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Abstract. We consider the model of online computation with advice
[5]. In particular, we study the k-server problem under this model. We

prove two upper bounds for this problem. First, we show a
l
dlog ke

b−2

m
-

competitive online algorithm for general metric spaces with b bits of
advice per request, where 3 ≤ b ≤ log k. This improves upon the recent
result of [1]. Moreover, we believe that our algorithm and our analysis
are more intuitive and simpler than those of [1]. Second, we give a 1-
competitive online algorithm for trees which uses 2 + 2dlog(p + 1)e bits
of advice per request, where p is the caterpillar dimension of the tree.

Keywords: online computation with advice, k-server problem, online
algorithms, competitive analysis

1 Introduction

Online algorithms have been the subject of intense research activity over the
past decades. The traditional setting is that of an online algorithm that does
not have any knowledge about the future and that of a worst-case analysis using
competitive analysis (cf. [3]). In the present paper we consider a model recently
introduced by Emek et al. [5], dubbed online computation with advice, which is
aimed at relaxing the “absolutely no knowledge about the future” setting and
at giving a general framework to quantify the interplay between the amount of
knowledge about the future and the possible improvement in the competitive
ratio. Roughly speaking, this model augments the power of the online algorithm
by a series of queries. Each query is issued by the online algorithm when it re-
ceives a new request. These queries map the whole request sequence, including
future requests, to some domain of advice. Thus, they provide the online algo-
rithm with some information about the future. One is typically interested in
the interplay between the size of the domain of advice, i.e., how many bits of
advice are received with each request, and the attainable competitive ratio. For
a formal definition of this model, see Section 2.

A number of results for various online problems have been obtained in the
above model and in a variant thereof introduced by Böckenhauer et al. [2]. In
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the present paper, we consider the k-server problem under the model of online
computation with advice. Emek et al. [5] gave an upper bound of kO( 1

b ) on the
competitive ratio of deterministic algorithms on general metric spaces, where
b is the number of bits of advice per request. This upper bound was recently
improved to 2

⌈
dlog ke
b−1

⌉
by Böckenhauer et al. [1]. Better bounds for specific metric

space where also given (see the paragraph “Related Work” below).
In this paper, we improve the upper bound for deterministic k-server algo-

rithms with advice on general metric spaces by giving a deterministic online
algorithm with b bits of advice per request, for b ≥ 3, whose competitive ra-
tio is

⌈
dlog ke
b−2

⌉
. While the improvement over the previous result is only about a

factor of 2, we believe that our algorithm and analysis are more intuitive and
simpler than previous ones, and may lead to further improvements in the upper
bound. Also, we consider the class of metric spaces of finite trees, and give a
1-competitive deterministic online algorithm. The number of bits of advice per
request used by this algorithm is 2 + 2dlog(p + 1)e, where p is the caterpillar
dimension of the tree (cf. [8]). We use this measure for the tree since it is at most
the height of the tree, and it is at most logN , where N is the number of nodes
in the tree [8]. This measure is preferable over other measures, such as height,
because it remains constant for degenerate trees, such as the line, the spider and
the caterpillar.

Related Work The model of online computation with advice considered in the
present paper was introduced by Emek et al. [5]. In that paper, the authors
gave tight bounds of Θ(log n/b) for deterministic and randomized online algo-
rithms with advice for Metrical Task Systems, where n is the number of states
of the systems and b is the number of bits of advice per request. They also gave
a deterministic online algorithm with advice for the k-server problem which is
kO( 1

b )-competitive, where Θ(1) ≤ b ≤ log k. This was improved by Böckenhauer
et al. [1] who gave a deterministic online algorithm with advice for general met-
ric spaces with a competitive ratio of 2

⌈
dlog ke
b−1

⌉
. Böckenhauer et al., also, gave

a deterministic algorithm for the Euclidean plane with a competitive ratio of
1

1−2 sin( π
2b

) , where b ≥ 3 is the number of bits of advice per request. For the uni-

form metric space (the problem of paging), a 1-competitive deterministic online
algorithm with 1 bit of advice per request is implicit in [4].

