacent server. I.e., the adjacent server will serve the
request and the non-adjacent server will be used for the next move of the adjacent
server.

OPTnl will be defined by induction on the server moves of OPT′nl. Let T ∗ =
(t∗1, q1), . . . , (t∗m, qm) be the sequence, in order, of server moves performed by
OPT′nl such that the ordered pair (x, y) represents a move of a server from
position x to position y in the metric space. Note that m ≥ n. All requests are
represented in the sequence even if there is a server at the position of a request.
In that case, the two positions of the ordered pair are the same. We will build
T i, which is a sequence of location pairs representing the server moves of an
optimum algorithm, inductively for i ≥ 0 where T 0 = T ∗. For each T i, i ≥ 0,
Property 1 and Property 2 hold for the entire sequence and Property 3 holds for
the subsequence (ti1, q1), . . . , (tii, qi).

Assume that T i−1 is defined and has the above properties. This is trivially
true for T 0. In order to construct T i, we need to first consider qi. If qi is not a
request, then T i = T i−1. If qi is a request and, in the configuration obtained in
T i−1 after the (i−1)th pair, the server at ti−1i is adjacent to qi, then T i = T i−1.
Otherwise, there is a server at some position ui between ti−1 and qi. In this
case, T i will be defined as T i−1 from q1 to qi−1. That is, for all 1 ≤ j < i,
(tij , qj) = (ti−1j , qj). The server at ui will be used in T i for request qi, i.e.,

(tii, qi) = (ui, qi). The remainder of the server moves will be the same in T i as
T i−1 except for the next time after i that a server at the position ui is moved in
T i−1. In that case, a server at position ti−1i will be used. More formally, let l be
the first index of the ordered pairs of T i−1 where ti−1l = ui such that i < l ≤ m.
In T i, (til, ql) = (ti−1i , ql).



Lemma 2. For a given caterpillar decomposition of the tree, the cost of OPTnl
is no more than the cost of OPTl, and OPTnl has three properties. Let s be the
server used by OPTnl to serve request ri. The three properties are:

1. Immediately after serving ri and before serving ri+1, s and only s can be
moved, and, if s is moved, it can only be to the nearest node of a higher path
level in the tree.

2. The position of s, immediately before ri is given, is at the same path level or
higher than ri.

3. Immediately before ri is given, s is adjacent to ri.

Proof. We will prove by induction on i that, for T i, the cost does not increase
compared to OPTl, Property 1 and Property 2 hold for the enter sequence T i,
and Property 3 holds for (ti1, q1), . . . , (tii, qi).

Cost: We will show by induction on i that the cost of T i is no more than OPTl.
For i = 0, as T 0 is OPT′nl, the claim follows from Fact 2. For the inductive step
from T i−1 to T i, note that the two sequences differ by at most two moves in the
construction above. If T i−1 = T i, then the cost remains the same between T i−1

and T i. Using the notation in the construction above, if the two sequences differ
at a single move then it is the move at index i. T i uses a server at position ui
which is on the path between ti−1i and qi and, therefore, the cost of T i is less
than that of T i−1. If two moves differ between T i−1 and T i, then they are the
moves at indexes i and l. The cost to T i for i and l is

d(ui, qi) + d(ti−1i , ql)

≤ d(ui, qi) + d(ti−1i , ui) + d(ui, ql) , by the triangle inequality,

= d(ti−1i , qi) + d(ui, ql) , as ui is on the path between ti−1i and qi,

= d(ti−1i , qi) + d(ti−1l , ql) , as ui = ti−1l ,

which is the cost to T i−1 for i and l.

Property 1: Property 1 restricts the moves that an algorithm can make between
serving requests. Specifically, the algorithm can only move a server from the
current request. The intuition of the proof is that, in the construction above,
the only moves that differ between T i−1 and T i are the moves to serve requests
while any moves between requests are consistent between T i−1 and T i.

We will show that Property 1 holds for the entirety of T i by induction on
i. The claim is trivial for T 0 as Property 1 holds for OPT′nl. For the inductive
step from T i−1 to T i, if T i = T i−1, the claim must hold as it was true for T i−1.
If only the move at index i differs between T i−1 and T i, then, according to the
construction, this move must be that of a server to a request. Specifically, the
difference between T i−1 and T i is the position of the server that serves ri, i.e.,
the first item of the ith ordered pair is the only difference between T i−1 and
T i. So, the claim holds as it was true for T i−1. If the moves at index i and
l, as defined in the construction above, differ between T i−1 and T i, the move



at index i is that of a server to a request as in the previous case. The second
change is the first move of the server at ui, in T i−1, after (ti−li , qi) which must
be to a request in T i−1 as Property 1 holds for T i−1. Therefore, the second move
changed between T i−1 and T i is of a server to a request as well, which implies
that Property 1 holds for the whole sequence T i.