Böckenhauer et al. [2] introduced a somewhat similar model for online al-
gorithms with advice, where the advice is a single tape of bits instead of being
given separately for each request. This allows an algorithm to read a different
number of bits of advice per request, but it requires that the online algorithm
knows how many bits of advice to read with each request. Thus, the two models
are, in general, incomparable. We note that upper bounds in the model of [5], as
those given in the present paper, carry over to the model of [2]. Several results
were given in this model [4, 2, 6, 7, 1]. For example, in [4, 2], the authors explore
the number of bits of advice required for deterministic and randomized paging
algorithms, scheduling algorithms and routing algorithms to be 1-competitive.



2 Preliminaries

Online algorithms receive their input piece by piece. Each piece, or request, is
an element of some set R, and the algorithm receives a request sequence denoted
σ = r1, . . . , rn, where n = |σ| and ri is the ith request. An online algorithm must
perform all of the actions pertaining to a request before receiving the subsequent
requests. These actions incur some cost to the online algorithm. In this paper,
we consider only minimization problems.

We use the definition of deterministic online algorithms with advice as pre-
sented in [5]. An online algorithm with advice is defined as a request-answer
game that consists of a request set, R; a sequence of finite nonempty answer sets,
A1, A2, . . . ; and a sequence of cost functions, costn : Rn×A1×A2× · · ·×An →
R+ ∪ {∞} for n = 1, 2, . . .. In addition, online algorithms with advice have ac-
cess via a query to an advice space, U , which is a finite set. The advice space
has a size of 2b, where b ≥ 0 is the number of bits of advice provided to the
algorithm with each request. With each request, the online algorithm receives
some advice that is defined by a function, ui : R∗ → U , that is applied to the
whole request sequence, including future requests. A deterministic online algo-
rithm with advice can, thus, be represented as a sequence of pairs (gi, ui), where
gi : Ri × U i → Ai for i = 1, 2, . . .. The action that the online algorithm takes
upon receiving request ri is a function of the first i requests, r1, . . . , ri, and the
advice received so far, u1(σ), . . . , ui(σ).

The cost of the online algorithm is defined as ALG(σ) = costn(σ,ALG[σ]),
where ALG[σ] =< a1, . . . , an >∈ A1×· · ·×An and aj = gj(r1, . . . , rj , ui, . . . , uj)
for j = 1, . . . , n. At the risk of a slight abuse of notation, we will denote the cost of
a subsequence of σ as ALG(ri, . . . , rj), where the prefix is understood implicitly.

For a minimization problem, we say that an algorithm is c-competitive, or
has a competitive ratio of c, if, for every finite request sequence σ, ALG(σ) ≤
c ·OPT(σ) + ζ, where ζ is not dependent on the request sequence and OPT(σ)
is the optimum cost over σ. If ζ = 0, we say that an online algorithm is strictly
c-competitive.

The k-server problem consists of a metric space, M, k mobile servers and
a finite request sequence, σ. Let M = (M,d), where M is a set of nodes, d :
M ×M → R+ is a distance function on M and |M | = N > k. Each request of
σ will be to a node of M, and a server must be moved to the requested node
before the algorithm will receive the subsequent request. The goal is to minimize
the distance travelled by the k servers over σ. A lazy k-server algorithm is an
algorithm that, upon each request, only moves a single server to the request if
it is uncovered.

For a metric space which is a tree, we say that a server, s, is adjacent to a
request, ri, if, along the shortest path between the position of s and ri, there
are no other servers.

The caterpillar dimension of a rooted tree, T , with root r, denoted cdim(T ),
is defined as in [8]. For a tree, T , composed of a single node, cdim(T ) = 0.
For a tree, T , with two or more nodes, cdim(T ) ≤ k + 1 if there exists edge
disjoint paths, P1, . . . , Pq, beginning at the root r such that each component



Tj of T − E(P1) − · · · − E(Pq) has cdim(Tj) ≤ k, where E(Pi) are the edges
of Pi. The components Tj are rooted at their unique vertex lying on some Pi.
The decomposition of T into these edge disjoint paths is called the caterpillar
decomposition of the tree. All the nodes of Pi, 1 ≤ i ≤ q, except the root, are
assigned path level k + 1. The root is assigned path level k + 2. Note that the
root of the tree has a path level one more than the caterpillar dimension of the
tree.

Given an unrooted tree, G, we define the caterpillar dimension of G as the
minimum over all nodes, v ∈ G, of the caterpillar dimension of G when rooted
at v. In what follows, we refer to the caterpillar dimension of unrooted trees as
defined here.

3 An Upper Bound for General Metric Spaces

In this section, we present a
⌈
dlog ke
b−2

⌉
-competitive deterministic online algorithm

with advice, called CHASE, for the k-server problem on general metric spaces,
with b bits of advice per request, where b ≥ 3. For convenience of notation, we
use α =

⌈
dlog ke
b−2

⌉
.

In order to clearly present the algorithm and proof, we will first design and
analyze the algorithm such that it gets a variable number of bits of advice
with each request. The algorithm will receive at least 2 bits of advice with each
request, and the total number of advice bits will not exceed bn for any prefix of
n requests. Afterwards, we will show how to adapt the algorithm so that it gets
at most b bits of advice with each request using a transformation of [1].

Roughly speaking, our algorithm works as follows: given a request sequence,
σ, we consider an optimal algorithm for this sequence. Based on this optimal
algorithm, we partition σ into k subsequences, σs, such that all the requests of
σs are served according to the optimal algorithm by server s. With log k bits
of advice per request, we can indicate, with each request of σs, the identity of
the server s, and, thus, our online algorithm with advice would precisely follow
the optimum algorithm. If, however, we have only b < log k bits of advice per
request, we do that only roughly every log k/b requests of σs. We call these re-
quests “anchors”. The rest of the requests of σs are served in a greedy manner,
i.e., they are served by the closest server to the request which then returns to
its previous position. By serving requests in this way, server s always stays at
its last anchor. Thus, the cost of serving the (log k/b) − 1 non-anchor requests
between any two anchors is bounded from above by 2 log k/b times the distance
from the last anchor to the furthest non-anchor request. This gives us a compet-
itive ratio of O(log k/b). Some fine tuning of the above ideas gives us our result.
In what follows, we formally define the algorithm and prove its competitive ratio.

Algorithm CHASE: At the beginning, all servers are unmarked.
Given a request, rj , and the advice, do:



– If the advice is 00, serve rj with the closest server to rj and return it to its
previous position.

– If the advice is 10, serve rj with the closest unmarked server and mark this
server. Do not return the server to its previous position.

– If the advice is 11t, where t is a server number encoded in dlog ke bits, serve
the request with server number t.

In order to define the advice, we will fix a optimum algorithm, OPT, that we
assume to be a lazy algorithm. Henceforth, we refer to it as the lazy optimum.
We will then partition the request sequence into k subsequences, σ1, . . . , σk,
where σs is the trace of the server s in OPT. In other words, σs consists of the
requests served by server s in the lazy optimum. It should be noted that the
requests of σs are not necessarily consecutive requests in σ. Let rsj be the jth

request served by server s over σs. Recall that α =
⌈
dlog ke
b−2

⌉
. Independently, for

each server, we choose an index 1 ≤ qs ≤ α. The way to choose this index will be
defined later. The request sequence σs is divided into α-length cycles starting at
rsqs+1. We will denote the ith cycle of σs by csi . The first cycle, cs1, which starts
at request rs1 and ends at request rsqs , may have a length less than α. Let Cs be
the total number of cycles in σs.

The advice will be defined as follows for request rsj :

– 10, if j = qs, i.e., the last request of the first cycle.
– 11t, if j = qs + iα for some i ≥ 1, i.e., the last request of all cycles except

the first one. Here, t is the server number that serves request rsqs in CHASE
encoded in dlog ke bits.