Property 2: By induction on i, we will show that Property 2 holds for the entirety
of T i. The claim is trivial for T 0 as Property 2 holds for OPT′nl. For the inductive
step from T i−1 to T i, if T i = T i−1, the claim holds as it was true for T i−1. If
only the move at index i differs between T i−1 and T i, then the claim holds as
the different move, using the notation above, uses a server at ui instead of ti−1i ,
and by the construction above, ui is on the path from ti−1i to qi. Therefore, ui
must be at the same path level or higher than that of qi due to the monotonic
nature of the caterpillar decomposition and that ti−1i is at the same path level
or higher than qi which follows from the induction hypothesis. If both the moves
at indexes i and l, as defined in the construction above, differ between T i−1 and
T i, then the claim holds for the move at index i by the same argument of the
previous case. For the difference at index l, the move must be that of a server
to a request (as shown in the proof for Property 1). As shown in the previous
case, ti−1i is at the same path level or higher than ui. Therefore, ti−1i will be at
the same path level or higher than any subsequent request served by the server
at ui in T i−1, since Property 2 holds for the whole of T i−1. Hence, Property 2
holds for the whole sequence T i.

Property 3: The fact that Property 3 holds for (ti1, q1), . . . , (tii, qi) is immediate
from the inductive construction. ut

4.2 The Algorithm PATH-COVER

There will be two stages to the algorithm. The initial stage will be for the first
k requests and will be used to match the configuration of PATH-COVER to
that of OPTnl as defined in the previous section. Over the remaining requests,
PATH-COVER will be designed to act exactly as OPTnl. PATH-COVER will
receive 2(l + 1) bits of advice per request, where l = dlog(p + 1)e and p is the
minimal caterpillar dimension of the tree. The advice will be of the form wxyz,
where w and x will be 1 bit in length, and y and z will be l bits in length.

Note that, in the definition of the algorithm and the advice that follows, we
assume that the servers are arbitrarily numbered from 1 to k.

Algorithm and Advice for r1, . . . , rk From r1 to rk, PATH-COVER will
serve each request with the nearest server regardless of the advice. As for the
advice, for request ri, where 1 ≤ i ≤ k,

– if w = 1, the algorithm stores the ancestor node nearest ri which has the
path level y.



– if x = 1, the algorithm stores the ancestor node nearest the initial position
of server i which has the path level z.

Note that both w and x can be 1 for request ri. Immediately after serving rk,
PATH-COVER will use the first k stored nodes as a server configuration and
will move to this configuration at minimal cost (minimum matching).

Immediately before serving rk+1, the k servers of OPTnl will be at their initial
position or a higher path level; or at one of the first k requests or a higher
path level. The advice over the first k requests is defined so as to encode the
configuration of OPTnl immediately before OPTnl serves rk+1. For 1 ≤ i ≤ k,
the advice for ri will be defined as follows:

w: 1, if the server used for ri in OPTnl does not serve another
request up to rk.

0, otherwise
x: 1, if server i does not serve any of the first k requests in OPTnl.

0, otherwise
y: A number in binary indicating the path level of the node

to which the server used for ri is moved to in OPTnl after
serving ri.

z: A number in binary indicating the path level of the node
to which server i is moved to before r1 in OPTnl.

Note that, over the first k requests, w and x will be 1 a total of k times
(once for each of the k servers of OPTnl). For ri, when w is 1, this implies that,
immediately before rk+1, OPTnl will have a server at the the nearest ancestor
of ri with path level y. When x is 1, this implies that, immediately before rk+1,
the server i of OPTnl will be at the nearest ancestor of the initial position of
server i with path level z. Observe that this indeed encodes the configuration of
OPTnl just before rk+1 in the advice bits of the first k requests.

Algorithm and Advice for rk+1, . . . , rn From rk+1 to rn, given a request,
ri, where k + 1 ≤ i ≤ n, and the advice, let P be the path formed by all the
adjacent nodes of path level y that includes the nearest ancestor of ri with path
level y. That is, P is the unique path from the chosen caterpillar decomposition
of T with nodes of path level y that intersects the path between ri and the root.
Now, define a path, Q, on the tree as follows:

– if x = 1, Q runs from ri to the end of P nearest the root.

– if x = 0, Q runs from ri to the end of P furthest from the root.

PATH-COVER will serve ri with the closest server along Q. After serving ri,
PATH-COVER will move this server to the nearest ancestor of ri with path level
z.