– 00, if j 6= qs + iα, i.e., everywhere else.

The first two bits of the advice per request will be referred to as the control bits.

First, we state a technical lemma that we will use in our proof.

Lemma 1. Given a sequence of α non-negative values, a1, . . . , aα, there is an
integral value, q, where 1 ≤ q ≤ α, such that

q∑
i=1

(2(q − i) + 1)ai +
α∑

i=q+1

2(α+ q − i)ai ≤ α
α∑
i=1

ai .

Proof. Summing the expression over all possible values of q, we get
α∑
q=1

[ q∑
i=1

(2(q − i) + 1)ai +
α∑

i=q+1

2(α+ q − i)ai
]

=
[ α∑
q=1

(
2(α− q) + 1

)]
·
α∑
i=1

ai

= α2
α∑
i=1

ai .

It follows that one of the α possible values of q gives at most the average
value, i.e., α

∑α
i=1

ai. The lemma follows.



Now, we prove the main theorem of this section.

Theorem 1. For every b ≥ 3, algorithm CHASE is an
⌈
dlog ke
b−2

⌉
-competitive

k-server algorithm for general metric spaces with b bits of advice per request .

Proof. For the proof, we will compare the cost of CHASE and OPT separately
for every subsequence σs, and cycle by cycle within each σs. Recall that α =⌈
dlog ke
b−2

⌉
. Note that the first cycle and the last cycle may be of length less than

α.
Consider the ith cycle of server s in OPT for i > 1 (we will deal with the first

cycle later). Let t be the server in CHASE that serves request rsqs . We will denote
rs(i−2)α+qs , the last request of the previous cycle, by INITsi . We claim that, just
before the cycle starts, both OPT and CHASE will have a server at INITsi . This
is true because the advice for request rs(i−2)α+qs indicated to CHASE to bring
server t to INITsi and, by the definition of the algorithm, t will always return
to INITsi between rs(i−2)α+qs and rs(i−2)α+qs+1. For OPT, by definition of the
subsequence σs, OPT serves rs(i−2)α+qs with s and does not move s between
request rs(i−2)α+qs and request rs(i−2)α+qs+1.

Also, observe that just before each of the requests between rs(i−2)α+qs+1 and
rs(i−1)α+qs inclusive, i.e., the requests of the ith cycle, server t of CHASE is at
INITsi . Recall that CHASE serves these requests except the last one by using
the closest server and, then, returns it to its prior position. Therefore, the cost
to CHASE for any request rs(i−2)α+qs+j , where 1 ≤ j ≤ α − 1, i.e., the requests
of cycle i except the last one, is

CHASE(rs(i−2)α+qs+j) ≤ 2d(INITsi , r
s
(i−2)α+qs+j) . (1)

By the triangle inequality and Equation (1),

CHASE(rs(i−2)α+qs+j) ≤ 2
j∑
l=1

d(rs(i−2)α+qs+l−1, r
s
(i−2)α+qs+l) . (2)

For request rs(i−1)α+qs , i.e., the last request of cycle i, CHASE serves the
request using server t that is at rs(i−2)α+qs . We have, by the triangle inequality,

CHASE(rs(i−1)α+qs) = d(INITsi , r
s
(i−1)α+qs)

≤
α∑
l=1

d(rs(i−2)α+qs+l−1, r
s
(i−2)α+qs+l) . (3)

Observe that the cost of OPT to serve rs(i−2)α+qs+j for 1 ≤ j ≤ α, i.e.,
the requests of cycle i, is d(rs(i−2)α+qs+j−1, r

s
(i−2)α+qs+j)). Using this fact and

Equations (2) and (3), we can bound the cost of CHASE over a cycle by the cost



of OPT as follows:
α∑
j=1

CHASE(rs(i−2)α+qs+j) ≤
α−1∑
j=1

(
2

j∑
l=1

OPT(rs(i−2)α+qs+l)
)

+
α∑
l=1

OPT(rs(i−2)α+qs+l)

=
α∑
j=1

[2(α− j) + 1]OPT(rs(i−2)α+qs+j) . (4)

The analysis of the first cycle is, essentially, the same as the analysis of the
ith cycle, i > 1, with the exception that an additive constant is introduced per
request of the first cycle. The additive constant results from the fact that, during
the first cycle of σs, CHASE does not necessarily maintain a server at the initial
position of s. Nevertheless, by the definition of CHASE, there will always be an
unmarked server in one of the locations of the initial configuration. Let ∆ be
the diameter of the initial configuration. Therefore, for any request of the first
cycle, rsl , of σs, analogously to Equation (2), we have

CHASE(rsl ) ≤ 2
(
∆+

l∑
m=1

d(rsm−1, r
s
m)
)
, (5)

where rs0 is the initial position of s. Analogous to Equation (4), summing Equa-
tion (5) over all requests of the first cycle of s, gives

qs∑
l=1

CHASE(rsl ) ≤
qs∑
l=1

[2(qs − l) + 1]OPT(rsl ) + 2α∆ . (6)

If we assume the cost for requests with indexes less than 0 to be 0 for both OPT
and CHASE, we can rewrite Equation (6) to be more congruent with Equation
(4) as follows:

α∑
j=1

CHASE(rs−α+qs+j) ≤
α∑
j=1

[2(α− j) + 1]OPT(rs−α+qs+j) + 2α∆ . (7)

Using Equations (4) and (7), and summing over all cycles, gives

CHASE(σs) ≤
Cs∑
i=1

α∑
j=1

[2(α− j) + 1]OPT(rs(i−2)α+qs+j) + 2α∆ . (8)

Define a1, . . . , aα such that aj =
∑Cs

i=1
OPT(rs(i−1)α+j), i.e., the cost of OPT

for the requests in σs in jumps of α requests. We can rewrite Equation (8) as

CHASE(σs) ≤
q∑
i=1

(2(q − i) + 1)ai +
α∑

i=q+1

2(α+ q − i)ai + 2α∆ . (9)



By Lemma 1, there is a value 1 ≤ qs ≤ α such that

CHASE(σs) ≤ α
α∑
i=1

ai + 2α∆ = αOPT(σs) + 2α∆ .

We chose this qs separately for each server s in order to define the cycles.
Summing over all k subsequences σs concludes the proof of the competitive ratio.

Finally, we show that the algorithm uses at most bn bits over any prefix of
n requests. There are 2 control bits with each request. Let t be the server in
CHASE that serves rsqs , i.e., the last request of the first cycle of σs. There are
at least α requests of σs between any two requests, where the id of t is given in
the advice. Since α =

⌈
dlog ke
b−2

⌉
, the claim follows.

In order to adapt the algorithm so that it receives b bits of advice per request,
we use a transformation of [1]. Two control bits will be given with each request,
and the remaining b− 2 bits will contain portions of server ids. The control bits
will be as defined previously. We then define a string as the concatenation of all
server ids given for the whole sequence. This string will be broken into (b−2)-bit
chunks and a single chunk will be given with each request. The algorithm can
store these (b−2)-bit chunks in a FIFO queue and will have dlog ke bits available
to be read from the queue when dictated by the control bits.

4 k-Server with Advice on Trees

In this section, we describe a deterministic online algorithm with advice for the
k-server problem on finite trees, called PATH-COVER, that is 1-competitive and
uses 2 + 2dlog(p + 1)e bits of advice per request, where p denotes the minimal
caterpillar dimension of the tree. Similar results can be obtained if other mea-
sures of the tree, such as its height, are used instead of the caterpillar dimension.
We chose this measure since it gives a 1-competitive algorithm with a constant
number of bits of advice per request for degenerate trees such as the line or a
caterpillar. Furthermore, the caterpillar dimension is at most the height of the
tree, and is at most logN , where N is the number of nodes in the tree [8].