The advice is defined so that PATH-COVER and OPTnl will use a server from
the same position for each request. For k + 1 ≤ i ≤ n, the advice for ri will be
defined as follows:

w: 0 (not used)
x: Let s be the position of the server used by OPTnl to serve

ri, and let c be the ancestor of ri with the same path level
as s (see Figure 3).

1, if s is between c and the root of the tree.
0, otherwise.

y: A number in binary indicating the path level of s.
z: A number in binary indicating the path level of the node

to which the server used for ri is moved to in OPTnl im-
mediately after serving ri.

s1

c

s0

ri

Fig. 3. An illustration of the definition of the advice bit x for ri, where k + 1 ≤ i ≤ n,
using the caterpillar decomposition from Figure 1. s1 represents a position of s such
that x = 1 and s0 represents a position of s such that x = 0.

Fact 3 The algorithm uses 2 + 2dlog(p+ 1)e bits of advice per request, where p
is the minimal caterpillar dimension of the tree.

Proof. For each request, the bits of advice are composed of two control bits and
two numbers encoded in binary, representing a path level. The two numbers
encoded in binary range from 1 to p + 1 where p is the minimal caterpillar
dimension of the tree. ut

Analysis

Theorem 2. PATH-COVER is 1-competitive on finite trees.



Proof. From r1 to rk, all the requests are served by the nearest server. This
cost can be bounded by k∆, where ∆ is the diameter of the tree. Immediately
after serving rk, PATH-COVER matches the configuration of OPTnl. The cost
to match a configuration can also be bounded by k∆.

We will show, by induction on i ≥ k + 1, that:

1. Just before ri, the configuration of PATH-COVER and the configuration of
OPTnl match.

2. To serve ri, they use a server from the same position.

By the definition of the algorithm and the advice, the configurations of PATH-
COVER and OPTnl match just before rk+1. This establishes point 1 for the base
case of rk+1. Property 2 of OPTnl guarantees that the position of the server,
sk+1, used by OPTnl to serve rk+1 is at the same path level or higher that rk+1.
Property 3 of OPTnl ensures that, just before serving rk+1, there are no servers
between sk+1 and rk+1. Given that the configurations of PATH-COVER and
OPTnl match just before rk+1, the first server, in PATH-COVER, along the
path defined by the advice is at sk+1. This establishes point 2 for the base case
of rk+1.

Assume that the induction hypothesis is true for j, k + 1 ≤ j ≤ i− 1. From
the induction hypothesis, we know that the configurations of PATH-COVER
and OPTnl prior to serving ri−1 match, and that both PATH-COVER and
OPTnl will move a server from the same position in the tree to ri−1. Therefore,
the configurations of PATH-COVER and OPTnl still match upon serving ri−1.
Property 1 of OPTnl guarantees that only the server used for ri−1 can be moved
if there is a server moved between the time that ri−1 is served and just before
ri is served. In that case, by the definition of the advice and the algorithm,
PATH-COVER will move the server located at ri−1 to the same position that
it is moved in OPTnl. Property 1 also guarantees that this is the only server
moved by OPTnl. Therefore, the configurations of PATH-COVER and OPTnl
will match immediately before ri, proving point 1. As shown in the base case,
properties 2 and 3 of OPTnl, and the fact that the configurations of OPTnl and
PATH-COVER match just before ri, ensures that the first server along the path
defined by the advice is at the same position as the server used by OPTnl. This
proves point 2.

It follows that PATH-COVER mimics the moves of OPTnl from rk+1 to rn,
and, therefore,

PATH-COVER(σ) ≤ OPT(σ) + 2k∆ .

ut

5 The Line

In this section, we consider a special case of the tree: the line. The caterpillar
dimension for the line is 1 which implies that our algorithm PATH-COVER re-
quires 4 bits of advice. However, as the servers essentially do not change path



levels on the line, a single bit of advice indicating the direction of the server to be
used is all that is needed for a strictly 1-competitive, i.e., optimal, algorithm. In
this section, we present the details of such an optimal algorithm, COMPLIANT
that is a variant of PATH-COVER, the algorithm with advice for the tree pre-
sented in the previous section. Note that for this section, we will assume without
the loss of generality that the optimum algorithm is lazy.

The definition of the advice will be based on a minimum weighted matching
between the servers of COMPLIANT and those of OPT after OPT serves a
request but before COMPLIANT serves it, where the server used by OPT for
the request is matched to a server of COMPLIANT immediately to the right
or the left. For completeness, we show in the appendix that on the line such a
matching always exists.

5.1 The Algorithm COMPLIANT

For any request on the line, there are at most two adjacent servers. For request ri,
the advice is defined based on a minimum weighted matching between the servers
of OPT immediately after OPT has served ri and the servers of COMPLIANT
immediately before serving ri, where the server that OPT used for ri, denoted
by s, is matched to the first server of COMPLIANT to the left or the right. The
bit of advice will indicate left or right according to this minimum matching.