The algorithm and advice are based on the actions of a non-lazy optimum
algorithm with certain properties for the given sequence. First, we describe this
non-lazy algorithm and show that it has optimum cost.

4.1 Non-Lazy Optimum

We show that, for every sequence of requests, there is an algorithm, OPTnl,
with optimal cost that, also, has the following three properties given that the
algorithm can chose its initial configuration.

1. Between ri and just before ri+1, OPTnl moves at most a single server, s.
Note that s may make multiple moves.



2. Just before ri, s is at the same path level or higher than ri. The path level
is according to the caterpillar decomposition of the tree.

3. s is adjacent to ri just before ri.

Given the caterpillar decomposition of T that minimizes cdim(T ) and a lazy
optimum, OPTl, we first build OPT′nl which has the first two properties above.
For u, v ∈ T , let maxPath(u, v) be the node nearest u on the highest path level
on the path between u and v. We choose the initial configuration of OPT′nl as
follows: for each of the k servers si, place si at maxPath(ui, vi), where ui is the
initial position of si, and vi is the position of the first request served by si in
OPTl. Then, each request, rj , is served in OPT′nl with the same server as OPTl.
After serving rj , place the server, t, used for rj at maxPath(rj , rq), where rq
is the next request served by t in OPTl. Observe that the first two properties
above hold for OPT′nl.

Claim. For any σ, OPT′nl(σ) = OPTl(σ).

Proof. The claim follows from the fact that the trajectories followed by each
of the servers according to OPT′nl and OPTl are the same. The only difference
being that some of the moves are done earlier in OPT′nl than in OPTl.

Now, we construct OPTnl based on OPT′nl to satisfy property 3 along with
the first two properties without increasing the cost.

OPTnl will be defined by induction on the request sequence. Let T ∗ =
(t∗1, q1), . . . , (t∗m, qm) be all the server moves, in order, performed by OPT′nl such
that the ordered pair (x, y) defines a move of a server from position x to posi-
tion y, and m ≥ n is the total number of server moves performed by OPTnl. Let
S∗ = (s∗1, r1), . . . , (s∗n, rn) be the subsequence of T ∗, where the ith ordered pair
indicates that the server at position s∗i serves ri in OPT′nl. We build T j and Sj ,
j ≥ 0, inductively, where T 0 = T ∗ and S0 = S∗. T j = (tj1, q1), . . . , (tjm, qm) will
have all three properties above until after serving request rj (in fact Property
1 will hold for the entire sequence T j), and Sj = (sj1, r1), . . . , (sjn, rn) will have
the property that sj1, . . . , s

j
j are adjacent to their respective requests.

Assume that Si−1 and T i−1 are well defined. This is trivially true for T 0 and
S0. In order to construct Si and T i, we need to consider si−1

i which is either
adjacent or not to ri. If si−1

i is adjacent to ri, then Si := Si−1 and T i := T i−1.
Otherwise, if si−1

i is not adjacent to ri, there exists a server at node x on the
path between si−1

i and ri which is adjacent to ri. In this case, the relevant moves
in both T and S will be modified such that the server at x serves request ri,
and the server at si−1

i will be used the very next time that the server at x
would have been used. To formally define T i and Si we proceed as follows: Si

is defined as Si−1 from (si1, r1) to (sii−1, ri−1), and T i is defined as T i−1 from
(ti−1

1 , q1) to (ti−1
j , qj−1), where qj is ri. The next moves in Si and T i are defined

as (sii, ri) := (tij , qj) := (x, ri). From (tij+1, qj+1) to (tim, qm), T i is defined as T i−1

except for the next occurrence of (x, ql) in T i−1, l < m. Set (til, ql) := (si−1
i , ql)

in T i. If ql is a request, say rp, then we, also, set (sip, rp) := (si−1
i , rp) for Si.

The rest of Si is defined as Si−1.



Lemma 2. On the tree, the cost of OPTnl is no more than the cost of OPT′nl,
and OPTnl has the following three properties:

1. Between ri and just before ri+1, OPTnl moves at most a single server, s.
2. Just before ri, s is at the same path level or higher than ri.
3. s is adjacent to ri just before ri.

Proof. First, we show that the cost of OPTnl is no more than the cost of OPT′nl.
This is done by induction on the construction steps of T i (and Si). For i = 0
the claim is trivial. For the inductive step, we note that we change at most two
moves between T i−1 and T i as in the construction above. With the notations
of the construction above, we note that the cost of T i for qi and ql is at most
d(sii, qj) + d(si−1

i , sii) + d(si−1
i , ql) = d(si−1

i , qj) + d(sii, ql) which is the cost paid
by T i−1 for qi and ql.

Property 1 holds for OPTnl because it holds for OPT′nl, no moves are added
in the construction, and the only changes are to the first move after a request is
issued.

We now show by induction on i that property 2 holds for Si. This is true for
S0 since property 2 holds for OPT′nl. For the induction step, let s′ be the server
used by Si−1 to serve ri, and let s be the server used by Si to serve ri . Let `(v)
denote the path level of a node v. We know by the induction hypothesis that
`(s′) ≥ `(ri). Also, s lies on the path between s′ and ri, and, by the recursive
nature of the caterpillar decomposition, it follows that `(s) ≥ `(ri). If ql is not
a request, there is nothing else to prove. If ql is a request, by the induction
hypothesis, we know that `(s) ≥ `(ql), and we have that `(s′) ≥ `(s). Therefore,
`(s′) ≥ `(ql). Thus, property 2 holds for Si.

Property 3 is immediate from the inductive construction.

4.2 The Algorithm

There will be two stages to the algorithm. The initial stage will be for the first
k requests and will be used to match the configuration of PATH-COVER to
that of OPTnl as defined in the previous section. Over the remaining requests,
PATH-COVER will be designed to act exactly as OPTnl. PATH-COVER will
receive 2(l + 1) bits of advice per request, where l = dlog(p + 1)e and p is the
minimal caterpillar dimension of the tree. The advice will be of the form wxyz,
where w and x will be 1 bit in length, and y and z will be l bits in length.

Algorithm and Advice for r1, . . . , rk From r1 to rk, PATH-COVER will
serve each request with the nearest server regardless of the advice. As for the
advice, for request ri, where 1 ≤ i ≤ k,

– if w = 1, the algorithm stores the node nearest ri which has the path of level
y.

– if x = 1, the algorithm stores the node nearest the initial position of the ith
server which has the path of level z.



Note that both w and x can be 1 for request ri. Immediately after serving rk,
PATH-COVER will use the first k stored nodes as a server configuration and
will move to this configuration at minimal cost (minimum matching).

For 1 ≤ i ≤ k, the advice for ri will be defined as follows:

w: 1, if the server used for ri in OPTnl does not serve another request
up to rk.

0, otherwise
x: 1, if the ith server does not serve any of the first k requests in OPTnl.

0, otherwise
y: A number in binary indicating the path level to which the server

used for ri is moved to in OPTnl after serving ri.
z: A number in binary indicating the path level to which the ith

server is moved to before r1 in OPTnl.

Over the first k requests, w and x will be 1 a total of k times (once for each
of the k servers of OPTnl). For ri, when w is 1, this means that, immediately
after rk, OPTnl will have a server at the path of level y between ri and the root.
When x is 1, this means that, immediately after rk, the ith server of OPTnl will
be at the path of level z between the initial position of the ith server and the
root. This is the server configuration of OPTnl immediately after rk encoded in
the bits of advice over the first k requests.

Algorithm and Advice for rk+1, . . . , rn From rk+1 to rn, given a request,
ri, where k + 1 ≤ i ≤ n, and the advice, let P be the unique path of level y
between ri and the root. Now, define a path, Q, on the tree as follows:

– if x = 1, Q runs from ri to the end of P nearest the root.
– if x = 0, Q runs from ri to the end of P furthest from the root.