Algorithm COMPLIANT: Serve the request with the first server in the
direction indicated by the advice.

The one bit of advice given to the algorithm with each request is formally
defined as follows:

1, if s is matched to the first server of COMPLIANT on the
right of ri.

0, otherwise.

5.2 Analysis

For the analysis of the algorithm, we will break up the process of serving a
request, ri, by OPT and COMPLIANT into two operations. They are:

1. OPT serves ri
2. COMPLIANT serves ri

Further, the analysis will make use of a potential function Φ which is the
weight of the minimum weighted matching between the servers of OPT and
COMPLIANT. Φi will denote Φ after Operation 2 for request ri, and Φ′i will
denote Φ after Operation 1 for request ri.

Theorem 3. COMPLIANT is optimal.

Proof. We first prove that for all requests of σ

1. OPT(ri) ≥ Φ′i − Φi−1
2. −COMPLIANT(ri) ≥ Φi − Φ′i

for Φi and Φ′i as defined above.



Point 1: OPT(ri) ≥ Φ′i − Φi−1. Let M be the matching used to calculate Φi−1
and let Φ

′∗
i be the weight of M after Operation 1 of ri. By definition Φ′i ≤ Φ

′∗
i ,

hence Φ′i − Φi−1 ≤ Φ
′∗
i − Φi−1. The claim follows since Φ

′∗
i − Φi−1 ≤ OPT(ri).

Point 2: −COMPLIANT(ri) ≥ Φi − Φ′i. Let t be the server used by COM-
PLIANT to serve ri as directed by the advice and let y be the distance that t
is moved. By the definition of the advice and the algorithm, in the minimum
matching M ′, used to calculate Φ′i, t is matched to s, where s is the server used
by OPT to serve ri. Let Φ∗i be the weight, after Operation 2, of M ′. As t moves
to the position of s, i.e., ri, we have Φ∗i −Φ′i = −y = −COMPLIANT(ri). Since
Φi ≤ Φ∗i , point 2 is proved.

Adding the two inequalities gives

COMPLIANT(ri) ≤ OPT(ri) + Φi−1 − Φi . (10)

Summing Inequality 10 over all requests and using the fact that Φn ≥ 0, we
get

COMPLIANT(σ) ≤ OPT(σ) + Φ0 .

COMPLIANT is strictly 1-competitive, i.e., optimal, as Φ0 = 0 since COMPLI-
ANT and OPT start from the same configuration. ut

6 Conclusions

We give an improved upper bound for the k-server problem with advice on gen-
eral metric spaces. Moreover, we believe that our algorithm and our analysis are
more intuitive and simpler than previous ones, and may, thus, lead to further
improvements in the upper bound. We, also, give a 1-competitive k-server al-
gorithm with advice for finite trees, using a number of bits of advice which is
a function of the caterpillar dimension of the tree. For the line, we give an op-
timum algorithm with 1-bit of advice. The obvious open problem that remains
is to give tight bounds for the k-server problem with advice on general metric
spaces or for specific metric spaces.
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A Minimum Matching

Lemma 3. Let A and B be two sets of points of equal size on the line. For any
a ∈ A there is a minimum weighted matching between the points of A and the
points of B such that a is matched to a point b ∈ B, where b is the first element
of B to the right or the left of a.

Proof. Given a minimum weighted matching between the sets A and B on the
line, let a ∈ A be matched to a server e ∈ B such that e is not the first element
of B to the right or the left of a and let b ∈ B be a point that is the first element
of B to the left or the right of a and between a and e on the line. Let c ∈ A be
the point to which b is matched. Let d(x, y) be the distance between the points
x and y on the line. Without loss of generality, assume that b and e are to the
right of a.

If c is between b and e, then d(a, b) + d(c, e) ≤ d(a, e) + d(b, c), so a can
be matched to b and c can be matched to e without increasing the cost of the
matching.

If c is to the right of e, then d(a, b) + d(e, c) ≤ d(a, e) + d(b, c) since d(a, b) +
2d(b, e) + d(e, c) = d(a, e) + d(b, c). So, a can be matched to b and c can be
matched to e without increasing the cost of the matching.

If c is to the left of a, then d(a, b) + d(c, e) = d(c, b) + d(a, e) since d(a, b) +
d(c, e) = d(a, e) + 2d(a, b) + d(c, b) = d(a, b) + d(c, e). So, a can be matched to b
and c can be matched to e without increasing the cost of the matching.



The final case is that c is between a and b. Note that this is the previous case
with a and c swapped. As in the previous case, a can be matched to b and c can
be matched to e without increasing the cost of the matching. ut