PATH-COVER will serve ri with the closest server along Q. After serving ri,
PATH-COVER will move this server to the node of the path of level z nearest
to ri.

For k + 1 ≤ i ≤ n, the advice for ri will be defined as follows:

w: 0 (not used)
x: Let s be the server used by OPTnl to serve ri, and let c be the

node of the same path level as the location of s closest to ri.
1, if s is between c and the root of the tree.
0, otherwise.

y: A number in binary indicating the path level to which of the server
that OPTnl uses for ri.

z: A number in binary indicating the path level to which the server
used for ri is moved to in OPTnl immediately after serving ri.



Analysis

Theorem 2. PATH-COVER is 1-competitive on finite trees.

Proof. From r1 to rk, all the requests are served by the closest server. This cost
can be bounded by k∆, where ∆ is the diameter of the tree. Immediately after
rk, PATH-COVER matches the configuration of OPTnl. The cost to match a
configuration can be bounded by k∆.

According to the definition of the advice and the algorithm, the configura-
tion of PATH-COVER matches the configuration of OPTnl after serving rk. We
show that starting at request rk+1, the configurations of PATH-COVER and
OPTnl match just before serving each request, and that PATH-COVER serves
the request with a server from the same position as does OPTnl. Assume that
the configurations of PATH-COVER and OPTnl match until immediately before
serving ri for some k+ 1 ≤ i ≤ n. Let s be the server used by OPTnl for ri. We
claim that PATH-COVER and OPTnl will use a server from the same position
for ri. The induction assumption that the configurations of PATH-COVER and
OPTnl match immediately before serving ri and the third property of OPTnl
guarantee that there is no server between the position of s and ri in PATH-
COVER. The second property of OPTnl guarantees that s is at the same path
level or higher than ri. This implies that the advice provided to PATH-COVER
specifies a unique server that must be at the same position in PATH-COVER as
s in OPTnl. Immediately after serving ri, PATH-COVER and OPTnl move the
server used for ri to the same node in the tree as per their definitions. So, im-
mediately before serving ri+1, the configurations of OPTnl and PATH-COVER
are the same.

Therefore,

PATH-COVER(σ) ≤ OPT(σ) + 2k∆

4.3 Special Metric Spaces and PATH-COVER

This section presents some variations and implication of the previously described
algorithm, PATH-COVER, for special metric spaces. More detailed proofs of
each case can be found in [9]

The Line The caterpillar dimension for the line is 1 which implies that our
algorithm PATH-COVER requires 4 bits of advice. However, as the servers es-
sentially do not change path levels on the line, a single bit of advice indicating the
direction of the server to be used is all that is needed for a strictly 1-competitive
algorithm.

The Circle Applying the algorithm for the line to the circle provides a strictly
1-competitive algorithm with 1 bit of advice. The key is to define a clockwise
orientation on the cycle. The 1 bit of advice will indicate whether to use the
adjacent server in the clockwise direction or the counter-clockwise direction.



The Spider A spider graph consists of a single fork, the centre, and 0 or more
branches without forks connected to the centre. The caterpillar dimension is 1
implying 4 bits of advice for PATH-COVER. We can define a variant of PATH-
COVER for the spider that uses 2 bits of advice. One bit indicates the direction
of the adjacent server, s, for the request while the second bit indicates if s should
be moved to the centre after serving the request. This algorithm is 1-competitive.

5 Conclusions

We give an improved upper bound for the k-server problem with advice on gen-
eral metric spaces. Moreover, we believe that our algorithm and our analysis are
more intuitive and simpler than previous ones, and may, thus, lead to further
improvements in the upper bound. We, also, give a 1-competitive k-server algo-
rithm with advice for finite trees, using a number of bits of advice which is a
function of the caterpillar dimension of the tree. The obvious open problem that
remains is to give tight bounds for the k-server problem with advice on general
metric spaces or for specific metric spaces.
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